
Introduction

Why study the rheology of foams? The motivations are
widespread and diverse (Weaire and Hutzler 1999).
Foams are common in oil extraction and industrial
cleaning. Closer to home, an understanding of flowing
foams helps to extinguish fires more efficiently and to
generate the perfect pint of beer. At low shear-rates a
foam behaves as an elastic solid, while at high shear-
rates it yields like a liquid, generating a rich range of
behaviours. Foams are non-Newtonian, but have a
specific structure which allows analysis of their non-
Newtonian behaviour. Foams can thus serve as a pro-
totype for other non-Newtonian fluids and even for
granular materials.

In addition to rheology, we seek to understand the
drainage (usually gravitational) of liquid through the
foam structure. High flow-rate drainage can cause the

structure itself to flow; these convective instabilities
(Weaire et al. 2003) further motivate our interest in
rheology.

Is the study of two-dimensional (2D) foams, or froths,
useful? As in many fields, the restriction to 2D allows
easier visualization of both experiment and simulation,
and often simplifies the theory, allowing us to isolate and
study new phenomena (though we must check for spu-
rious 2D effects).

To develop tools for 2D simulations, we first consider
the foam’s liquid fraction Fl, i.e. its fractional liquid
content by volume. The dry limit of low liquid fraction,
Fl fi 0, is a natural idealization, in which soap films are
infinitesimally thin arcs of circles. The Laplace equation
then determines the curvature j of a film from the
pressure difference Dp between neighbouring bubbles:

Dp ¼ cj; ð1Þ
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where c is the surface tension of the films. At equilib-
rium, these films meet in threefold vertices at 120�.

Minimization of film or line-length completely
determines a 2D foam’s equilibrium structure, since its
energy is proportional to the product of surface tension
and film length. A progressively strained foam’s energy
increases until two threefold vertices approach one an-
other and undergo a T1 neighbour exchange as in Fig. 1.
The T1 reduces the pattern energy: the films connecting
two threefold vertices are shorter than those for a
fourfold vertex, which rapidly decays. The location and
statistics of T1s thus determine the inelastic properties of
the foam and how it releases energy during flow.

Simulations must handle a range of liquid fractions
up to the wet limit of Fl�18% (Weaire and Hutzler
1999). As the liquid fraction increases, the vertices swell
into triangular Plateau borders, named after the Belgian
scientist who pioneered the study of soap film structures
(Plateau 1873). At the wet limit, a rigidity loss transition
occurs (Bolton and Weaire 1992), leaving separated
circular bubbles.

The most common experimental realizations of a 2D
foam, illustrated in Fig. 2, consist of either trapping
bubbles between two glass plates, as pioneered by Smith
(1952), or of bubbles that form a floating raft on a liquid
pool. Bragg and Nye (1947) used the latter as an analogy
for crystal structure. A further possibility is to trap
bubbles floating on a liquid beneath a glass plate (Smith
1952; Vaz and Fortes 1997). Such foams are not truly

2D, since the meniscus or solid surface can change their
behaviour (Cox et al. 2003). However, they often
approximate the ideal 2D froth of simulations.

The development of computer codes to model foam
flow has followed the work of Princen and co-workers in
the 1980s, reviewed in Princen (2000), on the deforma-
tion of the ideal hexagonal (honeycomb) network. Early
work concentrated on the coarsening dynamics of foams
(Weaire and Kermode 1983; Kermode and Weaire 1990;
Herdtle and Aref 1992), in which diffusion transfers gas
between bubbles. The quasi-static PLAT code of Bolton
and Weaire (1992), which relaxes the foam between
small increments in strain, allowed Hutzler et al. (1995)
to model foams of arbitrary liquid fraction under
extensional flow.

Okuzono et al. (1993) used a vertex model, which
included viscous dissipation at the vertices. This dry
model connects vertices by straight films, causing some
inaccuracy in resolving T1s, although Cantat and Del-
annay (2003) have used it successfully. Jiang et al. (1999)
used the Potts model to include viscous dissipation in the
dry limit. Despite certain caveats about the definition of
viscosity, the model gives good and computationally
inexpensive results for T1 statistics. Durian’s wet-limit
bubble model (Durian 1995) approximates bubbles as
circular discs connected by springs; the results compare
well with experimental data for wet foams.

In the following sections we describe some experi-
ments and simulations designed to clarify the physics of
foam rheology. Approaches to 2D foam flows have
progressed from continuum approximations (see next
section) which subsume all structural detail into a
macroscopic yield stress, to quasi-static simulations (see
below) in which the foam has sufficient time to relax
between each small increment in strain, to our viscous
froth model (see later), which combines an improved
version of the viscous dissipation of the continuum
approximation with the precise foam structure of the
quasi-static approximation (Fig. 3) and accounts realis-
tically for the pressures to give greater insight into the
dynamics of moving foams.

Continuum approximations

We consider first the continuum in which a foam be-
haves like a yield-stress or shear-thinning fluid. Kraynik
(1988) showed how to infer values for the yield stress sy
and viscosity l of a foam, and to model it as a Bingham
fluid in which the stress s varies as

s ¼ sy s6sy

sy þ l_c s>sy :

�
ð2Þ

In this relationship the strain-rate is _c. The variation of
stress with strain can be generalised to a Herschel-

Fig. 1 A T1 topological transformation, or neighbour exchange, is
the mechanism by which the foam dissipates energy in the quasi-
static regime. The length of a short edge between two vertices
shrinks to zero, forming a fourfold vertex which immediately
dissociates into two threefold vertices. Two of the adjacent bubbles
lose an edge and the other two gain an edge

Fig. 2a,b Possible experimental configurations for a 2D foam
consist of:a trapping the foam between two close, parallel
horizontal plates; b floating a bubble-raft on the surface of a liquid
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Bulkley relationship with an arbitrary exponent n on the
strain-rate. The yield-stress depends upon the liquid
fraction, and the value of the exponent n is still debated.

We can solve the Navier-Stokes equations for a
Bingham fluid and compare the results to experiments
on flowing foams. In the contraction flow of Jiang et al.
(2000) (see also Asipauskas et al. 2003) a slow, steady
flow of bubbles between two horizontal glass plates
pushes through a 20:1 contraction (see Fig. 4). Image
analysis gives both the streamlines of the flow and the
positions of the T1s which dissipate the foam’s excess

energy. Comparing the simulated and experimental
streamlines is not particularly useful, though the posi-
tions of the T1s and the areas in which the Bingham fluid
yields correspond as in Fig. 4b. A more meaningful
comparison examines the structure of the foam itself
(even in a quasi-static model which neglects viscosity
and relaxes the energy between small step increments of
strain). To motivate this study, we describe two recent
experiments which reach differing conclusions concern-
ing the nature of Couette shear on a 2D foam.

Couette shear

The experiment of Debregeas et al. (2001) traps a rea-
sonably monodisperse (equal-area) foam between hori-
zontal glass plates in the annular region between two
cylinders, i.e. in a Couette viscometer. The inner cylinder
rotates in small increments, allowing ample time for full
relaxation between each step, satisfying the requirements
of the quasi-static approximation. The roughness of the
surfaces pins the bubbles that are close to each of the
cylinder walls. T1s almost all occur within about five
bubble diameters of the inner (moving) cylinder. Such
shear-banding or localization, although usual in granu-
lar materials, had not been previously been seen in
foams. A similar experiment (Lauridsen et al. 2002),
using the bubble-raft configuration of Bragg and Nye
(1947), moved the outer cylinder in a quasi-static fash-

Fig. 3 a Quasi-static froth dynamics. b Viscous froth dynamics,
both applied to a single film in a 2D froth. In the quasi-static case,
after each increment in strain the pattern relaxes to a new
equilibrium in which the pressure difference Dp=p1)p2 balances
the surface tension c according to the Laplace Law (Eq. 1). In the
viscous froth model a viscous drag on the film proportional to the
velocity alters the force balance to the form in Eq. (3). In both cases
the films meet at 120�, but only in the quasi-static case do they form
circular arcs

Fig. 4a,b The Bingham approximation for a yield-stress fluid
indicates the correlation between macroscopic dissipation and
local topological events. In this experiment of Glazier and co-
workers (Jiang et al. 2000; Asipauskas et al. 2003) a foam flows
steadily through a 20 to 1 contraction. The resulting distribution of
T1s in the experiment (a) (showing the density of T1s per unit time
per unit area, from Asipauskas et al. 2003) is comparable to the
regions in which a Bingham fluid yields (b) (obtained using the
CFD package Fluent with slip boundary conditions)
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ion, and did not produce shear-banding. In both cases
the foam’s liquid fraction was about 8%, well away from
either dry or wet limits. The unexplained discrepancy
between these two experiments motivated our Couette
simulations.

Perhaps the best tool for simulating equilibrium non-
viscous dry foams is Brakke’s (Brakke 1992) Surface
Evolver. Surface Evolver minimizes the line-length of
the foam structure subject to constraints, such as fixed
bubble areas, and incorporates a circular-arc mode
which models soap films precisely, rather than as a
collection of short straight segments. A quasi-static
simulation in Surface Evolver repeatedly applies a small
strain increment followed by relaxation to equilibrium.

Kabla and Debregeas (2003) performed simulations
of the experiment of Debregeas et al. (2001) using 768
bubbles with straight edges and slightly disperse areas
with a markedly jagged lower boundary to a 2D rect-
angular domain periodic in one direction. They also
found a shear-band in the inner layer of five bubbles.

To simulate the effect of the non-zero liquid fraction
in the experiment, they introduced a cut-off film length
below which a T1 triggered, was mimicking the effect of
the Plateau borders, which cause vertices to interact at a
separation greater than a dry model would predict.

Our own quasi-static simulations using the Surface
Evolver with vertices fixed to a flat boundary in the same
rectangular domain as Kabla and Debregeas (2003) do
not show localization. In agreement with naive analysis,

the slip occurs only within one bubble width of both the
outer and inner surfaces, as Fig. 5 shows. In this rect-
angular geometry, why should symmetry be broken and
the T1s occur close to only one wall? For monodisperse
foams and smooth boundaries, the T1s do not propagate
into the foam bulk, so we must in future vary the degree
of surface roughness, the cut-off length used to trigger
T1s, and the area-dispersity to seek conditions which
produce shear-banding.

To break symmetry we employ an annular geometry
closely resembling the experimental configuration
(Fig. 6). After an initial transient, when the foam relaxes
towards a more ordered (predominantly hexagonal)
state, T1s only occur within one bubble width of the
smooth inner, moving wall.

Exploring so many free parameters (area dispersity,
cut-off length, boundary profile, etc.) would require
many simulations. We have also neglected the effects of
viscous dissipation. In slow Couette-shear experiments,
viscosity should not be too important. However, as we
show in the next section, explaining some experimental
results requires us to include the viscous drag that soap
films experience when they move across a surface.

Viscous froth

Unlike other models of viscous 2D foam flow, we aim to
develop a predictive simulation tool that accurately

Fig. 5a Moving the lower
boundary shears a foam of 750
bubbles in a rectangular box
periodic in the x̂ direction
(quasi-static Surface Evolver
calculation). b After an initial
transient, corresponding
approximately to a unit shear,
the T1s occur close to both the
moving and the stationary
plates
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represents both the curvature of the soap films and the
viscous forces. Rather than solving the Laplace equation
(Eq. 1) for each film, we now use it to determine the
velocity v of the film according to Kern et al. (2003):

Dp � c j ¼ k v: ð3Þ

The parameter k includes the viscous dissipation due to
dragging the film along a surface (Fig. 3). Bretherton
(1961) showed that the velocity v in Eq. (3), which is
normal to the film, should be raised to the 2/3 power.
First we consider the linear case, which is easier to solve,
and agree to qualitatively with experiment (Kern et al.
2003).

We have applied the viscous froth model to T1
dynamics. Our experiments on the flow of ordered foam
structures in 2D channels (Weaire et al. 2003) include the
situation in Fig. 7 in which a 211 staircase structure
moves around a 180� bend. At low velocities the struc-
ture flows elastically around the bend, while at higher
velocities it experiences a single T1 at the apex of the
bend.

Quasi-static calculations failed to predict this T1, so
we implemented the viscous froth equation (Eq. 3) on a
discretized network of films, using Surface Evolver for
all necessary book-keeping (such as deleting short edges
and keeping track of the discretization after T1s) and to

include adherence to the channel walls. Kern et al.
(2003) describe an alternative implementation for a
periodic 2D foam. Glazier and Espinoza-Ortiz (2004)
have also used the Potts model to replicate these results.

Our simulations to ascertain the critical velocity as a
function of bubble area Ab at which T1s begin suggest
that v scales as A��1b .

To establish a direct correspondence between the 2D
viscous froth model and a particular physical realization
we will have to include nonlinear viscous drag on the top
and bottom plates and side-wall drag. Additional vis-
cous effects, associated with the elongation of films, re-
sult in deviations from the 120� angles at vertices
(Reinelt and Kraynik 1989) and may be the dominant
dissipative mechanism in three dimensions. In 2D the
large viscous drag on the confining surfaces probably
dominates. Since any additional effects due to film
elongation must depend upon the height of the foam
sample, careful measurement of vertex angles might help
to validate our model.

Summary

Two-dimensional experiments and simulations provide
an excellent environment in which to explore foam

Fig. 6a–c The inner cylinder of
a Couette viscometer rotates
quasi-statically to strain a foam
of 500 bubbles (Surface Evolver
calculation). Energy dissipates
close to the moving wall, in
small avalanches of T1 s: a,b
consecutive images from the
evolution: the black internal
edges are those created by T1s;
c after an initial transient, the
majority of the T1s lie close to
the inner boundary of the cell
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dynamics. Simulation using the new generation of vis-
cous froth models shows close qualitative agreement
with experiment and accurately predicts dissipation
events. We intend to use this simulation technique to
predictively design these and other experiments. Indus-
trial applications include possibilities for new kinds of
micro fluidics, in particular the transport of small sep-
arated volumes of liquid using bubbles.

What are the difficulties in three dimensions? While
visualization is difficult, due to the opacity of liquid
foams, the sophisticated experiments of Rouyer et al.
(2003) allow comparison with Surface Evolver simula-
tions, such as those of Reinelt and Kraynik (1993, 1996).
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