
ARTICLE IN PRESS
Physica A 352 (2005) 113–130
0378-4371/$ -

doi:10.1016/j

�Correspo

E-mail ad

URL: htt
www.elsevier.com/locate/physa
A cell-centered approach to
developmental biology

Roeland M.H. Merks, James A. Glazier�

Department of Physics, Biocomplexity Institute, Indiana University, Swain Hall West 159,

727 East 3rd Street, Bloomington, IN 47405-7105, USA

Available online 13 January 2005
Abstract

Explaining embryonic development of multicellular organisms requires insight into complex

interactions between genetic regulation and physical, generic mechanisms at multiple scales.

As more physicists move into developmental biology, we need to be aware of the ‘‘cultural’’

differences between the two fields, whose concepts of ‘‘explanations’’ and ‘‘models’’

traditionally differ: biologists aiming to identify genetic pathways and expression patterns,

physicists tending to look for generic underlying principles.

Here we discuss how we can combine such biological and physical approaches into a cell-

centered approach to developmental biology. Genetic information can only indirectly

influence the morphology and physiology of multicellular organisms. DNA translates into

proteins and regulatory RNA sequences, which steer the biophysical properties of cells, their

response to signals from neighboring cells, and the production and properties of extracellular

matrix (ECM). We argue that in many aspects of biological development, cells’ inner workings

are irrelevant: what matter are the cell’s biophysical properties, the signals it emits and its

responses to extracellular signals. Thus we can separate questions about genetic regulation

from questions about development. First, we ask what effects a gene network has on cell

phenomenology, and how it operates. We then ask through which mechanisms such single-cell

phenomenology directs multicellular morphogenesis and physiology. This approach treats the

cell as the fundamental module of development.

We discuss how this cell-centered approach—which requires significant input from

computational biophysics—can assist and supplement experimental research in developmental
see front matter r 2005 Elsevier B.V. All rights reserved.

.physa.2004.12.028

nding author. Tel.: +1 812 855 3735; fax: +1 812 855 5533.

dresses: post@roelandmerks.nl (R.M.H. Merks), glazier@indiana.edu (J.A. Glazier).

p://biocomplexity.indiana.edu.

www.elsevier.com/locate/physa


ARTICLE IN PRESS

R.M.H. Merks, J.A. Glazier / Physica A 352 (2005) 113–130114
biology. We review cell-centered approaches, focusing in particular on the Cellular Potts

Model (CPM), and present the Tissue Simulation Toolkit which implements the CPM.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

As physicists attempt to apply physical approaches to elucidating biological
problems (biological physics as opposed to biophysics), they need to be sensitive to
the fundamental differences between biological and physical epistemology, which
reflect the different histories of the two fields [1]. In particular, the apparently
innocuous term model can cause instant misunderstanding. In biology, an
experimental model is a standard organism, e.g. a rat or a fruit fly, which exhibits
a particular biological phenomenon of interest. A theoretical model, or simply a
model is a conceptual model, which describes a hypothetical mechanism using text
and qualitative diagrams of interactions. Such a model is successful if it is compatible
with qualitative observations and suggests further experiments that could support or
reject its hypotheses. We will refer to such models as biological models or conceptual

models.
Biological models, from those describing the structure and function of DNA to the

elaborate diagrams describing metabolic and regulatory pathways or the patterning
of tissues during development, have had tremendous success and have led to the
current era of genomics and proteomics. However, the success of genomics has
caused difficulties, which expose the limitations of classical biological models. The
success of genomics and the need to simplify sufficiently to develop conceptual
models leads to typical statements of the form ‘‘Gene X causes cancer,’’ to which a
physicist would object that a gene, which is simply an embodiment of information,
cannot cause anything directly. High-throughput experimental procedures, including
DNA sequencing, microarray analyses, and high-throughput mutation studies, have
shown that the number of interacting players in biological processes is so large that
‘‘mentally juggling’’ them in conceptual models has become impractical, especially
since behaviors usually arise from complex networks of interactions rather than from
the behaviors of individual components. Parallel developments in the physics of
complex systems have shown that ensembles consisting of large numbers of
interacting components exhibit collective behaviors that we cannot always under-
stand intuitively from the behaviors of the individual components. We call such an
approach systems biology [2] (see Fig. 1), in contrast to a reductionist, genetic
essentialist approach.

Epistemologically, biologists have considered explanations to be satisfactory when
they can list the elements of a biological process and their connections.
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Fig. 1. Schematic description of the systems biology approach.
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Metaphorically, the biological model of a car would list all of its parts and their
interconnections. A systems-biology approach would include thermodynamics,
mechanics, and relevant aspects of chemistry and physics to describe the interactions
and functioning of those elements. At the simplest level, the difference in focus is
whether we frame questions to answer ‘‘what’’ or ‘‘how.’’

Thus, paradoxically, additional information has made the most central biological
tool for generating new knowledge and understanding—the conceptual model—much
less helpful. To correctly integrate this wealth of information and to use it to
generate new hypotheses, systems biology extends traditional conceptual models into
mathematical models. Because such models are generally too complex for analytic
solution, we translate them into sets of algorithms or computational models, which we
then implement as simulations.

These problems are particularly evident when we focus our attention on
developmental biology, where a genetic essentialism called positional information,
which the intellectual school founded by Lewis Wolpert has pioneered and
championed, has come to dominate [3]. However useful, the concept of positional
information has led to an unfortunate focus on genetic experiment at the expense of
other types of measurement. At the same time, even a simple, back-of-the-envelope
calculation reveals that development based on the highly specific genetic signaling of
positional coding would require much more information than that present in the
genome and that the mechanism is not robust to perturbations. Instead, as Turing
observed in 1952 [4], development must self-organize under the control of genetic
regulation. Cells do not merely sit at a given location and respond passively to
external signals, they move, often over long distances, and actively create the signals
to which they respond. Thus, the concept of a prepattern [5], in which cells migrate
towards or respond to a pattern formed by an independent, initiating mechanism has
only limited utility. Salazar–Ciudad et al. [6] recently called such prepattern-
dependent mechanisms morphostatic, as opposed to morphodynamic mechanisms in
which cell-signaling, migration and growth occur simultaneously, and argued
that morphodynamic mechanisms have evolutionary significance because they
enable more phenotypic variation for less genotypic variation. Thus, to under-
stand the dynamics of development, and its evolution, we need to return to cell
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biology and physiology, which have become somewhat unfashionable in the
current genomics rush and in which the experimental technology, while benefiting
greatly from advances in gene control, microscopy, microsurgery, labeling and
many others areas, has made much less progress than the technology for pure
genomics and proteomics.
2. Modeling issues

Computational approaches face their own difficulties, many of which arise from
the range of length scales of biological structures and behaviors. Biological
phenomena range from those which require quantum-mechanical treatment at the
atomic level ð10�10 mÞ; e.g., the effect of photons on chlorophyll or rhodopsin,
through the semi-classical treatment of molecular dynamics ð10�9 mÞ and the
classical treatment of macromolecules ð10�8 mÞ; up to agent-based models of
populations 103 mÞ:

Multi-scale modeling has not yet had overwhelming success in other disciplines
(e.g., weather prediction, materials science and geophysics), and where it has, the
methods developed for particular problems have tended not to generalize. The
current focus of funding agencies (e.g., the National Science Foundation/National
Institutes of Health joint Initiative on Multiscale Modeling) and journals (e.g., the
new Society for Industrial and Applied Mathematics Journal on Multiscale Modeling

and Simulation) on the development of multi-scale technique illustrates its intrinsic
importance and difficulty.

Physicists are trained to believe that even very complex phenomena result from the
interactions of very few, very simple underlying rules, where the complexity often
results from the initial or boundary conditions. A biologist’s caricature of a
physicist’s approach would be to say that the physicist asserts that ‘‘development is
simply a problem in pattern formation,’’ writes down a set of differential equations
and a model of the fertilized egg and tries to deduce a chicken.

Besides the inherent arrogance and doubtful success of such an approach, biology
generally lacks the homogeneity which makes physical problems tractable and which
permits powerful calculational simplifications like renormalization-group analysis.
In addition, evolutionary contingencies mean that universal rules of the type which
gives physics its predictive power, need not exist in biology. We cannot assume that
simplified models will have the same qualitative behaviors as a more complicated
reality, or that observations made in one context will apply to another, even in an
apparently similar situation (hence, the widespread feeling among biologists that
physical models are ‘‘irrelevant’’). Thus model validation becomes even more
important in biology than in physics and hard-won results may have much more
limited ranges of application. On the other hand, we do observe regularities in
biology, which give hope that we can indeed generalize, e.g., that most individual
cells in a frog are indistinguishable from analogous cells in a human, that certain
enzymes and regulatory pathways are identical in yeast and mammals or that cells in
all multicellular organisms communicate via secreted products and adhesion.
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One specific difficulty is that a simulation can only ever prove sufficiency. It can
never prove that a mechanism is correct, nor that a model has included all significant
components. Physicists, who believe in Occam’s razor, can never directly rebut the
complaint ‘‘But you have left out . . .’’ Only when simulations can prove their utility
by predicting (rather than ‘‘post-dicting’’) experimental observations, will biologists
be willing to accept this difference in philosophy.

Thus, biological problems are intrinsically specific, heterogeneous and multi-scale.
A computational treatment of a particular problem must begin by choosing an
appropriate scale or level of detail, which the inclusion of additional scales can later
refine. What is the appropriate first level at which to address development?

Many computational-biology studies of development focus on tissue-level
phenomena, modeling tissues as continuous elastic solids or visco-elastic fluids.
Others aim to generalize from an understanding of single-cell behaviors and
dynamics, building microscopic models of intracellular dynamics (e.g., electro-
physiological models or single-cell models of filopodial extension). Some authors
(e.g., [7]) argue that coupling many detailed single-cell models can produce models of
multicellular phenomena. Molecular and subcellular models like Virtual Cell [8],
Silicon Cell1 or E-cell [9] provide great detail on aspects of subcellular processes.
These projects ultimately aim to produce a detailed cell-replica. However worthwhile
this aim, such replicas would be just as complex as the biological cells they model
and be just as hard to understand. In addition, they can, at best, treat small clusters
of a few to tens of cells.

Even if subcellular models replicated aspects of multicellular behavior, could we
then say that we understood the behavior? As physicists, we feel that in order to
understand a natural phenomenon, we must generate simplifying abstractions
organized around common principles of behavior at the appropriate level. Going
back to our car metaphor, constructing a functional car replica with LEGO bricks
simply by copying one-by-one all the steps in an instruction book does not
necessarily teach us how a car functions. We obtain insight and understanding by
identifying general functional modules like engines, gear-trains, and differentials,
observing how they function, how these functional modules interact and
distinguishing their universal underlying rules from accidental details such as paint
color, choice of metal, or six vs. eight cylinders. Working at too coarse or fine a level
of detail makes such an analysis much harder.

The cell provides a natural level of abstraction for mathematical and computa-
tional modeling of development. Treating cells phenomenologically immediately
reduces the interactions of roughly 1052106 gene products to 10 or so behaviors:
cells can move, divide, die, differentiate, change shape, exert forces, secrete and
absorb chemicals and electrical charges, and change their distribution of surface
properties.

Is ignoring (to a first approximation) intracellular behaviors legitimate? In a
recent book review [10], Meinhardt stated that ‘‘The role of the cell as a module
of development can hardly be overestimated.’’ Indeed, much of the biology of
1http://www.siliconcell.net.

http://www.siliconcell.net
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multi-cellular development treats the individual cell’s internal properties as a ‘‘black
box:’’ for example, the function of an inductive signal does not depend on what
happens ‘‘behind the scenes,’’ (e.g., on the number of elements in a signal-
transduction cascade) as long as the cells respond correctly to the signal. Recently
von Dassow and Meir [11] drew a parallel between object-oriented computer
programming and modularity in biology. Object-oriented programs consist of
modules, the objects. These objects have well-defined interfaces, through which we
address all functionality of the object. In object-oriented programs, data hiding is
essential: as long as we do not alter the object’s response to requests from other
objects, we are free to change the object’s inner workings. von Dassow and Meir
argued that ‘‘nature cannot do data hiding’’ [11], although they conceded that ‘‘the
closest thing to data hiding ½. . .� is cellular compartmentalization.’’ We argue that
nature’s solution to data hiding is the cell, where signaling molecules (either on the
cell surface, or secreted, diffusive signals) and receptors implement the object

interface. If nature itself uses individual cells as an abstraction, why should we make
our biological models more complicated by describing tissue-level structures in terms
of subcellular behaviors, which do not affect it directly?

Could we ignore cells and model at the level of tissues? Ignoring cells is dangerous.
Macroscopic models, which treat tissues as continuous substances with bulk
mechanical properties (e.g., Physiome [12]) reproduce many biological phenomena
but fail when structure develops or functions at the cell scale. Although continuum
models are computationally efficient for describing non-cellular materials like bone,
extracellular matrix (ECM), fluids and diffusing chemicals, many cell-centered
models reproduce experimental observations missing from continuum models.

We feel that cell-centered models are essential tools in developmental biology.
Cell-centered models use phenomenological models of individual cells to study how
the collective behavior of multiple simplified cells drives tissue-level and organism-
level processes. The relative simplicity of cell-centered models allows simulation of
1052106 cells on a single processor, ultimately making whole-organism simulations
practical on parallel computers. Fig. 2 shows the hierarchy of scales we include in
our models. The questions we can answer with a cell-centered model include: How
does the genetic program interact with generic mechanisms to form an organ? What
are the relative contributions of local and long-range signaling? What specific factors
result in abnormal growth?

Building a cell-centered model requires several steps. First, we infer individual cell
behaviors from biological experiments. We can often obtain cell-behavior data from
the scientific literature, including the cell’s morphology, its response to extracellular
and contact-dependent signals, its adhesion to other cell types and the ECM, its
chemotactic and haptotactic motility (cell movement in response either to chemical,
mechanical or textural gradients in the ECM), the cells into which it can differentiate
and the signals which induce differentiation. We may also need to perform
additional experiments to obtain precise, quantitative data on cell behavior. Once we
have identified how individual cells behave, we can describe the essentials in a
conceptual biological model, which we then translate into a mathematical model and
implement computationally. This computational description phenomenologically
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Fig. 2. Cell-centered modeling methodology.
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reproduces the individual cells’ behaviors. The phenomenological single-cell model is
purely descriptive and has no explanatory value per se. It becomes useful when we
simulate many single-cell models simultaneously to determine whether the behaviors
we included in the single-cell model suffice to explain the tissue-level patterns and
physiological functions we find in experiments. If the simulation does not match
experimental observations, we return to the experiment to investigate which elements
are missing, or which parameter values are inaccurate. High-throughput parameter
studies can map out the alternative behaviors of the model, to determine if other
parameter combinations better match the experiments. If so, we must either repeat
the experimental measurements of sensitive parameters, or determine whether we
have missed an essential element of single-cell behavior that a specific parameter
choice can mimic. If the model results match experimental observations, we can
further test our model by making experimental predictions. What happens to the cell
ensemble if we eliminate one of the single-cell behaviors? Can we remove the same
element in an experiment, e.g., with a genetic knock-out, and find similar tissue-level
ensemble behavior? Thus, by introducing cell-centered simulation into the empirical
cycle we can identify the minimal set of single-cell behaviors which suffices to
produce certain tissue-level behaviors. We can then ask which networks of genes steer
this set of single-cell behaviors and how they do it. In this way, we can precisely
describe and understand the role of gene networks in multicellular phenomena,
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instead of merely observing that knocking out a gene disrupts a multicellular
function.

Several cell-centered computational approaches exist to study morphogenesis in
cell aggregates and tissues. These models aim to reconstruct tissue dynamics from the
collective behavior of the individual cells. Although some of these approaches keep
the position of the cells relative to each other fixed (such as in plant tissues) (see e.g.,
Refs. [13,14]), most focus on animal tissues, which consist of mobile cells. Such
models simulate aggregates of hundreds to tens of thousands of cells, and account
for the adhesive forces between cells and between cells and ECM, as well as
chemotactic and haptotactic movements. Palsson et al. [15] carry out Newtonian
force calculations between individual ellipsoidal cells, to recover the viscoelastic
behavior of cell-aggregates and simulate differential-adhesion-driven engulfment of
one cell type by another. Another approach is to model aggregations of cells or
animals using cellular automata [16] or lattice gases [17–19]). In lattice gases,
individual particles that live on a discrete grid represent cells, hopping from one
lattice node to the next depending on their discrete velocities. This approach for
modeling morphogenesis applies, e.g., to studies of ripple formation in myxomycetes
[19], germinal center dynamics [20] and avascular tumor formation [21]. Drasdo et al.
[22] introduced a Lagrangian Monte-Carlo method, where attraction, compression
and bending energies determine movements of spheroidal cells. Drasdo et al. have
used their method to simulate cleavage and gastrulation [23] and avascular tumor
growth [24]. Recently, Newman and Grima [25] developed a statistical-mechanics
approach to modeling chemotactic cell–cell interactions. Their Langevin-dynamics
approach allowed them to study cell ensembles analytically. In the mean-field limit
their method recovers the Keller–Segel equations for chemotaxis [26]. Peirce and co-
workers used the Netlogo2 agent-based modeling environment to model cell–cell
interactions. In this environment, individual agents move on a square lattice
according to a set of preprogrammed rules and the local environment of the agents.
Netlogo cannot directly account for cell adhesion, which Peirce et al. explicitly
programmed into the agent rules. Peirce et al. applied Netlogo to simulate
microvascular remodeling [27] and blastocoel roof thinning during gastrulation of
Xenopus laevis [28].

The Cellular Potts Method (CPM) [29] is a convenient and powerful mesoscopic
method for modeling cell membrane, cell and tissue dynamics, retaining individual
cell identity. Glazier and Graner [29,30] developed the CPM to simulate differential-
adhesion-driven cell rearrangement resulting from cell adhesion molecules (CAMs),
and quantitatively reproduced cell-sorting experiments.

Additions and improvements to the CPM algorithm include cell growth, cell
division, apoptosis and cell differentiation [31], chemotaxis [32], extracellular
materials [33] and cell polarity ([34]; Hogeweg, pers. comm.). The CPM is becoming
a widely used computational tool in the study of biological morphogenesis, ranging
from the full development of the cellular slime mould Dictyostelium discoideum

[32,33,35], to skeletal formation in the vertebrate limb [36].
2http://ccl.northwestern.edu/netlogo.

http://ccl.northwestern.edu/netlogo


ARTICLE IN PRESS

R.M.H. Merks, J.A. Glazier / Physica A 352 (2005) 113–130 121
The remainder of this paper briefly introduces the CPM and illustrates its
applications in developmental biology. We conclude with a comparison of the CPM
to alternative cell-centered methods.
3. Cellular Potts model

The fundamental choice of the CPM is to represent most cell behaviors in the form
of terms within a generalized energy H, which includes the interactions between cells
and other cells and the ECM and constraints which determine individual cell
behaviors. The genetic regulation of the cell then determines the parameters in these
energy terms. We can solve the dynamics of such an energy formalism using a variety
of methods, including finite-element, diffuse-boundary, sharp-interface and others.
The ordinary CPM we describe below uses a lattice-based Monte-Carlo method with
Metropolis dynamics and a generalized Boltzmann weighting function because these
are the simplest choices/assumptions. However, we could use off-lattice methods,
deterministic dynamics, Kawasaki dynamics and non-Boltzmann weighting func-
tions if they were more computationally efficient or if they better reflected new
biological data.

The CPM represents biological cells as patches of lattice sites, ~x; with identical
indices sð~xÞ; where each index identifies, or ‘‘labels’’ a single biological cell.
Connections between neighboring lattice sites of unlike index sð~xÞasð~x0

Þ represent
membrane bonds, with a characteristic bond energy Jtðs~xÞ;tðs~x0 Þ; where the cell types t
(i.e., endothelial, epidermal, etc.) determine the adhesion strength of the interacting
cells. An energy penalty increasing with the cell’s deviation from a designated target
volume As imposes a volume constraint on the biological cells. A similar energy
penalty on deviations in cell surface area from a target area Ss constrains the amount
of cell membrane. To mimic cytoskeletally driven membrane fluctuations, we
randomly choose a lattice site, ~x; and attempt to copy its index s~x into a randomly
chosen neighboring lattice site ~x0: We reduce the effects of lattice anisotropy by using
the 20, first- to fourth-order neighbors on a square lattice. On average, we attempt an
update at each lattice site once per Monte-Carlo step (MCS). We calculate how
much the energy would change if we performed the copy, and accept the attempt
with probability:

PðDHÞ ¼ fexpð�ðDH þ H0Þ=TÞ;DHX� H0; 1;DHo� H0g , (1)

where H040 is an energy threshold which models viscous dissipation and energy
loss during bond breakage and formation [31]. We then define the Hamiltonian as:

H ¼
X

~x;~x0

Jtðs~xÞ;tðs~x0 Þð1 � ds~x;s~x0 Þ þ l
X

s

ðas � AsÞ
2
þ l0

X

s

ðss � SsÞ
2 , (2)

where l represents resistance to compression, l0 resistance to membrane stretching,
as is the current cell volume, ss the current cell surface area and the Kronecker delta
is dx;y ¼ f1;x ¼ y; 0; xayg: The cells reside in a ‘‘medium’’ which is a generalized
CPM cell without a volume constraint and with s ¼ 0; t ¼ 0: We can define the
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Fig. 3. Simple setup of the Cellular Potts Model (CPM) [29]. (a) Initial condition. Using different bond-

strength settings between dark cells (d), light cells (l) and the surrounding extracellular matrix (E), we

obtain (b) cell sorting (gld40; glE ¼ gdE40), (c) mosaic cell ordering (0ogld ; glE40; gdE40), and (d)

engulfment, with the position of high and low adhesivity cells inverted (gld40; gdEoglE).
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surface tensions gt1;t2
¼ Jt1;t2

� ðJt1;t1
þ Jt2;t2

Þ=2; which enable us to determine
whether energetics favors homotypic ðgt1;t2

40Þ or heterotypic bonds ðgt1;t2
o0Þ [29]

(see Fig. 3). We usually define a special high cell-border energy to prevent cells from
adhering artificially to the lattice boundaries. The viscous dissipation H0 and all
terms in the energy, i.e., the bond energies J, and the prefactors to the additional
energy terms, such as l; scale with the temperature T; i.e., if we multiply T by a factor
t; we can multiply H0 and the energy by the same factor and obtain the same
simulation results.

Savill and Hogeweg [32] introduced an elegant method to model chemotaxis in the
CPM. They used a discretized field C for the concentration of a chemoattractant
chemical, defined a set of ordinary differential equations (ODEs) within each cell
that describe the cell’s secretion and absorption of the chemical, and a set of partial
differential equations (PDEs) to calculate the diffusion and decay of the chemical,
ignoring advection. They then caused cells to preferentially move up chemoat-
tractant gradients, by adding a term to the energy:

H 0 ¼ H �
X

~x;~x0

Cð ~x; tÞ

s Cð ~x; tÞ þ 1
ð1 � ds~x;~x0 Þ, (3)

where the original method sets s, a Michaelis–Menten constant, to 0. Other authors
[37,38] have used a similar method to model haptotaxis.

Hogeweg [31,39] introduced cell differentiation, cell division and apoptosis to the
CPM in a study of the evolution of multicellular development. She used the state of a
Boolean network [40]—a simple model of the genetic regulatory network—with
inputs from neighboring cells, combined with a simple lock-and-key model of CAMs
to determine the bond-energies J. With similar methodologies we are currently
introducing more realistic models of genetic regulation into the CPM. Alternative
methods for cell differentiation simply use preprogrammed type ðtÞ changes of the
cells [41]. Hogeweg modeled cell division by assigning a new s to the grid points on
one side of the shortest axis of the cell. To implement cell death, she simply set the
cell’s target volume A to zero, after which the cell vanishes in a few MCSs. Hogeweg
implemented cell growth by slowly incrementing the target volume; by consistently
doing so when the cell’s actual surface area exceeds its target surface area, the cell
develops a turgor pressure, which can account for meristimatic growth.
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Zajac et al. [34,42] developed a method to account for anisotropic differential
adhesion, through the polar distribution of cell-adhesion molecules. They used a
shape constraint favoring elongated cells. The bond energy J is highest (weakest
adhesion) between two cells touching at their apical and basal surfaces, while it
decreases (stronger adhesion) for cells adhering laterally. Zajac’s method was slow
ðOðN2ÞÞ: However, we have developed an efficient ðOðNÞÞ calculation of the needed
centers of mass and moments of inertia of the cells which runs after each update of
the cell boundaries [43].

Most groups using the CPM methodology either developed their own code or
hard-coded modifications of previous code. Now, several groups are collaborating to
develop an open-source CPM simulation environment that contains the basic
functionality CPM models need, and allows easy and transparent extension. Such
simulation environments should reduce the overhead in setting up new CPM-based
simulations. Just as we do not want to develop from scratch or even tweak the source
code of our word processor every time we write a paper, we do not want to redefine
the CPM every time we want to set up a cell-oriented simulation. A common
environment also allows sharing and archiving of new modules to describe
additional biological mechanisms (e.g., an anisotropic adhesion module or detailed
models of intracellular genetic regulation). The environment model also allows
unified approaches to coupling the CPM with microscopic models like BioSpice3 and
macroscopic models like Physiome. The main current CPM simulation environment
is CompuCell3D [36].4 With CompuCell3D researchers can set up a simulation using
the scripting language XML. The environment’s architecture is very flexible. Users
can add new energy functions, additional constraints, initial conditions and
visualization methods by writing plug-ins in C++, analogous to the plug-ins most
modern web browsers use. We are currently working to develop a more
comprehensive environment, the Tissue Simulation Toolkit,5 combining Compu-
Cell3D with a C++ library for the two-dimensional CPM which we have written in
collaboration with Paulien Hogeweg at Utrecht University, The Netherlands. Our
aim is to develop a cell-centered simulation environment, which becomes a part of
the developmental biologist’s workbench, just as bioinformatics and image analysis
tools have.
4. The CPM in developmental biology

The collage in Fig. 4 illustrates the wide range of problems life scientists have
addressed with the CPM. Hogeweg [31,39] used the CPM to study how evolving
genetic regulatory networks interact with generic mechanisms, such as cell sorting,
engulfment and intercalation to produce a complicated body plan during
development (Fig. 4a). Kes-mir and De Boer [44] explained all-or-nothing clonal
3https://community.biospice.org/.
4http://sourceforge.net/projects/compucell.
5http://sourceforge.net/projects/tst.

https://community.biospice.org/
http://sourceforge.net/projects/compucell
http://sourceforge.net/projects/tst
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Fig. 4. Cellular Potts modeling in developmental biology. (a) Evolution of developmental mechanisms, we

show gastrulation-like mechanism here [31]; (b) clonal selection of b-cells in the germinal center through

competition for contact with the (large) antigen-presenting cell [44]; (c) tumor invasion [37]; (d) Notch-

Delta mediated stem-cell cluster-size control in the human interfollicular epidermis [41]; (e) mesenchymal

condensation through cell–ECM interactions [38]; (f) convergent extension [42]; (g) endothelial cells,

secreting VEGF-A, chemotactically aggregate to form a vascular network [43]; (h) limb bud outgrowth, a

chemotactic signal from the apical ectodermal ridge (shown in black) causes the asymmetry (Zeng,

Thomas and Glazier, unpublished); (i) formation of a fruiting body in Dictyostelium discoideum [35].
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selection of b-cells during affinity maturation in the germinal center as a competition
for adhesive contact to antigen-presenting cells, which they elegantly modeled using
the CPM (Fig. 4b). The CPM, like other cell-centered techniques, can provide insight
into tumor progression. With the CPM we can straightforwardly evaluate the roles
of cell–cell and cell–ECM adhesion in malignant tumor invasion, as Turner and
Sherrat [37] and Turner et al. [45] have demonstrated (Fig. 4c).
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The CPM is especially useful to study patterning in tissues. Savill and Sherratt [41]
combined a subcellular ODE model of membrane-bound Delta-Notch signaling with
a discrete-state differentiation model to compare the ability of several hypothetical
scenarios to explain clustering of stem cells in the human epidermis (Fig. 4d). Zeng et
al. [38] suggested a non-Turing mechanism to explain clustering of mesenchymal cells
during cartilage patterning, where cell-secreted fibronectin enhances adhesion
between mesenchymal cells and the ECM (Fig. 4e). Extending a previous continuum
model [46], Merks et al. [43] developed a cell-centered, chemotaxis-driven model of
vasculogenesis (Fig. 4g). Because of the feedback between cell movement, cell
adhesion and secretion/diffusion, these cell-level models exhibit qualitative behaviors
missing from their continuum PDE limits—an important example of the need for
caution in interpreting PDE results.

Fig. 4f, h and i illustrate how we can use the CPM to obtain insight into tissue-
level mechanisms of morphogenesis. Zajac et al. [42] modeled convergent extension,
a developmental mechanism which, shortly after gastrulation, elongates certain
vertebrate embryos (Fig. 4f). They showed that anisotropic intercellular adhesion
and cell alignment suffice to produce many aspects of convergent extension. Zeng,
Thomas and Glazier (unpublished) showed that chemotaxis toward the apical
ectodermal ridge suffices to produce the asymmetric shape of the growing chick limb
bud (Fig. 4h). Using a beautiful hybrid CPM–PDE model of D. discoideum

morphogenesis, Marée and Hogeweg [35] showed that a peristaltic mechanism can
explain the formation of the stalk of the fruiting body of D. discoideum (Fig. 4i).
Pressure waves—caused by the amoebas’ chemotactic movement towards excitatory
cAMP waves—drive the stalk downwards.

All these studies employed phenomenological models of individual cell behaviors
and communication to reproduce and explain experimentally- observed tissue-level
behaviors. How can we validate such cell-centered models? First, we must
quantitatively compare the simulations with experiments. The CPM provides a
wide range of measurements, which we can directly compare with experimental
measurements, including tissue patterns, cell positions and velocities, pressure caused
by migration or shape changes of cells, cell morphology, surface tensions and
morphogen concentrations. We are not yet able, however, to obtain information
about the action and reaction forces the cells exert on the medium. We cannot expect
cells to take precisely the same migratory paths in simulation and experiment, since
they follow different paths in repeated experiments. Instead, we must compare the
statistics of cell-migration to the final pattern.

We must be cautious, however, because different biological mechanisms can
produce similar patterns. For example, continuum models assuming chemotaxis-
driven cell migration [46] and strain-driven cell migration [47] both reproduce aspects
of in vitro vascular patterning. We may be able to distinguish between such
alternative patterning mechanisms by tracking patterning over time. For example, in
a chemotaxis-driven model we expect cells to speed up as they approach each other
because the interplay between chemoattractant secretion, diffusion and decay creates
exponential chemoattractant gradients around the cells. In a strain-driven model we
would instead expect linear dynamics.
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Genetic knock-outs are powerful tools for verifying the hypotheses underlying
cell-centered models. We can introduce the genetic knock-out’s phenomenological
effects on individual cell behavior into our cell phenomenology and study how the
modified cell behavior alters tissue patterns and mechanisms. We are currently
applying such an approach to validate our vasculogenesis model (Fig. 4g). Not only
does reproducing the tissue-level effects of knock-outs help validate our computa-
tional models, it also helps us unravel the role of particular genetic regulatory
networks. Only when we show how and why a gene network is essential in embryonic
development, can we say we understand its function.
5. Conclusion and prospects

We have argued how cell-centered simulations, in particular the CPM, can
elucidate mechanisms of biological development. We have argued that we can,
and indeed must, separate the question of how genetics drives cell behavior from
the question of how cell behavior drives morphogenesis. We have previously
proposed a similar approach in modeling colonial stony-coral morphogenesis,
where we assumed individual coral polyps were the central module of morpho-
genesis [48,49].

Some authors argue that the energy-minimization approach of the CPM precludes
consideration of the forces involved in cell–cell adhesion and cell motion [50]. In the
CPM cells move according to effective-energy gradients, ~v ¼ m~rE: Thus, given an
effective energy we can calculate the resulting cell motion and the force required to
create such motion. In the highly viscous environment of the ECM, force is
proportional to velocity, not acceleration, i.e., ~F ¼ m~v; a relation we call the
overdamped force– velocity response. Thus we can derive effective forces using the
relation ~F ¼ m2~rE: Ongoing work aims to assign physical units to the effective
energies. Ultimately we hope to derive CPM parameters, such as those involved in
cell adhesion and chemotaxis, from experimentally measured energies involved in the
formation and breakage of bonds between cell adhesion molecules, and the effective
forces individual filopodia and lamellipodia exert.

Currently, the CPM models the transport of signaling molecules in the ECM with
a simple diffusion equation, ignoring advection due to cell and ECM movement. In
two dimensions, nutrients or signaling molecules may move through a culture gel
over which the cells move (see e.g., Ref. [43]). In three-dimensional simulations we
cannot side-step advection. We are now developing a CPM-based advection–diffu-
sion method to fix this unphysical anomaly (D. Dan, K. Chen and J.A. Glazier, to be
published). These methods partition the ECM into tiny CPM cells; each of these fluid

cells contains an attribute describing the current concentration of the advecting and
diffusing chemical. A volume constraint ensures that moving biological cells can
push the fluid cells. A superimposed diffusion equation describes flux between
neighboring fluid cells.

The CPM is just one of a wide range of cell-centered modeling frameworks. Why
do we prefer it to these alternative methods? Many cell-centered models describe
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individual cells as points or spheres, ignoring that the shape of individual cells can be
an essential determining factor in development. In the CPM, a cell’s contact energy
with surrounding cells and the ECM determines the cell’s shape, while the surface
area over which two cells adhere determines the forces needed to separate them.
Additional constraints can determine specific cell shapes, which may affect tissue-
level patterning [42,43].

Another advantage of the CPM is its clear distinction between cell adhesion and
cell attraction. Many cell-centered methods (e.g., Refs. [7,24,50]) approximate cell
adhesion as cell attraction, describing adhesive forces using potentials surrounding
the cells (a center-model formalism). However, molecular interactions over very
small distances, at least an order of magnitude below the cell scale, cause adhesion.
Thus, in a physically correct model of cell adhesion, the cells must touch in order to
adhere. The CPM better distinguishes between long-range and short-range attractive
and repulsive interactions.

As models and experimental data become more sophisticated, the cell-centered
approximation will require extensions to both larger and smaller length-scales.
Integrating more microscopic models like BioSpice or Virtual Cell into the CPM is
possible in two fashions. They can precalculate or directly control CPM parameters
or they can function as components in true hybrid models. Similarly, the CPM can
calculate complex materials properties for finite-element continuum models or can
interface directly with the finite-element mesh to produce a hybrid model. The key
advantage of the CPM is that we need introduce only the minimal additional
algorithmic complexity and computation time needed to correspond with the quality
of our existing experimental data (hence the suggestive funnel shape we employed
in Fig. 2).

Ultimately, we hope that the cell-centered modeling approach will serve
developmental biology as a hypothesis-generating and explanatory tool. It will
assist developmental biologists to unravel how cell behavior drives tissue-level
and organ-level phenomena. Which cell behaviors are essential for observed
tissue-level phenomena? Which gene networks are responsible for these essential
cell-behaviors? How do gain-of-function and loss-of-function mutations alter
individual cell behaviors, and how do these modifications lead to organism-level
knock-out phenotypes? Currently, many biologists seem to assume direct
causal links between gene action and organism-level phenotypes, and consider
that these correlations represent a well-defined gene function. To truly under-
stand gene-function, we must put the most essential module of development in the
center: the cell.
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