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Abstract

The Cellular Potts Model (CPM) has been used in a wide variety of biological simulations. However, most current CPM implementations use a
sequential modified Metropolis algorithm which restricts the size of simulations. In this paper we present a parallel CPM algorithm for simulations
of morphogenesis, which includes cell—cell adhesion, a cell volume constraint, and cell haptotaxis. The algorithm uses appropriate data structures
and checkerboard subgrids for parallelization. Communication and updating algorithms synchronize properties of cells simulated on different
processor nodes. Tests show that the parallel algorithm has good scalability, permitting large-scale simulations of cell morphogenesis 107 or
more cells) and broadening the scope of CPM applications. The new algorithm satisfies the balance condition, which is sufficient for convergence
of the underlying Markov chain.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction The CPM approach makes several choices about how to
describe cells and their behaviors and interactions. First, it de-
scribes cells as spatially extended but internally structureless
objects with complex shapes. Second, it describes most cell be-
haviors and interactions in terms of effective energies and elas-
tic constraints. These first two choices are the core of the CPM
approach. Third, it assumes perfect damping and quasi-thermal
fluctuations, which together cause the configuration and proper-
ties of the cells to evolve continuously to minimize the effective
energy, with realistic kinetics, where cells move with velocities
proportional to the applied force (the local gradient of the ef-
fective energy). Fourth, it discretizes the cells and associated
fields onto a lattice. Finally, the classic implementation of the
CPM employs a modified Metropolis Monte-Carlo algorithm
which chooses update sites randomly and accepts them with a
Metropolis—Boltzmann probability.
The Cellular Potts Model (CPM) generalizes the Ising model
* Corresponding author. from statistical mechanics and it shares its core idea of mod-
E-mail address: malber@nd.edu (M.S. Alber). eling dynamics based on energy minimization under imposed

Simulations of complex biological phenomena like organ
development, wound healing and tumor growth, collectively
known as morphogenesis, must handle a wide variety of bio-
logical agents, mechanisms and interactions at multiple length
scales. The Cellular Potts Model developed by Glazier and
Graner (CPM) [1-3] has become a common technique for mor-
phogenesis simulations, because it easily extends to describe
the differentiation, growth, death, shape changes and migra-
tion of cells and the secretion and absorption of extracellular
materials. Some of the many studies using the CPM treat cell—
cell adhesion, chicken limb-bud formation and Dictyostelium
discoideum development, and non-biological phenomena like
liquid flow during foam drainage and foam rheology [4-9].
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fluctuations. The CPM uses a lattice to describe cells. We asso-
ciate an integer index to each lattice site (pixel) to identify the
space a cell occupies at any instant. The value of the index at
a pixel (i, j, k) is [ if the site lies in cell /. Domains (i.e. col-
lections of pixels with the same index) represent cells. Thus,
we treat a cell as a set of discrete subcomponents that can re-
arrange to produce cell motion and shape changes. As long as
we can describe a process in terms of a real or effective poten-
tial energy, we can include it in the CPM framework by adding
it to the effective energy. Cells can move up or down gradients
of both diffusible chemical signals (i.e. chemotaxis) and insolu-
ble extracellular matrix (ECM) molecules (i.e. haptotaxis). The
CPM models chemotaxis and haptotaxis by adding a chemi-
cal potential energy, cell growth by changing target volumes
of cells, and cell division by a specific reassignment of pixels.
If a proposed change in lattice configuration (i.e. a change in
the index associated with a pixel) changes the effective energy
by AE, we accept the change with probability:

1, AE <0,

P(AE) = {eAE/T AE >0 M)

where T represents the effective cytoskeletal fluctuation ampli-
tude of cells in the simulation in units of energy. One Monte-
Carlo Step (MCS) consists of as many index-change attempts
as the number of pixels in the lattice (or subgrid in the paral-
lel algorithm). A typical CPM effective energy might contain
terms for adhesion, a cell volume constraint and chemotaxis:

E = EAdhesion + Evolume + EChemical- (2)

We discuss each of these terms in Section 2.

Since the typical discretization scale is 2—5 microns per
lattice site, CPM simulations of large tissue volumes require
large amounts of computer memory. Current practical single-
processor sequential simulations can handle about 10° cells.
However, a full model of the morphogenesis of a complete
organ or an entire embryo would require the simulation of
10%-108 cells, or between 10—1000 processor nodes.

Clearly, we need a parallel algorithm which implements the
CPM and runs on the High Performance Computing Clusters
available in most universities. Wright et al. [14] have imple-
mented a parallel version of the original Potts model of grain
growth. However, in this model the effective energy consists
only of local grain boundary interactions, so a change of a
single pixel changes only the energies of its neighbors. Mom-
bach et al. recently developed a parallel algorithm for the CPM,
based on a Random-Walker approach [10]. The standard CPM
algorithm always rejects spin flip attempts inside a cell, wasting
much calculation time. The Random-Walker approach attempts
flips only at cell boundaries, reducing rejection rates. The se-
quential Random-Walker algorithm runs 5.7 to 15.6 times faster
than the standard sequential CPM algorithm depending on the
application. However, the parallel scheme in this algorithm de-
pends on a replicated lattice among all processors, which inher-
ently limits its scalability.

We developed a spatial decomposition parallel algorithm
based on the common Message Passing Interface Standard
(MPI), which allows large scale CPM simulations running on

computer clusters. The main difficulty in CPM parallelization
is that the effective energy is non-local. Changing one lattice
site changes the volume of two cells and hence the energy asso-
ciated with all pixels in both cells. If a cell’s pixels are divided
between subdomains located on two nodes and the nodes at-
tempt updates affecting the cell without communication, one
node will have stale information about the state of the cell. If
we use a simple block parallelization, where each processor cal-
culates a predefined rectangular subdomain of the full lattice,
non-locality greatly increases the frequency of interprocessor
communication for synchronization and, because of communi-
cation latency, the time each processor spends waiting rather
than calculating. To solve this problem, we improve the data
structure to describe cells and decompose the subdomain as-
signed to each node into smaller subgrids so that corresponding
subgrids on different nodes do not interact, a method known
as a checkerboard algorithm. We base our algorithms on those
Barkema and collaborators developed for the Ising model, see,
e.g., [11]. The checkboard algorithm allows successful paral-
lel implementation of the CPM using MPI [12,13]. Essentially
the algorithm uses an asynchronous update algorithm updating
different subgrids at different times. When indices on a current
subgrid are updated indices on neighboring subgrids are fixed
and the cell volume changes occur only on the current subgrid.

In MPI parallelization, the larger the number of computa-
tions per pixel update, the smaller the ratio of message passing
to computation, and thus the larger the parallel efficiency. In
the Ising model, the computational burden per pixel update is
small (at most a few floating point operations), which increases
the ratio of message passing to computation in a naive parti-
tion. However, in the CPM, the ratio of failed update attempts
to accepted updates can be very large (typically 10* or more).
Only accepted updates change the lattice configuration and po-
tentially stale information in neighboring nodes. The large ef-
fective number of computations per update reduces the burden
of message passing. However, because we can construct patho-
logical situations which have a high acceptance rate, we need to
be careful to check that such situations do not occur in practice.

2. The Cellular Potts Model

In this section we discuss each of energy terms, cell differ-
entiation and reaction—diffusion equations used in the CPM.
We also describe the numerical scheme we used in solving
reaction—diffusion equations.

2.1. Cell—cell adhesion energy

In Eq. (2) Eadnesion phenomenologically describes the net
adhesion or repulsion between two cell membranes. It is the
product of the binding energy per unit area, J; ;/, and the area
of contact between the two cells. J; .~ depends on the specific
properties of the interface between the interacting cells:

E Adhesion = Z
(i,j,k)(i’,j’ k') neighbors
X (] —5(0'(i,j,k),O'/(i/,j/,k/))), 3)

Jr(o)r’(a’)
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where the Kronecker delta, § (0, 0") =0if 0 # ¢’ and §(0,0") =
1if o = o', ensures that only the surface sites between different
cells contribute to the adhesion energy. Adhesive interactions
act over a prescribed range around each pixel, usually up to
fourth-nearest-neighbors.

2.2. Cell volume and surface area constraints

A cell of type T has a prescribed target volume vearget (0, T)
and volume elasticity A, target surface area Sargei(o, T) and
membrane elasticity A, . Cell volume and surface area change
due to growth and division of cells. Evoume €Xacts an energy
penalty for deviations of the actual volume from the target vol-
ume and of the actual surface area from the target surface area:

2
Evolume = Z Ao (U(U, T) — Vtarget (0, T))
All-cells o

+ Z Ay (5(0, T) — Starget (0, r))z, )

All-cells o

2.3. Chemotaxis and haptotaxis

Cells can move up or down gradients of both diffusible
chemical signals (i.e. chemotaxis) and insoluble extracellular
matrix (ECM) molecules (i.e. haptotaxis). The energy terms for
both chemotaxis and haptotaxis are local, though chemotaxis
requires a standard parallel diffusion-equation solver for the dif-
fusing field. The simplest form for chemotactic or haptotactic
effective energy is:

Echemical = IL(U)C(;C)’ (@)

where C(X) is the local concentration of a particular species
of signaling molecule in extracellular space and w (o) is the
effective chemical potential.

2.4. Cell growth, division and cell death

Typically, we model cell growth by gradually increasing a
cell’s target volume and cell death by setting the cell’s target
volume to zero. Cell division occurs when the cell reaches a
threshold volume at which point we split the cell into two cells
with the same volume, assigning a new index value to one of
the new cells.

2.5. Reaction—diffusion (RD) equations

Turing [16] introduced the idea that interactions of two
or more reacting and diffusing chemicals could form self-
organizing instabilities that provide the basis for spatial bio-
logical patterning. We can describe such interactions of reac-
tion and diffusion in terms of a set of reaction—diffusion (RD)
equations. The general form for a set of RD equations with M
components is:

% = Vi + Fi (), (©6)

wherei =1---M, u = (u1---pm), u; is the concentration of
the ith chemical species, F;(u) is the reaction term.

We use a finite difference numerical scheme to solve the
reaction—diffusion equations with calculations being very fast
when performed using a sequential algorithm on a small lattice.
The chemical field values in the CPM calculations were inter-
polated from the numerical solution of the reaction—diffusion
equations. We plan to parallelize the numerical scheme for the
reaction—diffusion equations for larger lattices.

2.6. Cell differentiation

Most multicellular organisms have many different types of
cells performing different functions. The cell types result from
cell differentiation in which some genes turn on or activate and
other genes turn off or inactivate. As a result, different cell
types have different behaviors. In the CPM, all cells of a par-
ticular differentiation type share a set of parameters describing
their behaviors and properties.

3. Data structures and algorithms
3.1. System design principles

Our parallel CPM algorithm tries to observe the following
design principles: to implement the CPM model without sys-
tematic errors, to homogeneously and automatically distribute
calculations and memory usage among all processor nodes for
good scalability, and to use object oriented programming and
MPI to improve flexibility.

3.2. Spatial decomposition algorithm

Our parallel algorithm homogeneously divides the lattice
among all processor nodes, one subdomain per node. The effec-
tive energy terms for cell-cell adhesion, haptotaxis and chemo-
taxis are local, but the constraint energy terms, e.g., for cell
volume and surface area, have an interaction range of the di-
ameter of a cell. During a CPM simulation, some cells cross
boundaries between nodes. If nodes attempted to update pixels
in these cells simultaneously, without passing update informa-
tion between nodes, cell properties like volume and surface area
would stale and energy evaluations would be incorrect. We use
a multi-subgrid checkerboard method to solve this problem and
Fig. 1 illustrates the topology of the spatial decomposition al-
gorithm. In each node we subdivide the subdomain into four
subgrids indexed from 1-4. At any given time during the simu-
lation we restrict calculations in each node to one subgrid with
indices at adjacent subgrids being fixed. Notice that each sub-
grid is much larger than a cell diameter. Therefore, calculation
at any given node does not affect the calculations occurring si-
multaneously at other nodes. Fig. 1 illustrates a cell located at
the corner of 4 nodes. If the calculation is taking place at a sub-
grid of a given node indicated in white, calculations in all other
nodes are occurring at white subgrids with no calculations oc-
curring at adjacent subgrids (indicated with different shades of
grey). In principle, we should switch subgrids after each pixel
update to recover the classical algorithm. Since acceptance rates
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Fig. 1. Spatial decomposition. Each computer node consists of four subgrids.
At any given time, calculations are performed on only one subgrid of each node
indicated in different shading in the figure. Each node includes a set of buffers
which duplicate the border areas of neighboring subgrids. During simulations
pixel information in neighboring nodes is retrieved from these buffers.

are low on average, we should be able to make many update at-
tempts before switching between subgrids. However, because
acceptance is stochastic, we would need to switch subgrids at
different times in different nodes, which is inconvenient. In
practice we can update many times per subgrid meaning that
sometimes we use stale positional information from the adja-
cent subgrids. This is possible because the subgrids are large,
the acceptance rate is small and the effects of stale positional
information just outside the boundaries are fairly weak. We use
a pseudo-random switching sequence to switch between sub-
grids frequently enough to make the effect of stale positional
information negligible compared to the stochastic fluctuations
intrinsic to Monte-Carlo methods. Each subdomain hosts a set
of buffers which contains pixel information from the border re-
gions of neighboring subgrids. If a flip attempts takes place at a
subgrid border, we can retrieve the neighboring subgrid’s pixel
information from these buffers. Before subgrid switching, the
updated subgrid needs to pass this border pixel information to
neighboring subgrids.

Initialization()
SpatialDecomposition()
for each SubRunStep do
CalcuSwitchSequence()
for each subgrid_runnings do
for each update_attempt do
accepted := JudgeUpdate(update)
if (accepted):
CellUpdate()
LatticeUpdate()
Communicate()
CellMapUpdate()
RemapBuffers()
if (output)
GlobalProperties()

Program 1. Algorithm pseudo code.

Program 1 gives the pseudo code for this algorithm. In
the pseudo code, Initialization() reads the control file and

field information, constructs the framework classes and ini-
tializes parameters. SpatialDecomposition() includes topology
controller initialization, lattice decomposition, and subgrid ini-
tialization. CalcuSwitchSequence() generates a random switch-
ing sequence for all nodes. Each SubRunStep lasts a fixed num-
ber of MCS. Different instances of SubRunStep can have differ-
ent switching rates depending on user requirements (we discuss
the effect of the switching rate on efficiency in Section 4.2).
JudgeUpdate() is a function which determines whether to ac-
cept an index change attempt according to Egs. (1) and (2).
CellUpdate() and LatticeUpdate() change the corresponding
cell and lattice data for a successful update. Communicate()
passes updated lattice and cell information (such as cells’ vol-
ume and states) to neighboring subgrids and receives corre-
sponding information. CellMapUpdate() allocates memory for
incoming cells and updates the CellMap data. RemapBuffers()
changes the buffer data from the format in which it is received
communicating state (a NodeID and an index ID for each cell)
into that used by calculation (pointers to cells).

3.3. Balance condition

The classical Monte Carlo algorithm selects a site or spin
at random ensuring that the detailed balance condition is sat-
isfied at all times. In our parallel algorithm detailed balance is
violated because the flip cannot be reversed immediately af-
ter a subgrid switch. However, detailed balance is unnecessary
for the convergence of the underlying Markov chain to be able
to converge to the desired equilibrium distribution. Instead, the
weaker balance condition is necessary and sufficient for con-
vergence [15].

The Metropolis algorithm evolves a Markov process and
generates a sequence of states si, 52, 53, ... with x = (x1, x2,
X3,...) as its stationary or equilibrium distribution. We define

the transition matrix A (n=1,2,...,k) as follows:

Aij :qij(x,-j, VI;éj, (7)

Aii=1="Ajj, ®)
i#]

where ¢;; is a proposed transitional probability from i to j and
a;j is an acceptance probability from i to j defined as:

. Xj
a;j =min| 1, — |. &)
X

The corresponding transitional kernel (for k sites) of each
sweep is the product of all updating matrices

k
p=T]a". (10)
n=1

If the parallel algorithm satisfies the balance condition
x . P=x", (11)

the underlying Markov chain converges to the equilibrium dis-
tribution.

We now prove that our algorithm satisfies the balance con-
dition. In accordance with the classical Monte Carlo algorithm
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at every step a site is randomly selected from a lattice. In our
parallel algorithm we randomly select a site from the restricted
area (inside of a subgrid). However, each single flip of a site or
spin is still accepted using Metropolis rules and detailed bal-
ance is still satisfied for each A™

AL =x; A, (12)

and thus

inAij =Xj, (13)
i

which shows that the balance condition x* - A?™ = xT is satis-
fied for each individual flip of a site or spin. Therefore, we have
that

k
XU P=xT[[A® =xT AW . 4@ ... A® =xT, (14)
n=1

which proves that the balance condition is still satisfied for each
sweep in the parallel algorithm.

3.4. Data structures

The two basic data structures of the parallel CPM algo-
rithm are the cell and the lattice. During simulations, cells move
between subdomains which different nodes control. Cells can
also appear due to division and disappear due to cell death. In
the classical single processor algorithm, each cell has its own
global cell index. This data structure works efficiently for se-
quential algorithms. In a parallel algorithm, this data structure
would require a Cell Index Manager to handle cell division, dis-
appearance and hand off between nodes. For example, when a
cell divides in a particular node, the node would send a request
to the Manager to obtain a new cell index and the Manager
would notify all other nodes about the new cell. Instead, we
assign each cell two numbers, a node ID and an index ID. The
Node ID is the index of the node which generates the cell and
the index ID, like the old index, is the index in the cell genera-
tion sequence in that node. Since cell IDs are now unique, each
node can generate new cells without communicating with other
nodes. Since cells may move between nodes, a node dynami-
cally allocates the memory for cell data structures on creation
or appearance and releases it when a cell moves out of the node
or disappears. To optimize the usage of memory and speed data
access, the index in each pixel is a pointer to the cell data struc-
ture. Cell properties (such as cell volume, cell area, cell type,
center of mass, cell state, etc.) are stored in the data structure
“cell map” and when properties of a cell are changed, corre-
sponding data in the cell map is updated. During cell differenti-
ation the corresponding “cell type” value in the cell map struc-
ture is updated resulting in the change of cell energy constants.
After each subgrid calculation the communication algorithm
transfers properties of cells located on subgrids boundaries to
adjacent subgrids and synchronizes the adjacent subgrids’ cell
maps. Fig. 2 illustrates the data structures of the lattice and the
cell map.

bNode ID: 0 3
Pl Cell 1
Index ID: 139
1[1]1]2]2)2
1 1 l_ J/ 4 2— Cell properties :
[~ Node ID: 4
1 1 1 2122 Cell 2
Index ID: 124
3 3 3 3 2 2 Cell Properties
P
313131332 _,|Nodem:s A
Pointers to 3 g 2 Index ID: 322 Cell 3
cells :
. Cell Properties
Lattice J
Cell Map

Fig. 2. Data structures of the lattice and the cell map. Each cell has a unique
cell ID which include a node ID and an index ID. The lattice structure stores
pointers to cells.

Subgrid 1 Subgrid 2

1 |1 {1 |1 |1 1
1 (1 11 11 11 1
R I
2 12 12 1
| |_|L] 1
Target Site J 1 1
pmvavd 1
2 12 (2 |1 |1 1
1 11 /1 |11 1
1 11 (1111 1

Fig. 3. Overlap buffer structure for adhesion energy calculations. Each subgrid
can access neighboring subgrid lattices through the overlap cache buffer. We
update the overlap cache buffer content after the corresponding subgrid calcu-
lation cycle finishes.

3.5. Energy calculation

Energy calculation plays an essential role in the CPM. Our
parallel algorithm implements three types of energies: adhesion
energy, volume energy and chemical energy. Because the local
chemical concentration determines the effective chemical en-
ergy, this energy is local. Our implementation stores the chem-
ical concentration field in a separate array, which corresponds
pixel-by-pixel with the lattice array. The spatial decomposition
algorithm we discussed above divides the chemical concentra-
tion field into subgrids. Each subgrid contains the chemical
field information for energy calculations, so the calculation
requires no extra communication. The adhesion energy calcu-
lation requires information on the indices in neighboring pix-
els. Usually, all neighboring pixels lie inside the local subgrid.
However, if the pixel is near the subgrid boundary, its neighbors
could lie outside the subgrid. In these cases, we retrieve pixel
information from the cache buffer arrays which store data from
neighboring subgrids (see Fig. 1 and Section 3.2). The width of
the buffer depends on the neighbor range of cell-cell adhesion
energy calculation demonstrated in Fig. 3. The volume energy
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(Subdomain) 0. 1IN
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Fig. 4. Communication algorithm: After each subgrid calculation cycle, the
subgrid needs to transfer data about cells and pixels near its boundary to neigh-
boring subgrids. Lattice sites and associated variables (volume, surface area,
etc.) located within the buffer area are transferred so that neighboring subgrids
contain correct cell configurations and characteristics.

has a range of cell diameter and each boundary pixel update
changes two cell-volumes. Cell volume and cell area are stored
in the cell map structure. During volume energy calculation we
retrieve cell volume values from the cell map.

3.6. Communication and synchronization

In the spatial decomposition algorithm, when the program
switches between different subgrids, the communication algo-
rithm transfers two types of information: lattice configurations
and cell information (including cell volumes, cell types and cell
states, etc.). In two dimensions, each subgrid needs to com-
municate with 8 neighboring subgrids (in three dimensions,
26 neighboring subgrids) and the communication algorithm se-
quentially sends and receives corresponding data according to
the spatial organization of the subgrids. Sending and receiving
can take place within a node, in which case the algorithm is just
a memory copy. Fig. 4 illustrates the communication algorithm.
After the communication, the program needs to dynamically
update cell maps and overlap buffers. The program also needs
to check whether a cell crossed between subgrids and imple-
ment the appropriate cell creation or destruction operations.

Cell Map 1
Allocate cell map memory for the new cell
Issue new temp Cell ID for the new cell

Assign the lattice site the temp Cell ID

[

3.7. Algorithm for treating cells which cross subgrid
boundaries

Fig. 5 illustrates the algorithm we employ when a cell
crosses a subgrid boundary. When a cell moves into a subgrid,
the cell map of the subgrid must allocate memory and issue
a temporary cell ID for the cell. Our algorithm does not di-
rectly store the Node ID and index ID in the lattice. Instead,
each lattice pixel stores a pointer to the corresponding cell and
this pointer served as a temporary cell ID to save memory and
speed cell property access. When a cell exits a subgrid, the cell
map of the subgrid must free the cell’s memory and release the
cell’s temporary ID.

3.8. Algorithm for global properties calculations

We often wish to track global properties of the configuration,
such as the total effective energy, cell topology distribution,
etc., for statistical analysis. Global properties are of two types.
The first type is pixel related, e.g., chemical energy or adhesion
energy. Each subgrid can calculate such statistics by adding val-
ues pixel-by-pixel and finally aggregate all information from all
nodes (adhesion energy calculations need corrections on sub-
grids boundaries). The second type of global properties are cell
related, such as volume energy, surface area energy, and volume
distributions, etc. Our algorithm stores cell properties (such
as volume and surface area) in the cell class and the statisti-
cal analysis must calculate these properties cell-by-cell. If each
subgrid works independently, cells lying on multiple subgrids
will be over counted. In our algorithm, each node sends cell in-
formation back to the node to which the cell originally belonged
at creation and the creating node then aggregates properties of
all cells. Finally node O sums up information from each node
to obtain correct global properties. Fig. 6 shows details of this
algorithm.

4. Validation, scalability and discussion

All tests used the Biocomplexity Cluster at the University
of Notre Dame. The cluster consists of 64 dual nodes with two

Cell Map 2
Free the memory of the outgoing cell

Release the outgoing cell temp Cell ID

[ ]

-

P

" Move Direction

Subgrid 1 Subgrid 2

~_—

<=="Move Direction
Subgrid 1 Subgrid 2

(a)

(b)

Fig. 5. The algorithm for treating cells which cross subgrid boundaries. When a cell crosses a subgrid boundary, the algorithm needs to update cell map values. (a)
When a cell moves into a subgrid, the subgrid must allocate the cell map memory and issue a temporary cell ID to the cell, updating the lattice sites and cell map
values. (b) When a cell exits a subgrid, the subgrid must free the cell map memory and release the cell’s temporary ID.
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< Node ID 4
Cell Index 100
Volume 50

Node 2

Originating

Node 4\
Originating N,
Node -

Node 1

Fig. 6. Our algorithm for calculating cell-related global properties (volume en-
ergy, volume distribution, etc.). Each node sends cell information (volume,
surface area, etc.) back to the node indexed by Node ID which is the node
that created the cell. The original creating node then calculates global proper-
ties. This algorithm ensures that cell related properties are counted only once
when a cell lies in multiple sub-domains.

Node boundary

(a) (b)

Fig. 7. Validation using simple simulations: (a) Cell structures of a node bound-
ary. When cells cross node boundaries, cell boundaries match perfectly between
subgrids. (b) A snapshot of a cell coarsening simulation. Cells crossing node
boundaries have normal shapes, no cell-boundary discontinuities. The lines in-
dicate the boundaries of the subdomains assigned to each node in a 4 node
simulation.

AMD 64 bit Opteron 248 CPUs (CPU frequency 2.2 GHz) and
4 GB of RAM each.

We used several special simulations to validate various as-
pects of our parallel algorithm. Tests checked that boundaries
matched between subgrids, that cells responded correctly to
different energy terms, and that cells moved correctly between
different nodes. Fig. 7 illustrates some of these test results.

To check how severely stale information affects cells evo-
lution, we used different subgrid switching frequencies to vary
the amount of stale information (i.e. a low subgrid switching
frequency increases the amount of stale information). We will
discuss these results in Section 4.2.

4.1. Scalability of the parallel algorithm

We tested our algorithm for both spatially homogeneous and
inhomogeneous configuration of cells. In the latter case, load
balance is an important consideration. We use the relative ef-
ficiency, normalized by the whole lattice size, to analyze the
scalability of our algorithm, defined as: f = %‘Z‘;ﬁ;, where f
is the relative efficiency, 7, is the run time of a simulation on
a cluster of n nodes, and S,, is the lattice size of the simula-

Table 1

Parameters for performance tests on homogeneous patterns

Tests CPUs Subgrid Whole Cells Time Relative

switching lattice size (106) (sec.) efficiency
frequency

a 9 1/MCS 900 x 900 0.0324 251 1

2000MCS 16 1200 x 1200  0.0576 322 0.779
25 1500 x 1500 0.09 370 0.678

b 9 1/MCS 3000 x 3000  0.36 2545 1

200MCS 16 4000 x 4000  0.64 274.5 0.927
25 5000 x 5000 1 287  0.886

c 9 1/MCS 6000 x 6000  1.44 9235 1

200MCS 16 8000 x 8000  2.56 975  0.947
25 10000 x 10000 4 1058.5 0.872

d 9 0.125/MCS 3000 x 3000  0.36 172.5 1

200MCS 16 4000 x 4000  0.64 176.5 0.977
25 5000 x 5000 1 181.5 0.950

e 9 0.125/MCS 3000 x 3000  0.36 330 1

400 MCS 16 191 0972
25 127 0.935

Table 2

Parameters and results for inhomogeneous pattern tests

Tests CPUs  Subgrid Whole Cells Time Relative

switching lattice size (sec.) efficiency
frequency

1 9 0.125/MCS 1200 x 1200 4500 629 1

2 16 1600 x 1600 8000 653 0.963

3 25 2000 x 2000 12500 707 0.889

tion. Since the smallest cluster on which our program runs has
9 nodes, we use the run time on 9 nodes as a reference value.

The first group of performance tests simulate cell coars-
ening from initially homogeneously distributed cells. Table 1
lists test parameters. Test group (a) used a small size lattice of
300 x 300 per node. Test group (b) used a moderate size lattice
of 1000 x 1000 per node. Test group (c) used a large size lat-
tice of 2000 x 2000. Test group (d) checked the effect of subgrid
switching frequency on efficiency. Test group (e) distributed the
same size lattice on different numbers of nodes. Test (d) has the
best scalability because the low switching rate reduces commu-
nications. Tests (b) and (c) show almost the same scalability,
suggesting that lattice size has a weak effect on scalability. For
small lattice sizes (a) the scalability is poor. When the subgrid
lattice size is small, preparation for communication (such as
socket creation) consumes a significant amount of time. As the
lattice size increases, the communication time itself becomes
more significant. Test (e) shows good scalability, though worse
than that of group (d), because the subgrid lattice size decreases
when the number of nodes increases.

We used a simulation of chondrogenic condensation (see
Fig. 15) to test scalability for inhomogeneous cell distributions.
Table 2 lists all parameters. Each test ran for 10,000 MCS. For
25 nodes the relative efficiency was 0.89 for this simulation
compared to 0.95 for the corresponding homogeneous simula-
tion. The efficiency reduction results from the inhomogeneous
cell distribution, which unbalances the load. Fig. 8 shows the
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Wait time / Run time (%)

Fig. 8. Load balance chart used for the simulation of chondrogenic conden-
sation from Fig. 15. This test uses 16 processors. Each block corresponds to a
processor. Grey scale indicates the ratio of waiting time to run time. Dark shows
short waiting time and light shows long waiting time.
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Fig. 9. The effect of subgrid switching efficiency on algorithm performance.
The lattice size is 4000 x 4000 and the initial number of cells is 640,000.

load balance for 16 nodes. When a low-load processor finishes
a calculation cycle, it must wait until all processors finish their
corresponding calculation cycles. The waiting time wastes CPU
cycles, which reduces efficiency. The stronger the inhomogene-
ity the lower the efficiency.

4.2. Impact of subgrid switching frequency on algorithm
performance

In our parallel algorithm, the calculation switches between
subgrids after a fixed number of index update attempts and exe-
cutes the communication subroutine to synchronize lattice and
cell information. Frequent subgrid switching reduces efficiency,
while infrequent subgrid switching results in cell boundary dis-
continuities and pattern anisotropy due to stale parameters. We
ran tests with different subgrid switching frequencies to analyze
the effects of switching rates on efficiencies. and cell patterns.
We used a cell coarsening simulation, on a 4000 x 4000 lattice
size beginning with 640,000 cells. In the cell coarsening simu-
lation cell boundary motion is solely driven by cell-cell adhe-
sion energy resulting in growths of certain cells, shrinking and
disappearance of others. Soap froth is a typical coarsening sys-

(b) 0.25/MCS

&

(c) 0.125/MCS (d) 0.0625/MCS

Fig. 10. The effect of subgrid switching frequency on a cell sorting simula-
tion with a lattice size of 300 x 300. The grey scale indicates the different
cells. Lines indicate the boundaries of the subdomains assigned to each node in
a 4-node simulation. The subgrid switching frequency varies from 1/MCS to
0.0625/MCS. No significant cell boundary discontinuity occurs, even for low
subgrid switching frequencies (0.125/MCS or 0.0625/MCS).

tem [17]. Good agreement between soap froth experiments and
the Potts model simulations has been shown in [18]. This simu-
lation used 16 processors and ran for 200 MCS. Subgrid switch-
ing frequencies varied from 0.0625 to 8 per MCS. Fig. 9 shows
our results. For subgrid switching frequencies higher than once
per 4 MCS, the communication time increases substantially and
the efficiency decreases. When the subgrid switching frequency
is less than 0.25/MCS, the subgrid switching frequency has lit-
tle effect on the efficiency and real calculations consume more
than 80% of the run time.

The above analysis seems to favor low subgrid switching fre-
quencies. However, we must determine whether slow switching
rates cause deviations from the cell patterns that the classical al-
gorithm produces. To answer this question, we ran cell sorting
tests at low subgrid switching frequencies. The lattice size for
this test was 300 x 300 and we ran it on 4 processors. Fig. 10 il-
lustrates the test results. Even for a subgrid switching frequency
of 0.0625/MCS (16 MCS per subgrid switch), no significant
cell boundary discontinuities occurred at subgrid boundaries.

In the above examples cell volumes stayed near their target
values and cell configurations were quite close to equilibrium.
However, if configurations were far from equilibrium, energies
and configurations would change rapidly and the dynamics of
cells at subgrid boundaries could differ from those obtained
by using the classical algorithm. We ran several tests of cell
growth and haptotaxis with fast dynamics to demonstrate ef-
fects of changing subgrid switching frequency on cell patterns.

Fig. 11 illustrates cell growth simulation results. We used
4 processors for each simulation and each simulation contains
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Fig. 11. The effect of subgrid switching frequency on cell growth simulations
with a lattice size of 300 x 300. Lines indicate the boundaries of the subdomains
assigned to each node in a 4-node simulation. The subgrid switching frequency
varies from 1/MCS to 0.125/MCS and for each switching frequency cell con-
figurations of MCS = 8, MCS = 24 and MCS = 200 are illustrated.

one cell and medium (ECM). The cell was initially located on
the corner of the sub-lattice of one processor (shown in Fig. 11).
During simulation the cell crossed node boundaries to other
nodes. The initial volume of the cell was 285 and the target
volume of the cell was 2000. We ran three simulations with dif-
ferent subgrid switching frequencies (1/MCS, 0.25/MCS and
0.125/MCS). All other test parameters were kept the same:
Ji1-ecm = 10, volume elasticity A, = 0.11. We ran simulations
for a period of 200 MCS on a 300 x 300 lattice. Due to the
large difference between the initial and the target cell volume,
the volume energy term played the dominant role during the
initial stage of the simulation (MCS < 30). Driven by the vol-
ume energy, the cell growth was a very fast dynamic process at
this stage and the adhesion energy term was too weak to main-
tain the smooth cell boundary. For subgrid switching frequency
of 1/MCS and 0.25/MCS no significant cell boundary discon-
tinuities occurred at subgrid boundaries. For subgrid switching
frequency of 0.125/MCS and MCS = 8 the cell did not cross
the node boundary because subgrid switching was performed
only once during this time. No significant cell boundary discon-
tinuities occurred at subgrid boundaries with MCS = 24 and
MCS = 200. Fig. 12 demonstrates good agreement between
simulations of cell growth dynamics (cell volume vs. MCS
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Fig. 12. The effect of subgrid switching frequency on cell growth dynamics.
The subgrid switching frequency varies from 1/MCS to 0.125/MCS for the
parallel algorithm. For the comparison purpose we also illustrate the sequential
CPM result. We performed 5 separate tests for each curve and show the average
of the values. Energy parameters and initial configurations used in tests are the
same as those of Fig. 11.

number) obtained for different subgrid switching frequencies,
using parallel CPM and sequential CPM. Averaged results of
5 test runs are shown. Parallel algorithm yields correct dynam-
ics even at the initial stage of the process (MCS < 30) with
switching frequency of 0.125/MCS, which corresponds to fast
dynamics.

Fig. 13 illustrates simulation results of the haptotaxis process.
In this test we used 4 processors for each simulation containing
one cell and medium (ECM) with initial simulation configura-
tion shown in Fig. 13 and chemical concentration C(x,y) =
x + y. We ran three simulations with different subgrid switch-
ing frequencies (1/MCS, 0.25/MCS and 0.125/MCS) and with
a large effective chemical potential value 300.0. All other test
parameters were kept the same: Ji-gcm = 5, volume elasticity
Ay = 0.1. Simulations ran for 200 MCS on a 300 x 300 lat-
tice. Driven by the chemical energy, the cell moved from the
lower right node to the upper left node. Due to the large chemi-
cal energy potential value (u = 300.0) the shape of the moving
cell was irregular. For subgrid switching frequency of 1/MCS
and 0.25/MCS, no significant cell boundary discontinuities oc-
curred at subgrid boundaries. For subgrid switching frequency
of 0.125/MCS, the cell did not move into upper nodes with
MCS = 16 since subgrid switching was performed only twice
during this time. No significant cell boundary discontinuities
occurred at subgrid boundaries for MCS = 40.

In both fast dynamic processes simulations using the parallel
algorithm give good results, especially with sub-grid switching
frequencies of 1/MCS and 4/MCS. In practice systems usu-
ally have slower dynamics and in such a case stale-information
effects are weaker.

We also tested the scalability and efficiency for larger
scale fast dynamic processes using cell growth and haptotactic
processes as test examples. The cell growth test involved only
one cell type and the cell target volume value (Ugrger = 2000)
was much bigger than the initial cell volume value (Vgarget =
285). Each node contained 400 cells on a 1000 x 1000 Iat-
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Fig. 13. The effect of subgrid switching frequency on haptotaxis simulations
with a lattice size of 300 x 300. Lines indicate the boundaries of the subdo-
mains assigned to each node in a 4-node simulation. The subgrid switching
frequency varies from 1/MCS to 0.125/MCS and for each switching frequency
cell configurations of MCS = 16, MCS = 40 and MCS = 120 are illustrated.

tice to ensure enough space being available for cell growth.
Cells were randomly distributed on the lattice. Parameters were
chosen as follows: Ji-gcm = 10, volume elasticity A, = 0.11,
sub-grid switching frequency = 0.25/MCS. Each simulation
ran for 200 MCS. The haptotaxis simulation involved one
cell type with and the cell target volume value (viarger = 285)
was the same as the initial cell volume value (Vgrger = 285).
Ji1-ecm = 5, volume elasticity A, = 0.1, chemical potential
© = 300.0, chemical field C(x, y) = x + y, sub-grid switch-
ing frequency = 0.25/MCS, each simulation ran for 200 MCS.
Testing results listed in Tables 3 and 4 demonstrate good ef-
ficiency of the parallel algorithm for fast dynamic processes.
For example, on 25 processors cluster with sub-grid switching
frequency = 0.25/MCS the relative efficiencies of cell growth
simulation and haptotactic simulation are 0.906 and 0.910, re-
spectively.

The communication speed of the cluster plays an important
role in algorithm efficiency. Users of our algorithm should cali-
brate their cluster by running subgrid switching frequency tests
on short simulations and choose subgrid switching frequencies
to balance efficiency and stale-information effects.

Table 3

Parameters and results for cell growth tests

Tests CPUs  Subgrid Whole Cells Time  Relative
switching lattice size (sec.) efficiency
frequency

1 9 0.250/MCS 3000 x 3000 3600 107 1

2 16 4000 x 4000 6400 112 0.955

3 25 5000 x 5000 10000 118 0.906

Table 4

Parameters and results for haptotaxis tests

Tests CPUs  Subgrid Whole Cells Time  Relative
switching lattice size (sec.) efficiency
frequency

—

9 0.250/MCS 3000 x 3000 3600 102 1
16 4000 x 4000 6400 108 0.944
5000 x 5000 10000 112 0.910
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Fig. 14. Cell sorting simulation. Cell type 1 (dark). Cell type 2 (light). Extra
cellular matrix (ECM) (grey). The two simulations use the same initial cell con-
figuration and target volumes (viarget = 150), the only differences between (a)
and (b) are the different adhesion constants. (a) Adhesion constants: J;_| = 14,
Jro =2, J1_2 =11, JI,Z—ECM = 16. (b) Adhesion constants: Jj_| = 14,
Jo_o =14, J1_p =16, J1 2.gcm = 16. The lines indicate the boundaries of
the subdomains assigned to each node in a 16-node simulation.

4.3. Morphogenesis simulations

Steinberg’s Differential Adhesion Hypothesis (DAH), states
that cells adhere to each other with different strengths depend-
ing on their types [19,20]. Cell sorting results from random
motions of the cells that allow them to minimize their adhesion
energy, analogous to surface-tension-driven phase separation of
immiscible liquids [19]. If cells of the same type adhere more
strongly, they gradually cluster together, with less adhesive cells
surrounding the more adhesive ones. Based on the physics of
the DAH, we model cell-sorting phenomena as variations in
cell-specific adhesivity at the cell level. Fig. 14 shows two simu-
lation results for different adhesivities. All other parameters and
the initial configurations of the two simulations are the same. In
simulation (a), cell type 1 has higher adhesion energy with itself
(is less cohesive) than cell type 2 is with itself. The heterotypic
(type 1-type 2) adhesivity is intermediate. During the simula-
tion, cells of type 2 cluster together and are surrounded by cells
of type 1. In simulation (b), the adhesivity of cell type 1 with it-
self is the same as the adhesivity of cell type 2 with itself and
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Fig. 15. Simulation of chondrogenic condensation during chicken limb-bud formation. The lines indicate the boundaries of the subdomains assigned to each node

for a 16-node simulation.

greater than the heterotypic adhesivity. This energy hierarchy
results in partial sorting.

During development of the embryonic chick limb, the for-
mation of the skeletal pattern depends on complex dynam-
ics involving several growth factors and cell differentiation.
Hentschel et al. have developed a model of the precartilage con-
densation phase of skeletogenesis based on reaction diffusion
and interactions between eight components: FGF concentra-
tion, four cell types, TGF-8 concentration (activator), inhibitor
concentration, and fibronectin density [21]. The mechanism
leads to patterning roughly consistent with experiments.

Fig. 15 shows a simulation of Hentschel-type chondro-
genic condensation run on 16 nodes with a total lattice size
of 1200 x 1200. This simulation used an externally-supplied
chemical pre-pattern to control cell differentiation and cell con-
densation.

4.4. Discussion

The main tradeoff in using the new asynchronous update
algorithm is accuracy—potentially affected by use of stale
information—vs. parallel efficiency. The right parameters to
use depend on the type of kinetic process modeled, as well as
the speed of the computing and network facilities. Provided the
accuracy of the model is acceptable, the algorithm converges
to the desired equilibrium distribution, since it satisfies the bal-
ance condition. Future work will address optimization of the
communication and load balance schemes.

Our parallel algorithm uses the classic Monte-Carlo site
updating algorithm which wastes computer time by selecting
and then rejecting non-boundary sites which cannot be up-
dated. Combining our parallel algorithm with an algorithm
which selects only boundary sites like the Random Walker al-
gorithm [10] will greatly improve efficiency. Long communica-
tion times, especially with high subgrid switching frequencies,
also reduce efficiency. The current algorithm transfers the en-
tire contents of the overlap buffers during the communication
phase, which is wasteful. Optimizing the communication step
by sending and receiving only updated sites will save commu-
nication time and increase efficiency.

One problem with our fixed-boundary spatial decomposition
is load imbalance for spatially heterogeneous simulations. One

possible solution is to use smaller subgrids and assign multiple
low-load subgrids to single processors. However, this method
requires additional communication time to transfer lattice and
cell information between processors. Alternatively we could
dynamically move node boundaries to decrease load imbalance.
This method would require a complex topology manager to
monitor load balance and dynamically manipulate node bound-
ary positions.

5. Conclusion

Most implementations of the widely-used CPM are sequen-
tial, which limits the size of morphogenesis simulations. Our
parallel algorithm uses checkboard domain decomposition to
permit large-scale morphogenesis simulations (107 cells or
more). It greatly broadens the range of potential CPM appli-
cations. Our initial tests on cell coarsening, cell sorting and
chicken limb bud formation show good scalability and ability
to reproduce the results of single processor algorithms.
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