
S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 58 – 67, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Parallel Implementation of the Cellular Potts Model
for Simulation of Cell-Based Morphogenesis

Nan Chen1, James A. Glazier2, and Mark S. Alber1

1 Department of Mathematics and Center for the Study of Biocomplexity,
University of Notre Dame, Notre Dame, IN 46556, USA

{nchen1, malber}@nd.edu
2 Department of Physics and Biocomplexity Institute, 727 East Third Street, Swain Hall West

159, Indiana University, Bloomington, IN 47405, USA
glazier@indiana.edu

Abstract. Glazier and Graner’s Cellular Potts Model (CPM) has found use in a
wide variety of biological simulations. However, most current CPM
implementations use a sequential modified Metropolis algorithm which restricts
the size of simulations. In this paper we present a parallel CPM algorithm for
simulations of morphogenesis, which includes cell-cell adhesion, haptotaxis and
cell division. The algorithm uses appropriate data structures and checkerboard
subgrids for parallelization. Communication and updating algorithms
synchronize properties of cells simulated on different computer nodes. We
benchmark our algorithm by simulating cell sorting and chondrogenic
condensation.

Keywords: Computational biology, morphogenesis, parallel algorithms,
Cellular Potts Model, multiscale models, pattern formation.

1 Introduction

Simulations of complex biological phenomena like development, wound healing and
tumor growth, collectively known as morphogenesis, must handle a wide variety of
biological agents, mechanisms and interactions at multiple length scales.

Glazier and Graner’s Cellular Potts Model (CPM) [1] has become a common
technique for morphogenesis simulations because it easily adapts to describe cell
differentiation, growth, death, shape changes and migration and the secretion and
absorption of extracellular materials. CPM simulations treat many biological and non-
biological phenomena, including sorting due to cell-cell adhesion, chicken limb bud
growth, Dictyostelium discoideum morphogenesis, liquid drainage in fluid foams and
foam rheology [2-6].

The CPM approach to modeling makes several choices about how to describe cells
and their behaviors and interactions. First, it describes cells as spatially extended but
internally structureless objects with complex shapes. Second, it describes most cell
behaviors and interactions in terms of effective energies and elastic constraints.
These first two choices are the core of the CPM approach. Third, it assumes perfect

 A Parallel Implementation of the CPM for Simulation of Cell-Based Morphogenesis 59

damping and quasi-thermal fluctuations, which together cause the configuration and
properties of the cells to evolve continuously to minimize the effective energy, with
realistic kinetics. Fourth, it discretizes the cells and associated fields onto a lattice.
Finally, the classic implementation of the CPM employs a modified Metropolis
Monte-Carlo algorithm which chooses update sites randomly and accepts them with a
Metropolis-Boltzmann probability.

Since these choices are relatively independent from each other, we can modify
some of them to optimize our computation without discarding our basic modeling
philosophy. For example, because the acceptance probabilities for updates can be
small (10-4 – 10-6) the classic lattice-based Metropolis algorithm may run slower than
continuum off-lattice implementations. Since the typical discretization scale is 2-5
microns per lattice site, CPM simulations of large tissue volumes require large
amounts of computer memory. Current practical single-processor sequential
simulations can handle about 105 cells. However, a full model of the morphogenesis
of a complete organ or an entire embryo would require the simulation of 106 – 108

cells, or between 10 – 1000 processor nodes.
Clearly, we need a parallel algorithm which implements the CPM and runs on the

Beowulf or High Performance Computing Clusters (HPCC) [7] available in most
universities. Wright et al. [11] implemented a parallel version of the original Potts
model of grain growth. In this model the effective energy consists only of local grain
boundary interactions, so a change of a single pixel changes only the energies of its
neighbors.

Gusatto et al.’s recent random-walker (RW) implementation of the CPM [15] ran
approximately six times faster than the standard algorithm on a single processor. In
addition, their algorithm parallelizes fairly easily, though a two processor
implementation ran only about 15% faster than a one processor version. The standard
CPM Metropolis algorithm always rejects spin flips inside a cell, which wastes much
calculation time. The RW approach attempts flips only at cell boundaries, reducing
the rejection rate and increasing speed. However, the parallel scheme for this
algorithm requires shared memory with all processors sharing the same lattice sites,
limiting the total lattice size to the memory size of a single computer. Adapting the
RW algorithm to accommodate large scale simulations on distributed memory
clusters will still require development of an appropriate spatial decomposition
algorithm.

The main difficulty in all forms of CPM parallelization is that the effective energy
is non-local. The effective energy terms for cell-cell adhesion, haptotaxis and
chemotaxis are local, but the constraint energy terms, e.g. for cell volume and surface
area, have an interaction range of the diameter of a cell. Changing one lattice site
changes the volume of two cells and hence the energy associated with all pixels in
both cells. For example, if a cell’s pixels are divided between the subdomains located
on two nodes and the nodes attempt updates affecting the cell simultaneously, without
communication, one node has stale information about the state of the cell. If we use a
simple block parallelization, where each processor calculates a predefined rectangular
subdomain of the full lattice, non-locality greatly increases the frequency of
interprocessor communication for synchronization and, because of communication
latency, the time each processor spends waiting rather than calculating. To solve this
problem, we use an improved data structure to describe cells and decompose the

60 N. Chen, J.A. Glazier, and M.S. Alber

subdomain assigned to each node into smaller subgrids chosen so that corresponding
subgrids on different nodes do not interact, a method known as a Checkerboard
Algorithm. These algorithms are based on those Barkema and his collaborators
developed for the Ising model, see, e.g. [9]. These methods allow successful parallel
implementation of the CPM using MPI [9, 10].

On the other hand, an intrinsic inconvenience of the classical CPM ameliorates one
difficulty which Ising model parallelization faces. In MPI parallelization, the larger
the number of computations per pixel update, the smaller the ratio of message passing
to computation, which results in less latency delay and greater efficiency. In the Ising
model, the computational burden per pixel update is small (at most a few floating
point operations), which increases the ratio of message passing to computation in a
naive partition. However, in the CPM, the ratio of failed update attempts to accepted
updates is very large (104 or more in some simulations). Only accepted updates
change the lattice configuration and potentially stale information in neighboring
nodes. The large effective number of computations per update reduces the burden of
message passing. However, because we can construct pathological situations which
have a high acceptance rate, we need to be careful to check that such situations do not
occur in practice.

2 The Glazier-Graner Cellular Potts Model

Glazier and Graner’s CPM generalizes the Ising model from statistical mechanics,
and shares its core idea of modeling dynamics based on energy minimization under
imposed fluctuations. The CPM uses a lattice to describe cells. We associate an
integer index to each lattice site (pixel) to identify the space a cell occupies at any
instant. The value of the index at a pixel (i, j, k) is l if the site lies in cell l. Domains
(i.e. collection of pixels with the same index) represent cells. Thus, we treat a cell as a
set of discrete subcomponents that can rearrange to produce cell motion and shape
changes. As long as we can describe a process in terms of a real or effective potential
energy, we can include it in the CPM framework by adding it to the effective energy.
The CPM models chemotaxis and haptotaxis by adding a chemical potential energy,
cell growth by changing target volumes of cells and cell division by a specific
reassignment of pixels. If a proposed change in lattice configuration (i.e. a change in
the index number associated with a pixel) changes the effective energy by ΔE, we
accept the change with probability:

0,)(;0,1)(/ >Δ=Δ≤Δ=Δ Δ− EeEPEEP TE (1)

where T is the effective temperature of the simulation in units of energy.
A typical CPM effective energy might contain terms for adhesion, a cell volume

constraint and chemotaxis:

E = EAdhesion + EVolume + EChemical (2)

We discuss each of these terms below.

Cell–cell adhesion energy: In Equation 2, AdhesionE phenomenologically describes the

net adhesion/repulsion between two cell membranes. It is the product of the binding

 A Parallel Implementation of the CPM for Simulation of Cell-Based Morphogenesis 61

energy per unit area,)'(')(στστJ and the area of interaction of the two cells.

)'(')(στστJ depends on the specific properties of the interface between the interacting

cells:

))]}',','('),,,((1[{
)',',')(,,(

)''()(kjikjiJE
kjikji

Adhesion σσδστστ∑ −= (3)

where the Kronecker delta, 0)',(=σσδ if 'σσ ≠ and 1)',(=σσδ if 'σσ = ,

ensures that only the surface sites between different cells contribute to the adhesion
energy. Adhesive interactions act over a prescribed range around each pixel, usually
up to fourth-nearest-neighbors.

Cell size and shape fluctuations: A cell of type τ has a prescribed target volume v(σ,τ)
and volume elasticity λ, target surface area s(σ,τ), and membrane elasticity 'λ . Cell
volume and surface area change due to growth and division of cells. VolumeE exacts an

energy penalty for deviations of the actual volume from the target volume and of the
actual surface area from the target surface area:

2

cellsall
target

'2

cellsall
target)),(),(()),(),((∑∑

−−

= −+− τστσλτστσλ σσ ssvvEvolume (4)

Chemotaxis and haptotaxis: Cells can move up or down gradients of both diffusible
chemical signals (i.e. chemotaxis) and insoluble extracellular matrix (ECM)
molecules (i.e. haptotaxis). The energy terms for both chemotaxis and haptotaxis are
local, though chemotaxis requires a standard parallel diffusion equation solver for the
diffusing field:

)()(xCEchemical σμ= (5)

where
→
)(xC is the local concentration of a particular species of signaling molecule in

extracellular space and μ(σ) is the effective chemical potential.

3 Data Structures and Algorithms

System Design Principles
Our parallel CPM algorithm tries to observe the following design principles: to
implement the CPM model without systematic errors, to homogeneously and
automatically distribute calculations and memory usage among all processor nodes,
and to use Object-Oriented programming and MPI to improve portability.

Spatial Decomposition Algorithm
Our parallel algorithm homogeneously divides the lattice among all processor nodes,
one subdomain per node. During a CPM simulation some cells cross boundaries
between nodes. If nodes attempted to update pixels in these cells simultaneously, cell
properties like volume and surface area would stale and energy evaluations would be

62 N. Chen, J.A. Glazier, and M.S. Alber

incorrect. We use a multi-subgrid checkerboard method to solve this problem: In each
node we subdivide the subdomain into four subgrids indexed from 1-4. During the
simulation, at all times we restrict calculations in each node to the same index
subgrid. Since these subgrids are much larger than a cell diameter, we guarantee that
no calculation in one node affects the calculations occurring simultaneously in any
other node. In principle, we should switch subgrids after each pixel update to recover
the classical algorithm. Since acceptance rates are low, on average, we should be able
to make many update attempts before switching between subgrids. However, because
acceptance is stochastic, we would need to switch subgrids at different times in
different nodes, which is inconvenient. In practice we can update many times per
subgrid (which means accepting that we will sometimes use stale positional
information from the adjacent subgrids), because the subgrids are large, the
acceptance rate small and the effects of stale positional information just outside the
boundaries fairly weak. We use a random switching sequence (the switching sequence
each time is different and random, for example, 1234, 2341, 4123, 3124 …) to switch
between subgrids frequently enough to make the effect of stale positional information
negligible compared to the stochastic fluctuations intrinsic to Monte Carlo methods.
Fig. 1 illustrates the algorithm.

Node
(Subdomain)

Subgrid

Cell

Fig. 1. Spatial decomposition: Each computer node hosts a subdomain which has four subgrids.
At any time, each node performs calculations on only one subgrid. At all times, all nodes work
on the subgrids with the same index number (indicated by the shading in the figure).

Data Structures
Two basic data structures of the parallel CPM algorithm are the cell and the pixel.
During simulations, cells move between subdomains controlled by different nodes.
Cells can also appear due to division and disappear due to cell death. In the classical
single-processor algorithm, each cell has its own global cell index number. This data
structure works efficiently on a single processor. In a parallel algorithm, this data
structure for cells requires a Cell Index Number Manager to handle cell division,
disappearance and handoff between nodes. For example, when a cell divides in a
particular node, the node sends a request to the Manager to obtain a new cell index
number and the Manager needs to notify all other nodes about the new cell. Instead,
we assign each cell two numbers, a node ID and an index ID. The Node ID is the
index number of the node in which the cell was generated and the index ID, like the

 A Parallel Implementation of the CPM for Simulation of Cell-Based Morphogenesis 63

old index number, is the index number of the cell generation sequence. Since cell IDs
are now unique, each node can generate new cells without communicating with other
nodes. Since cells may move between nodes, we dynamically allocate the memory for
cell data structures on creation or appearance and release it when a cell moves out of
the node or disappears. To optimize the usage of memory and speed data access, the
index in each pixel is a pointer to the cell data structure.

Communication and Updating
In the spatial decomposition algorithm, when the program switches between different
subgrids, the communication algorithm transfers two types of information: lattice
configurations and cell volumes. In 2D, each subgrid needs to communicate with 8
neighboring subgrids (in 3D, 26 neighboring subgrids) and the communication
algorithm sequentially sends and receives corresponding data according to the spatial
organization of the subgrids. Sending and receiving could take place within a node,
in which case the algorithm is just a memory copy. Fig. 2 illustrates the
communication algorithm. After the communication, the program needs to
dynamically update cell structures and buffers. The program also needs to check
whether any cells cross between subgrids and implement the corresponding creation
or destruction operations.

Fig. 2. Communication algorithm: After each change of subgrid, each node needs to transfer
data to neighboring nodes. Lattice sites and associated variables (volume, surface area,…)
located within the buffer area are transferred so neighboring subgrids contain correct cell
configurations and characteristics.

4 Benchmark Results

The following benchmarks used the Biocomplexity cluster at the University of Notre
Dame. The cluster consists of 64 dual nodes, each of which contains two AMD 64 bit
Opteron 248 CPUs (clock frequency 2.2 GHz) and 4GB of RAM.

Cell Sorting
Steinberg’s Differential Adhesion Hypothesis (DAH), states that cells adhere to each
other with different strengths depending on their types [12]. Cell sorting results from

64 N. Chen, J.A. Glazier, and M.S. Alber

random motions of the cells that allow them to minimize their adhesion energy,
analogous to surface-tension-driven phase separation of immiscible liquids. If cells
of the same type adhere more strongly, they gradually cluster together, with less
adhesive cells surrounding the more adhesive ones. Based on the physics of the
DAH, we model cell-sorting due to variations in cell-specific adhesivity at the cell
level. Fig. 3 shows two simulation results for different adhesivities. All other
parameters and the initial configurations of two simulations are the same. In
simulation (a), cell type 1 has higher adhesion energy with itself (is less cohesive)
than cell type 2 is with itself. The heterotypic (type 1-type 2) adhesivity is
intermediate. During the simulation cells of type 2 cluster together and are
surrounded by cells of type 1. In simulation (b), the adhesivity of cell type 1 with
itself is the same as the adhesivity of cell type 2 with itself and greater than the
heterotypic adhesivity. This energy hierarchy results in partial sorting.

Fig. 3. Cell sorting simulation: Cell type 1 (Dark). Cell Type 2 (Light). The two simulations
use the same initial cell configuration and target volumes (150), the only differences between
(a) and (b) are the different adhesion constants. (a) Adhesion constants: J1-1=14, J2-2=2, J1-2=11,
J1,2-ECM=16. (b) Adhesion constants: Adhesion energy J1-1=14, J2-2=14, J1-2=16, J1,2-ECM=16. The
lines indicate the boundaries of the subdomains assigned to each node in a 16 node simulation.

In this simulation the lattice size is (288x288) and we distributed it in
homogeneous subdomains of size 72x72 on a 16 node cluster. Each subgrid has
36x36 pixels.

Simulation of Chondrogenic Condensation
Fig. 4 shows the simulation result for a simulation of chondrogenic condensation
(cartilage formation) in a chicken limb bud simulation run on 16 nodes with a total
lattice size of 1200x1200 sites. In this simulation, we used an externally-supplied
chemical pre-pattern (Activator concentration calculated from a pair of coupled
reaction-diffusion equations) to control cell differentiation and condensation.

 A Parallel Implementation of the CPM for Simulation of Cell-Based Morphogenesis 65

Fig. 4. Simulation of chondrogenic condensation during limb-bud formation. The lines indicate
the boundaries of the subdomains assigned to each node for a 16 node simulation.

Efficiency of the Parallel Algorithm
We used the cell sorting (lattice size 288x288) and chondrogenesis simulations
(lattice size1200x1200) to analyze the efficiency of our parallel algorithm. We ran
both simulations on 4, 9 and 16 nodes with switching between subgrids after each
Monte Carlo Step (defined as as many lattice update attempts as the number of lattice
sites in the subgrid). This switching rate is relatively slow and results in significant
effects from stale parameters. Table 1 summarizes the simulation running times. We
define the relative efficiency, f:

nT

T
f

n /

4/4= (6)

where
nT is the running time of the simulation on n nodes. Since the smallest cluster

on which our program runs uses 4 nodes, we use the running time on 4 nodes as a
reference value. Fig. 5 plots the relative efficiency vs. the number of nodes. The cell
sorting simulation is less efficient than the limb bud simulation because the small
(288x288) lattice increases the ratio of communication time to computation time. The
larger the subdomain size, the more efficient the calculation.

Table 1. Calculation time for different tests

Number of Nodes Tests
4 9 16

Cell Sorting Simulation. Lattice size
288x288. 10,0000 MCS

3351
Sec.

2352
Sec.

1807
Sec.

Chondrogenesis Simulation. Lattice size
1200x1200. 10,000 MCS

4188
Sec.

2050
Sec.

1305
Sec.

The Gillespie stochastic simulation algorithm acceleration strategy based on “tau-
leaping” is a powerful tool for large-scale stochastic biochemical simulations [13][14].
Instead of processing each reaction event, it moves forward in time by “leaps” that
include many reaction events. Though it currently applies only to spatially

66 N. Chen, J.A. Glazier, and M.S. Alber

homogeneous models, its extension to parallel simulation of inhomogeneous models
would be valuable and could greatly increase the size of feasible CPM simulations.

4 8 12 16 20
0.4

0.6

0.8

1.0

R
el

at
iv

e
E

ffi
ci

en
cy

 f

Number of Nodes

 288x288
 1200x1200

Fig. 5. Relative Efficiency as defined in equation 6 vs. the number of nodes used in the
calculation. Bullets and solid squares correspond to cell sorting and chondrogenesis simulations
respectively.

5 Discussion and Future Work

One issue with our algorithm is whether its results deviate from the classical
algorithm significantly. Our switching algorithm works on subgrids one at a time. If
the configuration is far from equilibrium, energies and configurations change rapidly
and the dynamics of cells at subgrid boundaries could differ from those in the
classical algorithm. For instance, if a cell’s target volume is much larger than its
current volume, the cell should grow rapidly and isotropically, while in our algorithm,
a cell at a subgrid boundary might grow anisotropically. A higher switching frequency
reduces this problem but also reduces the computational efficiency. In such case,
smoothly changing the target value to the equilibrium one would solve this problem.

The parallel algorithm uses the standard CPM site selection algorithm which
wastes time by selecting non boundary spins that cannot be updated. We plan to
combine our parallel algorithm with the Random Walker algorithm [15] which selects
only boundary spins to further improve our simulation efficiency.

6 Conclusions

Sequential versions of the CPM model are extensively used to simulate cell
morphogenesis. However, large-scale morphogenesis simulations require a parallel
implementation. In this paper, we have proposed a parallel CPM algorithm using
appropriate data structures and checkerboard updating. The algorithm reproduces
examples of cell sorting and limb bud formation and shows good scalability, which an
improved site-selection algorithm like the RW algorithm should be able to improve
further.

 A Parallel Implementation of the CPM for Simulation of Cell-Based Morphogenesis 67

Acknowledgments. This work was partially supported by NSF Grant No. IBN-
0083653 and NIH Grant No. 1R0-GM076692-01: Interagency Opportunities in
Multiscale Modeling in Biomedical, Biological and Behavioral Systems NSF
04.6071. Simulations were performed on the Notre Dame Biocomplexity Cluster
supported in part by NSF MRI Grant No. DBI-0420980.

References

1. Graner, F. and Glazier, J. A.: Simulation of biological cell sorting using a two dimensional
extended Potts model. Phys. Rev. Lett. 69, (1992) 2013–2016.

2. Chaturvedi, R., Huang C, Izaguirre, J. A., Newman, S. A., Glazier, J. A., Alber, M. S.: On
Multiscale Approaches to Three-Dimensional Modeling of Morphogenesis, J. R. Soc.
Interface 2, (2005) 237-253.

3. Mombach, J., and Glazier, J. A.: Single cell motion in aggregates of embryonic cells. Phys.
Rev. Lett. 76, (1996) 3032–3035.

4. Alber, M.S., Kiskowski, M.A., Glazier, J.A., and Jiang, Y., On Cellular Automaton
Approaches to Modeling Biological Cells, in J. Rosenthal and D.S. Gilliam (Eds.),
Mathematical Systems Theory in Biology, Communication, and Finance, IMA Volume
134, Springer-Verlag, New York, 1-39, 2003.

5. Jiang, Y. and Glazier, J. A.: Foam Drainage: Extended Large-Q Potts Model Simulation.
Phil. Mag. Lett. 74, (1996) 119–128.

6. Jiang, Y., Swart, P., Saxena, A., Asipauskas, and Glazier, J. A.: Hysteresis and Avalanches
in Two Dimensional Foam Rheology Simulations. Phys. Rev. E. 59, (1999) 5819-5832.

7. See http://www.beowulf.org and links therein for a full description of the Beowulf
project, access to the Beowulf mailing list, and more.

8. Barkema, G. T. and MacFarland, T.: Parallel simulation of the Ising model. Phys. Rev. E
50, (1994) 1623–1628.

9. Gropp, W., Lusk, E., and Skjellum, A.: Using MPI: Portable Parallel Programming with
the Message Passing Interface, 2nd edition. MIT Press, Cambridge, MA (1999).

10. Gropp, W., Lusk, E., and Thakur, R.: Using MPI-2: Advanced Features of the Message-
Passing Interface. MIT Press, Cambridge, MA (1999).

11. Wright, S. A., Plimpton, S. J., Swiler, T. P., Fye, R. M., Young, M. F. and Holm, E. A.:
Potts-model Grain Growth Simulations: Parallel Algorithms and Applications, SAND
Report 97-1925, August (1997).

12. Davis, G. S., Phillips, H. M., and Steinberg, M. S. Germ-layer surface tensions and "tissue
affinities" in Rana pipiens gastrulae: quantitative measurements. Dev. Biol. 192, (1997)
630-644.

13. Gillespie D. T.: Approximate accelerated stochastic simulation of chemically reacting
systems. J. Chem. Phys. 115, (2001) 1716-1733.

14. Lok, L: The need for speed in stochastic simulation. Nature Biotechnology, 22, (2004),
August, 964

15. Gusatto, E., Mombach, J.C.M., Cercato, F.P., Cavalheiro, G.H.. An efficient parallel
algorithm to evolve simulations of the cellular Potts model. Parallel Processing Letters,
v.15, p. 199-208, 2005.

	Introduction
	The Glazier-Graner Cellular Potts Model
	Data Structures and Algorithms
	Benchmark Results
	Discussion and Future Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

