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We used Magnetic Resonance Imaging (MRI) to study non-
destructively the interior of slowly coarsening disordered foams.
We developed two methods for data analysis that can indepen-
dently provide detailed structural information, including the dis-
tributions of bubble sizes, faces per bubble and edges per face to
study foams with varying liquid fractions and polydispersity.
We analyzed several hundred bubbles in detail, and found nei-

ther Kelvin nor complete Weaire-Phelan polyhedral structures.
Our analysis provided values for the average number of faces,hf i,

the averaged zero growth value, f0, and the volume rate of change
for individual bubbles with constant topology. While the average
volume rate of change depends on the initial disorder and wetness,
the growth rate for each foam is compatible with Glazier's linear
three-dimensional growth law.
Neither foam coarsened self-similarly during an average volume

increase of a factor of 3.5 agreeing with simulation results that
equilibration is very slow in three-dimensional foams.

I. INTRODUCTION

Early this century D'Arcy Thompson [1] attributed the formation of many
regular biological patterns, such as the bee's honeycomb, sponges and cucum-
ber skin, to the action of purely physical forces, stressing the analogy between
the development of foam structure and the formation of other natural patterns.
Smith noted the similar nature of coarsening in bubbles and growth in metallic
grains [2], proposing foams as a convenient model for the universal dynamics
of grain growth. Today, foam experiments model cellular materials in two and
three dimensions, in which simple physical constraints, such as di�usion and
surface energy minimization drive structure and dynamics. Industries includ-
ing brewing, printing, �re-�ghting and oil exploration all use foams.
Recent simulations have led to a better theoretical understanding of three-

dimensional growth laws and the scaling properties of grains [3{6]. Analogous
to von Neumann's law for two-dimensional grain growth [7], based on computer
simulations, Glazier proposed an averaged growth law for three-dimensional
grains [3]:
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The averaged volume rate of change for a group of bubbles with f faces
depends only on its number of faces. On average, bubbles with f greater than
f0 will grow, while bubbles with a smaller number of faces will shrink. k is
a di�usion constant. For the relation between f and f0 , Weaire and Glazier
deduced that [4]:

f0 = hf i

�
1 +

�2

hf i2

�
; (2)

where �2 = hf 2i � hf i2 measures the disorder of the foam. Eqn. 2 is exact
provided that the average volume of a bubble with f faces scales as hVf i / f 3,
which was true in Glazier's Potts model simulations.
A large amount of work addresses the minimal surface area partition of

three-dimensional space into polyhedral domains of uniform volume. Weaire
and Phelan recently showed that the �-Tungsten lattice partition with a unit
cell composed of a regular pentagonal dodecahedron and six tetrakaidecahedral
barrels (with two hexagonal faces and twelve pentagonal faces) has a lower
surface area than a partition into regular Kelvin tetrakaidecahedra (six square
faces and eight hexagonal faces) [8{10].
Experimental veri�cation of the existence of any of these structures in bulk

three-dimensional foams has proven diÆcult, in part due to the diÆculty of
visualizing the foam interior. Both structures can occur in foams con�ned to
tubes narrow compared to the typical bubble radius.
Durian et al. used di�using wave spectroscopy (DWS) to measure the rates

of rearrangement and the averaged grain volume growth exponents in bulk
shaving cream [11{13]. They found that the average radius grew according
to a power law hri / t�, with � = 0:5, consistent with \self-similar" growth,
in which the normalized distribution of bubble volumes does not change over
time. DWS cannot provide direct information on bubble size distributions or
grain shapes and topologies which are needed to verify growth laws, but it can
examine very large numbers of bubbles (hundreds of thousands) over many
decades of growth in length scale.
Confocal optical tomography (COT) can determine the growth and shapes

of individual bubbles in dry foams [14,15], but only for foams with a few interior
bubbles (Monnereau et al. studied a total of 28). COT is anisotropic with
limited spatial resolution, and requires black �lm boundaries, which restricts
it to extremely dry foams.
The botanist Matzke made the most careful study of three dimensional bub-

ble shapes, using a simple binocular microscope [16,17] and near endless pa-
tience. He studied 1000 individual bubbles, noting their numbers of faces and
edges. While providing valuable data on the shapes of such grains, he could
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not provide information on volumes, lacking the ability to determine exact
vertex locations, or to track a bubble's evolution over time.
Magnetic Resonance Imaging provides detailed information on the structure

and evolution of individual bubbles in a large variety of foams.

II. MRI EXPERIMENTS

MRI has evolved into a widely used and irreplaceable tool in diagnostic
medicine since its discovery in 1973 [18]. It detects the precessing magnetic
moments of excited nuclei in the presence of magnetic �eld gradients, making it
ideal to study biological tissues which contain a high natural abundance of ex-
citable water [19]. Non-medical MRI has developed comparatively slowly, due
to the varying requirements of di�erent physical, chemical and material science
applications, which require custom imaging techniques and high performance
imagers and computers [20,21].
German et al. made the �rst MRI foam images [22], investigating foam

drainage by measuring the water content inside a column of liquid foam over
time. The two-dimensional images could only distinguish a few very large bub-
bles. Gonatas et al. succeeded in imaging two-dimensional slices, measuring
the bubble size distributions over long periods of time [23]. Their foam did
not reach self-similar growth (the scaling state), having a growth exponent,
� = 0:3.
Our experiments used a gelatin based liquid with SDS as surfactant and

trace amounts of CuSO4 and DyCl3(TTHA) as relaxation agents. We used a
7 Tesla SQUID magnetometer to measure the magnetization of the liquid with
varying amounts of relaxation agents. Matching the magnetic susceptibility of
the liquid to that of air minimized susceptibility artifacts in the foam during
imaging, as well as increasing the susceptibility induced transverse relaxation
time T2 [20].
We produced foams by two methods, resulting in di�erent degrees of initial

wetness and polydispersity. Blowing air through a millipore (�sh-tank) �lter
produced very dry (volume liquid fraction � = 3%) foam, with an initial av-
erage bubble diameter of 2.0mm � 0.3mm. By whipping the liquid with an
electric mixer, we obtained an initially wet (� = 50%) foam, which drained
to about � = 10% after 90 minutes, resulting in a moderately dry polyhedral
foam, with bubble diameters ranging from 30�m to 300�m.
Due to the non-zero liquid fraction, gravitational drainage of liquid through

Plateau borders and edges a�ects coarsening in the foam, as well as gas di�u-
sion across the �lms, vertex coalescence and wall breakage. Holding the sealed
glass cells containing the foam at a constant temperature of 280ÆK, limited the
rate of drainage and kept air from drying the foam walls. Samples prepared in
this manner coarsened without breaking down for as long as six days, at which
time the gelatin in the faces started polymerizing, inhibiting growth.
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FIG. 1. Maximum intensity projections of three-dimensional MRI reconstructions
of a foam at three stages of development. (a) = 24 hrs. (b) = 36 hrs. (c) = 48 hrs.

The stability and magnetic homogeneity of the samples allowed us to image
the foams in three dimensions, using our own Bruker 300 MHz (7 Tesla) imag-
ing spectrometer and a set of water-cooled high �eld gradients (96 G=cm), to
achieve suÆcient spatial resolution in this strongly relaxing material. The
samples were placed inside 15mm or 25mm rf-coils and kept at constant
280ÆK�1ÆK. A customized 3D spin-echo pulse sequence with very high rep-
etition rates (TE = 1.9ms, TR = 50ms) provided 256 � 128 � 128 real data
points, at isotropic resolutions of 101�m in the 15mm coil, and 140�m in the
25 mm coil. A single average of the entire sample took 14 minutes. To im-
prove the signal to noise ratio, initial scans employed two averages, extended
to four and later eight, as the sample drained. Thus a \snapshot" of the foam
took 30 minutes initially (for about 24 hours) and 120 minutes at the end of
the run. We took data for both relatively homogeneous (�rst method) and
polydisperse (second method) foams in both rf-coils. The larger volume of
the 25mm coil allowed the foam to coarsen to a longer length scale but re-
duced the signal intensity, which is twice as great in the 15mm coil. Figure 1
shows three-dimensional, maximum intensity reconstructions of a dry, initially
homogeneous foam at di�erent stages of development.

III. ANALYSIS

We have developed two methods to analyze the three-dimensional data sets.
The more labor intensive method concentrates on exact reconstruction of each
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individual bubble. We cut the data run into slices one pixel deep. The images
show signal along all intersections of bubble faces (edges). Scanning through
the slices, we identify any point at which four edges converge as a vertex and
record its location. We process the lists of vertices that belong to each bubble
using the qhull algorithm [24] (qhull is available for free from the Univer-
sity of Minnesota Geometry Center), creating a list of simplicial (triangular)
facets that constitute the smallest convex hull around the set of vertices. From
this list we calculate the bubble volumes. We then merge the facets to create
non-simplicial faces that have the same number of edges as the correspond-
ing polygonal walls of the bubbles. This method allows us to investigate the
detailed shapes of any number of interior bubbles, limited only by the cum-
bersome procedure of tracing all vertices in the sample. We analyzed over 300
bubbles at di�erent stages of coarsening between 24 and 48 hours. We found
no Kelvin tetrakaidecahedra, or full Weaire-Phelan structures, but did �nd six
pentagonal dodecahedra. Only two dodecahedra were present in the sample at
the same time and they did not adjoin tetrakaidecahedral barrels. At 36 hours,
the mean number of edges per face was hni = 5:06, and the mean number of
faces hf i = 12:32� 0:56.
Fig. 2(a) shows the averaged volume for f-faced bubbles as a function of

the number of faces for a 36 hour foam. Fig. 2 shows the distributions of (b)
volumes, (c) numbers of edges and (d) numbers of faces. For hVf i / f �, we
found � = 2:7 � 0:36, consistent with the value for Potts model simulations,
� = 3 [4]. Using Eqn. 2 we found a zero growth value f0 = 16:3�0:74, consistent
with f0 = 15:8 for the Potts model [3]. The disorder was �2(f ) = 54. Manual
reconstruction allows us to trace even the smallest polygonal shapes in the
samples, with volumes as low as 36 voxels, providing a high degree of accuracy
for very polydisperse foams.
We developed a second method to eliminate the manual identi�cation of

vertices. We �rst processed the reconstructed three-dimensional images to
remove all imaging artifacts and random noise. Artifact correction employed
an appropriate neighborhood ranking �lter [25]. To avoid eliminating vertex or
edge signal, while removing all disconnected noise (\buckshot") we created a
binary image by thresholding and used a closing operator to �ll small gaps. A
scanning program then recorded the locations of all pixels neighboring at least
one voxel with signal. Fig. 3 shows the result of this process on a slice from
a three-dimensional data set. We used the list of connected voxels to create a
Euclidean distance map of the lattice as shown in Fig. 4, in which the intensity
at each voxel is the Euclidean distance to the nearest voxel containing signal.
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FIG. 2. Detailed structural information from a single data run for a dry foam
(� < 3%) at t = 36 hrs. (a) hVf i vs. f. The exponent � = 2:7. Distributions of: (b)
Volumes. (c) Edges. (d) Faces. Distributions (b) and (d) are wider than at early
times, when the foam is much more ordered.

Next we group localized clusters of local maxima into single centers using
a third nearest neighbor scan. We eliminate spurious maxima that can occur
at the centers of bubble faces by requiring a zero overlap between the zones
of inuence of all pairs of maxima, imposing the geometric constraint that
the diameters of adjacent bubbles are larger than that of their joining face.
We use a three-dimensional Delauney triangulation [26] from the center loca-
tions to compute neighbors for each center and estimate the averaged radius
of the equivalent sphere for each center as the mean of the distances to all
its neighbors, weighted by the ratio of the distances between the center and
each neighbor. This approximation is the chief source of error in our volume
determination. Finally, we discard bubbles in contact with an outside wall or
the edge of the image.
We could thus track individual bubbles over time, identifying bubbles that

did not change their number of faces between consecutive images. For each
time step we compared the centers to those in the previous image and de-
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termined the most probable pairings according to center location, volume and
number of faces. Between consecutive time steps, only 10 to 15% of all bubbles
did not change their number of sides. Of those, we could uniquely map the
center locations of over 90%. This information provides f0 in Eqn. 1 directly.
Integrating Eqn. 1 for constant topology yields, for the volume rate of change:

dV
2=3
f

dt
= �(f � f0 ): (3)

FIG. 3. Left: center slice of a reconstructed foam, showing artifacts and noise.
Right: The same image after processing to remove random noise and artifacts.

FIG. 4. Left: Slice of a three-dimensional Euclidean distance map. Right: The
same map superposed on the corresponding raw image slice in a late stage foam.
Darker pixels are farther from the nearest uid edge.

Fig. 5 shows the volume rate of change as a function of f for two di�erent
foam samples. The �rst sample, foam-10-16 was an initially ordered, very dry
foam with � < 3%, while the second sample, foam-2-02 was very polydisperse
and relatively wet (�0 � 10%). The zero growth values were f0 = 11:6 � 3:8
and f0 = 12:1�3:3, with hf i = 12:32�0:69 and hf i = 12:77�0:74, respectively.
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The large errors in f0 are due to the small number of bubbles that maintained
a constant f between consecutive time steps. During a series of 36 runs the
number of interior bubbles decreased from over 200 to about 40. The values
are in very good agreement with each other. They are lower but within error of
the values for hf i and f0 found by optical tomography [14] and in simulations
[3]. The linearity of the computed derivative in f strongly supports the linear
dependence on topology of Glazier's growth law, Eqn. 3. While the large
error in our volume determination makes it diÆcult to determine whether the
scatter in growth rate is intrinsic or due to measurement error, the fact that
the linearity is better than would be expected from a random error suggests
that the volume scatter is intrinsic, i.e. that the law holds only on average as
in the Potts model.
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FIG. 5. Left: Time averaged volume rate of change as a function of number of
faces, f, for two foams. Right: hV (t)i for the same two foams. The di�erent slopes
are proportional to the di�usion coeÆcients in the foams.

For comparison we used Eqn. 2 to compute the zero growth value for the two
foams at each time step. Averaged over time we calculated f0 = 14:07�0:25 for
foam-01-16 and f0 = 14:88�0:48 for foam-2-02. The values for f0 found by the
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two methods for both samples are consistent with each other, due to the large
error of the computation using Eqn. 3. The slope � = 4:31�10�2�1:43�10�2

mm2/hr for foam-10-16 was nearly twice as large as the � = 2:24�10�2�6:0�
10�3 mm2/hr for foam-2-02. � is proportional to the di�usion constant, k, in
Eqn. 1, which we expected to be lower than for foam-2-02, due to foam-2-02's
larger liquid fraction.
Fig. 5 suggests that neither foam reached a scaling state, where hV (t)i / t�,

with � = 1:5. During coarsening over an average volume increase by a factor
of 3.5 in both samples, we found � = 0:834 � 0:055 in foam-10-16, and � =
0:936 � 0:029 in foam-2-02. This result is consistent with earlier �ndings in
three-dimensional foams [23,14], and predictions from computer simulations,
that disordered three-dimensional foams need several orders of magnitude of
length scale coarsening to attain self-similar growth [3].

IV. CONCLUSIONS

We have used MRI to analyze the detailed interior structure of a cellular
material, and experimentally veri�ed its dynamics. The data presented are
consistent with Glazier's growth law and predictions concerning scaling be-
havior in three-dimensional foams. They also agree with earlier optical studies
on disordered foam structures by Matzke and Monnereau [16,17,15]. We did
not �nd Kelvin tetrakaidecahedra or Weaire-Phelan structures.
Both of our methods for analyzing three-dimensional foam structure have ad-

vantages. Hand tracing distinguishes very small bubbles, with volumes near the
MRI resolution limit. It also allows faithful reconstruction of bubble shapes.
Values for hf i, f0, and growth exponents V (f ) and V (t), are highly accurate.
The method is too labor intensive to determine the time evolution of large
numbers of bubbles.
The automated analysis using Euclidean distance maps and Delauney tri-

angulations is computation intensive. Its current implementation loses small
bubbles because it requires absolutely noise free data. In future experiments
we can improve the large error bars for hf i and f0 by slowing coarsening rates
and further reducing imaging times (with minimal loss of signal to noise ratio).
Faster imaging will allow us to track more bubbles between rearrangements,
improving statistics.
To improve our volume estimates, we are currently incorporating a three-

dimensional Voronoi tessellation [26] into our automated analysis, to recon-
struct exact hulls around individual bubbles as in our manual method.
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