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Abstract. We present a dynamic, three-dimensional, composite model
framework for vertebrate development. Our integrated model combines
submodels that address length-scales from subcellular to tissues and organs in a
unified framework. Interacting submodels include a discrete model derived
from non-equilibrium statistical mechanics (Cellular Potts Model) and
continuous reaction-diffusion models. A state diagram with associated rules and
a set of ordinary differential equations model genetic regulation to define and
control cell differentiation. We apply the model spatiotemporal bone patterning
in the proximo-distal (from body towards digits) direction of developing avian
limb.

1 Introduction

The volume of information modern molecular biology provides on genetics and
biochemistry can obscure dynamical processes underlying the generation and function
of complex biological phenomena. Predictive models and simulations can aid our
understanding of such phenomena, particularly if they take into account
experimentally-determined cellular and molecular details and treat the complex
interactions between various natural scales of biological objects and processes.

In previous papers [1, 2] we described a systems-biology approach to integrating
discrete and continuous models of biological developmental mechanisms to build a
reduced, 2-dimensional (2D) model of vertebrate limb development. We used discrete
models to describe cell movement and division, interactions between individual cells,
and differentiation (changing of fundamental sets of behaviors by turning on or off
clusters of genes) from multipotent cells into specific cell types, and continuous
models to describe extracellular signaling molecules. Simulations reproduced the
proximodistal increase in the number of skeletal elements over time in the developing
limb. This paper presents a 3-dimensional (3D) multiscale framework for modeling
morphogenesis (structural development of an organism or its organs) during
embryonic development in vertebrates. At subcellular and molecular scales,
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morphogenetic molecules are secreted, diffuse and interact. At the scale of cells,
morphogenesis involves cell growth, proliferation, differentiation, migration and
death. At larger scales, bulk changes in the shapes of tissues produce the dramatic
patterns of tissues and organs. We develop submodels for this hierarchy of scales, and
combine them into an integrated multiscale model. Specific differences from the 2D
model are detailed when dealing with submodels. While 2D simulations can serve as
a guide to model building, an adequate understanding of 3D biological phenomena
can only be achieved with 3D simulations.

Genes specify products necessary for morphogenesis, but not their distribution or
physical effects. Generic physical mechanisms (mechanisms common to living and
nonliving materials) organize the materials the genetic mechanisms provide [3].
Experiments on initiation and arrangement of individual skeletal elements in chicken
and mouse embryos suggest that the secreted morphogens TGF-f, FGF-2 and FGF-8
are key molecules of a core patterning process, as is the extracellular matrix (ECM)
adhesive protein fibronectin (reviewed in [4]). Cells differentiate from multipotent
stem cells into specialized cell types of the developed organism. Cells diversify into
distinct differentiation types during development. Differentiation from one cell type to
another is a comprehensive qualitative change in cell behavior, generally irreversible
and abrupt (e.g., responding to new sets of signals, turning on or off whole genetic
pathways). Cells of the same type can exist in different states; but different states
typically differ less in their behavior than cells of two different types. The concept of
cell types is used to model the major behavioral groups of cells.

Our earlier 2D model for spatiotemporal regulation of chondrogenesis (cartilage
development) of the vertebrate limb reproduced the biological generation of a
sequence of increasing numbers of parallel cartilage elements in proximo-distal
sequence (for figures, see [1]). In an avian (chicken) forelimb, the numbers and
identities of the main elements are 1 (humerus), 2 (radius+ulna) and 3 (digits). Bones
at different proximo-distal levels differ in size and shape (e.g., the humerus is longer
and thicker than the ulna). Differences between elements (e.g., different fingers) in
the anterior-posterior direction are subtler. Bone replaces the cartilage elements later
in development.

Organogenesis depends on the 3D rearrangement of cells. Although 2D
simulations provide helpful qualitative insights and require less computing time to
run, symmetries and symmetry-breaking during organogenesis differ qualitatively in
3D. This paper treats issues specific to 3D and describes both normal and pathological
limb development. Our model framework for organogenesis includes three major
submodels: the discrete stochastic Cellular Potts Model (CPM) for cell dynamics,
continuum reaction-diffusion (RD) partial differential equations (PDEs) for
morphogen production and diffusion, and a state automaton for cell type transition
(TT) to model differentiation. The extra degree of translational freedom in 3D CPM
relaxes 2D constraints on producing specific structures (e.g., cylindrical
condensations of cells in real chondrogenesis). In organisms, patterns of diffusing
morphogens, which serve both as inductive signals (altering cell type) and
chemotactic signals (inducing cell movement along chemical gradients), must be
stable for time scales of interest. Our earlier 2D simulations [1] used the
Schnakenberg RD equations (see [5]) as a specific continuum RD example. We
introduced additional cubic terms modifying cells’ morphogen production based on
our analysis of bifurcations of the Schnakenberg equations in 3D. Parameters
associated with these terms also make 3D equations structurally more complex.



A Hybrid Discrete-Continuum Model for 3-D Skeletogenesis 545

2 Biological Background: Multiple Scales in Organogenesis

Hentschel er al. [4] outline the biological basis of the model of chicken limb
development considered here (see also [1] and [2]). An initial tissue mass, the paddle-
shaped mesoblast, contains pre-differentiated mesenchymal cells. During successive
stages of chondrogenic patterning in the chick limb, cells divide and cluster
(condense) at increasingly distal locations and differentiate into chondrocytes,
forming the cartilage template for limb skeleton. We consider two main secreted
components--the morphogen TGF-f and the ECM molecule fibronectin. The former
diffuses through mesoblast; the latter is a larger molecule that accumulates at
secretion sites. We assume that the bulk of the ECM provides a medium for diffusion
of TGF-f and a hypothesized inhibitor of TGF- production, action or the action of its
downstream effectors [6; 7], and for fibronectin accumulation. Cells diffuse and
undergo hatptotaxis in response to fibronectin, i.e., they move up gradients of
fibronectin. TGF-§ diffuses through the mesoblast and is positively autoregulatory
[6]. TGF-B also induces cells to produce fibronectin and upregulates cell-cell
adhesivity [8], which recruits neighboring cells into chondrogenic condensations. We
make the simplifying assumption that the fibronectin signal upregulates cell-cell
adhesion, thus reinforcing accumulation of cells at high fibronectin zones. The three
zones in a developing limb are- apical where cells only divide; active where cells
rearrange locally into precartilage condensations; and frozen where condensations
have differentiated into cartilage and patterning ceases. Cell division continues in
both active and frozen zones. Certain FGFs emanating from the apical ectodermal
ridge (AER) a band of cells along the anteroposterior margin at the tip of the limb bud
have concentration-dependent effects on the underlying cells and thus define the
zones [4]. For simplicity, we assume the zones a priori.

3 Physical and Mathematical Submodels and Their Integration

Modeling Cellular and Tissue Scales: The CPM Framework

Cell-scale processes underpin the complexity of multicellular organisms. The simplest
cell-cell interaction is adhesion, which allows cells to form stable clumps and,
combined with cell motility, allows different types of cell with different adhesivity to
sort into clusters of like type [9]. Differences in adhesivity result from differences in
the quantity and identity of cell adhesion molecules (CAMs) on cell membranes.
Modeling variations in cell-specific adhesivity, rather than modeling individual
CAMs, suffices to explain cell sorting and clustering in experiments. CPM, our
framework for modeling cells and their dynamics, describes cell behaviors using an
effective energy, E, comprised of real (e.g., cell-cell adhesion) and effective (e.g., the
response of a cell to a chemotactic gradient) energies and constraints [10]. CPM
dynamics uses imposed fluctuations and strong dissipation to rearrange cell
configuration to minimize E. E includes terms to model (i) haptotaxis (ii) variations in
cell adhesivity (iii) cell growth, and (iv) division (mitosis). CPM uses a lattice to
describe cells. Each lattice site (voxel) has an associated integer index (spin). Value of
index at a lattice site is oif the site lies in cell 0. Domains (collections of lattice sites
with the same index) represent cells. A cell is thus a set of discrete components that
can rearrange, resulting in cell shape changes and motions. A voxel interacts locally
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with voxels within an interaction range. Each cell has an associated type. ECM is
modeled as a generalized cell of distinct type. In [11], quantitative justification of the
CPM is provided.

CPM is an efficient and convenient phenomenological framework for modeling the
behavior of groups of cells. It uses a minimal number of parameters which have clear
physical meanings. Models using molecular-scale chemical reaction-kinetics or
intermediate scales (e.g. at the level of the cytoskeleton or membrane) are feasible for
at most a few cells. M-Cell and VirtualCell! are successful examples of such detailed
models. In our simulations, where tens or hundreds of thousands of cells differentiate
and organize into tissues, completely microscopic approaches are computationally
exorbitant and unnecessary. We do introduce micro-scale modeling of mechanisms
when appropriate.

The phenomenological parameter 7, an effective temperature, drives cell-
membrane fluctuations. Fluctuations follow the Metropolis algorithm for Monte-Carlo
Boltzmann dynamics. A proposed change in lattice configuration produces a change
in effective energy, AE. We accept it with probability:

P(AE)=1,AE < 0; P(AE)=e¢ 2/ AE >0, (D

where k is a constant converting 7" into units of energy and E includes terms to
describe each mechanism we wish to model, e.g.,

E=E .t E et Epicar @
E, . ..describes the net adhesion/repulsion between two cell membranes.
Eepar = D atoreion 1=0(0i, j,K),07 (@', ', k'), 3)
(GVRSIGY Y

J s the binding energy per unit area depends on types of interacting cells, 7and 7.
Kronecker delta, 6(0,0°)=0 if o#£0’ and d(0,0’)=1 if o=0. Sum is over the interaction
range.

A cell of type Thas a prescribed target volume v(0;7) and surface area s(o;7). The
actual volume and surface area fluctuate due to changes in osmotic pressure,
pseudopodal motion of cells, efc. Changes also result from the growth and division of
cells. E_,,. enforces these targets by exacting an energy penalty for deviations. E

depends on four model parameters: volume elasticity, 2, target volume, v, .(0,7),
membrane elasticity, A’, and target surface area, s, (0;7):

Bune= D, A0, =v (G0) + D A(S(0,D) = (G0 (&)

all—cells all—cells

Cell Growth and Division: Cell growth results when v, (0,7 and s, (0;7) increase
with an increasing number of CPM steps (time). We model cell division by starting
with a cell of average size, v____V, causing it to grow by gradually increasing

target=  target,average?®
Vo 1O 2V and splitting the cell into two cells, each with a new target volume:

target target,average”

Vi /2. One daughter cell assumes a new o. A modified breadth-first search selects

! http://www.mcell.cnl.salk.edu/, and http://www.life.uiuc.edu/plantbio/cell/
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the voxels which receive the new spin; the split is approximately along the cell
diameter. For cell death we set the cell’s target volume to zero.

Cells can respond to chemical signals by moving along concentration gradients. A
chemotaxis/haptotaxis model requires a description of the evolving, spatially-varying
chemical concentration field for each chemical, and an inferface to connect the field

to the CPM framework for cell and tissue dynamics. C( ;) is the local concentration of

the molecule. An effective chemical potential, (o) translates the effect of the
chemical on cell motion into the CPM energy formalism. We use the simplest
possible form of this coupling:

Echemical = IU(O-)C(X) (5)

In the above, X is the position vector; when we match the grid to the (i,j,k) in the
CPM model we approximate it to the voxel it lies in.

Modeling Molecular Scales: Reaction-Diffusion Equations

In [12], Turing introduced the idea that interactions of reacting and diffusing
chemicals (at least one autocatalytic activator species and one inhibitor species which
represses the activator) could produce self-organizing instabilities that might explain
biological patterning. To model the behavior of TGF-f in the limb, we use RD and
chemotactic coupling to the cells, but no back-coupling from the cells to the chemical
field [5; 4]. Thus, the response of cells to TGF-B depends on the RD pre-pattern of
TGF-B. Assuming isotropic diffusion:

a—M:DV2LL+7/F(M),
ot

where u=(u ,,uz)Tand D=diag(d,,d,), u, is an activator (TGF-p in the chicken limb) and
u, is a hypothetical inhibitor [6; 7].

We are also working on removing the above simplification of having no back-
coupling (equivalent to assuming a non-biological source term in the RD equations),
see "Work In Progress" below. The modified RD equations include this back coupling
and the resulting feedback from cells.

The 2D model in [1] used the Schnakenberg equations, i.e., F=(F 1,FZ)T with F =a-
u+u’u, and F,=b-u’u, Here, for the growing limb bud we seek 3D solutions
cylindrically elongated in z (distal) direction. For these patterns to be stable in 3D, we
needed to circumvent the observation that stability of stripes and spots is mutually
exclusive for the Schnakenberg equations (see [13]). Accordingly, we modified the
forms of F, and F, [13] to:

(6)

Fo=a—u +uju, +k,(u, —u,)’ (N
F,=b—uju, +k,(u, —uy)’.

The cubic terms do not change the behavior in an essential way as long as u is
close to u,, where u, is a stable solution of F(1)=0. Thus, Equation 6 becomes:
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0 0’ o’u o° (3
ai; =y(a—u +u2v+k1(u _M*)B)"‘(DI ﬁ—i—D}, ay—z+#),
v 9%y % 82\/

a——;/(b uv+k,(v-v.))+d(D, —+D

¥ a N2 a N2/

We solved Equations 8 using an explicit finite-difference scheme over a
rectangular domain. Separately, or in combination, the set of parameters y (relative
strength of production vs. diffusion), the ratio [/l and diffusion coefficients of
activator and inhibitor control the number of cylinders and their geometry
(mathematically, these changes are equivalent). For instance, decreasing the diffusion
coefficient (which is mathematically equivalent to changing the aspect ratio of the
domain) in the x-direction by a factor of m” increases the number of spots in the x-
direction by a factor of m. We use the no-flux boundary conditions. Field values are
initialized to a uniform distribution perturbed randomly by a small value.

Modeling Macromolecular Scales: Fibronectin

We assume that cells respond to the TGF-B signal by producing a substratum
adhesion molecule (SAM), which we identify with fibronectin, and CAM, which we
identify with N-cadherin. We treat fibronectin as a non-diffusing chemical field,
which results in slower computations, but is simpler than treating it as a generalized
cell within the CPM framework. Cells undergo haptotaxis in the direction of
increasing SAM [14]. In addition, the fibronectin signal upregulates cell-cell
adhesion, which enhances the accumulation of cells. Hence cells tend to cluster in
regions of high fibronectin concentration and reinforce this tendency by secreting
more fibronectin within those regions.

Although the Turing-instability-generated TGF-f prepattern initiates fibronectin
patterning, self-enhancing positive feedback of SAM secretion and CAM upregulation
consolidates subsequent patterning. Our model represents an extension of the original
CPM introduced by [10] insofar as we introduce a SAM term governing cell
haptotaxis (Equation 5), and we allow the strength of CAM-dependent interaction to
vary based on morphogen concentration (Equation 3).

Cell Types and the Type Transition Model

All cells of a particular differentiation type share a set of parameters describing their
state, while two different cell types (e.g., muscle and bone) have different parameter
sets. Cells of the same type exist in different states, corresponding to a specific set of
values for the cell-type’s parameters. A cell’s behavior depends on its state. Genetic
and external cues influence both cells’ type and state. We model differentiation using
a Type Transition Model (TT). Each type in this model corresponds to a cell
differentiation type (with a defined parameter set) that exists during limb
chondrogenesis. Change of a cell from one type to another corresponds to cell
differentiation. The type-change map models regulatory networks by defining the
rules governing type change, e.g., accounting for the intra- and inter-cellular effects of
chemical fields. In the avian limb, one cell type of interest is the initial precartilage
mesenchymal cell, which can translocate, divide, and produce various morphogens
and ECM molecules. All cell types in chick limb undergo mitosis. We assume that
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cells in the active zone represent a cell type distinct from those in the apical zone.
Specifically, unlike the apical zone cells, active zone cells respond to activator,
inhibitor, and fibronectin. When a responsive cell in the active zone senses a threshold
local concentration of activator, its type changes to fibronectin-producing. A
fibronectin-producing cell can upregulate its cell-cell adhesion (the parameter J_, , in
the CPM decreases). Cells that have not experienced local threshold levels of
activator can respond to, but not produce, fibronectin. This model of genetic
regulation captures the formal, qualitative aspects of regulatory interactions (reviewed

in [15] and [4]).

The Scale of the Organ: Integration of Submodels

We must integrate the CPM (stochastic, discrete), RD (continuum, PDEs) and TT
(rule based state automaton) submodels while maintaining their modularity, e.g. by:
(i) Matching the spatial grid for the continuum and stochastic models and (ii)
Defining the relative number of iterations for RD and CPM evolvers. The SAM and
CAM submodels form a positive feedback loop (of SAM secretion and CAM
upregulation) providing the biologically-motivated interface between the RD-based
TGF-B prepattern and the CPM-based cell dynamics. The RD engine uses an explicit
solver, based on forward time marching. We store these calculations as fields, e.g., the
TGF-B concentration. The CPM simulator implements the lattice abstraction and the
Monte Carlo procedure. Acceptance probability function is Metropolis by default. We
can view the CPM as an operation on a field of voxels. Various fields can evolve
under their own set of rules—Metropolis dynamics for the field of voxels, RD for the
field of morphogens. A chemical like fibronectin, which cells secrete and which then
remains in place, is another concentration field, the corresponding evolver rule is
reaction dynamics with no diffusion. A description of genetically determined response
of the cells controls the TT evolver governing cell differentiation. Other sub-modules
implement different cell responses, e.g., cell growth and mitosis. Criteria for
interfacing the various grids and time scales specify the simulation protocol. In the
simulations we present in this paper, we keep the CPM and RD grids identical, but the
software framework can also handle different sized rectangular grids. The CompuCell
web site?, distributes the Open Source software.

4 Brief Discussion of Simulation Results

The combined behavior of morphogens, cell dynamics and cell differentiation results
in a biologically realistic, roughly periodic pattern of the major chondrogenic
elements. The model demonstrates global emergent phenomena resulting from local
interactions as well as nonlocal coupling. Sources of nonlocal coupling are present in
both the RD and CPM submodels. While reaction is local, diffusion introduces a
nonlocal interaction on the scale of the diffusion length and limited to the domain of
the diffusion. CPM is non-local because of the volume and area constraints, which
connect sites across a cell diameter. However, the emergent pattern of bones has
structures much larger than the RD and CPM interaction lengths. We first present the
normal pattern of precartilage condensation in the chick forelimb: one followed by

2 http://www.nd.edu/~Icls/compucell
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two and then three primary (i.e., excluding the wrist bones) elements successively in
the proximodistal direction. The SAM concentration and cell condensation patterns
follow the activator prepattern. Figure 1 shows simulations of the full 3D chick-limb
chondrogenesis model, where the cells have condensed into the chondrogenic pattern
of a chick forelimb.

Fig. 1. Normal development
of chondrogenic condensa-
tions: Cell con-densation
into humerus, ulna +radius,
and digits in 3D simulation.

Step @ 1s5000 Step : 215000

(a) ()

Fig. 2. (a) and (b) show transverse sections of TGF-f concentration, with no cubic stabilizing
term for activator (k,=0, k,=0.375). Stripes rather than spots are stable, corresponding to fused
digits (Apert Syndrome).

We also study the effect of parameter changes affecting the cubic terms describing
the production of the activator and inhibitor and relate it to both normal and abnormal
growth. The relative effect of the activator and inhibitor cubic terms is of interest.
Figures 2 (a) and (b) show TGF-f concentrations in transverse sections of the
simulated chick limb in the distal region at successive times , for k=0 (no cubic term
for the activator). Patterning in the proximal region proceeds normally, up to the
bifurcation of the solution into two cylindrical elements (two spots in cross-section).
As time progresses, the two elements fuse into one long stripe in the transverse
section, equivalent to the pathology of fused elements (Apert syndrome in humans
[16]). The results were similar for small positive values of k, 0<k,~k,<0.1. Figure 3
shows results for k£,=0 (no cubic term for the inhibitor). The normal pattern of bone
elements is seen. Thus the activator cubic term suffices to stabilize the spots in
transverse section. We can interpret the four intermediate spots in Figure 3 as carpal
(i.e., wrist) bones.
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Step : 255000 Step 0 270000

() (b)

Step @ 310000 Step @ 500000

() (d)

Fig. 3. Transverse sections of TGF- concentration with no cubic stabilizing term for inhibitor
(k,=0, k,=0.125). We obtain the normal pattern, indicating that the activator’s cubic stabilization
is crucial for generating the bone element pattern. The intermediate stage of four spots
resembles the many carpal bone elements.

In summary, normal-looking patterns of the major chondrogenic elements were

obtained for a relatively robust range of parameter changes. The correct stable pattern,
especially the formation of distinct digits, requires the cubic terms in the equations
describing the production of activator and inhibitor, with the activator cubic term
more important. This may be justified, in part, by results described in [13] and
references therein, showing this to be a general result for the kind of RD systems we
consider- i.e., with only the first order terms for reactions, it is not possible to get both
"stripes" and "spots" in a stable pattern. Other forms may stabilize the solution; for
example, the assumption that fibronectin diffuses a short distance stabilizes [17] the
biologically-motivated system of equations for skeletal development studied in [4].
These possibilities can motivate experimentation to determine whether this class of
models is viable and if so, how stabilization is actually achieved.
Work in progress: We are extending the model to make the production of TGF-3 as
realistic as that of fibronectin, to include secretion at cell boundaries, rather than
modeling secretion at the domain level. We will incorporate and extend the work of
[4], which uses a continuum model of interaction between limb cells and gene
products to obtain a more realistic set of RD equations. We are extending our
simulation geometry module to incorporate the limb domain’s moving boundaries. To
incorporate the AER we are introducing two additional cell types, both epithelial
(cells that cover the outer surface of the limb and give rise to skin) apical epithelial
cells which secrete a mixture of FGFs characteristic of the AER, and epithelial cells
that secrete a different mixture of FGFs [18].
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