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Abstract. The Cellular Potts Model (CPM) successfully simulates drainage
and shear in foams. Here we use the CPM to investigate instabilities due to
the flow of a single large bubble in a dry, monodisperse two-dimensional flowing
foam. As in experiments in a Hele–Shaw cell, above a threshold velocity the large
bubble moves faster than the mean flow. Our simulations reproduce analytical
and experimental predictions for the velocity threshold and the relative velocity of
the large bubble, demonstrating the utility of the CPM in foam rheology studies.
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1. Introduction

Foams’ unusual rheology suits them to applications as diverse as efficient fire suppression
and oil extraction in the petroleum industry [1, 2]. Foams are non-Newtonian, so
understanding their flow helps explain the complex behaviours of other structured fluids,
which are difficult to investigate analytically. Though we know that foams behave like
solids under small stress and flow like fluids under large stress, we do not understand
the relationship between the macroscopic and microscopic properties of foams. We still
need experiments and simulations to provide insight into foam-flow behaviour [3, 4]. Here,
we show that the Cellular Potts Model (CPM) can successfully model dry, i.e. low-fluid-
fraction, foam flow in a quasi-two-dimensional (2D) Hele–Shaw (HS) cell, in which a
single bubble layer flows lengthwise between two closely spaced long and narrow parallel
plates. HS flow is important in industry, e.g. in injection moulding [16] and display device
manufacture [17].

The sizes and shapes of the bubbles in a foam may change due to gas diffusion between
neighbouring bubbles, bubble coalescence, shear and drainage of the liquid in the walls
between bubbles [5]. This paper considers only shear-induced topological rearrangements
or T1 processes, where two bubbles come together to form a side, pushing apart two
previously adjacent bubbles [6]. Since the timescale of the approach to a T1 depends on
the shear rate, while the usually fast relaxation time depends on the fluid-surface effective
drag, at low shear rates bubble motion appears jagged. Under certain circumstances many
T1s occur together, each T1 triggering the next, forming an avalanche. Jiang et al [15]
have shown that the flow becomes smoother as the strain rate increases. However, even
at low strain rates, because the typical jump size is a fraction of the size of a bubble,
large-aspect-ratio flows, where bubbles are very small, appear smooth. The collective
phenomena of foam flow have inspired many models, including constitutive, vertex, centre,
bubble and CPM models [7]–[14]. For example, Okuzano and Kawasaki used a vertex
model to study the effect of low shear rates on foams [11] and found avalanche-like
rearrangements. Durian’s bubble model [12] gave similar predictions, but Weaire’s centre
model [13] suggested that avalanche-like rearrangements are only possible for wet foams.
Jiang et al tried to reconcile the different model predictions and experiments using the
CPM [15, 14]. They demonstrated hysteresis and avalanche-like rearrangements in a 2D
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non-coarsening foam and found that the T1 dynamics depended sensitively on the foam’s
topology. Because the CPM derives from an equilibrium model, we must establish its
suitability to describe dynamic phenomena. Here we show that it correctly reproduces
the rather subtle experimental behaviour of the flow of a large bubble in a background of
small bubbles, further validating the use of the CPM to simulate flowing foams.

In a HS cell, a monodisperse foam (i.e., a foam of bubbles of equal size), under a
uniform pressure gradient, exhibits simple plug flow. However, a polydisperse (i.e., a
foam made of bubbles of different sizes) foam’s flow becomes unstable above a critical
velocity. The size distribution of the bubbles then controls the velocity field, with the
larger bubbles moving faster than the smaller ones, as experiments by Lordereau [18]
have shown. Recently, Cantat and Delannay [19] studied the phenomenon in more detail,
both experimentally and numerically. Their experiments used a dry soap froth contained
in a HS cell, with newly produced bubbles maintaining a steady pressure gradient along
the length of the cell. Their simulations used a vertex model with periodic boundary
conditions along the direction of flow. Their analytical predictions for the critical velocity
at which a single large bubble begins to move faster than the bulk flow in an otherwise
monodisperse foam agree with their numerical and experimental results.

According to Cantat and Delannay [19], below the critical velocity, all the bubbles in
the foam move with a velocity v0ux, where ux is a unit vector in the direction of flow.
The viscous force per unit surface, averaged on the scale of a bubble, is:

Fvisc = −ηv0

d
ux, (1)

where η is the effective viscosity and d is the diameter of the small bubbles. The large
bubble induces a pressure deficit, δf = nηv0dux, where n is the number of films that
would be present across the large bubble in the x direction if it were filled with small
bubbles. Assuming the friction deficit concentrates at r = r0, the force equation becomes:

Fvisc = −∇ηv0x

d
+ δ(r − r0)

ηv0D
2

d
ux, (2)

where D is the diameter of the large bubble. As the large bubble moves, it distorts the
small bubbles and changes their stress distribution. Combining the forces due to surface
tension and viscosity, Cantat and Delannay [19] obtained the equations of motion:

−∇
(ηv0x

d
+ P

)
+ μ∇2X = −δ(r − r0)

ηv0D
2

d
ux, (3)

where X is the bubble displacement from the equilibrium position,

∇ · X = 0. (4)

P is the pressure field given by

P = −ηv0x

d
+

ηv0D
2

2πd

x − x0

(r − r0)2
, (5)

for the small bubbles. The last term on the RHS of equation (5) gives the pressure dis-
continuity for the large bubble at r = (D/2)ux, which must counterbalance the stress.
The force balance gives the critical velocity:

vc ∼
γ

ηD
, (6)
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where γ is the surface tension. The critical velocity is directly proportional to the surface
tension and inversely proportional to the diameter of the large bubble and the viscosity.

In this work we use the CPM to reproduce large-bubble migration. Our results agree
with the results in [19]. While CPM simulations are computationally simple, we are not
able to predict the viscosity analytically from model parameters, though we can obtain
an effective viscosity and other viscoelastic information from our simulations. In this
respect, CPM simulations resemble experiments, in which we also cannot predict the
effective foam viscosity from the fluid component’s viscosity and surface tension [2]. The
capillary number appears to relate the velocity of the foam to the fluid viscosity and surface
tension, but experiments have shown it is not sufficient to describe the dynamic regime
of a flowing foam [21]. New experiments have investigated the dependence of mobility on
various parameters [22]–[24], but more experiments and analysis are still required.

2. The CPM

Jiang et al [15] provide details on the use of the CPM to study foam rheology. The CPM is
lattice-based, with each lattice point having an integer spin. Like spins form bubbles while
boundaries between unlike spins correspond to soap films. The CPM Hamiltonian contains
a surface-energy term corresponding to film surface tension and a term constraining bubble
areas corresponding to the conservation of mass within each bubble. The area constraint
allows bubble compression according to the ideal gas law and transmits forces between
bubbles, which is essential in a rheological simulation. We prevent coarsening, since in
experiments the slow coarsening of bubbles during their brief residence in a HS cell is
unmeasurable [20].

The CPM Hamiltonian thus has two terms:

H =
∑
�i,�j

J(1 − δσ�i
σ�j

) + λ
∑

n

(an − An)2, (7)

where J is the coupling strength between spins σ�i, σ�j at neighbouring lattice sites�i and �j
and λ is the inverse of the compressibility of the gas. An is the area of a bubble with no
forces (including surface tension) acting on it, which we call the target area, while an is
the current area of the same bubble as it flows. The difference between the areas (an−An)
gives a bubble’s pressure. The first term gives the total surface energy and the second
term the pressure energy. The CPM spins evolve according to a Modified Metropolis
algorithm [15]. Each time step corresponds to a complete Monte Carlo sweep (MCS) of
the lattice.

Figure 1 shows a detail of a simulation with a large bubble moving through smaller
bubbles. The shade denotes the pressure inside each bubble, darker shades denoting
lower pressures. The bubbles move from left to right. Our lattice geometry is rectangular
(usually 1000 × 200 sites) with open boundary conditions at the short sides, like a HS
experiment. We nucleate bubbles at a steady rate at one short end (the head end) and
remove them at the opposite short end (the tail end).

All the bubbles, except the large bubble, nucleate at a fraction of their target area
(large pressure). As they enter the lattice, they gradually expand, generating an excess
pressure at the head end. As the bubbles move from left to right, they expand and
their pressure decreases. When a bubble contacts the tail end of the lattice, we set its
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Direction of flow –– >

Figure 1. Detail of a CPM simulation of a quasi-stationary flowing foam with a
large bubble. The shading denotes bubble pressures, with darker shades denoting
lower pressures.

area constraint to zero so that it disappears smoothly at near-zero pressure. Pressure
differences between bubbles induce boundary movement with a velocity proportional to
the applied force [15]. This method of bubble creation and disappearance corresponds
closely to HS experiments which generate bubbles continuously at one end of the channel
and allow them to exit at near-atmospheric pressure at the opposite end. Thus, simulation
and experiment both have a constant bubble-flux boundary condition at the head end and
an absorbing boundary condition at the tail end. As we mentioned earlier, the absence of
a simple relationship between the mobility of the bubbles and J and λ is a limitation of
both the CPM and experiments.

Our simulations have J = 5 and λ = 3 and run at zero temperature. The small-
bubble target area is usually 625 lattice sites. We create a single large bubble of diameter
D at the first time step at a random position along the head end. We nucleate small
bubbles every 50 MCS with initial sizes between 4 and 481 pixels. Varying the nucleation
size of the bubbles at the head end changes the pressure gradient, which in turn changes
the velocity of the flow. We also vary the large-bubble size. If the large-bubble radius is
more than four times the small-bubble radius, we use a larger lattice to avoid boundary
effects. The small bubbles all have approximately the same velocity at any given time
and we define the foam velocity as the average of the centre-of-mass velocities of the small
bubbles at a fixed time. For each case, we run multiple replicas with different random-
number-generator seeds. As in [11] and [15] we define the total stored surface energy φ
to be:

φ =
∑
i,j

(1 − δi,j). (8)

The average stress tensor σ, as reference [11] points out, relates directly to φ. φ = Tr(σ).
We scale out differences due to initial conditions by using φ(t)/φ(0), where φ(0) is the
value of φ at the start of the simulation. The applied strain rate is very high initially, then
falls sharply to a low constant value, after which the applied strain is proportional to time
and the energy-versus-time curve becomes equivalent to the energy-versus-applied-strain
curve. We call the flow quasistationary when any drift in the total energy is less than 2%
of the average energy over 1000 MCS and the bubble velocity changes by less than 10%
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Figure 2. (a) Equilibration of the stored surface energy of a simulated flowing
foam containing a large bubble with small bubbles nucleating every 50 MCS.
(b) Equilibration of bubble velocities in a simulated flowing foam: large bubble—
dashed lines, small bubbles—solid lines. The three pairs of curves are for different
nucleation sizes of the small bubbles. The lowest curve corresponds to an initial
nucleation size of 481 pixels and the higher curves to nucleation sizes of 156 and
25 pixels respectively.

of the average velocity over 1000 MCS. We make all measurements in the quasistationary
state. Since we introduce and eliminate bubbles continuously, we never reach a static
equilibrium. The finite HS cell and pressure drop along it mean that bubble velocity
varies down the cell length.

3. Results

Figure 2(a) plots φ as a function of time and figure 2(b) plots the velocity of large and
small bubbles as a function of time. For slow flows, the small and large bubbles flow
with the same velocity as a solid. Above a critical velocity, the bubbles’ velocities depend
on their sizes, e.g., in our simulations the critical velocity is 0.014 pixels/MCS when the
radius of the large bubble is twice that of the small bubbles. We plot the difference in
velocity between the large bubble and the foam (vL − vf) versus the velocity of the foam
vf for different large-bubble sizes D, scaling the velocity difference by r = D/d, where the
diameter of the small bubbles d is constant. Figure 3 shows our results. We checked that
vc was independent of d by running simulations with a small-bubble target area, An = 400
pixels. We examined the cases r = 2, 3, 3.5 and 4. Since very large bubbles tend to wobble
and break into smaller bubbles, we analysed only simulations in which the large bubble
traversed the HS cell without breaking. We find excellent agreement between our data
and the theoretical form of Cantat and Delannay [19];

(vL − vf)

vf(D/d)
=

−A

vf

1

B ln(1 − A/vf)
, (9)
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Figure 3. Difference between large-bubble velocity vL and average foam velocity,
rescaled by rvf , versus vf for different large-bubble sizes, on a semilog scale. The
symbols on the graph correspond to different values of r.

where (vL − vf) is the difference between the large bubble velocity and the foam velocity
and A and B are fitting parameters. The fitting value for the critical velocity A = 0.013
pixels/MCS and B = 8.66 is a dimensionless parameter which scales the velocity. The
asymptotic standard error for both parameters is less than 5%.

The theoretical critical velocity is [19]:

vc =
γh

ηD
, (10)

where h is the thickness of the HS cell. Taking h to be the small-bubble size, we obtain
vc from the values of γ and η obtained from our simulations. We obtain η by measuring
the relation between the effective pressure along the channel and the foam velocity and γ
from the size and pressure of the small bubbles. We find vc = 0.014 pixels/MCS, agreeing
with the value which we obtained in the previous paragraph.

We can also calculate an analogue of the Deborah Number (ND) for our simulated
bubble motion, the product of the shear strain rate and the event timescale [12]. The
event timescale τ is the timescale of a T1, while the shear strain rate is the ratio of the
velocity difference to the lengthscale (which in our case is the size of the small bubbles).
So,

ND =
(vL − vf)τ

d
. (11)

Our small bubble size is usually 25 pixels, while τ is approximately 20 MCS so ND is
between 10−2 and 10−1 for most of our simulations. Our maximum ND is 0.08.
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4. Conclusions

We have shown that we can use the CPM to study the flow of a large bubble embedded
in a monodisperse foam. For small velocities, all the bubbles in the foam flow at the same
velocity. Above a critical velocity, the velocities of the bubbles vary with their sizes. The
critical velocity in our detailed simulations of a large bubble twice the size of the small
bubbles matches very well with the critical velocity we obtain by fitting our simulation
results for bubbles of various sizes to the analytical equation of Cantat and Delannay [19],
and with the critical velocity we deduce theoretically from the effective viscosity and
surface tension of the simulated foam.

We have also checked that in a polydisperse foam, above a critical velocity different-
size bubbles travel at different velocities, the large bubbles travelling faster. The
dimensional form of the definition of the critical velocity suggests that bubbles of different
sizes should have different critical velocities, however, we have not been able to verify this
dependence in a simulated polydisperse foam because the very large scatter in the velocity
difference prevents us from identifying the critical velocities. Experiments by Park and
Durian revealed fingering instabilities in radial HS cells [25] which may relate to the viscous
instability in rectangular HS cells. However, the aspect ratios of these experiments are
very different from those in our simulations, so direct comparison is difficult.
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