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BY DANA MACKENZIETAKING BIOMEDICAL MODELING TO A NEW LEVEL

F
or centuries, mathematics has been an indispensable ally of the phys-
ical sciences and engineering. Planes fly and telephones work
because engineers know how to simplify physical systems into con-
venient mathematical models. But biologists and mathematicians

have had a harder time communicating. As the old joke says, when you
ask a mathematician to explain why a cow isn’t producing milk,
he’ll probably begin, “Consider a spherical cow…” 

However, attitudes are changing in both disci-
plines. With the advent of computational biolo-
gy, some biologists are shifting toward more quan-
titative models. And today’s vast computing power
means that mathematicians no longer have to simplify as much as
they used to. The days of the “spherical cow” are over. Bioengineers can
program an anatomically correct cow (or human) into their computers. The
organs can be made out of virtual cells that behave the same way real cells
do, and contain virtual proteins that interact like real proteins. Each biolog-
ical scale—organism, organ, tissue, cell, protein, DNA—has been success-
fully modeled in isolation. Now, biologists and mathematicians are
beginning to grapple with the problem of unifying all of these
layers into a single multi-scale model. 
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Multiscale

Among the most mature types of
multi-scale models are simulations of
the human heart. Accurate equations
that describe individual heart cells
have existed since the early 1960s.
They have greatly clarified how the
flow of ions through channels in cell
membranes causes heart cells to trans-
mit electric signals at precisely timed
intervals. Now the models are reaching
down to the molecular level, to explain
how gene expression or drugs cause
changes in the ion channels. At the
same time, they are reaching up to the
organ level, placing the cell
models in the context of
macroscopic physiology.

In ischemia, for example, a
local event—the blocking of
blood flow in a coronary
artery—creates organ-wide
consequences, as a whole
region of heart muscle is
deprived of oxygen. This in
turn affects the heart tissue at a
cellular level, by altering the
chemistry inside the cells. The
intracellular changes create an
arrhythmia, which propagates
back up to the whole-organ
level. This interplay between
the different physical laws at
different levels is what multi-
scale modeling is all about.

Even so, cardiac models are
not necessarily a blueprint for
other parts of biology. “We’re a
long way from generating the
principles by which multilevel
work should be done,” says
Denis Noble, PhD, professor
of cardiovascular physiology at
Oxford University, one of the
pioneers of cellular modeling
of the heart. Indeed, multi-
scale modeling is now at what
might be called its gestational
stage. Everybody knows it’s
important, but no one quite
knows how to do it. 

Nevertheless, money is
flowing. Last year, an intera-
gency NIH/NSF/ NASA/DOE
program funded 24 investiga-
tors, to the tune of $20 mil-
lion, to work on various proj-
ects in multi-scale modeling.

A journal, Multi-scale Modeling and
Simulation, launched in 2002 and pub-
lished its first articles in 2003. In
almost every part of biology—from
bacteria to humans, from the heart to
the brain—scientists want to uncover
the rules that organize nature’s com-
plexity. “You have to hope there are
underlying principles,” says James
Glazier, PhD, the director of the
Biocomplexity Institute at Indiana
University and organizer of eight bio-
complexity conferences. “If not, you’re
out of luck.”

The days 
of the 

“spherical cow”
are over. 

Computer models of the heart incorporate detailed experimental information, both at the level of
individual cells and at the level of anatomy. Here, a model developed by Peter Hunter’s team at the
University of Auckland portrays the changing orientation of the heart’s muscle fibers from the out-
side to the inside of the heart wall. The spiraling of the fibers is believed to affect the flow of elec-
tric signals through the heart. Courtesy of Peter Hunter, PhD, Bioengineering Institute, The
University of Auckland, New Zealand.
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ENGINEERING
THE CELL

In 2002, Yuri Lazebnik, PhD, of
Cold Spring Harbor Laboratory wrote
a much-discussed satirical article for
Cancer Cell called “Can a biologist fix
a radio?” Lazebnik’s answer was no. He
argued that the usual research method
of biologists—knock out one compo-
nent at a time, and see which ones stop
the cell from working—would not
enable them to figure out how a tran-
sistor radio works. Why, then, should
we expect to understand the workings
of a cell in this way? 

Last year, at the Biocomplexity 7
conference, Herb Sauro, PhD, turned
the question around. The assistant
professor of biochemical control sys-
tems at Keck Graduate Institute
asked: “Can an engineer fix a cell?”
His answer was a qualified yes.
“Engineers deal with complex systems
day in and day out,” Sauro says.
“Today’s computer systems have hun-
dreds of millions of components, a
level of complexity that is rapidly
approaching that found in biological
systems.” But, he says, engineers have
a secret that not all biologists have
learned: “Engineers modularize.”

It is still far from clear whether
nature modularizes. If so, it does so in
a very different way from human
engineers, because natural systems
are not rationally designed; they
arise through natura l  se lect ion.
Nevertheless, the final outcome may
be the same. A particular network
may offer a powerful selective advan-
tage precisely because it performs
some function in an optimal manner.

To the layman, the circuit diagram
of an AM radio looks incomprehensi-
ble. But the system becomes easier to
understand once you realize it has
three modules: a resonance detector, a
demodulator, and an amplifi-
er. From there, an engineer
can break the circuit diagram
down into smaller modules,
each with a specific function.
In this way, possibly passing
through many layers, the
engineer can tell how any
electronic device works.

A cell, like a radio or a
computer chip, contains many
components that interact
with each other in a dizzying-
ly complex network. Most
biologists, Sauro contends, are

The circuit diagram of an AM transistor radio (above) looks forbiddingly complex
until it’s overlain with functional modules. According to Herbert Sauro, the same can
be true of protein interactions. The MAP (in blue) kinase cascade at the bottom of
the protein interaction network (right) looks like a negative-feedback amplifier;
however, some of the other “widgets” in the network have functions that are still
unknown. Courtesy of Herbert Sauro.
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satisfied simply to list the components
(the proteome) and identify which
ones interact with each other (the
“interactome”). He says they should
also ask: What are the modules and
what do they do? 

As an example, Sauro cites the
mitogen-activated protein kinase
(MAPK) cascade, a complicated series
of protein-protein interactions that
senses conditions outside the cell and
initiates cell division. When the
MAPK cascade goes haywire, one pos-
sible result is cancer—which explains
why many biologists are interested in it.
It has a very distinctive and well-

understood structure: three staircase
steps with a feedback from the third
back to the first.

When Sauro showed the “circuit
diagram” of the MAPK cascade to engi-
neers, they immediately told him what
the circuit does. It’s a negative-feed-
back amplifier, a type of circuit invent-
ed in the 1920s to transmit transconti-
nental telephone calls. The purpose of
the feedback is to cancel out distortion,
amplifying only the true signal. Sauro
admits that it is “still just a hypothesis”
that it performs the same function in a
cell. However, if this is the optimal way
to amplify a signal without distortion,
it’s possible that, during the course of
evolution, nature may have stumbled
onto the same solution that human
engineers did. 

Adam Arkin, PhD, an assistant
professor of bioengineering and chem-
istry at the University of California,
Berkeley, is one researcher who is tak-
ing an engineering approach to the
study of cells. He has already compiled
a library of protein interaction path-
ways, organized by their possible func-
tions: switches, oscillators, amplifiers,
noise filters (such as the MAPK cas-
cade), and so on. Some of these are
very widespread. As far as biologists
know, the MAPK cascade is found in

all eukaryotes. Unlike electronic com-
ponents, Arkin says, biological mod-
ules have the ability to evolve and
adapt. One particular switch, called
the sin operon, is ubiquitous in bacteria
but plays flexible roles. Arkin has
showed that it can function as a grad-
ed switch, like a light dimmer; a
bistable switch, like a normal wall
switch; or a single pulse generator, like
the switch of a flashbulb. 

If it is true that nature modularizes,
it raises the possibility that humans can
actually design bacteria to perform cer-
tain functions. For larger organisms,
such as humans, modularity is impor-

tant because it simplifies multi-scale
modeling. “If you’ve identified a mod-
ule with a crisp function, then you can
substitute that whole network with a
single equation,” Sauro says. This kind
of substitution is what will make multi-
scale modeling possible. And such
models will generate hypotheses that
can be tested experimentally—one of
the most important ways that computa-
tional biology can contribute to biolog-
ical discovery.

THE HEART OF THE MATTER
Can an engineer repair a heart? The

answer, again, is a qualified yes. Every
day, defibrillation—a massive external
shock applied to the heart—saves the
lives of many people who would other-
wise die within minutes. When done
correctly and promptly, defibrillation
has a success rate well over 90 percent.
Ironically, though, scientists are not
quite certain why it works. It is certain-
ly a more violent and painful treatment
than necessary—although, as Noble
says, “In a condition where you other-
wise die, you put up with that.”

Multi-scale models have enabled
heart researchers to “see” much more
clearly into the fibrillating heart. The
models work on at least two scales.
They couple cellular properties, such as

the way a heart muscle cell reacts to
ionic currents, with equations from
physics that describe how electric cur-
rents propagate through conductors.
The anatomy of the heart plays an
important role, because heart muscle
does not conduct electricity equally in
every direction: the current flows pref-
erentially along muscle fibers.

The models show that fibrillation
starts with tachycardia. This may feel
like a “rapid heartbeat,” but it is not
really a heartbeat at all. A normal
heartbeat is a wave of electrical excita-
tion that progresses from the heart’s
pacemaker (the sinoatrial node) and

sweeps over the whole heart.
Ventricular tachycardia, on the other
hand, is a self-organizing spiral of elec-
trical activity that rotates around a
center, like a dog chasing its tail.
Opinions differ as to whether the cen-
ter is an anatomical defect, such as a
piece of scar tissue, or whether the
“rotor” can form anywhere. Either way,
the heart muscle cannot sustain it, and
the single spiral wave disintegrates into
many. That is the onset of fibrillation.

Defibrillation is a mystery. If the
heart were a uniform electrical conduc-
tor, the shock from the defibrillator
would have no way of penetrating the
interior of the muscle, and so the gadg-
et would never work. Evidently the
heart is not homogenous, but a debate
still rages over where to look for the
inhomogeneities. Some heart physiolo-
gists believe that the relevant features
are large-scale (the muscle fibers).
Others claim that the shock sets up a
voltage gradient across the gaps
between layers of cells (or “interlami-
nal clefts”). Either explanation, if it
could be proved by experiment, would
be a triumph for computational biolo-
gy’s ability to turn qualitative hypothe-
ses into quantitative, testable predic-
tions. The second hypothesis, which
proceeds from cells up to the organ

“Engineers have a secret that not all biologists have 
learned,” says Herb Sauro, “Engineers modularize.”

Multiscale
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level, is perhaps more in the spirit of
multi-scale reasoning, but in fact both
of them require multi-scale modeling to
work in a quantitative fashion.

Meanwhile, heart models are con-
tributing to scientists’ understanding of
other heart diseases as well. For exam-
ple, long QT syndrome is an irregular
heartbeat that can be caused either by
drugs or by genetic mutations that
affect the potassium channel. Often its
first symptom is sudden death of an
apparently healthy young person.
Many drugs affect potassium levels, and
it makes much more sense to test their
side effects first on a computer model
than on a live human. 

Simulations can also help identify
drugs with positive effects. Noble has
used them to study an anti-anginal
drug called ranolazine, which affects
two channels at once, the potassium
and sodium channels. So-called “mul-
tiple action drugs,” like ranolazine,
have a poor reputation, says Noble,
precisely because “our minds can’t
wrap themselves around them.”
Doctors prefer drugs with a single clear
effect. But in the case of ranolazine,

either action by itself would cause
arrhythmia. The combination avoids
arrhythmia as well as the undesirable
side effects of other anti-anginal drugs,
such as low blood pressure. In January
2006, the FDA approved ranolazine
for general use, making it the first new
anti-anginal drug in two decades.
While it is unclear to what extent the
computer models affected the FDA
decision, Noble says that such models
“can help a new drug application,
since understanding what is going on
is an important part of the regulatory
process. People feel happier with a
new compound as a possible drug the
more we understand why it acts the
way it does.” 

A PANOPLY OF PROJECTS
Last year, the Interagency Modeling

and Analysis Group (IMAG), a com-
bined effort of several government
agencies coordinated by Grace Peng of
the National Institute of Biomedical
Imaging and Bioengineering (NIBIB),
awarded 24 grants for multi-scale mod-
eling projects in biology. The grants
were funded by the individual agencies

(twelve by NIH, ten by NSF, and one
each by NASA and the Department of
Energy.) Although many of the projects
are just beginning, they illustrate the
wide diversity of applications envi-
sioned for multi-scale models. Here are
a few examples:

■ James Glazier, PhD, of Indiana
University, will study the processes of
limb formation and tissue regeneration.
He believes that people in the field
count too much on the amazing abilities
of stem cells. “The genomic determinists
think you’ll plunk a stem cell down in
the body, and it will spontaneously
regrow the tissue that should be there,”
Glazier says. “Maybe you’ll be lucky and
it will work that way. But I think that
you will have to give complex spa-
tiotemporal signals to those cells.” He
plans to develop a model of the feedback
between the molecular scale—the
instructions encoded by DNA—and the
large-scale forces that act on cells as a
limb grows and takes shape.

■ George Karniadakis, PhD, pro-
fessor of applied mathematics at Brown

Ventricular fibrillation is a complex three-dimensional phenomenon, but experimental methods can probe only the two dimensions of the
heart’s surface. Using computer simulations researchers can observe (left) a tornado-like “scroll wave” of electric activity spiraling around a fil-
ament that passes through the heart muscle (the colors reflect the wave’s time of arrival at the heart surface). At right, the wave front inside
this semi-transparent rendering of the heart is red and the filament is blue. Lab experiments can only image the places where the filament
reaches the heart surface (black dots). Courtesy of KHWJ ten Tusscher and AV Panfilov, Utrecht University, The Netherlands. 
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called “dissipative particle
dynamics” or DPD, which has
been developed by polymer
physicists in Europe. DPD is a
typical “mesoscale” or inter-

mediate-scale mathematical
technique, which uses proba-
bilities rather than determinis-
tic equations, as classical phys-
ical models do. Ultimately,
Karniadakis would like to plug
this intermediate-scale model
into a large-scale model of the
body’s arterial tree. Last year,
he and a group of colleagues

University will model the flow of
platelets and the formation of blood
clots. Platelets ordinarily look like
smooth disks. But when they sense a
defect in the arterial wall, they pump

themselves up into sticky, spiny
spheres. “This kind of phenomenon
has never been modeled from first
principles, because it’s computational-
ly very complex,” says Karniadakis.
Mathematicians and engineers are not
used to working with flowing particles
that suddenly change their shape and
adhesiveness. However, Karniadakis is
planning to borrow a new method

A multi-scale model by George Karniadakis and Igor Pivkin aims to be the first to
predict clotting time from physical principles. A key ingredient in the model is “dis-
sipative particle dynamics,” a stochastic method designed to model the flow of
polymers through a fluid. In the simulation shown here, blue platelets are inactive,
green platelets are “triggered” and red platelets are activated. Note that some
blood continues to flow through the growing clot. Courtesy of Igor Pivkin and
George Karniadakis, Brown University.

Last year, the Interagency 
Modeling and Analysis Group 

awarded 24 grants for multi-scale
modeling projects in biology.

Platelets ordinarily travel through the bloodstream in a disk-
shaped, “inactive” form (a). Upon sensing a lesion in the artery
wall, they become “activated” and send out sticky pseudopods
(b). After adhering to the side of the artery wall, platelets
undergo one more change in morphology (c), flattening and
spreading out so that the pseudopods no longer protrude as
far. Courtesy of James White, University of Minnesota.

Multiscale
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used a grid of four supercomputers
(based in San Diego,  Urbana,
Pittsburgh, and Argonne) to prove the
basic proposition that you can simulate
blood flow in such a complicated set of
vessels as the human arterial tree. 

■ Robert Kunz, PhD, a physicist
at Pennsylvania State University, also
plans to apply modeling techniques
from outside biology. He is developing
a simulation of airflow in the human
lung inspired, in part, by software used

in the nuclear reactor industry. The
flow of coolant in a nuclear reactor is
too complicated to model in three
dimensions, so computer programs
represent the flow with a simplified,
one-dimensional model. But if an
accident occurs, such as a loss of
coolant, the programs immediately
switch over to a three-dimensional
model of the affected region, and inte-
grate the results seamlessly with the
one-dimensional model of the whole
reactor. Similarly, Kunz’s large-scale
lung model will use 3-dimensional

fluid dynamics to track the flow of air
through the wider bronchial passages.
However, in the sponge-like outer
layer of the lung, where the flow
becomes too complicated, his code
will switch over to a one-dimensional
approximation. In other words, it
won’t track the twists and turns of
every single air molecule, but it will
track the progress of an entire breath
of air toward its final destination, the
alveoli. The model could be used to
calculate the uptake of drugs such as
inhaled insulin (another drug newly
approved by the FDA), or to study
how lungs decrease in efficiency with
age. One of the other IMAG projects,
led by Ching-Hong Lin of the
University of Iowa, will also focus on
the human lung.

CHALLENGES AND PITFALLS
At present, the number of realistic

multi-scale models in biology is very
small. “In reality, it has been achieved
in only one organ system, the heart,”
says Peter Hunter, PhD, professor of
bioengineering at the University of
Auckland. “The lungs are getting
close. They have all the anatomy of
the airways, pulmonary vessels, and
gas exchange at the alveolar level,
and they are starting to look at the
smooth muscle.” 

Hunter is the co-chair of the
Physiome Project of the International
Union  o f  Phys i ca l  Sc ience s

A three-dimensional model of air flow through the lung enables Robert Kunz to predict oxy-
gen concentration (a) and the vorticity of air flow through the bronchi (b). However, only five
percent of the lung’s volume is contained in its largest bronchi, shown here; 95 percent is con-
tained its spongelike outer layer. This layer contains billions of bronchi, far too many to model
in complete anatomical detail. Kunz is working on a way to integrate the three-dimensional
model of the larger bronchi with a smaller-scale, one-dimensional model that describes the
terminal bronchi.  Courtesy of Robert Kunz, Pennsylvania State University.

Modelers have to learn to
walk before they can run.



26 BIOMEDICAL COMPUTATION REVIEW Spring 2006 www.biomedicalcomputationreview.com

tools to fit the different scales togeth-
er may be unfamiliar to biologists.
The IMAG program is having a
demonstrable effect by attracting
researchers like Karniadakis and
Kunz, who are bringing in new tech-
niques from physics. Stochastic dif-
ferential equations, for example, are
unlikely to come up in a biologist’s
mathematical training, but they are a
natural fit for biological multi-scale
models, because they address the elu-
sive mesoscale. This is the level
where there are too many compo-
nents (such as cells or molecules) to
simulate individually, but too few to
trust in the law of averages. At the
mesoscale, deviations from the aver-
age matter. “How elastic are arterial
walls?” Karniadakis says. “The answer
varies day by day, and across genders
and ethnic groups. Even if you know
the properties precisely, you need to
know how they vary.” But including
variation in a model is harder than it
sounds. It means abandoning the
comfortable deterministic models of
classical mathematics and using prob-
abilities. The elasticity of an arterial
wall is no longer a number but a dis-
tribution, a miniature bell-shaped
curve of possible values. 

Even cardiac models, which have
performed well with deterministic
equations, may need a dose of ran-
domness. “There’s a growing under-
standing that in some cases one has
to do stochastic differential equa-
tions,” says James Keener, PhD, a
mathematician at the University of
Utah. One such place is the modeling
of calcium flow, which he says is
“highly inhomogeneous” within the
cell. The classical models, which
treat the interior of the cell as a uni-
form fluid, may be getting the right
results for the wrong reasons. 

Keener’s comment suggests a final
word of caution about all mathemati-
cal models. Even the best-validated
model is not guaranteed to last forev-
er. It is always subject to correction, as
experimenters discover new phenom-
ena that weren’t included in the orig-
inal assumptions. “Models are never
right,” says Bassingthwaighte, “they’re
just not wrong yet.” ■■

Glazier feels stymied not only by the
lack of data, but the lack of desire to
acquire the right kind of data. Every
mathematical model incorporates meas-
ured parameters. These are like the
labels on the radio’s circuit diagram that
indicate the properties of a resistor or
transistor. Glazier itemizes a few that are
relevant to biology: “association and dis-
association constants, diffusion con-
stants, decay rates, cellular production
rates, ...” But biologists aren’t convinced
that it is worth the effort to measure

them. “Biology is still a
90 percent qualitative
discipline,” Glazier
says. “There’s a basic
bootstrapping prob-
lem. Until experi-
menters take modeling
seriously, you won’t
have people making
measurements to pin
down the parameters.
And without the right
parameters, the record
of predictions is not
very great.”

Another great chal-
lenge of multi-scale
modeling is that the
models at different
scales may involve dif-
ferent physical princi-
ples and different

assumptions. It will help to put the mod-
els on the same computing platform, as
Bassingthwaighte is doing, but other
fundamental questions need to be
addressed. For one thing, “We have no
sense of how error propagates from one
level to the next,” Arkin says. For
another, he asks, “Where are the
boundaries between fast and slow
reactions, or between deterministic
and stochastic models?” Physical sci-
entists have developed a very good
sense of where the boundaries should
be, and which details can be left out
when going from one scale to the
next. At present, biologists make
these decisions in an ad hoc fashion,
Arkin says. But perhaps Sauro’s modu-
lar approach, or switch-on-the-fly
software like Kunz’s, can make the
decisions more rationally based. 

In some cases, the mathematical

(www.physiome.org.nz), which runs a
website that archives mathematical
models of physiology. Currently the
site lists around 300 models, essential-
ly all of which work at a single scale.
That’s no big surprise, because model-
ers have to learn to walk before they
can run. The site is also, at this point,
only descriptive: visitors can see com-
puter code for the models but not
actually run them. However, James
Bassingthwaighte, PhD, a bioengi-
neer at the University of Washington,

is taking the next step by putting
working versions of the Physiome
Project models online. In theory, this
will make it much easier to mix and
match models at different scales.

However, there is more to multi-
scale modeling than picking from a
menu of single-scale models.
Another thing you need is a lot of
data. “Complex models have not
caught on in biology the way they
have caught on in, say, weather fore-
casting, because weather forecasters
have sensors everywhere,” says
Arkin. By contrast, much biomedical
research has to make do with few
sensors and intermittent data. Some
fields, on the other hand, are swim-
ming in data—genomics and pro-
teomics, for example—but do not
have enough models that can handle
that level of complexity.

For one thing, “We have no
sense of how error propagates

from one level to the next,”
Arkin says. For another, he asks,

“Where are the boundaries
between fast and slow 
reactions, or between 

deterministic and 
stochastic models?”
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