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Abstract

Simulations using the Extended Potts Model suggest that anisotropic differential adhesion can account for convergent extension,

as observed during embryonic development of the frog Xenopus laevis for example. During gastrulation in these frogs, convergent

extension produces longitudinal tissue growth from latitudinal elongation and migration of aligned constituent cells. The Extended

Potts Model employs clustered points on a grid to represent subdivided cells with probabilistic displacement of cell boundaries such

that small changes in energy drive gradual tissue development. For modeling convergent extension, simulations include anisotropic

differential adhesion: the degree of attachment between adjacent elongated cells depends on their relative orientation. Without

considering additional mechanisms, simulations based on anisotropic differential adhesion reproduce the hallmark stages of

convergent extension in the correct sequence, with random fluctuations as sufficient impetus for cell reorganization.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Three disparate examples show that cell statics and
dynamics often depend on anisotropic differential
adhesion: a discernible orientation for each cell accom-
panied by non-uniform stickiness over cell surfaces.
First, in vertebrate (Armstrong, 1989) and invertebrate
embryos, flat epithelial cells are only sticky on one side
and organize to form stable cavities with nonadhesive
cell surfaces facing the interiors of ducts, lumens and
vacuoles. Second, as an isolated cell migrates over an
artificially prepared surface, it reaches ahead, at the
leading edge, and takes hold of the substrate using
tendrillous filopodia (Huttenlocher et al., 1995; Lauf-
fenburger and Horwitz, 1996) or wide flat lamellipodia
which provide traction as the cell body moves forward,
with adhesion necessarily undone at the trailing edge
(Mitchison and Cramer, 1996), as the cell advances.
Third, the ‘‘cell–cell traction’’ model (Keller et al., 2000)
suggests anisotropic differential adhesion as a mechan-
ism for longitudinal tissue extension, resulting from
latitudinal cell convergence, with tightly bound lateral

surfaces of adjacent cells parting when the narrow end
of an advancing cell intervenes. As these examples
illustrate, cell migration and organization often corre-
lates with cell shape and non-uniform adhesion.

Direct observation (Keller et al., 1989; Shih and
Keller, 1992b) of convergent extension does not reveal
the cause of attendant cell reorganization. However,
analytic calculations (Zajac et al., 2000) suggest that
anisotropic differential adhesion can account for cell
elongation, alignment and convergence, followed by
tissue extension. The Extended Potts Model provides
a more realistic implementation of the same basic
hypothesis by treating each cell as an assembly of small
rearrangeable pieces, allowing for cells with less
restricted shapes and orientations. The model employs
only random boundary deformations, governed almost
entirely by non-uniform surface interactions between
oriented, neighboring cells. Over time, perturbation of
cell contacts gradually replaces weaker attachments with
stronger attachments, tending towards a stable config-
uration of minimal energy. These simulations establish
anisotropic differential adhesion as a sufficient condi-
tion for convergent extension without detailed consid-
eration of any other intracellular or extracellular
influences.
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1.1. Empirical foundation

The development of animals with organs and internal
cavities often includes convergent extension in which
tissues grow longer and narrower to form axial
structures. One example is the onset of digestive tract
formation in sea urchins (Hardin and Cheng, 1989).
Fruit fly development provides two more examples:
telescopic leg growth (Condic et al., 1991) and an
observed flow of surface tissue from the belly to the
back (Irvine and Wieschaus, 1994), past the tail end of
the embryo. Among the many other instances (Keller
et al., 2000) of convergent extension, the frog Xenopus

laevis may provide the most thoroughly documented
example (Elul et al., 1997; Keller and Hardin, 1987;
Keller and Shih, 1995; Winklbauer and Nagel, 1991;
Wolpert et al., 1998).

Comparing all stages of Xenopus laevis development,
gastrulation exhibits the most sweeping tissue rearran-
gements. The greatest changes (Keller et al., 1991) take
place during convergent extension, when active cells
elongate, align and then intercalate, generating long-
itudinal embryo growth from latitudinal cell migration.
Elongation occurs first, leading to crudely rectangular
shapes for cells that start out (Fig. 1a) roughly square.
Soon after, alignment develops, resulting in a common
orientation for the long axes of all cells. Somewhat later,
intercalation (Fig. 1b) augments tissue length in the
same way that merging two decks of cards produces a
single, deeper stack. This specific three-fold process of
elongation, alignment and intercalation is sometimes
referred to as ‘‘mediolateral intercalation behavior’’
since ‘‘convergent extension’’ may also describe similar
tissue deformations (Keller et al., 2000) driven by other
mechanisms such as cell growth or radial cell migration.

Note the distinction between ‘‘elongation’’ and
‘‘extension’’ which describe increased aspect ratios for
individual cells or entire tissues, respectively. Elongation

alone would produce tissue extension in the same
direction as the long axes of aligned constituent cells.
However, intercalation yields increased tissue length
(Fig. 1c) at right angles to the direction of cell
elongation and migration. Thus, quite remarkably,
extension develops with the long axis of each cell
oriented at right angles to the long axis of the tissue.
Consequently, convergent extension exhibits a pair of
hallmark biaxial symmetries: one for cells and one for
tissues.

A number of factors may influence convergent
extension during undisturbed embryonic develop-
ment but cultured tissues (Fig. 2) offer a simpler
situation that is more amenable to analysis and
simulation. Evidence suggests that convergent extension
within Xenopus laevis embryos can be triggered by
tissue layers below (Shih and Keller, 1992b), guided by
tissue layers above (Winklbauer and Nagel, 1991) or
channeled by stiff tissue blocks on either side (Keller
et al., 1989). Previous theories have required at least
one of these boundary conditions in order to explain
convergent extension. For example, one model
(Jacobson and Moury, 1995) proposes that cells
within the extending tissue elongate while migrating
to achieve increased contact with bounding tissues,
on either side. However, excised monolayers of tissue
(Shih and Keller, 1992a) display all the noted hall-
marks of convergent extension, though isolated
from any influence of adjacent tissues that might
occur in undisected embryos. The shape changes of
these cultured tissues and their constituent cells
develop without influence from anisotropy of the
surroundings. This convergent extension of excised
tissues, in the absence of any obvious cues from the
environment, invites an explanation in terms of collec-
tive behavior arising from intrinsic cell properties.
Anisotropic differential adhesion provides a possible
cause for the noted biaxial symmetries of both

Fig. 1. Convergent extension schematically. Cells elongate (b) and then converge (arrows) to yield a longer (c) narrower tissue. Cells maintain

roughly constant volume. The actual process (Fig. 2) does not include noticeable gaps between cells.
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individual cells and whole tissues, during convergent
extension.

1.2. Simulation preview

The Extended Potts Model belongs to a class of
simulations (Agarwal, 1995b; Goel et al., 1970; Goel
and Rodgers, 1978; Rogers and Goel, 1978) that
subdivide cellular patterns by superimposing a grid,
often termed a lattice, with probabilistic dynamics for
pattern elements, reflecting changes in stored energy.
Developed to investigate (Glazier and Graner, 1993;
Graner and Glazier, 1992) spontaneous segregation of
aggregated cells from different tissues, the model
confirms all predictions of the (isotropic) Differential
Adhesion Hypothesis (Steinberg, 1962a,b, 1963) which
asserts that an energy gradient (Graner, 1993) drives
rearrangement of mixed aggregates as cells shift posi-
tions to find more amenable coupling partners. Random
membrane fluctuations provide a means of egress

from marginally stable cell configurations. Later
enhancements of the basic model include coupling to
continuum models for chemical signaling (Agarwal,
1993, 1994; Jiang, 1998; Savill and Hogeweg, 1997)
along with incorporation of mitosis (Mombach et al.,
1993; Stott et al., 1999) for modeling tissue growth and
cancer.

Simulations employ uniquely labeled domains
(Fig. 3a) of clustered lattice sites to represent individual
cells, with a second label (Fig. 3b) for each domain,
shared by all cells from the same tissue. Distinguishing
unlike cells allows for differential adhesion, reflected in
suitably adjusted energies for each unit of contact at
domain boundaries. Lattice patterns evolve by condi-
tional, random transfer of boundary sites between
neighboring domains, with automatic acceptance of
modifications that reduce energy while the probability of
acceptance falls exponentially for energy gains. Though
deformable, each domain has a size constraint so that no
cell can grow or shrink without bound.

Fig. 2. Real and simulated convergent extension. Cell tracings (a–c) show cultured tissue, excised from the back of a Xenopus laevis embryo at stage

10.5 of development. Shading emphasizes separation of initially adjacent cells. Both real and simulated (d–f) tissues develop extension, over time.

Contrary to overall alignment, cells at the narrow ends of some arrays point inwards from the boundary. Out of many experiments and simulations,

the results shown here were chosen unscientifically on the basis of strong qualitative resemblance with no detailed correspondence of length or time-

scales implied. The empirical results are reproduced (Shih and Keller, 1992a) by permission of The Company of Biologists Limited.
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Introducing anisotropic differential adhesion to the
Extended Potts Model allows a novel approach (Zajac,
2002) to simulating convergent extension. Despite a
constraint on overall shape, cells remain deformable,
unlike other models for anisotropy (Drasdo et al., 1995;
Goel and Leith, 1970) based on less flexible, more
approximate cell shapes. Tracking the spatial distribu-
tion of sites within each lattice domain allows aniso-
tropic binding based on the relative orientation of
elongated neighboring cells. Under the Extended Potts
Model, biaxial symmetry arises from these anisotropic
cell interactions, rather than following from special
boundary conditions, as assumed by an earlier model
(Weliky et al., 1991) for convergent extension. The same
earlier model requires persistent, directed cell motion
rather than the simpler, random fluctuations, of the
Extended Potts Model. In simulations, anisotropic
differential adhesion proves sufficient as the sole
mechanism for cell elongation and alignment followed
by tissue extension.

2. Method

By treating each cell as an assembly of small
rearrangeable pieces, the Extended Potts Model allows
for elongated cells with measurable orientations while
the statistical mechanics of interacting particles lends
itself to a method for energy minimization based on a
series of small perturbations. Early alternatives (Goel
et al., 1970; Goel and Leith, 1970; Goel and Rodgers,
1978) considered mosaics of rigid congruent polygons,
effectively using a single lattice site for each cell.
However, using domains of clustered sites (Agarwal,
1993, 1995a,b; Glazier and Graner, 1993; Graner and
Glazier, 1992; Upadhyaya, 2000) allows for more
realistic cell shapes. Lattice site coupling at domain
boundaries (Fig. 3c) models cell adhesion.

Based on experiments with thin sheets of excised
tissue (Shih and Keller, 1992a), convergent extension
simulations consider a single layer of cells, in two
dimensions. Tracking cell orientations provides each cell
with an intrinsic coordinate system, allowing for
stickiness to vary as a function of location, over the
surface of each cell. Size and shape constraints for each
cell model limited compressibility and intracellular
forces. In general, an evolving lattice pattern need not
resemble a collection of cells but pattern energy in
simulations reflects cell properties such that the prob-
abilistic dynamics favor holding domains together as
they deform and translate.

2.1. Pattern energy

Simulations characterize cell patterns in terms of
stored energy. Rather than confronting anisotropic
differential adhesion immediately, consider the simpler
case of mixed, uniformly adhesive cells from different
types of tissue with unlike cells distinguished by different
degrees of stickiness. Contributions to the total pattern
energy include a sum for coupling between cells and a
sum reflecting limited cell compressibility:

E ¼
Xsites
i;j;k;l

ð1 � dsij ;skl
ÞJtðsÞtðs0Þ þ

Xcells
s

ltðsÞðAðsÞ � A3Þ
2; ð1Þ

with different couplings JtðsÞtðs0Þ for every possible pair
of cell types where domain s has type tðsÞ while sij and
skl are sites from adjacent domains s and s0 respectively.
The first sum in Eq. (1) ranges over all site coordinates i

and j with k and l as coordinates of nearby sites. Only
mismatched neighboring sites contribute to cell coupling
since ds;s0 equals unity when s equals s0 and vanishes
otherwise. Consequently, the model realistically loca-
lizes all the stored energy for coupling between cells at
domain boundaries.

Fig. 3. Cell patterns on a lattice. A cell array s together with a type list t define a pattern. Domains of clustered sites define boundaries (thick lines, a)

between cells. The strength of coupling (arrows, c) depends on the type (b) of cells at an interface.
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The second sum in the pattern energy of Eq. (1)
implements size constraints weighted by ltðsÞ for each
cell. Working in two dimensions, the size constraints
ensure an area close to A3 for every cell, although the
actual area AðsÞ for each cell fluctuates. By design,
the size constraint increases pattern energy unless AðsÞ
equals A3 for all cells. Patterns usually include a wide
border of lattice sites, assigned to a generalized cell of
unlimited size, with ltðsÞ set equal to zero accordingly.
This unique domain represents a nourishing culture
medium surrounding the cells. Together, size constraints
and distinctive couplings JtðsÞtðs0Þ for mismatched cells
provide a sufficient description of pattern energy for
isotropic differential adhesion, as in original simulations
(Glazier and Graner, 1993; Graner and Glazier, 1992) of
spontaneous cell sorting.

Simulations of convergent extension use modified
coupling to introduce anisotropic differential adhesion.
For an elongated cell, the principle axis (Appendix A)
with the least moment of inertia gives the direction of
elongation. Coupling becomes a function of vectors r

and r0 which locate a common boundary point (Fig. 4)
relative to the respective centers of neighboring cells.
These vectors have components ðr; yÞ and ðr0; y0Þ in polar
coordinates with angles measured from the long axes of
cells s and s0; respectively. In terms of these variables,
anisotropic coupling takes this form:

Jðr; r0Þ ¼ JtðsÞtðs0Þ � DðrÞDðr0Þ;

DðrÞ ¼ atðsÞeðsÞr sinðyÞ; ð2Þ

where JtðsÞtðs0Þ is just the coupling from Eq. (1) for
uniformly sticky cells while DðrÞ and Dðr0Þ describe
contributions to anisotropy from cells s and s0;
respectively. The parameter atðsÞ sets an upper limit on
anisotropy with eðsÞ as a measure of the cell elongation,
derived (Appendix A) from the principle moments of
inertia. For the unrealized case of perfectly elliptical
cells, eðsÞ reduces to the eccentricity. Simulations
describe convergent extension within a block of cells
from the same tissue so tðsÞ serves only to distinguish
these cells from the surrounding culture medium. The

anisotropy atðsÞ is positive for coupling between cells but
vanishes otherwise so that coupling to the culture
medium does not depend on cell orientation. Substitu-
tion of Jðr; r0Þ for JtðsÞtðs0Þ in the pattern energy of Eq. (1)
brings anisotropic differential adhesion to the Extended
Potts Model.

Though chosen, in part, for ease of implementation,
the anisotropy described by Eq. (2) satisfies important
empirical and theoretical considerations. Significantly,
the r sinðyÞ factors that influence coupling allow for
relative displacement of parallel neighboring cells along
their common direction of elongation with little change
in bond strength at points where the cells maintain
overlap. This coupling scheme mimics, to some degree,
the ‘‘cell–cell traction’’ model (Keller et al., 2000) for
convergence, allowing cells to crawl over each other in
opposite directions, with firm anchorage opposing
transverse detachment. In addition, the anisotropic
component of Jðr; r0Þ has a product form consistent
with models (Agarwal, 1993; Steinberg, 1975; Zajac
et al., 2000) that reflect plausible binding site densities
on opposed surfaces of adjacent cells. What is more, the
coupling expressed by Eq. (2) satisfies conditions (Zajac
et al., 2000) for cell alignment and tissue extension,
derived analytically using simplified models, which
assume more regular cells with restricted orientations.
Notably, simulations consistent with this analytic
modeling have proven successful while preliminary
alternative adaptations of the Extended Potts Model
failed to produce convergent extension.

Along with anisotropic differential adhesion, conver-
gent extension simulations include an additional
constraint on cell shape, formally equivalent to the
constraint on cell size from Eq. (1) but with ktðsÞ; IðsÞ
and I3 replacing ltðsÞ; AðsÞ and A3; respectively. The
actual moment of inertia IðsÞ for the constituent lattice
sites of each cell may differ from the ideal moment of
inertia I3 for an elongated yet otherwise undistorted
domain. In exact analogy with constraining cell size, the
shape constraint gives increased pattern energy unless
IðsÞ equals I3 for all cells.

Fig. 4. Anisotropic binding. Coupling at the point of contact between cells s and s0 depends on sinðyÞ and sinðy0Þ with both y and y0 in the interval

½0;p� so there is no need to distinguish between complementary angles.
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Working in two dimensions, the shape constraint
favors elongated cells when I3 is set equal to the moment
of inertia for a flat elliptical cell about an axis through
the center of mass, perpendicular to the plane of the
lamina:

I3 ¼
A3

4
ða2 þ b2Þ;

A3 ¼ pab; ð3Þ

where a and b are the semimajor and semiminor axes of
the ellipse, respectively. Adding this shape constraint to
the pattern energy in Eq. (1) requires an additional sum
over all domains, augmenting the sum that implements
size constraints.

For a deformable cell, regulating IðsÞ alone does not
guarantee a convex shape or even preclude an annular
distribution of mass which is completely unrealistic.
However, in two dimensions, the shape constraint of
Eq. (3) strongly favors elongated cells when combined
with the size constraint and positive cell couplings,
which yield lower energies for minimal surfaces. The
shape constraint is meant to crudely model intracellular
forces such as cytoskeletal effects which, in principle,
might either promote or retard cell elongation under
anisotropic differential adhesion. For unequal values of
a and b the shape constraint favors elongated cells while
favoring circular cells when a and b are chosen equal.

2.2. Pattern dynamics

The Extended Potts Model does not attempt to
capture the internal mechanics of individual cells.
Instead, the model assumes that a local energy gradient
sets the direction of migration for each cell (Graner,
1993) while a global energy minimum identifies the final
destination. Random fluctuations allow cells to escape
from local minima but need not reflect actual trajec-
tories. The idea is that differential adhesion and energy
minimization give the correct sequence of events during
cell reorganization, just as topography orders the gates
of a slalom course without recognizing that skiers have
muscles, which allow for autonomous steering.

Lattice patterns evolve gradually through repeated
acceptance or rejection of cell shape perturbations,
governed by small changes in pattern energy. For each
attempt at pattern modification, a lattice site is chosen at
random and provisionally altered to match the sites in a
different, randomly selected domain, thus transferring
the chosen site to the selected domain, on a trial basis.
However, in a departure from the usual Metropolis
dynamics for lattice patterns (Gilks et al., 1996; Koonin
and Meredith, 1990; Metropolis et al., 1953), cell
simulations only consider sites at a boundary between
domains for modification, with modified sites reassigned
to the domain of a randomly selected nearby site, in the
case of a successful trial. This scheme prevents

instantaneous transfer of cell fragments to distant
locations, including the insertion of a fragment from
one cell at the heart of another. Changes are both local
and localized at cell boundaries which makes sense
for simulations of cells with random membrane
fluctuations.

Each attempted lattice modification causes a slight
change in pattern energy which depends on modified
contact between cells, influenced by the size and shape
constraints. Decreases in pattern energy are always
accepted, while the likelihood of accepting an energy
increase depends on a ratio of Boltzmann factors:

PðDEÞ ¼
e�E1=T

e�E0=T
for E1 > E0;

1 for E1pE0;

8<
: ð4Þ

where PðDEÞ is the probability of accepting a change in
energy from E0 to E1 while T is the temperature,
measured in units of energy. In these simulations,
adjusting T simply determines the average acceptable
energy increase for pattern modifications and does
not represent actual, thermodynamic temperature. For
sufficiently low temperatures, the most likely patterns
are small perturbations of a minimal energy configura-
tion. Technically, this variant of the usual Metropolis
dynamics does not have (Zajac et al., 2000) microscopic
reversibility (Meyer, 2000) as required for true, thermal
equilibrium statistics. However, successive lattice mod-
ifications do meet the definition of an ergodic Markov
process (Gilks et al., 1996) which is sure to reach a
steady state, eventually. Notice that convergent exten-
sion belongs to a transient phase of this Markov
process, neglected in more familiar Metropolis calcula-
tions of ensemble averages, at thermal equilibrium.

Though uncomplicated in principle, anisotropic cou-
pling between cells is not simple to implement. For
elongated cells, anisotropic differential adhesion from
Eq. (2) depends on polar coordinates r and y for each
boundary site, measured from the center of mass and
the long axis (Fig. 4) respectively, for each cell. As an
advancing cell gains one lattice site from a retreating
neighbor the centroid and orientation (Appendix A) of
each changes slightly. It follows that coupling changes at
all points where either of the altered domains contacts
any adjacent cell, not just at points in the neighborhood
of a single modified site.

Rather than laboriously updating polar coordinates
for all lattice sites at multiple cell boundaries whenever a
single site changes, current simulations replace indivi-
dual site coordinates r and y with average values for
segments of contact between adjacent cells. Con-
sequently, updated coupling requires a visit to each
boundary segment, rather than visiting each boundary
site, for a modified cell pair. This faster algorithm for
anisotropic differential adhesion meets the same analytic
guidelines (Zajac et al., 2000) as the coupling described

M. Zajac et al. / Journal of Theoretical Biology 222 (2003) 247–259252



by Eq. (2) and may be regarded as an approximation of
the original scheme or simply adopted as an alternative.

3. Results

In an archetypal simulation, the Extended Potts
Model yields a correct ordering of time-scales for
convergent extension, starting from a roughly square
block (Fig. 5a) of weakly elongated, randomly oriented
cells. Full cell elongation develops (Fig. 5a and b)
almost immediately with tissue extension building
(Fig. 5d–f) more gradually. Soon after elongation,
alignment begins to develop, leading, with relatively
little delay, to a point (Fig. 5c) beyond which the

directions for tissue extension and overall alignment
remain fairly perpendicular, the salient feature of
convergent extension. For the results shown here, a
large jump in alignment (Fig. 5e and f) occurs when cells
at the narrow ends of the array swing round to acquire
the common orientation of bulk cells. These simulation
results demonstrate that anisotropic differential adhe-
sion offers a plausible explanation for cell elongation
followed by alignment and then tissue extension.

Results include quantitative measures (Appendix A)
of elongation, alignment and extension, plotted against
time. The aspect ratio of a cell array gives the degree of
extension, starting at one, for a squarish array, and
increasing as the length grows, relative to the width,
until full extension is reached. In reporting average

Fig. 5. Elongation before alignment before extension, in simulations. Excluding the initial condition (a), each stage (b–h) corresponds to a vertical,

dotted line on graphs of extension, alignment and elongation (all dimensionless) versus time (measured in thousands of sweeps) with an inset showing

rapid early elongation. Dark arrows (a–f) show the direction of extension while light arrows (a–h) show overall alignment with contrasting overlays

showing magnitude or degree, in both cases.
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elongation, the aspect ratio of each cell is converted into
the eccentricity of an equivalent ellipse. Consequently,
elongation starts at zero for circular cells, and increases
towards one, as cells lengthen. Alignment ranges from
1=2 for cells with utterly random orientations up to one
for cells with a single, common orientation. Both
extension and alignment are quadratically sensitive to
any curvature (Fig. 7a) of a long narrow cell array. Time
is measured in sweeps of the lattice with the number of
pattern modifications attempted in one sweep equal to
the number of lattice sites.

In agreement with analytic modeling (Zajac et al.,
2000), the degree of tissue extension, in simulations,
depends on the degree of anisotropy for binding
between cells. Extension increases as the difference
between maximum and minimum coupling in Eq. (2)
increases. Simulations that yield two, adjacent columns
of cells (Fig. 5h) employ a relative difference of 57%
between binding for aligned and unaligned cells.
Anisotropy of less than 35% yields little or no extension
while anisotropy of more than 65% consistently leads to
a single column of cells. These numbers are not
especially meaningful, due to qualitative implementation
of non-uniform cell adhesion. Even so, simulations
describe not only extension that ends with more than
one column of cells, as in Xenopus laevis, but, with
increased anisotropy, also allow further convergence,

ending with a single column of cells, as in ascidians
(Munro and Odell, 2002).

Suitably adjusted simulation parameters suppress a
pair of unrealistic outcomes. First, as implemented,
convergent extension simulations under the Extended
Potts Model depend on positive coupling at domain
boundaries to maintain compact cells (Upadhyaya,
2000; Zajac, 2002). Excessive anisotropy (Fig. 6) in the
coupling of Eq. (2) can lead to disastrous negative
values, causing cell disintegration as domains commin-
gle in order to decrease stored energy through increased
coupling of mismatched lattice sites. Second, with
insufficient cohesion, cell arrays sometimes develop
unnatural curvature (Fig. 7a) or a spurious branch
(Fig. 7b) during extension. Adjusting cell couplings
JtðsÞtðs0Þ in Eq. (2) to increase the work of separating
attached cells solves, or at least mitigates, the problem.
The catastrophe of negative coupling is an artificial
pitfall with no biological counterpart but successful
adjustment of adhesion to prevent spurious branches
and cell array curvature, in simulations, shows that
adhesion can regulate tissue geometry during convergent
extension.

The constraint on cell shapes allows two extreme
alternatives for bulk treatment of unspecified intracel-
lular forces, in simulations. Setting the shape constraint
to favor circular cells represents a case for which effects

Fig. 6. Disastrous coupling. Excessive anisotropy in Eq. (2) yields negative coupling at domain boundaries which drives cells to hyperelongate,

commingle (magnified) and pull apart, all to reduce stored energy. For each cell s the upper limit on anisotropy atðsÞ must be chosen to avoid such

disasters.
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such as membrane elasticity tend to hinder elongation,
keeping cells compact. Setting the shape constraint
to favor elliptical cells represents a case for which
effects such as active redistribution of the cytoskeleton
tend to promote elongation. For either case, simulations
with anisotropic differential adhesion yield roughly
the same degree of cell elongation as long as adhesion
and shape constraints make roughly equal contributions
to changes in energy, for each attempt at pattern
modification.

However, changing the weight of the shape constraint
by an order of magnitude, more or less, has measurable
consequences. Giving increased weight to the shape
constraint makes cells more rigid and less able to slip
past one another, curtailing alignment, convergence and
extension. With the shape constraint weighted less
strongly, cells readily converge, reorganizing to give
more rows and fewer columns, but the resulting arrays
are prone to curvature (Fig. 7a) which detracts from
elongation and makes it harder to quantify alignment.

Notice that shape constraints alone can drive cell
elongation but cell alignment and tissue extension, in
simulations, require anisotropic differential adhesion as
well. Cells are not drawn into the surrounding medium
during convergent extension. Just the opposite is true.
Increased contact with the medium represents wasted
binding potential for exposed cell surfaces. Anisotropic
differential adhesion promotes extension by compensat-
ing for increased tissue perimeter with stronger attach-
ments for aligned cells. With no anisotropy, even
elongated cells form compact clusters of minimal
perimeter rather than extended configurations with
longer boundaries. For example, three elongated cells
with uniformly sticky surfaces arrange themselves into
a crude, rounded triangle, in simulations. This under-
standing of simulated convergent extension agrees with
the results (Zajac et al., 2000) of analytic modeling.

The outcome of convergent extension simulations
depends on the amplitude of fluctuations in pattern
energy. With roughly 46% acceptance of attempted
lattice modifications (including automatic acceptance of
modifications that yield reduced energy) simulations
exhibit both cell alignment and tissue extension. How-
ever, increasing temperature in Eq. (4) to give 72%
acceptance yields overactive cells which converge to give
extension (Fig. 8a) but fail to settle on a common
alignment. Alternatively, decreasing T to give 21%
acceptance yields sluggish, inflexible cells which align
(Fig. 8b) but fail to converge. Cells must escape local
energy minima but not the global minimum that
represents full extension.

4. Discussion

The Extended Potts Model shows that anisotropic
differential adhesion can account for longitudinal tissue
extension resulting from latitudinal elongation and
convergence of aligned constituent cells. Quantitative
measures of convergent extension, from simulations,
suggest new analysis of tissue extension along with cell
elongation and alignment, in experiments. Modeling
further empirical details might enhance simulation
realism, especially for cell dynamics, but the current
level of simplicity allows unambiguous connection
between cause and effect.

4.1. Critical evaluation

Convergent extension under the Extended Potts
Model hinges on anisotropic differential adhesion, with
no attempt at faithful reproduction of every biological
detail. Displacement of cell boundaries follows from a
gradual accumulation of local, random perturbations,

Fig. 7. Insufficient cohesion. Relatively weak binding between cells allows increased contact with the surroundings leading to curvature (a) or even

spurious branches (b) instead of realistic convergent extension. With curvature, the opposite ends of an array come closer together, which detracts

from extension, while the difference in orientation between distant cells ruins overall alignment, despite nearly identical orientations for neighbors.
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neglecting any sophisticated locomotor apparatus that
might drive real, living cells. The model does not include
persistence of motion resulting from cytoskeletal recti-
fication, for example. Focused on adhesion, simulations
constrain the size and shape of each cell in a simplistic,
bulk representation of all remaining cell properties,
including limited compressibility and cytoskeletal ef-
fects. The size and shape constraints both act at the scale
of entire lattice domains, leaving cell adhesion with
unrealistic, full control over local boundary displace-
ment, for each small segment of contact between cells.

Furthermore, though invoking adhesion to drive cell
reorganization on the scale of tissues, simulations do not
reflect the smaller scale details of cell binding, ignoring
molecular dynamics, for example. Based on correspond-
ing experiments, simulation consider isolated cell arrays
which offer the simplicity of homogeneous boundary
conditions. However, channeling by adjacent tissues in
actual embryos might, for example, suppress the
spurious branches and cell array curvature seen in failed
(Fig. 7) simulations, relaxing current limits on para-
meter values that lead to acceptable (Fig. 5) results.
Despite these many simplifications and approximations,
Extended Potts Model simulations establish anisotropic
differential adhesion as a sufficient condition for
convergent extension, accounting for all its salient
features with essentially one assumption.

4.2. Possible measurements

First and foremost, simulation results invite experi-
ments designed to measure anisotropic differential
adhesion between cells since modeling requires nothing
more to explain convergent extension. Unfortunately,
simulations do not distinguish an uneven distribution of
cell adhesion molecules from localization of specialized
anchorage mechanisms such as filopodia and lamellipo-
dia. Consequently, simulations do not help to narrow
the experimental search for anisotropic differential

adhesion by suggesting a particular mechanism. How-
ever, simulated convergent extension does not follow
from special boundary conditions or detailed under-
standing of intracellular biochemistry, which reduces the
number of leads to follow.

Developed for simulations, quantitative measures
(Appendix A) of elongation, alignment and extension
are immediately applicable to existing (Keller et al.,
1989, 2000) empirical data. For example, previously
published cell tracings (Fig. 2a–c) are suitable for
analysis using only readily available software for image
capture and digitization with some very simple custom
code for calculating the spatial distribution of pixels in
each cell. A more complete time series of similar images
would allow detailed comparison with results (Fig. 5)
from simulations. This quantitative analysis of elonga-
tion, alignment and extension might be of interest in its
own right even if anisotropic differential adhesion does
not prove to be the cause of convergent extension.

Empirical data in a format that compares directly to
simulated results could guide the search for good model
parameters. Simulation results depend on parameters
that govern cell size, cell shape and the amplitude of
boundary fluctuations as well as a parameter for the
degree of anisotropy in cell binding. Further parameters
include energy densities for interfaces between cells as
well as interfaces with the culture medium. Results for
some extreme cases (Fig. 8a and b) set bounds on what
simulations can hope to accomplish. However, systema-
tic variation of each simulation parameter is not
practical, since each simulation takes a long time (more
than 72 h for one simulation at 750 MHz when
averaging 14 cycles for each mathematical operation).
Comparing simulations to suitably analysed empirical
results could help to weed out parameter values that
stray too far from reality. This feedback from experi-
ments could be very illuminating, particularly for efforts
to improve modeling of cell dynamics which currently
have no empirical basis in simulations.

Fig. 8. Cell activity. At high temperatures, overactive cells (a) reorganize to give an extended array but overall alignment is poor, fluctuating wildly.

At low temperatures, sluggish cells (b) develop elongation and alignment but otherwise fail to exhibit convergent extension.
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4.3. Final analysis

Adapted to cells with non-uniform stickiness, the
Extended Potts Model supports a simple yet effective
mechanism for convergent extension. Simulations cap-
ture cell elongation and alignment, followed by tissue
extension with anisotropic differential adhesion between
oriented neighboring cells as the only major assumption.
Distinctive cell and tissue geometries originate with the
surface adhesion properties of each cell rather than from
special boundary conditions at the edge of an extending
tissue. Success does not hinge on detailed knowledge
of cellular dynamics or internal biochemistry. Results
include useful quantitative measures of convergent
extension. Simulations based on anisotropic differential
adhesion alone give elongation, alignment and extension
in the correct order, with random fluctuations as
sufficient impetus for cell reorganization.

Appendix A

Quantitative measures of convergent extension should
reflect the hallmark biaxial symmetries of both conver-
ging cells and extending tissues. However, in simula-
tions, cell and tissue patterns must not be tied to
symmetries of the underlying lattice. Switching from
the artificially imposed axes of lattice coordinates to the
naturally occurring symmetry axes of cells and tissues
hinges on the transformation properties (Smith, 1984) of
real symmetric matrices. Eigenvalues and eigenvectors
(Arfken, 1985) give magnitude and direction for
elongation, alignment and extension.

A.1. Elongation and extension

For a rectangular arrangement of cells, the direction
of extension coincides with an axis such that the total
mass is evenly balanced on either side, with the
narrowest possible distribution. Without fail, a second,
perpendicular axis then has the widest possible evenly
balanced distribution of mass with no correlation
between mass distributions about the two axes. The
relative width of these two distributions gives the aspect
ratio for the cell array, reported as the degree of
extension. Applied to individual cells, the same analysis
gives orientation and elongation. However, an extra step
converts the aspect ratio of each cell into the eccentricity
of an equivalent ellipse. Consequently, elongations
range from zero, for circular cells, up to one, as cells
become increasingly oblong. These definitions for
extension and elongation reflect general properties of
the inertia tensor (Goldstein, 1980) for any rigid body.

In detail, moments of inertia (Fowlse, 1985; Gold-
stein, 1980) about the center of mass serve to quantify
both elongation of individual cells and extension of

entire cell arrays. Therefore, calculations of elongation
and extension are formally equivalent. On a regular
lattice, using the row and column indices of each site as
Cartesian coordinates provides a basis for calculating
inertia tensor matrix elements:

Ixx ¼
XN

i¼1

ðyi � %yÞ2;

Ixy ¼ �
XN

i¼1

ðxi � %xÞðyi � %yÞ;

Iyx ¼ Ixy;

Iyy ¼
XN

i¼1

ðxi � %xÞ2; ðA:1Þ

where each sum visits N sites at coordinates ðxi; yiÞ with
ð %x; %yÞ as average values which give the center of mass.
The sums may be restricted to the sites from a single cell,
when calculating elongation, or expanded to include the
sites from all cells when calculating extension. In
general, these elements of the inertia tensor do not
uniquely determine the geometry of a rigid body, but
coupling and constraints combine to ensure compact,
elongated yet otherwise irregular shapes, resembling
cells from experiments.

Describing each irregular, elongated cell in terms of
an equivalent elliptical lamina, the principle axes
(Goldstein, 1980) and corresponding moments of inertia
give orientations and lengths for the semimajor and
semiminor axes. In two dimension, simple algebraic
formulae yield the desired eigenvalues and eigenvectors:

lb ¼ 1
2
ðIxx þ IyyÞ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIxx � IyyÞ

2 þ 4I2
xy

q
; ðA:2Þ

b ¼ #xIxy þ #yðlb � IxxÞ; ðA:3Þ

where lb is the larger eigenvalue so that the correspond-
ing eigenvector b points along the semiminor axis with
unit vectors #x and #y along rows and columns of the
lattice, respectively. Changing the sign of the radical in
the first equation gives the smaller eigenvalue la which
yields the corresponding eigenvector a when substituted
for lb in the second equation. The eigenvectors are
unnormalized.

Shifting to the principle axis coordinate system, direct
calculation shows that 2

ffiffiffiffiffi
lb

p
is the length of the

semimajor axis, for the equivalent elliptical cell, without
loss of generality. Eccentricity follows immediately from
the ratio of the eigenvalues:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � la=lb

p
; ðA:4Þ

with e ranging from zero for a circle to one for an infinite
line. For a single cell, e and a are referred to as
elongation and orientation, respectively. However, when
calculated for an array of cells, a is referred to as the
direction of extension with lb=la as the magnitude,
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refered to as the degree of extension or simply the
extension.

A.2. Alignment

A good measure of alignment should distinguish
randomly oriented cells from cells with parallel elonga-
tion and should also remain unchanged when �a

replaces a as the orientation, for any cell. An alignment
tensor A of rank two can meet the latter requirement by
pairing components of the orientation vector for each
cell in every possible quadratic combination:

Axx ¼
1

N

XN

i¼1

cos2 yi;

Axy ¼
1

N

XN

i¼1

cos yi sin yi;

Ayx ¼ Axy;

Ayy ¼
1

N

XN

i¼1

sin2 yi; ðA:5Þ

for an array of N cells where cos yi and sin yi are just the
components of a for each cell, after normalization. It is
not immediately obvious that this tensor can distinguish
randomly oriented cells from cells with parallel
elongation.

As a preliminary step, consider the determinant and
the trace of the alignment tensor. As always, the
determinant (Arfken, 1985; Smith, 1984) does not
depend on the choice of coordinates and equals the
product of the eigenvalues:

detðAÞ ¼AxxAyy � AxyAyx

¼ lalb; ðA:6Þ

where detðAÞ is the determinant with Axx and Ayy giving
way to eigenvalues la and lb under the orthogonal
transformation such that Axy and Ayx are eliminated.
Furthermore, the trace trðAÞ is also invariant and equals
the sum of the eigenvalues:

trðAÞ ¼Axx þ Ayy

¼
1

N

XN

i¼1

ðcos2 yi þ sin2 yiÞ

¼ la þ lb

¼ 1; ðA:7Þ

which does not depend on the choice of coordinate axes
for individual cell orientations, as expected.

A pair of limiting cases now establish the largest
eigenvalue of A as a good measure of alignment. For a
totally random arrangement of cells, both Axx and Ayy

equal 1=2 while Axy and Ayx both vanish since cos2 yi

and sin2 yi both average to 1=2 for a uniform distribu-
tion of angles while the average of cos yisin yi vanishes.

It follows that the largest eigenvalue of A is 1=2 for the
case of randomly oriented cells. For perfect alignment,
with yi equal to the same fixed y for all cells, AxxAyy and
AxyAyx both reduce to cos2 y sin2 y in which case detðAÞ
vanishes. Consequently, one eigenvalue in the product
lalb must equal zero. It follows that the largest
eigenvalue equals one for the case of perfect alignment
since the sum of the eigenvalues in Eq. (A.7) must equal
unity. In summary, the largest eigenvalue of the
alignment tensor falls in the interval ½1=2; 1� with a
minimum for randomly oriented cells and a maximum
for perfect alignment. Formulae for the largest eigenva-
lue from Eq. (6) and the corresponding eigenvector from
Eq. (7) give b as the direction of alignment with lb as the
magnitude, provided that Axx; Axy and Ayy replace Ixx;
Ixy and Iyy respectively, in each formula.
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