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Abstract

by

Arpita Upadhyaya

This dissertation studies cellular rearrangements in tissues and attempts to es-

tablish the role of physical properties of cells, tissues and membranes in several

biological phenomena. Using experiments and statistical mechanical modeling, we

study cell sorting, tissue engulfment, single cell motion and membrane uctuations.

When cells of two di�erent types are mixed together, they sort out, with the less

cohesive tissue surrounding the more cohesive one. This sorting out resembles the

phase separation of a mixture of immiscible liquids. We have measured the rate of

sorting in tissues and compared it with a cellular automaton based model of cell

aggregates. We have also established that cell sorting agrees well with the theory

for phase separating uids.

Engulfment is the spreading of one type of tissue over the surface of another tissue

placed adjacent to it. Di�erences in adhesion cause an imbalance of surface tension

forces which drives tissue spreading. We have quantitatively studied engulfment

between di�erent tissue types and compared the experimental rate with results from

computer simulations and a liquid model. Our results suggest that simple physical

principles can model tissue motion.



Arpita Upadhyaya

Studying the motion of single cells in aggregates is important to understanding

the overall pattern formation in tissues. We characterized cell motion in di�erent

types of adhesive aggregates to elucidate the role of adhesion in cell motion. We

also observed that the cells exhibited a novel type of statistics including correlations

and collective motion. Membrane deformations of cells played a negligible role in

large scale cell motion. Our results indicate the importance of correlated motion for

cells to move long distances in tissues.

At the single cell level, tension of the cell membrane and intracellular membrane

can play an important role in cell shape changes, regulation of cell motility and

membrane dynamics. We used optical tweezers to measure the membrane tension

of tubulo-vesicular networks obtained from Golgi and Endoplasmic Reticulum (ER)

membranes within cells. As expected on the basis of some previous experiments,

the ER has a higher membrane tension than the Golgi.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Morphogenesis is the establishment of the complex organization of tissues and

organs during development. One of the most important morphogenetic processes

is the movement of individual cells or tissue masses from one part of the body to

another.

A cell is the functional subunit of all living organisms. Eukaryotic cells are ex-

tremely complex, but also highly structured and essentially similar at a basic level.

Each cell consists of a cell membrane, cytoplasm and nucleus. The plasma mem-

brane (a mixture of lipids and proteins) separates the interior self-contained world

of the cell from its surroundings. The cytoplasm contains organelles that synthe-

size proteins and provide energy to the cell. The nucleus contains the cell's genetic

blueprint in the form of DNA which passes from one generation to the next. In a

developing organism, a single cell divides, di�erentiates (becomes specialized) and

grows to become an entire adult. Remarkably, the developmental stages are similar

in most animals from Hydra to human beings. This similarity allows us to hope

for a general understanding of the common principles of development despite the

varying speci�c mechanisms coded in the genetic programs. Further, these common

principles can point to a quantitative description of the underlying processes.
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Morphogenetic rearrangement involves the development of spatial pattern and

structure within tissue masses. Although genes are crucial for pattern formation,

genetics says nothing about the actual mechanisms involved. The genetic program

provides the blue-print or recipe, but it cannot specify exactly where and how each

cell in an organism needs to move. Genes determine the expression of speci�c

molecules in cells which lead to certain physical properties - like viscosity of the

cytoplasm or adhesion of the membrane. Di�erences in the expressions of these

molecules control the nature of the particular cellular property. Physical forces and

dynamical processes like gravity, adhesion, viscous shear, interfacial tension and

reaction-di�usion mechanisms determine how these properties will interact and lead

to formation of patterns involving motion and shape changes of the tissue. Aggre-

gation of many cells in tissues can give rise to many tissue-speci�c properties like

surface tension or viscoelasticity. Changes in the material properties of multicellular

aggregates, for example changes in adhesion during embryogenesis, can play a large

part in driving the transitions between di�erent stages of development [10].

Two well documented examples provide strong evidence that universal physical

properties play a central role in certain biological functions. One is the role of the

elastic properties of soft shells (e.g. lipid bilayers or bilayer-cytoskeleton compound

membranes) in shape changes of cells or of intracellular compartments (reviewed

in [11, 12]). Measurable parameters of cell membranes include bending and shear

elasticity and membrane viscosity. The second example is the role of nonspeci�c

interaction mechanisms (such as van der Waals or electrostatic forces, osmotic e�ects

and membrane undulation forces [13]) in cell-cell or cell-substrate interactions [14].

For example, one easily identi�able physical property that arises from interactions

between membrane bound proteins (ligands and receptors) is adhesion.

2



Before coming to the speci�c topics of our research, in the next section we present

some biological background that will be useful in understanding the work presented

in this thesis. The book by Alberts et al. [10] is an excellent source for further

details and references about the biology.

1.2 Biological Background

We start with a very simple picture of an animal cell and describe some of its internal

structure and function. Most animal cells are eukaryotic cells, possessing a nucleus,

whereas prokaryotic cells (like bacteria) do not. Most eukaryotic cells have the same

basic composition. Plant cells di�er from animal cells in that they possess a cell wall

(cellulose matrix for structural rigidity), vacuoles (a large membrane bound vesicle

to �ll space) and chloroplasts (photosynthetic apparatus).

1.2.1 Cell Membrane

The plasma membrane encloses the cell and maintains the di�erence between the

cytoplasm and the extracellular environment. It allows nutrients to enter the cell, �l-

ters out unwanted material and prevents metabolites from leaving the cell. It main-

tains the proper ionic composition and osmotic pressure of the cytoplasm. Other

major functions are to communicate and interact with other cells and recognize

extracellular signals. A very specialized structure allows for such a variety of tasks.

All biological membranes have a common general structure: each is a thin �lm

of lipid and protein molecules held together by noncovalent interactions. The lipid

molecules - mostly phospholipids - form a continuous double layer about 5 nm thick.

Each phospholipid has a hydrophilic head group and two hydrophobic tails. The

amphiphilic nature of the molecules causes them to spontaneously form bilayers

in aqueous solution, in such a manner that hydrophobic tails are on the inside
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and hydrophilic heads are exposed to water. These lipid bilayers tend to close on

themselves to form sealed compartments called vesicles, eliminating hydrophobic

free edges. Biological membranes are complex and contain many di�erent lipid and

non-lipid species, including di�erent kinds of phospholipids, glycolipids (which play

an important role in signal transduction and targeting [10]) and cholesterol (which

is believed to have mainly a structural role [15]).

Two important properties of a bilayer are that it reseals when torn and it be-

haves like a uid. Individual lipid molecules are able to di�use freely within the

bilayers - the common modes being lateral di�usion within a monolayer and rota-

tional di�usion about their long axis. However, the rate of exchange of lipid between

bilayers (ip-op) is very small (the free energy barrier for doing so is of several kT ).

The uidity or viscosity of a lipid bilayer depends on its composition and temper-

ature and can regulate certain membrane transport processes. According to the

Fluid Mosaic Model [16], the uid bilayer serves as a matrix for functional pro-

teins, which may be incorporated into the membrane as transmembrane proteins or

adsorbed into the membrane surface. In the usual plasma membrane, about 50% of

the mass is proteins or long chain polymers, and the composition varies according

to function. Some examples of speci�c functional proteins are molecular pumps, ion

channels, speci�c cell surface receptors and adhesion molecules. Proteins anchored

in the lipid bilayer matrix can form interlinked structures, which give the otherwise

uid membrane some of the solid (elastic) structure of a cross-linked network. Such

a cytoskeletal network exists beneath the plasma membrane of most cells and is rich

in actin �laments which attach to the membrane in numerous ways. Membrane pro-

teins are also free to move about in the membrane - by rotational di�usion (about an

axis perpendicular to the bilayer plane) or lateral di�usion along the bilayer plane.
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The energies that bind adjacent lipid molecules (lipids) to each other can range

from 1-104 kT . Therefore, some types of membranes are in constant thermal motion

and spontaneously undergo shape uctuations. Lipids are free to move (ow) later-

ally; however, due to the �xed topology of the lipid molecules in the membrane, they

have a �nite bending sti�ness unlike, say, the uid �lm of a soap bubble. Surface

tension, on the other hand, is very small. Also, neighboring lipids can chemically

bind and thereby change the local sti�ness.

1.2.2 Intracellular Organelles

Eukaryotic cells contain intracellular membranes that enclose nearly half the cell's

total volume in intracellular compartments called organelles. The main types of

membrane bound organelles that are present in all eukaryotic cells are the endoplas-

mic reticulum, Golgi apparatus, nucleus, mitochondria and several types of vesicles.

Many vital biochemical processes, like lipid and protein metabolism, take place

within or on membrane surfaces.

The largest membrane in a cell is the endoplasmic reticulum (ER) - a set

of membrane tubules, sheets and sacs that fuse with each other to form a net-

work, or reticulum. The ER specializes in the synthesis and transport of most

membrane lipids and transmembrane proteins. The Golgi apparatus is a set of

stacked, membrane bound, attened sacs involved in modifying, sorting, and pack-

aging macromolecules, received from the ER, for secretion or delivery into other

organelles. Around the Golgi are numerous small membrane-bounded vesicles that

carry material between the Golgi apparatus and di�erent compartments of the cell.

Each intracellular compartment encloses a space that is topologically equivalent

to the outside of the cell, and they all communicate by means of transport vesicles.

A process called exocytosis, i.e. the fusion of protein �lled vesicles with the plasma
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membrane, transports proteins synthesized in the ER to the plasma membrane and

secretes them from cells. Endocytosis is the reverse process by which cells ingest

macromolecules from the external environment. Localized regions of the plasma

membrane invaginate and pinch o� to form endocytotic vesicles. Within the cell,

transport vesicles that bud o� from one membrane and then fuse with another

mediate exocytotic and endocytotic pathways.

1.2.3 Cytoskeleton

The cytoskeleton is the internal structural framework of cells which controls the

spatial location of protein complexes and organelles and provides communication

pathways between them. It provides mechanical support and makes possible the

coordinated and directed movements of cells. It is a highly dynamic network that

reorganizes continuously as the cell changes shape, divides and responds to its en-

vironment. The cytoskeleton consists of three main types of polymerized �laments.

Actin

Actin �laments are double stranded helical polymers formed by self-assembly of

actin monomers. Polymerization of actin is a dynamic process that requires hydrol-

ysis of the nucleotide adenosine triphosphate (ATP). In cells, approximately half

the actin is present as monomers and actin molecules continually polymerize and

depolymerize during cell motion. Extracellular signals binding to cell surface recep-

tors can regulate polymerization. Actin �laments are polar and have a fast-growing

plus end and a slow-growing minus end. These �laments are exible structures (8

nm in diameter) that are usually found as linear bundles, two-dimensional networks

and three-dimensional gels rather than as single �laments. They occur through-

out the cell, but concentrate most densely in the cortex, just beneath the plasma
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membrane. Several di�erent actin binding proteins (e.g. �mbrin, �lamin, �-actinin,

villin, fascin) can bind or cross-link individual actin �laments to form various types

of networks with di�erent mechanical properties. The actin rich cortex controls the

shape and surface movements of most animal cells.

Actin interacts with a very important motor protein called myosin. Motor

proteins are a class of proteins that hydrolyze nucleotides to generate di�erent types

of movement in eukaryotic cells. Myosin hydrolyzes ATP in the presence of actin

and uses the energy of hydrolysis to move along actin �laments, either carrying

membrane bound organelles from one location to another or moving adjacent actin

�laments relative to each other. Actin-myosin interactions are crucial to muscle

contraction, cell locomotion and cell division.

Microtubules

Microtubules are long hollow cylinders made of the protein tubulin. With an outer

diameter of 25 nm, they are much more rigid than actin. They are also polar and

have a fast-growing plus end and slow-growing minus end. In most cells, the minus

ends of the microtubules are embedded in the centrosome which is the primary site

of nucleation of microtubules. The centrosome lies next to the nucleus, and the plus

ends extend out radially to the edge of the cell. Each microtubule is a highly dynamic

structure that grows and shrinks by addition and loss of tubulin subunits during

polymerization-depolymerization cycles. This behavior, called dynamic instability,

plays a major role in positioning microtubules in the cell. Spatially controlling the

assembly and disassembly of tubulin molecules can polarize cells (structurally orient

them in a speci�c direction).

Motor proteins use the microtubule network as a sca�old to position membrane-

bound organelles within the cell. The two types of motors associated with micro-
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tubules are: kinesin, which moves towards the plus end and dynein, which moves

towards the minus end. Each motor carries a distinct cargo of membrane bound

vesicles �lled with proteins as it moves. The membrane tubules of the ER form a

network on a microtubule mesh and the Golgi apparatus is present near the nu-

cleus. When cells are treated with a drug to depolymerize microtubules or when

a cell undergoes division, the ER and Golgi collapse into small vesicles. When the

drug is removed or when cell division is over, the organelles return to their original

positions, dragged by motor proteins moving along the microtubules. Microtubule

based organelle motility is largely responsible for most directed transport of proteins

within the cell.

Intermediate Filaments

Intermediate �laments are strong and ropelike with a diameter of around 10 nm.

They are polymers of a heterogenous family of �brous polypeptides called interme-

diate �lament proteins. The several tissue-speci�c forms include keratin of the skin,

neuro�laments of nerve cells, vimentin of �broblasts and desmin �laments of mus-

cle cells. These �laments resist stretching and play a structural or tension-bearing

role in the cell. Because of their organization in overlapping arrays, intermediate

�lament �bers can withstand much larger stretching forces than microtubules and

actin micro�laments. An extensive network of intermediate �laments surrounds the

nucleus and extends out to the cell periphery. These �laments extend across the

cytoplasm and connect neighboring cells via focal plaques. They provide mechanical

strength to the cells and carry the stresses in tissues by spanning the tissue from

one cell to the next.
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1.2.4 Cell Adhesion

Adhesive interactions are central in numerous biological functions like tissue assem-

bly (during development) and identi�cation and removal of alien organisms by the

immune defense system. Many di�erent adhesion mechanisms are possible [17] in-

cluding electrostatic interactions [18, 19], adherens junctions [20, 21] and speci�c

or non-speci�c adhesion molecules [22, 23, 24]. Di�erential intercellular adhesiv-

ity arising from type speci�c adhesion molecules on the cell surface can direct the

movement of cells [2, 25, 26]. At least two classes of adhesion molecules have been

identi�ed: (1) those that mediate cell attachment to the extra-cellular matrix (cell-

matrix adhesion molecules), and (2) those that mediate cell attachment to other

cells (cell-cell adhesion molecules). Cell-cell adhesion arises due to the presence

of di�erent kinds of transmembrane protein receptors (Cell Adhesion Molecules -

CAMs or cadherins) which bind to ligands from other cell membranes. Adhesion

molecules also directly link to the internal cytoskeleton of the cell (mainly to actin

�laments). Both ligand-receptor bonds or linkages to cytoskeletal structure can

govern the strength of attachment between two surfaces.

Cell adhesion plays a more important role than mere surface binding with other

cells or substrates. Adhesion usually initiates signalling pathways to activate and

modulate internal cell functions. These chemical signals lead to physical changes

of cellular properties like rigidity, cell motion and cell-substrate interactions. Dur-

ing development, many di�erent cell types travel long distances through changing

environments to reach their �nal destinations. Intrinsic to this process are deci-

sions about when to migrate, the paths to be taken (which may depend on external

signals), and when to stop.

9



The mechanism of cell mobility is still a matter of debate in developmental bi-

ology (see reviews in [27, 28, 29, 30]). Adhesion plays a key role in guiding cell

motion. Adhesion guided cell migration is very important in all stages of an ani-

mal's life. It is crucial in the growth of developing embryos (e.g. cells migrating

on substrates [31], cell sorting [2], gastrulation, epiboly, organ formation) as well as

in adults (e.g. wound healing and the spread of cancer metastases [24, 32]). Ad-

hesion itself cannot move cells: it helps to select the most favorable con�guration

amongst di�erent possibilities explored by the moving cells [33, 34, 35]. Each cell

must actively explore its neighborhood [36, 37], using protrusions [2, 38] and con-

tractions [28, 39, 40]. In the next subsection, we give a brief description of some

common mechanisms of cell locomotion.

1.2.5 Cell Migration

Most cell types have the capacity to move from one place to another in their natural

surroundings. Cells can move over or through a substrate and within a tissue of other

cells. Most cells require an environment where they can form attachments via their

membranes but sometimes free cells can move in solution (for example, swimming

bacteria, Listeria monocytogenes, nematode sperm). The most common type of cell

motion is amoeboid (or crawling) motility, which has been the subject of scienti�c

scrutiny since the advent of the optical microscope (see [41, 42, 43, 44, 45, 46, 47, 48]

for some excellent reviews). The basic engine for crawling locomotion is the actin

cytoskeleton. Cell locomotion is very complex, requiring the coordinated activity

of cytoskeleton, membrane and adhesion systems. The migration of a single cell

moving over a substrate divides into four distinct actin-dependent subprocesses. (1)

Protrusion is the forward motility of the membrane at the leading edge of the cell.

(2) Adhesion between the actin cytoskeleton and substratum converts protrusion
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into movement along the substrate. (3) Traction is the process leading to forward

movement of the cell body. (4) Deadhesion and tail retraction comprise the last

step in locomotion. Whether retraction is actively motile depends on the cell type.

Protrusive structures at the leading edge of motile cells are highly dynamic

and contain dense arrays of actin �laments. These membranous structures exclude

from cytoplasmic organelles. Lamellipodia are broad, at, sheet-like structures

containing a web of actin �laments that cross-weave at about 45Æ to the direction

of protrusion [49, 50]. Filopodia are thin, cylindrical needle-like projections with

a tight bundle of long actin �laments oriented in the direction of protrusion [51].

In some cell types, rib-like microspikes that resemble small �lopodia punctuate the

lamellipodia. Amoeboid cells like Dictyostelium protrude using thicker processes

called pseudopods which have a cross-linked mesh of actin �laments.

In all of these structures, the membrane tightly couples to the polymerization

of actin �laments at the extreme leading edge [47, 52, 53]. The most important

physical problem is the generation of protrusive force required for the membrane

to move forward. Actin polymerization itself or the action of motor proteins could

generate the force for protrusion. Force production requires an energy source within

the cytoplasm, which ultimately derives from the chemical energy of ATP hydrol-

ysis. In motor-based models, myosin motors attached to the plasma membrane

actively walk along the actin �laments and transduce hydrolysis energy directly

into force, pushing the membrane tip forward. Theoretical analyses argue that lo-

cal actin polymerization is in itself an adequate energy source for extension against

the mechanical resistance provided by the cell membrane [54, 55]. Polymerization

of pure actin inside a lipid vesicle can deform the membrane [56]. The thermal

ratchet model developed by Peskin et al. [57] can explain the physical coupling of
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the membrane protrusion to polymerization of actin. Thermal uctuations of the

membrane or length of actin �lament create gaps between the membrane edge and

tip of the actin �laments. Polymerization then �lls in the gaps, preventing backward

movement of the membrane, thereby rectifying Brownian motion into unidirectional

motion.

The plasma membrane may be too sti� to deform at the required rate by ther-

mal uctuations alone. Another potential source of uctuations is thermally driven

changes in the e�ective length of the polymerizing �laments due to temporary bend-

ing. Taking into account the elasticity of the actin polymer, Mogilner and Oster [58]

formulated a model which explains several experimental results on cell protrusion.

These models show that the force generated by polymerizing actin �laments has

more to do with the physics of polymerization than with any other property pecu-

liar to actin. An active process - polymerization powered by ATP hydrolysis - causes

membrane deformations that lead to cell motion, which will therefore have di�erent

characteristics (amplitude and frequency) from the thermal uctuations of a free

membrane. Since the amplitude of thermally driven uctuation is proportional to

the ambient temperature, the amplitude of cytoskeletally driven cell membrane de-

formations will be analogous to an \e�ective uctuation temperature" to which we

refer in later chapters.

Motility of cells in a tissue is much more complicated to study than motion on

two-dimensional substrates. The basic mechanism remains the same, but, due to the

large number of interactions, the cells may receive and have to respond to multiple

types of signals in order to move. Adhesion plays an important role for migration

at two levels - at the single cell level as explained for a cell on a substrate; and at

the level of tissues, where cell surface molecules create gradients of adhesion energy
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compelling cell masses to travel down these energy gradients during global tissue

reorganization. The following sections describe some examples that demonstrate

the role of adhesion and migration in mediating developmentally critical processes.

1.3 Cell Sorting

As early as 1744, Trembley performed several simple experiments on the regener-

ation of Hydra including development of an adult from aggregates of dissociated

cells [59]. These were among the �rst experiments to demonstrate that tissues could

be so easily taken apart and reassembled. In the early 1900's, Henry V. Wilson

showed that when a marine sponge is cut up into minute fragments, each fragment

regenerates into a complete individual [60]. What would happen in the extreme situ-

ation of dissociating a tissue into its smallest viable units - cells? Wilson dissociated

sponge tissue into single cells by pressing live sponges through �nely woven cloth.

The dense suspension of cells condensed into clusters that soon organized into tis-

sues and eventually developed into complex sponges. These experiments suggested

the importance of cell-cell adhesion in morphogenesis. Regeneration was, however,

thought possible only in primitive creatures.

In 1944, Holtfreter [61] observed that when he mixed di�erent kinds of cells

from amphibian embryos, the cell types spontaneously sorted out to yield homo-

geneous and coherent tissues. This observation led to the idea of \tissue speci�c

aÆnities" [62]. Holtfreter proposed several possible mechanisms for \tissue aÆni-

ties" including di�erences in the degree of cell adhesiveness, \directed movement"

or chemotaxis (cells moving in response to a chemical gradient). Steinberg [33, 63]

demonstrated that the behavior of aggregates of isolated and recombined embryonic

tissues does not conform to expectations based on chemotaxis, but instead closely
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resembles liquid behavior. The Di�erential Adhesion Hypothesis (DAH) proposed

by Steinberg [33] successfully explains how cellular properties can operate to deter-

mine tissue reorganization during cell sorting. The DAH proposes that (1) cells of

a given type have characteristic adhesion strengths to cells of the same or di�erent

types, (2) the cells comprising an aggregate are motile and (3) the �nal organization

of cells maximizes the strength of adhesive interaction summed over all the adhesive

contacts in the aggregate. This explanation de�nes cell adhesion as the reversible

work of adhesion (the work done when one unit of cell surface area moves from the

surface of the aggregate into the interior). The reversible work of adhesion is directly

proportional to minus the interfacial free energy (the change in the free energy when

the surface area of a spherical cell aggregate increases reversibly by one unit at the

expense of one unit of area of cell-cell contact).

Sorting transforms an array of initially disordered cells into one in which the

cells form homogeneous tissue domains. This sorting is one of the key steps in

the reconstruction of organs and limbs. Tissues from many di�erent organisms

exhibit this behavior, indicating that it is very general and does not depend on

speci�c genetic pathways. Mixed populations of cells from a variety of phylogenetic

groups sort, including invertebrates [64] and vertebrates [61, 65], cell aggregates and

monolayer cultures [66, 67], and cells from embryonic [61, 65, 68], postnatal [69] and

adult [70, 71] stages of development (for more references see [2]).

Di�erences in both the type and number of adhesion molecules [72, 73] drive cell

sorting. Does di�erential adhesion directly mediate sorting in the whole animal? In

vivo evidence has been diÆcult to obtain mainly because several adhesion molecules

could be acting in concert and adhesion can play many roles simultaneously. Re-

cently, however, Godt and Tepass [1] and Gonzalez-Reyes and St. Johnston [74]
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obtained the long-sought in vivo evidence that cadherin levels can mediate sort-

ing during development. Both groups studied follicles of the fruit y (Drosophila

melanogaster) ovary, which contain two types of germline cell, the oocyte and its at-

tendant nurse cells. These form a compact package, surrounded by a single layer of

epithelial follicle cells. The oocyte sits next to the follicle cells at the posterior pole

of the follicle, and proper positioning is a key to setting up the anterior-posterior

polarity of both the egg and the embryo that develops from it. Thus we have a

small-scale model of morphogenesis - how does the oocyte know to move to the

posterior pole?

By genetically manipulating the levels of expression of E-cadherin in the various

cell types, they concluded that the oocyte and posterior follicle cells express higher

levels of E-cadherin than do nurse cells, ensuring that the oocyte moves to the pos-

terior pole. In follicles modi�ed so that the posterior-most follicles do not express

cadherin, the oocyte takes a random position. When follicle cells express di�erent

levels of cadherin, the oocyte moves preferentially adjacent to the cells expressing

the highest levels of cadherin. Figure 1.1 shows this process in cartoon as well as

a photograph of the oocyte in wild type and mutant follicles. These experiments

provide a direct and dramatic con�rmation of Steinberg's theory: �rst, that dif-

ferences in cell adhesion can drive morphogenetic movements in vivo; and second,

that di�erences in the level of a single cell-adhesion molecule suÆce to mediate cell

sorting in an intact tissue.

1.4 Engulfment

The behavior of two homogeneous tissue aggregates placed in contact with each other

can elucidate the mechanisms of cell sorting. Typically, one tissue type spreads over
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Figure 1.1. Cell sorting during development: (a) In vitro, cells can sort according
to type, with neural cells preferentially sticking to other neural cells. Expression
of di�erent cadherins drives this sorting. (b) Cells also sort based on the level
of cadherin expression, with cells expressing high levels of cadherin preferentially
sorting to the center. (c) Cadherin levels can mediate sorting during development
in vivo. The oocyte and posterior follicle cells express higher levels of E-cadherin
than do nurse cells (NC) and other follicle cells, ensuring that the oocyte sits at the
posterior pole (from [1]).
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the surface of the other, often enveloping it completely, during the succeeding 2-3

days of culture [33, 35, 62, 75] as shown in Figure 1.2 [2]. This phenomenon is called

engulfment. Many processes during embryonic morphogenesis resemble mutual

engulfment of tissues. These include the spreading of the chick blastoderm on the

inner surface of the vitelline membrane [76], the spreading of the chick embryonic

epicardium over the myocardium [77], gastrulation [78], teleost epiboly [79], the

elongation of the salamander pronephric duct over the lateral mesoderm [80], and

the condensation of precartilage mesenchymal cells [81].

Figure 1.2. Engulfment. Spreading of 10 day old chick embryo pigmented retinal
(dark) tissue over the surface of an aggregate of 10 day old heart (light) tissue
(from [2]). During envelopment, the pigmented retinal tissue reduces the area avail-
able for homotypic contact while expanding contact area with the heterotypic tissue.

Most experiments have observed that the �nal arrangement established by spread-

ing of two tissues in contact is the same as that generated by cell sorting of mixed cell

aggregates comprising of the same two cell types [33, 35]. Engulfment experiments

allow the use of tissue fragments dissected directly from the organism, without tissue

dissociation which can modify the adhesive character of the cell surface [82].
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Any comprehensive theory of cell sorting must explain why cohering cell popula-

tions generate the same �nal con�gurations from very dissimilar initial organizations:

sorting of two randomly mixed cell types or spreading of one tissue over another

when the two are placed in contact. Cells' sorting out in the same manner regardless

of the initial conditions supports Steinberg's idea that global energy minimization

determines the �nal con�guration.

Di�erences in the intensities of cell adhesion direct the spreading of one tissue

over the surface of another. These two tissues can either be of di�erent types ob-

tained from di�erent parts of a developing embryo or they can be the same cell

type expressing di�erent numbers of the same adhesion molecules. Using genetically

engineered cells, Steinberg and Takeichi proved that simple quantitative di�erences

in the level of expression of a single adhesion molecule cause tissues to be immiscible

and sort out or spread over one another [73].

1.5 Tissue Interfacial Tension

The equilibrium arrangement of sorting and engul�ng tissues imitates the behavior

of immiscible uids: in the absence of gravity the uid of higher surface tension sur-

rounds the uid of lower surface tension. (In sorting experiments, the almost neutral

buoyancy of the culture medium and tissues neutralizes gravity). This resemblance

suggests that tissues possess tissue speci�c surface and interfacial tensions, which

arise from the cohesive and adhesive interactions of their constituent cells. Pre-

vious experiments [5, 6, 73, 83, 84] have established quantitative and qualitative

correlations between equilibrium properties of living tissues and uids.

Experimental studies in the past have qualitatively established the liquid prop-

erties of tissues [3, 83, 85]. A liquid is regarded as a population of cohesive mobile

18



subunits. The presence of surface adhesion molecules gives rise to an e�ective sur-

face tension of tissues, a measurable area invariant quantity. Indeed, the rounding

up of tissue fragments to minimize their surface area manifests liquid like behavior.

The sorting out of intermixed phases by coalescence seems analogous to the demix-

ing (phase separation) of immiscible uids. When two tissues with di�erent surface

tensions come into contact, the lower surface tension tissue spreads over the surface

and \engulfs" the other. Surface tensions of embryonic tissues predict their mutual

envelopment behavior. In a set of mutually immiscible phases, the tendencies of one

phase to spread over another are transitive (i.e if b tends to spread over a and c

tends to spread over b, then c will spread over a) as Figure 1.3 shows schematically.

We can measure surface tension, a liquid's resistance to an increase of surface

area, by deforming a droplet and then monitoring its �nal equilibrium shape as a

function of the applied force [86]. Foty et al. [3, 83] have measured the interfacial

tensions of several di�erent tissue types and provided a quantitative basis for the

Di�erential Adhesion Hypothesis. They used a parallel plate compression apparatus

which recorded the force applied to a living cell aggregate and the aggregate's shape

to monitor the approach to shape equilibrium. Figure 1.4 shows the pro�le of an

initially spherical aggregate compressed between two parallel plates, after it has

reached equilibrium.

Laplaces's law gives the surface tension of such a droplet:

� =
F

�R3
2

h 1

R1

+
1

R2

i�1
; (1.1)

where � is the interfacial tension between the droplet and the immersion medium,

F is the measured decrease in weight of the upper compression plate, R1 and R2

are the two principal radii of curvature of the droplet's surface and �R3
2 is the

area of contact between the droplet and the parallel compression plates. The term
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Figure 1.3. Liquid-like behavior of biological tissues. Top: A cell mass of arbitrary
shape rounds up to form a sphere, minimizing its surface area. Middle: Intermixed
phases sort out by coalescence. When brought into contact, the same two phases
spread over one another to approach the same equilibrium con�guration as sorting.
Bottom: For mutually immiscible phases, the tendencies of one to spread over
another are transitive.
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R 1

R 3

R 2

Figure 1.4. A liquid droplet compressed between parallel plates, at shape equilibrium
(adapted from [3]).

F=�R3
2 is the external pressure due to the compression. The measured interfacial

tensions of �ve di�erent tissue types from chick embryo are: limb bud mesoderm

- 20.1 dyn/cm, pigmented epithelium - 12.6 dyn/cm, heart - 8.5 dyn/cm, liver -

4.6 dyn/cm and neural retina - 1.6 dyn/cm [83]. The measured values of surface

tension were independent of the aggregate volume, as for liquids. To examine the

relationship between tissue surface tension and envelopment behavior, Foty et al.

mixed binary combinations of cells from adjacent tissues in the surface tension

hierarchy. Neural retinal tissue envelops liver tissue which envelops heart tissue

which in turn envelops pigmented epithelium. As in liquids, the body with lower

surface tension always spreads over the outside surface. This hierarchy provides

direct evidence of the role of surface tension due to di�erential adhesion in tissue

organization.

Davis et al. [84] demonstrated that the same principles apply during amphibian

gastrulation. Aggregates of Rana pipiens deep germ layers possess liquidlike sur-

face tensions and their surface tension values lie in precisely the order necessary

to account for germ layer behavior in vitro and in vivo. Their measurements pro-

vide direct, quantitative evidence that the intercellular adhesions governing cell ow

during early stages of vertebrate morphogenesis create tissue interfacial tensions.
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Since surface tension is an equilibrium property, it determines the �nal equilib-

rium con�guration of a set of interacting liquids (tissues). However, it does not �x

the time scale or dynamics by which these processes achieve equilibrium. In liq-

uids, the ratio of surface tension to viscosity governs the time course of ow. Early

experiments by Phillips and Steinberg [39, 87] showed that cell aggregates are vis-

coelastic in nature, i.e. they behave like elastic solids during brief deformations

but like viscous liquids in long term cultures. The major components of cells also

possess viscoelastic properties [85].

1.6 Role of Cell Motion

These observations of cell sorting and engulfment do not reveal the mechanisms

which cause the cells to move and rearrange in the right way. Even if di�erences

in surface tension contribute to the driving force for movement during morphogen-

esis, they reveal little about its time course. The kinetics of cell-sorting and tissue

envelopment depend on the dynamical properties of cells and cell populations. Mem-

brane uctuations intimately couple to cell locomotion at the single cell level. How

do membrane uctuations work in cell populations to guide motion?

Studies of cell locomotion of eukaryotic cells have focused mainly on single cells

or groups of cells on two-dimensional adhesive substrates. Typically, these studies

employ non-interacting cells in well-de�ned surroundings, on substrates coated with

di�erent adhesive molecules with di�erent bu�er media [88, 89, 90]. Motion of cells

within cellular aggregates or inside tissues has not been well studied. Cell-cell in-

teractions and the properties of the surrounding cellular environment will inuence

cell behavior and may change the nature of cell motion from motion on substrates.

Cell motion requires a complex series of mechanical and molecular processes such as

22



membrane extension, attachment to the substrate, generation of force and detach-

ment from the substrate [44]. As the underlying processes leading to cell motion

are very complicated, a detailed mathematical description is diÆcult. Therefore,

characterizing the statistics of cell displacements can provide important informa-

tion about the mechanism of cell motion without constructing a mechanistic model.

Statistical studies of cell locomotion have shown that, in the absence of external

biases like chemotactic sources or tissue rounding e�ects, cell motion is usually

di�usive [6, 89, 91, 92]. The mean squared displacement is linear in time with a

characteristic di�usion coeÆcient D:

hr2i = Dt: (1.2)

The distribution of speeds (V ) follows the Maxwellian distribution:

F (V ) = aV exp(�bV 2): (1.3)

The thermodynamics of a moving cell resemble those of a particle in a uid

undergoing thermal motion. The cell experiences random uctuating forces from

its surroundings and is damped by the viscosity of the cellular aggregate. We can

write the equation of motion for the cell/particle in such a situation as the Langevin

equation:

dv=dt = ��v + F (t); (1.4)

where v is the velocity of the particle, � is a damping constant (1=�), and F (t) is the

uctuating force per unit mass, called the Langevin force. If the force is truly random

then the time average of the force is zero, and the correlation function is a delta

function as in Brownian motion. In Brownian motion, we cannot predict a single

path but only its averaged statistical properties. One of the most important averages
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is the two-time velocity auto-correlation function which measures the characteristic

time beyond which the motion is uncorrelated:

< v(t)v(t0) >= (C=2�)e��jt�t
0j; (1.5)

where C is the amplitude of the correlation function of the uctuating forces, while

� corresponds to the damping constant, the inverse of which is the correlation time.

Several experiments have demonstrated the analogy with uids. The center

of mass displacement of a single pigmented retinal cell of chick embryo in a three-

dimensional aggregate of neural retinal cells, shows di�usive motion [91] with Maxwellian

velocity distributions. Fibroblast cells observed in three-dimensional isotropic colla-

gen gels (when the collagen �bers have no preferred orientation) [93] move di�usively.

In gels with oriented �bers, cells execute a biased random walk [94]. Typically, for

di�usive motion, temporal and spatial velocity autocorrelations decay exponentially

with a short time constant, indicating no long range e�ects. Deviations may indi-

cate memory e�ects (long range correlations in time) or bulk e�ects such as collec-

tive motion of groups of cells (long range correlations in space). Czirok et al. [92]

found exponential velocity distributions for non-interacting cells on substrates but

they did not quantify the di�usion of these cells. They explain their results with

a phenomenological model based on competition for ATP among di�erent cellular

reactions. Changing the type or strength of adhesive substrates can control the rate

of cell migration, fastest motion occuring for intermediate adhesion strengths. Our

experiments with Hydra cells have shown that cells move faster in a less adhesive

cellular environment and also show a novel type of statistics. We describe these

results in Chapter 5.
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1.7 Biomembranes

So far we have focused on cell movements and the role of tissue surface tension

as well as other macroscopic properties on pattern formation in tissues. The mo-

tion of individual cells controls the dynamics of large scale tissue movements, while

intra-cellular processes control cell motility itself. Physical properties of cell mem-

branes including adhesion, tension and bending modulus can become important

determinants of cell and tissue function, including cell-cell interactions, cell mem-

brane deformations and cell movement.

A very simpli�ed model treats a cell as cytoplasm contained by a membrane.

Vesicles are closed membranes suspended in aqueous solution. Vesicles serve both

experimentally and theoretically as simpli�ed models of cells. Their equilibrium

properties have been investigated extensively [15, 95, 96]. Bilayer membranes are

uid, with very small in-plane shear modulus and large compression modulus and

bending modulus. The molecules in a bilayer rearrange to minimize the free energy,

constrained by the �xed volume of the vesicle and the number of molecules. Because

the membrane is uid, we can sum over all the internal degrees of freedom and the

free energy will depend only on the shape of the vesicle. At equilibrium, the free

energy is a minimum with respect to the area. The relevant contributions to the free

energy arise from the curvature. In order to bend the bilayer, a positive tension (�+)

has to act at one monolayer and a negative tension (��) at the other which result

in the bending moment M = dm(�+ � ��) (where dM is the membrane thickness).

The mean curvature H = ( 1
R1

+ 1
R2

) (where R1 and R2 are the principal radii of

curvature measured along two perpendicular directions) characterizes any curved
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surface. The bending moment is then:

M = Kc

� 1

R1

+
1

R2

�
; (1.6)

where Kc is the bending elastic modulus measured in units of energy. Helfrich

showed that the main contribution to the elastic free energy of a membrane is due

to bending and can be described by the Helfrich Hamiltonian [97]:

F =

Z
dA

1

2
Kc(H)2; (1.7)

where dA is a surface element, and the integration is performed over the entire

bilayer surface. If the two sides of the membrane bilayer are not identical, having

the membrane assume a spontaneous curvature Hs (i.e. the mean curvature which

minimizes the free energy) drastically reduces the bending energy. H � Hs then

replaces H in the previous equation. The bending or curvature modulus Kc gives

the energy cost of deviating from the spontaneous curvature. In addition to bending,

cell membranes can deform due to shearing or compression (which have a negligible

e�ect for pure lipid membranes). The elastic energy per unit area characterizes the

resistance of bilayers towards compression or elongation:

gcomp =
1

2
�
��A
A

�2
; (1.8)

where �A
A

is the relative change in bilayer area and � is the compressibility modulus.

We can visualize shearing by considering a square piece of bilayer which is stretched

in one direction by a tension �+ to a length L = L0+Æl and compressed to L = L0�Æl
in a perpendicular direction by a tension ��. The area remains constant and the

strain is � = (L0 � Æl)=L0. The energy (per unit area) is:

gshear =
1

2
�(�2 + ��2 � 2); (1.9)
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where � is the shear elastic modulus.

The area, volume and total curvature of membrane vesicles are not strictly con-

stant but can change by small amounts due to uctuations. Membranes can deform

in and out of the plane, with the lowest energy deformations usually due to bending

and involving only the curvature. The extreme softness (very low bending moduli)

of lipid bilayers leads to excitation of pronounced bending undulations. In equi-

librium, they are purely thermal in origin but non-equilibrium contributions can

arise due to complex proteins (e.g. ion channels and pumps) embedded in the lipid

bilayer. The friction caused by coupling of the undulations to hydrodynamic ows

in the surrounding aqueous medium strongly overdamps the uctuations.

To calculate the uctuation amplitudes, we consider a patch of membrane of di-

mension LxL. We describe any deection u(r; t) of the membrane as a superposition

of plane waves with wavelength 2�=q where q is the wave vector. The bending energy

is then a sum over all squared amplitudes of the individual modes of excitation:

F =
1

2

X�
Kcuq

2q4 + �uq
2q2
�
L2; (1.10)

where uq is the Fourier transform of u(r; t), and � is the lateral tension arising due

to the �xed area constraint of vesicles. Since each mode corresponds to a degree

of freedom of the membrane, by the Equipartition Theorem the average energy per

mode is 1
2
kBT . Therefore the mean squared amplitude of the uctuations is:

huq2i = kBT=L
2

Kcq4 + �q2
: (1.11)

The amplitudes are small for small wavelengths (large q), and the long wavelength

uctuations dominate.

Biological membranes are not simple lipid bilayers but consist of a complex mix-

ture of di�erent kinds of lipids and proteins interacting with the cytoskeleton and
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the extracellular matrix. Interactions of uctuating membranes with polymers [98],

microtubules [99] or actin shells [100] couple the curvature tension and the bending

elasticity of the membrane with to rheological properties of the polymers. Bio-

logical membranes are clearly non-equilibrium structures. Manneville et al. [101]

provide experimental evidence of the e�ect of the activity of transmembrane pro-

teins on shape uctuations of lipid membranes. Non-equilibrium features like vesicle

movement under external forces can model cell movement. Cantat et al. [102] have

studied vesicle dynamics induced by an adhesion gradient using a hydrodynamics

approach by considering the coupling of the ow within the membrane to the bulk

uid.

We compare a cell in an aggregate of other cells to a vesicle in liquid. Cell

membranes deform due to cytoskeletal activity (instead of the temperature induced

uctuations of vesicles) and the e�ective viscosity of the surrounding tissue opposes

the relaxation of the membrane. Analysis of cell membrane uctuations using the

theory for vesicles can give us important insights into the role of the various physical

parameters.

1.8 Research Outline

At the coarsest level of description, we can view tissues as liquids. They show sim-

ilar properties and analogous behavior. At a �ner level, the analogy breaks down

- individual cell behavior in tissues depends on their �nite size, deformability and

strong intercellular interactions. At an even �ner scale, we can describe each cell

in terms of lipid vesicles. Can we formulate a consistent framework for studies of

cells and tissues in terms of the various physical analogies? We must establish how

far we can push the physical analogies, and where they must break down. To elu-
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cidate the role of physics during morphogenesis and tissue rearrangements, we pick

examples where we can simplify the picture and identify some local processes that

resemble pure physical phenomena. We then try to model these processes using

minimal physical parameters. Several simple in vitro experiments with developing

tissues crudely mimic developmental processes and clarify certain aspects of biolog-

ical development.

Our research has focussed on the quantitative study of some of the processes

governing cellular rearrangement. The kinetics of cellular reorganization help es-

tablish a thermodynamic basis for the behavior of cells and de�ne the limits of

physical theories. In Chapter 2, we introduce a lattice based statistical mechanical

model for simulating cell and tissue motion. Chapter 3 deals with experiments and

modeling of cell sorting. In Chapter 4 we study tissue engulfment. In Chapter 5,

we quantitatively characterize cell displacements and membrane uctuations using

methods from statistical mechanics. In Chapter 6, we characterize the tension in

some intracellular membranes and investigate its role in membrane dynamics.
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CHAPTER 2

POTTS MODEL SIMULATIONS

2.1 Introduction

Biologically motivated experiments identify details that do not necessarily explain

their underlying mechanisms. An understanding of the essential features of a given

phenomenon requires construction of a simplifying model. Most models try to for-

mulate a minimal set of assumptions needed to quantitatively describe the experi-

mental observations to a desired degree of accuracy. Mathematical models can show

which experimental parameters are most important in determining a particular be-

havior.

One requirement of a good model is that the number of ad hoc assumptions or

parameters should be minimal. The model parameters should be experimentally

measurable quantities - both inputs to the model and outputs which can be tested.

A powerful model should: (1) Simplify the picture to give a concise description. If a

simple model mimics a highly complicated process, the model captures the essential

features. This similarity should be both qualitative and quantitative. If the number

of adjustable parameters in the model is too large, tweaking them can produce

almost any result, reducing the usefulness of the model. (2) Have predictive power.

The model should apply to situations where experiments haven't been done. The

model's predictions should be able to guide future experiments which in turn can

check the model's validity.
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The principal usefulness of any theory is its predictions and, even if several

theories can create similar patterns, we can distinguish them by the di�erent exper-

iments they suggest. Our goal is to implement a physical model with a minimal set

of parameters that explains experimental observations of sorting, engulfment and

cell motion.

2.2 Cellular Models

Of the numerous attempts to model cellular pattern formation phenomena like cell

sorting, tissue engulfment, etc. most fall into two categories: 1) Cellular automaton

models represent cells as one or more discrete units with rules to describe their inter-

actions. These methods focus on individual cell properties such as cell adhesion and

the number of neighboring cells. Physical and geometrical concepts such as energy,

volume and contact angles are important and interactions are local. Di�erential

adhesion is most conveniently implemented using cellular automata. 2) Continuum

employ di�erential equations that describe the temporal and spatial variation of a

\�eld" (concentration or force �eld). Cells are usually modeled as a density �eld.

E�ects can be long range. These models e�ectively describe global e�ects such as

di�erentiation or cell movements in response to chemical �elds (chemotaxis).

In the following, we briey review some common models of biological pattern

formation. We then compare the di�erent approaches to motivate the particular

model that we have chosen. The two prevailing views of pattern formation in em-

bryology are the Turing chemical pre-pattern approach and the mechanochemical

approach developed by Oster, Murray and colleagues.
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2.2.1 Chemical Pre-Pattern Model

Alan Turing, in a seminal paper in 1952, proposed a dynamic mathematical develop-

mental model [103]. He suggested that reaction-di�usion systems obeying physical

laws could produce various stable patterns. A set of chemical substances, called

morphogens, reacting with each other and di�using through tissue may account for

morphogenesis. Spatially inhomogeneous patterns can evolve by a di�usion driven

instability or Turing instability, when two morphogens di�use with di�erent di�u-

sion constants. Even minor uctuations in uniform concentrations of morphogens

could lead to such instabilities. Murray [104] gives several examples of the Tur-

ing reaction-di�usion approach to modeling pattern formation, such as animal coat

patterns, hair patterns in Acetabularia whorl, and head and tentacle formation in

Hydra. In the chemical pre-pattern approach, pattern formation and morphogenesis

take place sequentially. First the chemical concentration pattern develops, then the

cells sense it and di�erentiate accordingly.

2.2.2 Mechano-Chemical Model

The mechanochemical approach considers the role that mechanical forces play dur-

ing morphogenetic pattern formation. Pattern formation and morphogenesis occur

simultaneously as a single process. The chemical patterning and the form-shaping

movements of the cells interact continuously to form the desired spatial patterns.

Such mechanisms have the potential for self correction. Embryonic development

is usually stable with the embryo compensating for many external disturbances.

Mechano-chemical models depend on measurable quantities such as cell/matrix den-

sities, traction forces, tissue deformation, etc., and are very amenable to comparison

with experiments at least in principle. The dynamics of these models results in stable
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states (static or dynamic patterns) which mimic the stability of embryonic devel-

opment to perturbations. The following quote from Wolpert [105] provides a clear

justi�cation for the need for a mechanical approach: \It is clear that the egg con-

tains not a description of the adult, but a program for making it, and this program

may be simpler than the description. Relatively simple cellular forces can give rise

to complex changes in form; it seems simpler to specify how to make complex shapes

than to describe them."

One of the earliest examples of the use of a mechanochemical model is the work

of Odell et al. [106]. Their model explains the folding of embryonic epithelia. They

observed that if a cell that was part of a ring or layer contracted, it would stretch

the other cells in the layer. They hypothesized that stretching the cells beyond

some point induced a contraction resulting in a smaller than original apical surface

with the volume remaining constant. This cascade e�ect of reduction in apical

surface would cause a buckling in the cell sheet producing an invagination, which

resembles gastrulation in the sea urchin, ventral furrow formation in Drosophila, and

neurulation in amphibians. They also emphasized the importance of not assigning

to each cell an autonomous (genetic) program of shape change which would be

evolutionary implausible.

Pattern formation takes place even in the absence of speci�c morphogens and

chemical gradients. Movement of cells requires a guiding mechanism and a driving

force. Cell-cell surface adhesion can provide both, as discussed in Chapter 1.

2.2.3 Vertex and Center Models

Several models have attempted to simulate surface energy driven cellular patterns

using discrete cellular automata. Early models had point-like cells (consisting of

a single lattice site) rearranging on a lattice [107, 108, 109]. Later modi�cations
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have taken into account the geometry and topology of the patterns [110, 111, 112],

long range e�ects of surface tension [113] and forces between cells using molecular

dynamics simulations [114]. Dirichlet domains or Voronoi polygons represent cells.

A cell is labeled by a center and de�ned as the subset of the space that is closer to it

than to all other centers. Domains are convex and cover the space. In a center model,

the dynamics are speci�ed arti�cially as a function of the �ctitious centers [115]. In

vertex models, the membrane follows a set of slowly relaxing vertices [40]. Such

models allow exible cell shapes as in simulations of Fundulus epiboly [40], but are

not able to de�ne intercellular gaps or free surfaces.

The dynamics in the vertex and center models depend on the local force bal-

ance. Forces are introduced on the boundaries and the models simulate cell motion,

shape changes and neighbor exchange but are realistic only for tightly packed tissues

with no free boundaries. No geometrical model can consistently describe both two-

and three-dimensional loose and compact aggregates. Instead we choose a statis-

tical mechanical description to specify an energy on a lattice, which allows us to

model arbitrary shaped cells and aggregates. The Potts model, which we describe

next, successfully describes cellular patterns, treating gaps and free boundaries in a

natural way.

2.2.4 Potts Model

In 1952, Potts introduced the Potts model as a generalization of the Ising model to

more than two components [116] with discrete degenerate spin values. In the early

1980's, the Q-state Potts model was developed to study cellular pattern coarsening

in metallic grains [117]. The interior of a grain consists of a lattice of atoms (spins),

and the grain boundaries are the interfaces between di�erent types of atoms or

di�erent crystal orientations. Each site on the lattice has a spin �. A domain with
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the same � values de�nes a grain or bubble and each grain has a di�erent spin.

A free energy proportional to the total area of grain boundary de�nes a surface

energy on the lattice and the Potts model minimizes the total surface energy. The

interaction energy is zero for like spins and one for unlike spins. The total energy

is the Potts Hamiltonian:

H =
X
i;j

[1� Æ�(i)�(j)]; (2.1)

where i and j are neighboring lattice sites. The model also describes coarsening in

soap froth [118, 119].

The hexagonal pattern of two-dimensional arrays of soap bubbles of equal area

resembles a cell sheet [120]. Surface tension driven boundary length minimization

takes place both in soap froth and tissues. An important di�erence is that cells have

a �nite length cuto� - given by the cell size. Soap froth has unconstrained bubble

areas. Like bubbles, biological cells have an elastic surface and bulk compressibility.

Unlike bubbles, cell membranes do not merge during rearrangement. In biological

patterns, a constraint on cell size stabilizes cells and introduces a characteristic

length scale. The cytoskeleton regulates membrane rigidity and can cause anisotropy

in cell shape. Viscosity and elasticity also depend on the time scale of the applied

forces [39]. Further, the energies on the cell boundaries depend on the particular

cell types. In the next section, we extend the Potts model to simulate biological

cells.

2.3 Extended Potts Model

Glazier and Graner [121] extended the Potts model to include area constraints to

�x cell sizes and type-dependent boundary energies (adhesion energies) to simulate

di�erences in adhesion molecules. Minimization of the total adhesion energy drives
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the evolution. Since we use this model extensively in our work, we describe it below

in more detail.

2.3.1 Adhesion Energy

As discussed in Chapter 1, di�erential cellular adhesivity can direct the movement

of cells. Cells stick to each other with the help of adhesion molecules distributed

on their surfaces, and have a free energy associated with cell-cell contacts which

reversibly attach or detach during cell rearrangement. The adhesion free energy

F (A) � F (0) is the integrated mechanical work between the attached state, with

contact area A, and the separated state. The surface free energy J between two

surfaces is de�ned as the adhesion free energy per unit contact area: @F=@A. It

is equal to the reversible work required to increase the surface by a unit area. For

sticky cells J is negative: F decreases when cells adhere. A surface free energy

can also be de�ned with an external medium (for example, culture medium, air,

substrate and extracellular matrix [19]). We can assign a potential energy to a

cellular pattern if the adhesion energy is proportional to the contact area between

the two cells. The local energy gradient drives cells as long as microscopic thermal

uctuations allow adhesive links to break and re-establish.

To formalize the notion of adhesive energy for a cell aggregate, we consider the

total adhesion energy. We can write the total adhesion energy Eadh associated with

a given con�guration as a sum over cells i = 1; :::; N or over cell pairs (i; j):

Eadh =
X
(i;j)

AijJij +
X
i

AiMJiM ; (2.2)

where Aij denotes the contact area between cells, AiM the contact area with the

external medium and Jij; JiM the surface energies of these interfaces. For a hetero-

geneous aggregate of two cell types d and l, we can write equation 2.2 in terms of
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macroscopic quantities summed over all the cells:

Eadh = dMIdM + lMIlM + dlIdl +
X
allcells

Ai
eii
2
; (2.3)

where IdM ; IlM and Idl are the total interface areas. The surface energies, Jij, relate

in the following way to de�ne the three relevant surface/interfacial tensions [122, 4]:

ld = Jld � Jdd + Jll
2

; (2.4)

lM = JlM � Jll
2
; and (2.5)

dM = JdM � Jdd
2
: (2.6)

The surface tensions are not equivalent to a biological membrane's internal ten-

sion which appears as part of the volume constraint � (de�ned in Section 2.3.2) and

the surface area constraint � (de�ned in Section 2.5). The surface tensions represent

the di�erence in energy between heterotypic and homotypic interface per unit area

of membrane (or lattice bond). These relative costs do not change if we add a given

constant to Jij and Jii=2.

We can, in principle, experimentally measure the surface energies Jij, but not

derive them from microscopic mechanisms (for discussion, see [19], [123]). The

hierarchy of the Jij determines the e�ect of cell adhesion; the relative values of

the Jij determine the actual minimum energy con�guration obtained, while their

absolute values and the dissipation only a�ect the time scale of the relaxation.

Cells in a pattern move down the local energy gradient. During cell sorting,

the energy gradient is not entirely smooth, i.e. on the way to global energy min-

imization, cells and cell clusters have to move through transient states that have

a higher con�guration energy than the previous state. The cells have to traverse

local minima in the energy to �nally reach the global minimum. An aggregate of

cells with a group of well rounded clusters represents a local minimum. To further
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lower the energy the clusters have to deform in order to move and coalesce, thereby

raising the energies of the intermediate steps. Cells move with the help of membrane

deformations which enable them to escape from the local minima.

The surface energies determine the local roughness of the energy landscape and

the dynamics, the surface tensions describe the con�gurations with absolute mini-

mum energy i.e. the stable equilibrium states. Figure 2.1 shows schematic examples

of each typical case. When dM and lM are negative, cells do not aggregate. In

most cases, the surface tensions dl, dM and lM are positive. The minimum energy

occurs when the cells demix to form two homotypic clusters. The two clusters are

in contact together and with the medium. The three interfaces form spherical caps

and meet along a triple line (circle) of contact. In the plane normal to the edge,

the three surface tensions considered as vectors along the interface, add to zero at

equilibrium, obeying the Young condition (explained in more detail in Chapter 4,

Figure 4.2), which �xes the contact angle at the interface.

Any equilibrium must satisfy the Young condition. If one surface tension is

greater than the sum of the two others, no triple intersection can be stable and the

more energetically costly interface disappears. If dM > dl+lM , the dark-medium

interface disappears and the light cells surround a single dark cell cluster, a typical

cell sorting case, which we shall study in more detail in the following chapter. In

this situation, the inequality JdM � Jdl > JlM � Jll constrains the surface energies.

2.3.2 Energy Hamiltonian and Dynamics

We simulate surface energy driven cell motion as in the regular lattice based

Potts model. A spin �i;j;k characterizes each lattice site and the domain which

includes all lattice sites having the same spin constitutes a cell � (Figure 2.2). Each

cell has an associated cell type �(�), for example, neural retinal and pigmented
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Figure 2.1. Surface tensions determine the equilibrium con�guration with minimum
global energy (from [4]).
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Figure 2.2. Diagram showing the lattice pattern for a two-dimensional Potts model
simulation. The numbers show spin values at each lattice site. All sites having the
same spin constitute a cell; the thick lines are the cell boundaries.

epithelium in chick embryo. Bonds between like spins have zero energy, that is, the

energy inside a cell is zero. Bonds between unlike spins (at cell boundaries) have

a cell type dependent surface energy J(�; � 0). In addition, biological cells have a

�xed range of sizes which we include in the form of an elastic constraint with elastic

constant �, and a �xed target volume, V (�), which depends on the typical size of

the particular cell type.

In this description of the cell, all lattice sites belonging to a given cell are iden-

tical. The cell membrane and cytoskeleton have no independent existence. The

membrane is the boundary between two cells. Coupling strengths are distributed

uniformly over the cell surface, so we cannot model inhomogeneities appearing in the

cell at a microscopic level, e.g. inhomogeneous distribution of adhesion molecules

on the cell membrane and changes in membrane properties due to the polymeriza-
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tion of cytoskeletal actin. Further, we do not take into account time-dependent

adhesivities.

We de�ne the total pattern energy of the cell con�guration as the sum of the

contact adhesion energies and volume constraints:

H =
X
i;j;k

X
i0;j0;k0

J(�(�); �(�0))(1� Æ�;�0) + �
X
�

[V (�(�))� v(�)]2 (2.7)

where v(�) is the volume of a cell �. Large deviations of the cell volume from the

pre-assigned target volume V (�(�)) increase the con�guration energy via the sec-

ond term. Our code neglects the volume contribution for any cells with zero target

areas. The volume constraint, therefore, enables the cells to conserve volume and

encodes all bulk cell e�ects, e.g., membrane elasticity, cytoskeletal properties and

incompressibility. Thus, the energy is the sum of local membrane contact energies

and volume energies associated with membrane elasticity and osmotic pressure. Be-

cause of the surface energy term, each cell usually contains slightly fewer than V (�)

lattice sites. We set the target area VM of the culture medium to be zero, which in

our code leaves the volume unconstrained.

Because we are dealing with a square lattice, the surface energy per unit bound-

ary length depends strongly on the orientation (anisotropy). The ratio of the high-

est to lowest surface energy as a function of orientation measures the anisotropy.

Increasing the range of interaction reduces this ratio [119]. For the simulation,

we employ a third-nearest-neighbor square lattice to reduce the e�ects of lattice

anisotropy. The pattern evolves in a probabilistic manner (Monte Carlo dynamics)

using Maxwell-Boltzmann thermodynamics. At each simulation time step, we select

a lattice site (i; j; k) at random and propose a substitution between this lattice site

and one of its neighbors (also selected at random). We accept the substitution with
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the following success probability:

�H�0 ! P = 1; (2.8)

�H > 0 ! P = exp(��H=T ); (2.9)

where �H is the increase in total pattern energy produced by the proposed spin

change. This algorithm di�ers slightly from the standard Metropolis algorithm

which allows arbitrary spin substitutions. However, the probability of a completely

mismatched ip is so low that the change, besides being biologically realistic since

the cells do not form disconnected patches, increases greatly the speed of the calcu-

lations without a�ecting the statistics [121, 124]. T corresponds to the amplitude

of the cell membrane uctuations, not the much smaller amplitude thermal uctu-

ations. So T is an e�ective uctuation temperature and has nothing to do with the

actual temperature of the tissues. We de�ne one Monte Carlo step (MCS) to be as

many time steps as there are lattice sites. Since we change only one spin at a time,

the cells move gradually, rather than in jumps as in some previous models [115]. The

cell center of mass executes a random walk with Maxwellian velocity distributions

(as discussed in Chapter 5). The di�usion constant is proportional to the proba-

bility of spin ips. Therefore, we can see that cell mobility depends on both the

temperature and the net energy gain. From the point of view of the simulation only

the value of the ratio �H=T is important. Increasing the temperature is equivalent

to decreasing the surface energies by the same factor.

Since we perform the simulations at nonzero temperatures, cells may not be

simply connected. Further, cell boundaries may crumple if the boundary energy

and temperature are comparable. The crumpling and dispersal are artifacts of the

simulation and are not biologically realistic, therefore, we anneal for a few Monte

Carlo steps at T = 0 before calculating any statistics or displaying the pattern.
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Annealing gets rid of most of the disconnected regions and makes the cell boundaries

compact.

Using the large-Q Potts model, we can describe cells as objects of �nite size

with measurable volume, surface area and boundary curvature - which translates to

membrane shape. In the Potts model, relative contact energies and boundary cur-

vatures drive all motion. The model is \realistic" in that the position and di�usion

of membrane (boundaries) determine the dynamics, as they do for real aggregated

cells. The model has some limitations. All lattice sites in a cell are equivalent. The

membrane and cytoskeleton have no independent existence, the boundaries between

cells de�ne the membranes. The two terms in the Hamiltonian contain all cellu-

lar properties. We also assume cell isotropy i.e cell surface molecules like adhesion

molecules are uniformly distributed over the cell surface. Further, we don't take into

account time-dependent adhesivity, the appearance of cell polarity, or variations in

membrane elasticity and cytoskeletal uctuations.

As we describe in the next two chapters, we have used the Potts model to ex-

amine the e�ects of di�erential adhesion only, separately from chemotaxis, reaction-

di�usion and cell di�erentiation. If the model can produce results analogous to

experiments, we can conclude that di�erential adhesion is the main factor, and that

the observed pattern formation requires no other cooperative phenomena.

2.4 External Field

To compare with experimentally observable uid properties like viscosity, we need

to measure the e�ective viscosity of the simulated cellular aggregate. Typically, we

measure the viscosity of simple uids by dropping a heavy object and measuring

its terminal velocity. Here, we include in the Hamiltonian, a term for the e�ect of
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gravity and cause a \heavy" cell to drop down within the aggregate:

H = Ho + g�y(�i;j;k) (2.10)

The gravity acts only on a single cell in the aggregate. The cell moves down in

the y-direction. We measure the average velocity of the cell as the mean distance

covered over the number of Monte-Carlo steps.

The force due to Stokes' law gives the terminal velocity at which a sphere falls

through a uid:

4

3
�a3��g = 6��va: (2.11)

The e�ective viscosity in the simulations is proportional to the ratio between gravity

and velocity. Plotting the velocity (v) versus applied gravity (g) thus gives us an

estimate of the viscosity.

Figure 2.3 shows a plot of v vs. g for a typical aggregate. The graph is linear,

the inverse of the slope being proportional to the viscosity.

We �nd that the e�ective aggregate viscosity (�) is highest for the most cohesive

cell type (d in d) and lowest for the least cohesive type (l in l). The viscosity

follows the hierarchy: �dd > �ld > �dl > �ll, consistent with our intuition that the

more cohesive tissues will be more viscous since they possess stronger bonds that

are harder to break. Qualitatively, experiments show the same ordering. Forgacs

et al. conducted experiments to measure the viscoelastic properties of living tissues

from chicken embryo [85]. They found that the most cohesive pigmented epithelial

tissues had the largest viscosity and the least cohesive neural retinal tissues had the

smallest viscosity.
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Figure 2.3. Graph of velocity vs. gravitational strength for a cell in a typical
simulated aggregate. The solid line is a linear �t with slope 1.35x10�2 pix/MCS.

2.5 Negative Energies

The present model with the Hamiltonian from section 2.3 e�ectively captures the

global features of tissue rearrangement, e.g. cell sorting, engulfment etc. It compares

adequately with experiments, both qualitatively and quantitatively. However, it

fails to describe correctly the dynamics of single cells moving within the aggregate

as described in Chapter 5.

The surface energy values (Jij), in the present model, are positive, so the cells

can minimize their energy both by reducing their total surface area (becoming spher-

ical or shrinking) and by forming more cohesive contacts. The surface energies thus

perform a dual role - as adhesion energies as well as surface tensions of the cell mem-

brane. These values are positive, and hence greater than the intracellular energy

values (zero by de�nition). Surface energy values, therefore, de�ne an inward com-

pressive force on the cell surfaces rather than a binding with other cells. In order
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to make the Ji;js true binding energies, we have to assign them negative values. In

real cells, surface isn't easy to create or destroy, whereas in the Potts model, it is.

We therefore need to explicitly constrain the surface area of cells to prevent them

from breaking up to increase the number of more adhesive contacts.

In the simulation, the most cohesive (dark) cells have the highest di�usion con-

stant. When a spin ip involves a dark-dark boundary, the energy change is smaller

than during a light-light boundary change: �Edd < �Ell. Therefore, the probabil-

ity for an adverse change (uctuation), P = exp(��E=T ), is greater for dark-dark
boundary changes, making the more cohesive cells more mobile. This hierarchy con-

tradicts experimental observations in Hydra cells (see Chapter 3), where the most

cohesive cells are the least mobile. This experimental hierarchy is intuitively more

acceptable, as stronger adhesive bonds should be harder to break and hence inhibit

cell motion.

One solution to the above problem is to use negative surface energy values and

add another term to the Hamiltonian which separately constrains the surface area

(perimeter in two-dimensions):

H = Ho + ��[S(�(�))� s(�)]2; (2.12)

where � is an adjustable parameter (Lagrange multiplier) which determines the

strength of the perimeter constraint, S(�) is the target surface area and s(�) is the

surface area of each cell. This term takes account of the fact that the area of the cell

envelope remains roughly constant and � is the tension counteracting the membrane

expansion. The Jij values act only as coupling strengths. For a cell with volume

4=3�r3, we set the surface area greater than 4�r2 (for a rigid sphere) to allow cell

deformations.
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Simulations of cell sorting with the extended Hamiltonian 2.12 give the same

qualitative equilibria as with the old Hamiltonian 2.7. However, the dynamics

change: the rates at which the di�erent cell types move depends on whether the

energies are negative or positive (see Chapter 3 and Chapter 4).

2.6 Velocity Correlations

Experiments with Hydra cells have shown that cells within a tissue need not move

di�usively [125], as observed for cells on substrates (which are di�usive beyond a per-

sistence time). Within cellular aggregates of some types of tissues, we �nd that the

velocity distribution is non-Gaussian and cell velocities are correlated (Chapter 5).

Without any external correlations, the cells in the simulation di�use randomly (like

Brownian particles) and the velocity distributions are perfectly Gaussian (Chapter

5). To understand from a physical perspective, the source and e�ects of correlations

observed in the experiments, we modi�ed the Hamiltonian to introduce velocity

correlations.

The modi�ed Hamiltonian is:

H = Ho + ��[U(�(�))� u(�)]2: (2.13)

We introduce temporal correlations in the velocity by making the target veloc-

ity, U(�(�)), at each step equal to the velocity at the previous step. u(�) is the

instantaneous velocity of cell � if we accept the proposed spin ip. The parameter

� controls the strength of the velocity correlation term. If � = 0 the velocity is un-

correlated and if � =1, the trajectory is ballistic. We seek to understand whether

temporal correlations can give rise to spatial correlations between the velocities of

neighboring cells and to some unusual phenomena like spiraling. In experiments,

we �nd both temporal and spatial correlations in cell velocities and non-di�usive
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motion. Does the strength of temporal correlation a�ect the strength of spatial

correlations and can it give rise to non-di�usive motion? Chapter 5 presents results

using this modi�ed Hamiltonian.
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CHAPTER 3

CELL SORTING

3.1 Motivation and Previous Work

Certain classic experiments with chicken and Hydra cells show nearly pure di�eren-

tial adhesion driven cell sorting [2]. Dissociation of tissues into single cells destroys

any long range chemical gradients. When we allow such a suspension of cells to

aggregate, the cells reorganize into homogeneous tissues similar to those of normal

embryos. According to the Di�erential Adhesion Hypothesis [33], the cells rearrange

themselves into a con�guration that minimizes their interfacial energy. However, the

Di�erential Adhesion Hypothesis does not say anything about the dynamics of the

energy minimization. Some basic questions remain to be answered. What is the

time course of sorting? Can a physical model explain the dynamics?

The kinetics of cell sorting depends on the dynamical properties of cell pop-

ulations. The intrinsic mobility of each subunit (a cell) and how it responds to

external and internal stimuli from other cells, substrates, adhesion molecules and

its own cytoskeletal apparatus determines the time-rate of sorting. As in liquids, the

important quantities are viscosity, surface tension and the e�ective uctuation tem-

perature (assuming quasi-thermodynamic behavior). What are the limits to which

the liquid analogies hold for biological tissues? In liquids, the smallest subunit is a

microscopic molecule, whereas in tissues, it is a cell. How does the presence of the

mesoscopic length scale of a cell modify the picture?
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The �nite size of cells can have the following e�ects: (i) Cells have a surface,

which allows a position-dependent surface energy whose gradient drives motion.

They have a well de�ned shape which causes geometrical constraints (like trap-

ping within nearest neighbors), especially in multicellular environments like dense

tissues. A cell has to displace some of its nearest neighbors in order to move past

them. Sulsky et al. [115] present an evolution equation for an incompressible cellular

pattern with a surface energy and derive the Stokes equation for an incompressible

uid. They �nd an additional non-di�erentiable term due to the cell topology. Its

one-sided derivatives exist when cells exchange neighbors through a four-sided ver-

tex (called T1 switch). This singularity has no equivalent in hydrodynamics. (ii)

On microscopic scales, cells have several internal degrees of freedom which are not

present in liquids. Moreover, a cell has an internal energy source which allow it to

move actively by changing shape - it is \self driven". It can explore neighboring

con�gurations with the help of membrane uctuations in the form of contractions

and protrusions. (iii) Thermal agitation is not enough to allow micron sized cells to

explore ergodically the entire con�guration space. Therefore, without active uctu-

ations, the �nal energy state can be a metastable local energy minimum.

Mombach et al. [5] compared cell sorting experiments to simulations. They

found that the length of the heterotypic interface decreases logarithmically in time.

In this chapter, we study in detail the kinetics of sorting experiments in chicken

embryo and Hydra cells and compare it to physical models and simulations. We also

characterized the growth of clusters to compare to a uid model of phase separation.

Sorting rates in Hydra has not been quanti�ed before. We observed quantitatively

two-dimensional images of the process of cellular reaggregation in three-dimensional
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aggregates from embryonic and Hydra tissues. We veri�ed that our experimental

results agree with our computer simulations based on the DAH to limited accuracy.

3.2 Experiments

The main goal of our experiments was to obtain clean quantitative data on the

time rate of sorting. We used tissues both from chick embryo and Hydra. We

designed the experiments to observe only the e�ects of adhesion in di�erent tissue

types. Therefore, one main goal was to eliminate pre-existing chemical gradients to

eliminate chemotactic e�ects.

3.2.1 Cell Sorting in Chicken

We used cells from chicken embryos because they are cheap and easily available com-

pared to mammalian embryos and because the cells in the individual tissues remain

adhesive and motile even after dissociation and reaggregation. We used cells from

eyes (pigmented and neural retinal), liver and heart tissue. The neural retinal, liver

and heart cells are translucent and therefore combining any of these two required

uorescent staining of one of the tissue types. In the �rst 6-8 days of development

the eyes have only two cell types: neural retinal (translucent) and pigmented epithe-

lial (almost black). A combination of pigmented and neural cells, therefore, provides

a very good contrast for imaging with simple bright-�eld microscopy.

We conducted experiments on 6-8 day old chicken embryos using standard tech-

niques [126] (see Appendix A for the full protocol). We separated the neural retinal

and pigmented retinal layers from the eyes of chicken embryos and dissociated them

into single cells. We mixed the two cell types in ratios ranging from 3 to 10 neural

cells for one pigmented cell. The pigmented cells have typical volume of 5.8 times

the volume of the neural retinal cells. The dissociation and random remixing de-
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stroys any pre-existing di�usible chemical gradients [126]. We cultured the mixture

in cell medium in a controlled temperature shaking water bath at 37ÆC. After 8-12

hr, when the cells adhered to form compact aggregates, we transferred some aggre-

gates to be cultured singly in specially designed observation chambers. We observed

the aggregates with an inverted optical microscope (Olympus IMT2). During ob-

servation, we maintained the culture ask at 37ÆC with the help of a heater and

temperature sensor feedback mechanism. The microscope connected to a CCD cam-

era (Hammamatsu C2400) which connected to an S-VHS Video Recorder and then

to a computer. We monitored sorting by capturing images and digitizing at regular

time intervals.

Figure 3.1 shows a few representative images. The images obtained from the

experimental aggregates are two-dimensional vertical projections of a three dimen-

sional structure. The aggregates ranged in diameter from 150 to 400 �m with 2 x

104 to 1 x 106 cells. Initially, the aggregate has a random distribution of neural

(light) and pigmented cells (dark). After about 12 h, an external monolayer of light

cells forms along the boundary of the aggregate and the dark cells partially sort

into larger clusters. After about 72 hr, the aggregate becomes spherical with the

neural retinal cells surrounding an internal core of pigmented epithelial cells. The

experimentally measured surface tensions for pigmented and neural cell aggregates

are 20.1 and 1.6 dyne/cm respectively, as discussed in Chapter 1 [3, 83]. Thus the

behavior of the aggregate agrees with the surface tension values: just like in immis-

cible liquids, the tissue with lower surface tension (less cohesiveness) spreads over

the more cohesive tissue, reecting the dominance of di�erential adhesion.
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t = 5 hr

t = 10 hr

t = 72 hr

Figure 3.1. Cell sorting. Time sequence during the sorting out of two intermingled
cell types from chick embryo: neural retinal (light cells) and pigmented retinal (dark
cells). The �nal aggregate is 200�m in diameter.
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3.2.2 E�ect of Cytochalasin

One of the principal means of locomotion of vertebrate cells in tissue culture involves

a \ru�ed" or \undulating" membrane located at the advancing edge of the actively

locomoting cell. Actin dynamics at the cell surface causes membrane ru�ing or

formation of lamellipodia [49, 53, 127]. These structures contain actin �laments

undergoing polymerization-depolymerization cycles. The drug Cytochalasin-B re-

versibly inhibits the activity of the ru�ed membrane and hence the motile activity

of the cells [128]. Inhibition of locomotion is rapid and complete at concentrations of

1-10 �g/ml. The cytochalasins, a family of metabolites excreted by various molds,

paralyze many kinds of vertebrate cell movement. The cytochalasins bind specif-

ically to the fast growing plus-ends of actin �laments, preventing the addition of

actin molecules there, and therefore membrane extension [129].

Are membrane uctuations required for cells to reach the minimum energy con-

�guration, or is cell rearrangement during sorting a passive process driven solely

by the adhesion energy gradient? Observations of cell sorting in the presence of

Cytochalasin can answer this question. Mombach et al. [5] studied the e�ect of Cy-

tochalasin B on sorting. Aggregates placed in culture medium containing 10 �g/ml

concentrations of Cytochalasin, sorted partially [5, 126], as seen in Figure 3.2. The

dark cells did not sort out to the center of a spherical aggregate. Instead, they formed

clusters in unrounded aggregates without an external light cell layer, presenting a

local order very di�erent from the global order found in the normal case. This ar-

rangement of tissues resembles that found in control aggregates (no Cytochalasin-B)

of intermediate stages of sorting. These observations show that membrane uctua-

tions are not essential for partial sorting but are required to reach the �nal state of

global minimum energy.
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Figure 3.2. Partially sorted aggregate of neural retinal and pigmented retinal cells
of chick embryos cultured in medium containing Cytochalasin-B. Image at 83 h after
the start of aggregation. Adapted from [5]

However, several experiments show that the degree of sorting in the presence

of Cytochalasin depends on the cell types employed. Cell sorting is completely

inhibited in some tissue type combinations: chick embryo heart-pigmented retinal

aggregates [126] or liver-heart combinations [130] (as opposed to the partial sorting

described above). Inhibition may depend on the magnitude of the di�erence in

cohesive strengths of the cell types employed. According to several experiments [35,

83], pigmented retinal cells are considerably more cohesive than neural retinal cells,

but heart, pigmented retinal and liver tissues di�er only slightly from one another

in their strengths of cellular adhesion. The neural-pigmented pair, therefore, has

a higher surface tension di�erence as compared to liver-heart and heart-pigmented

pairs. One possible explanation for the absence of sorting with the latter cell type

combinations could be that the di�erences in adhesiveness are too slight to result

in observable sorting under conditions without active cellular locomotion.

Some evidence suggests that, in addition to a�ecting cell motility, Cytochalasin-

B interferes with cellular adhesion by a�ecting some surface properties of the plasma
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membrane. Sanger et al. [131] observed that cells from some embryonic tissues did

not aggregate well or round up in the presence of Cytochalasin. Armstrong [126] and

Steinberg [130] observed that Cytochalasin hampered the aggregation and rounding

of chick embryo tissues, including neural retinal and limb-bud mesoderm to di�erent

extents. Steinberg also observed that fusion of two aggregates of the same tissue

type did not proceed to completion. These observations suggest that the addition

of Cytochalasin may change the absolute as well as relative surface tensions of

tissues. The partial sorting could result from the combination of the two factors -

inhibition of cell motility and changes in adhesion properties leading to changes in

relative surface tension. We will discuss this issue in greater detail in light of our

observations on tissue engulfment in Chapter 4.

In the case of partial sorting, the Young condition for surface tensions is satis�ed,

which is not true for an aggregate in normal medium. So, the ratios of the surface

tensions must have changed. A light cell monolayer does not form, as both dark

and light cells want to be in contact with the medium and with each other. Of

course, the cell motility also has been inhibited, so clusters cannot move to reach

the minimum energy state and dark cell clusters that are in the interior of the

aggregate, are trapped.

3.2.3 Cell Sorting in Hydra

Hydra is a useful model because (i) It is a simple organism with only two main

cell types. (ii) A dissociated and reconstituted mixture of Hydra tissues eventually

regenerates to form a functional animal. For our studies on Hydra we use two species

- Hydra vulgaris (or brown hydra) and Hydra viridissima (or green hydra). Hydra

is a freshwater polyp with a very simple body plan. It consists of a cylindrical body

column with two layers of cells (inner - endoderm and outer - ectoderm) sepa-
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rated by extracellular matrix - mesoglea. Figure 3.3 shows a single Hydra. Green

Hydra are very convenient because their endodermal cells auto-uoresce, eliminat-

ing the need for any kind of uorescent labeling. Cell aggregates of Hydra made by

dissociating the tissues into a suspension of single cells and then reaggregating them

by centrifugation can regenerate a complete adult in one week [64], illustrating the

re-establishment of morphology at the cellular and tissue level.

Figure 3.3. Adult Hydra (Hydra viridissima). Cylindrical body column with two
layers of cells. Inner layer - endoderm; outer layer - ectoderm. The endodermal
layer is autouorescent. The body is about 1mm in width.

In the �rst 12 hours the aggregate rounds up to form a spherical aggregate

with the ectodermal and endodermal cells sorting out to form layers. Within 24 to

72 hours this bilayer separates from the rest of the cells in the interior which are

expelled to form a cavity. Qualitative changes in the contact surfaces between indi-

vidual cells, the formation of mesoglea between the layers [132] and the appearance

of gap junctions and other junctions within the endodermal and ectodermal mono-

layers [133] probably stabilize the cavity. In the next three to four days, multiple

heads start forming on the aggregate. The aggregate eventually elongates behind

each head and separates out into individual Hydra.
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The regeneration of Hydra, in some ways, resembles embryogenesis in higher

animals. Formation of an internal cavity surrounded by an epithelial sheet is analo-

gous to formation of the blastocoel in an embryo, which later undergoes gastrulation.

Morphogen gradients can organize complex patterns of cell responses during mor-

phogenesis. Hydra tissues also secrete chemical morphogens which establish a spatial

structure. Reaction-di�usion mechanisms, which lead to the formation of compli-

cated patterns in higher animals, may be responsible here for breaking the spherical

symmetry of a Hydra aggregate and elongating the body column. As in other ani-

mals, Hydra cells di�erentiate into multiple types. The formation of tentacles may

be analogous to the extension of digits in vertebrate limbs [104] and with dendrite

growth in neurons, which may result from instabilities in certain types of reaction-

di�usion models [134]. Hydra tissues are also very good models for wound healing

studies. Living Hydra have immense regenerative properties - they heal regardless

of how they are cut, incised or injured. They can demonstrate cell movements and

the e�ect of di�erent chemicals during healing. A basic understanding of structure

formation in Hydra will be invaluable to the study of more complex organisms.

For cell sorting experiments, we use normal Hydra vulgaris maintained in a dis-

ease free culture at 18ÆC. We dissociate several whole animals into single cells and

reaggregate them using the standard protocol described in Appendix B. We ob-

serve aggregates and take time-lapse images for the �rst 12 hours. Figure 3.4 shows

the time evolution of the mixed aggregate. As before, we see the entire aggregate

rounding up and endodermal cells clustering to the inside of the aggregate. The

imaging procedure for aggregates from both kinds of Hydra is exactly the same as in

chicken experiments. All the images are two-dimensional projections of the actual

three-dimensional aggregate.
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t = 0 min

t = 123 min

t = 1213 min

Figure 3.4. Time sequence of cell sorting in three-dimensional Hydra tissues during
regeneration. The dark cells are endodermal and light cells are ectodermal. The
last aggregate is 380 �m long and contains a partially formed cavity.
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Rieu et al. [6] have observed Hydra cell sorting in at quasi-two-dimensional ag-

gregates. The two-dimensional setup allows for clearer visualization of individual

cluster shapes and dynamics. Figure 3.5 shows cell ows during sorting of endo-

dermal and ectodermal cells. We see that displacements of nearest neighbors show

correlations and cells move as coherent groups. The coherent motion leads to in-

ternal rounding of the endodermal clusters and circular ows of ectodermal cells

around endodermal clusters. When two dark clusters come close enough to coa-

lesce, they must squeeze out the intervening light cells. These studies show the

presence of hydrodynamic-like ows in cellular aggregates and reinforce the analogy

with liquids. Presumably, similar mechanisms are at work even in three-dimensional

aggregates. However, the two-dimensional experiments do not lead to the formation

of a single internal endodermal cluster [6]. Several separate endodermal clusters

persist possibly due to the reduced freedom of motion in two dimensions.

Recently, Kataoka etal: [7] imaged the entire three-dimensional process of sorting

using Magnetic Resonance Imaging (MRI) techniques. Figure 3.6 shows the time

sequence of MRI images of a regenerating cell aggregate. The quantitative dynamics

are similar to the two-dimensional case, discussed in the next sections.

3.3 Image Analysis

We captured images from the microscope using S-Video and then digitized them.

Image analysis used a combination of MATLAB and FORTRAN programs. We

used histo-equalization and thresholding to select dark, medium and light regions

corresponding to the two cell types and culture medium (with intensity values 0, 128

and 255 respectively). To �nd the boundary between the dark and light cell regions,

we used the criterion that the intensity pro�le of the digitized image should have
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Figure 3.5. Cell displacements during cell sorting in a two-dimensional Hydra aggre-
gate. The dark patches are endodermal cells and the outer curve denotes the bound-
ary of the ectodermal aggregate. Arrow sizes are proportional to cell displacements
during the time interval 120-150 min after aggregate formation. Adapted from [6]
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Figure 3.6. Time series of MRI images of a three-dimensional regenerating Hydra

aggregate. (a) 15 min, (b) 30 min, (c) 60 min, (d) 240 min. Scale bar is 200 �m.
The resolution is 5 �m x 5 �m in the horizontal plane and 50 �m in depth. Adapted
from [7]
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the largest slope at the boundary. Figure 3.7(b) shows a typical intensity pro�le

across a row in the image of an aggregate in Figure 3.7(a). We calculated the local

slope at each point across the pro�le and chose the points with maximum slope

as the boundary. We then used a boundary tracing algorithm implemented using

FORTRAN and MATLAB to locate the dark-light, dark-medium and light-medium

boundaries. The program also determined areas, radii of gyration of dark clusters

and number of clusters at every time step.
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Figure 3.7. Discrimination of dark-light interface. (a) Image of a typical aggregate
(pigmented and neural retinal cells). (b) Intensity pro�le across a row (y = 250)
within the image matrix
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3.4 Simulations

We have simulated cell sorting using the extended large-Q Potts model on a cubic

1003 element lattice to compare quantitatively with experimental results. These

simulations used positive surface energies and the Hamiltonian of Equation 2.7. (In

this section, we describe our initial simulations, in Section 3.6 we present the results

from more sophisticated simulations using negative surface energies). We de�ned

two cell types, more cohesive cells with less surface energy referred to as dark (d),

and less cohesive cells with more surface energy or light (l) cells. The light cells

represent neural retinal cells from chick embryo or ectodermal cells from Hydra.

The dark cells represent the pigmented retinal cells from chick or endodermal cells

from Hydra. In addition, we also simulate a surrounding uid medium as a single

cell of another cell type (M) with zero target area so that it has an unconstrained

volume. Thus the cell type parameter �(�) can have three values d, l, and M. To

eliminate fragmentation of cells, we anneal the simulation briey at T = 0 before

calculating statistics.

For complete sorting, the tissue interfacial tensions are constrained by the equa-

tion [83]:

�(d; d) >
�(d; d) + �(l; l)� �(d; l)

2
� �(l; l): (3.1)

The surface energies must accordingly obey the inequalities:

0 < Jdd <
Jdd + Jll

2
< Jdl < Jll < JlM = JdM : (3.2)

The values of surface energies assigned to the cells and medium are: J(1; 1) =

7; J(1; 2) = J(2; 1) = 5; J(1; 3) = J(3; 1) = 8; J(2; 2) = 2 and J(3; 3) = 16: These

result in surface tension values of �(l; l) = 4.5 for the light-medium interface, �(d; d)

= 7.0 for the dark-medium interface and �(d; l) = 0.5 for the dark-light interface,
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yielding a ratio between light-medium and dark-medium interfacial tensions of 0.64.

The experimental surface tensions for liver and heart cell aggregates from chick

embryo are 4.3 � 0.1 and 8.3 � 0.1 dyn/cm respectively, which yield a ratio of

about 0.52 [85, 83]. The ratio for Hydra ectoderm and endoderm is estimated to be

0.6 [135]. However, heterotypic tissue interfacial tensions (e.g. dark-light) have not

been measured experimentally.

We measure the fractional boundary lengths which depend on the relative sizes

and numbers of the di�erent cell types. We therefore set the relative cell sizes in the

simulation equal to the experimental values. Neural retinal cells (in spherical form)

have an average diameter of � 5 �m (�0.3 �m) and the pigmented retinal cells � 9

�m (�1.6 �m), which yields a volume ratio of � 5.8. (Although cells are not entirely

spherical in the aggregate, the volume ratio still holds). In the simulation too, we set

the ratio of the target volumes of light and dark cells to 5.8 with light cells having a

typical target volume of 100 sites and dark cells having a volume of 580 lattice sites.

We set the volume constraint parameter to be � = 1. To simulate normal sorting

we set the uctuation temperature T = 32, giving typical uctuations of �1 lattice
site corresponding to experimentally observed uctuations of about 1 �m for Hydra

cells of 5-10 �m diameter [125].

To compare with the same quantity as in the experiment, we project the ag-

gregate onto a plane by scanning the columns of the three-dimensional matrix. A

column with at least one dark cell generates a dark site on the projected plane, a

column with only lighter cells generates a light site and a column with only medium

generates a medium site. With this algorithm, all dark cells in the aggregate are

visible. This method fairly closely approximates the experiments, as the light cells
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are translucent and the aggregates small. Figure 3.8 shows projections of a three-

dimensional aggregate at successive times in the simulation.

Figure 3.9 shows a two-dimensional simulation on a small lattice with all the cells

and cell boundaries visible. We can see clearly that cell boundaries are represented

quite realistically and observe the shape changes as cells move and exchange neigh-

bors. The aggregate remains spherical. In general, the two-dimensional simulation

of sorting is slower than the three-dimensional simulation because fewer degrees of

freedom result in trapping of heterotypic cells. In three dimensions, cells are free to

move in all directions and contact is not restricted to a plane.

3.5 Results and Comparison

We simulated cell sorting using an initial con�guration of two randomly intermixed

cell types and compared the results with the experiments. In Figure 3.10, we re-

produce the time evolution of the boundary lengths of normal and partial sorting

respectively. Points represent the average of 2-6 di�erent aggregates. We rescaled

the time in the simulation to real time in the experiment by the best coincidence

between order parameters at early and late stages. These results show that the

time scale for sorting is logarithmic. In normal sorting, the light-dark boundary

decreases as both cell types segregate, while the light-medium boundary increases

and the dark-medium boundary decreases to zero as a result of the formation of the

light cell layer, until they reach plateaus once the aggregation is complete (i.e. the

cells have sorted out and the aggregate as well as the inner core of dark cells has

rounded). The formation of the external monolayer of light cells is much faster (10

hr) than the characteristic time scale for complete sorting (72 hr).
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Figure 3.8. Simulation of cell sorting for dark (more cohesive) and light (less co-
hesive) cells. The �gures show a two-dimensional projection of a three-dimensional
aggregate at times 10 MCS, 1000 MCS and 8000 MCS from top to bottom. The
lattice size is 100x100x100 pix3, each dark cell is about 8 pix in diameter, and the
temperature is T = 32. The outer dark region is medium. We do not show light-light
or dark-dark cell boundaries.
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Figure 3.9. Simulation of cell sorting on a two-dimensional lattice (300 x 300). The
temperature is T = 10 and the times are 1, 2, 4, 15, 17, 21, 23, 37 and 141 MCS
from left to right and top to bottom.
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Figure 3.10. Time evolution of boundary lengths for cell sorting experiments (open
symbols) and simulation (closed symbols). Circles: boundary between dark and
light cells. Squares: boundary between light cells and medium. Triangles: boundary
between dark cells and medium. Adapted from [5]

We measured boundary lengths for larger aggregates (300 - 500 �m in diameter)

than those observed by Mombach et al. (� 200 �m) [5]. In Figure 3.11, we plot

the time evolution of the boundary lengths between pigmented and neural cells for

a typical aggregate and observe the same logarithmic behavior.

Figure 3.12 shows a time series of the interfacial length between Hydra endo-

dermal and ectodermal cells during sorting. We �nd that cell sorting in Hydra is

a logarithmic process, just as in chicken embryos, and as predicted by the Potts

model simulations. An important di�erence, however, between the time scales of

sorting in Hydra and chicken, is that, as seen from the graphs, Hydra cells take on

the order of 5-6 hours to sort whereas chicken aggregates of comparable size take

up to 4-5 days. The faster sorting times are consistent with the much faster Hydra
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Figure 3.11. Time evolution of boundary length between pigmented and neural
tissues for cell sorting experiments in chicken embryo

cell velocities (average velocity of � 100�m/hr) vs: chicken cell velocities (average

velocity of � 2�m/hr).

Kataoka et al. [7] also showed logarithmic time evolution of boundary lengths

in three-dimensional observations of sorting in Hydra (Figure 3.13). Their results

indicate that the same dynamics do indeed hold in three dimensions as well as in

two-dimensional projections.

Figure 3.14 shows the decrease in boundary length for a three-dimensional sim-

ulated aggregate. Simulations using the Potts model (with the lattice and parame-

ters described in Section 3.4) show the same logarithmic time evolution of boundary

length during sorting as seen in experiments with chicken and Hydra cells.
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Figure 3.12. Time evolution of boundary lengths for cell sorting in Hydra cell aggre-
gates. The graph shows the evolution of boundary between ectoderm and endoderm.
The at tail when the boundary lengths stopped decreasing indicates complete sort-
ing.

Figure 3.13. Time evolution of the correlation length or the mean distance between
endodermal cells during sorting in three-dimensional Hydra aggregates as obtained
from MRI images. Adapted from [7]
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Figure 3.14. Time evolution of boundary lengths for cell sorting in three-dimensional
Potts model simulation. The values of the various parameters are: J(1; 1) =
7; J(1; 2) = J(2; 1) = 5; J(1; 3) = J(3; 1) = 8; J(2; 2) = 2; J(3; 3) = 16;� =
1;T = 32:

3.6 Simulations with Negative Energies

The simulations with positive energies suÆce to model cell sorting but fail to repro-

duce single cell di�usion accurately. In Chapter 5, we present a detailed description

of these results and a comparison with experiments. To correct the di�usion, we

modi�ed the Hamiltonian (Equation 2.12, as explained in Chapter 2) to use correct

negative binding energies with a surface area constraint (perimeter in two dimen-

sions) as well as a volume constraint (area in two dimensions). We simulated cell

sorting in two dimensions with the modi�ed Hamiltonian to test whether it repro-

duced the dynamics correctly. The values of coupling constants were: J(1; 1) =

�7:33; J(1; 2) = J(2; 1) = �8:33; J(1; 3) = J(3; 1) = �0:667; J(2; 2) = �11:33.
These values yield the same values of interfacial tensions as used for the earlier sim-
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ulations. We set the area constraint to � = 1, the perimeter constraint to � = 1 and

the temperature to T = 10. Figure 3.15 shows that the sorting pattern is normal.

Figure 3.16 shows that the decrease in boundary lengths between dark and light

cells is also logarithmic in time. The logarithmic decay is consistent with previous

simulations and experiments and shows that changing the Hamiltonian in this way

does not change the observed sorting dynamics. These modi�cations make the

simulation more realistic. The surface area and volume constraints control the cell

shapes. The spin-spin coupling acts only as an adhesive interaction.

A comparison of the time rate of cell sorting for di�erent values of the area

and perimeter constraints highlights some properties of the simulation. Figure 3.18

shows the e�ect of changing the temperature on the evolution times. At zero temper-

ature, the pattern freezes and does not sort. At T=1 and T=2, sorting is extremely

slow, but a light-cell monolayer does not form within our observation time. T=5,

T=10 and T=20 represent a regime where sorting is normal. However, contrary to

what we would expect, sorting at T=20 is slower than at T=10. Thermal uctua-

tions start to dominate. The e�ect is very clear for T=40 and T=80. Strong thermal

uctuations prevent the lattice from reducing its light-dark heterotypic boundary

length. The boundary length reaches a plateau before formation of a light mono-

layer. The cell boundaries appear highly crumpled and a few cells escape into the

outer medium. The simulation temperature represents the cytoskeletal uctuation

amplitudes of the cell membrane. Normal sorting requires optimum values of mem-

brane uctuations. We discuss the e�ect of membrane uctuations in di�erent cell

types in Chapter 5.

Figure 3.19 shows the e�ect of changing the area constraint � on the evolution

times. Sorting is slowest for the largest values of � and sorting time decreases
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Figure 3.15. Two-dimensional simulation of cell sorting using negative energies: (a)
Time = 2000 MCS. (b) Time = 80000 MCS. (c) Time = 640000 MCS. The values
of various parameters are: J(1; 1) = �7:33; J(1; 2) = J(2; 1) = �8:33; J(1; 3) =
J(3; 1) = �0:667; J(2; 2) = �11:33; �=1; �=1; and T=10.
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Figure 3.16. Logarithmic time evolution of dark-light boundary length for cell sort-
ing in simulated two-dimensional aggregates with perimeter constraint and negative
energies. The values of various parameters are: J(1; 1) = �7:33; J(1; 2) = J(2; 1) =
�8:33; J(1; 3) = J(3; 1) = �0:667; J(2; 2) = �11:33; �=1; �=1; and T=10.

smoothly as a function of �. The pattern did not freeze for any of the observed

values, but may do so for much larger values. Qualitatively, the area constraint

makes the cell more rigid and less likely to shrink. Consequently, the cell areas were

closer to the target area (35), for higher � values. For low �'s (0.01, 0.2), the cell

boundaries appear very exible and the cell areas are quite far from the target area.

The cells keep shrinking as the simulation proceeds (for �=0.01, the cell area falls

to 15; for �=0.2, the cell area falls to 23). Cells do not disappear even for very small

values of �, as they do in the positive energy simulations, because of the perimeter

constraint which does not allow the cells either to disappear or break up. The cells

become accid and very deformable in order to maximize their boundary.

We also studied the e�ect of varying the perimeter constraint �. Figure 3.20

shows the evolution of boundary lengths for di�erent values of � with T and �
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Figure 3.17. Time evolution of dark-medium (lower) and light-medium (upper)
boundary length for cell sorting in simulated two-dimensional aggregates with
perimeter constraint and negative energies. The values of various parameters are:
J(1; 1) = �7:33; J(1; 2) = J(2; 1) = �8:33; J(1; 3) = J(3; 1) = �0:667; J(2; 2) =
�11:33; �=1; �=1; and T=10.
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Figure 3.18. Time evolution of dark-light boundary lengths at di�erent tempera-
tures in simulated two-dimensional aggregates with perimeter constraint and neg-
ative energies. The various parameters are: J(1; 1) = �7:33; J(1; 2) = J(2; 1) =
�8:33; J(1; 3) = J(3; 1) = �0:667; J(2; 2) = �11:33; �=1; and �=1. The tem-
peratures are: T=1 (squares), T=2 (triangles), T=5 (circles), T=10 (dashed line),
T=20 (solid line), T=40 (dash-dotted line), and T=80 (dotted line).
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Figure 3.19. Time evolution of dark-light boundary lengths for various values of �
in simulated two-dimensional aggregates with negative energies. The values of the
parameters are: J(1; 1) = �7:33; J(1; 2) = J(2; 1) = �8:33; J(1; 3) = J(3; 1) =
�0:667; J(2; 2) = �11:33; �=1; and T=10. The values of � are: �=10 (squares);
�=5 (triangles); �=2 (dashed line); �=1 (solid line); and �=0.2 (dash-dotted line).
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�xed. For �=10, the pattern almost freezes, with hardly any change in boundary

length. �=5 results in a very slow evolution, the monolayer does not form com-

pletely. For � = 2, 1 and 0.2, we observe normal sorting. When �=2, typical cell

perimeters (140) are much larger than the target perimeter (125), due to the weak

perimeter constraint. The perimeter constraint plays the role of the bending and

shear elasticity of the cell membrane; higher values prevent the cell from stretching

or deforming. Low values allow greater exibility.
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Figure 3.20. Time evolution of dark-light boundary lengths for various values of �
in simulated two-dimensional aggregates with negative energies. The values of the
parameters are: J(1; 1) = �7:33; J(1; 2) = J(2; 1) = �8:33; J(1; 3) = J(3; 1) =
�0:667; J(2; 2) = �11:33; �=1; and T=10. The values of � are: �=10 (dotted line);
�=5 (dashed line); �=2 (solid line); �=1 (dash-dotted line); and �=0.2 (squares).

The agreement between simulation and experiment suggests that di�erential

adhesion is the main mechanism involved in cell sorting. The adhesion energy

landscape has moderate local minima, which the cells overcome with the help of

cytoskeletal uctuations, to reach the �nal state of global energy minimum. In spite

of the large number and variety of speci�c molecules involved in the innumerable
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chemical and signaling pathways, a simple factor - the relative surface energies -

governs the macroscopic motion and �nal con�guration of cellular aggregates. This

e�ect of surface adhesions/surface tensions on sorting seems to be a property of a

wide variety of tissues [84, 83] and therefore independent of the speci�c molecules

involved. At this level of description, the nature of the molecules is irrelevant,

except in the degree of adhesion they generate. The interactions of cell adhesion

molecules on and between cell membranes and with the substrate give rise to forces.

These forces determine the extent of tissue immiscibility and spreading and generate

measurable surface and interfacial free energies. The same forces can arise from

di�erent speci�c molecules, but lead to the same morphogenetic patterns. The

agreement in kinetics also suggests that the assumptions of time invariant adhesions

and thermodynamics are reasonable. We can predict from simulations that increased

cell membrane rigidity or cell turgidity (osmotic pressure) will slow sorting, while

oppy cells with large surface to volume ratio will sort rapidly.

That the relative values of a single physical parameter, the tissue surface ten-

sion, should alone be capable of explaining all cases of tissue sorting and spreading,

seems an over-simpli�cation. But, regardless of what other properties cells have

and how these properties change due to cell signalling and interactions, if the cells

remain mobile cohesive units, their adhesive interactions will constantly act as a

set of unavoidable physical determinants compelling them to shift positions at ev-

ery opportunity to increase their binding intensities. Cells are constantly moving,

breaking and remaking bonds as they change their neighbors. If they encounter

cells with which they form stronger bonds, they tend to stick, while if the bonds

are weaker, the probability of detachment is greater. Through repetitions of this

process, as long as the cell membrane uctuations are strong enough to break bonds
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and weak enough not to overwhelm the energy gradients, the cell population ap-

proaches a con�guration in which it maximizes the total intensity of bonds and its

interfacial free energy represents nearly a global minimum.

3.7 Phase Separation

Comparison with the Potts model simulations can at best be semi-quantitative.

The simulation essentially reproduces the energetics of the evolution. Extracting

experimental quantities like viscosity which is crucial in determining the dynamics

of sorting, is not very easy. To better understand the mechanism of cell sorting we

consider an hydrodynamic analogy. Cell sorting is qualitatively similar to the phase

separation of two immiscible liquids. We can characterize cells as materials with

uid properties. The aggregate viscosity is much larger than water, so cells are too

big to di�use eÆciently under thermal agitation. Surface tension driven ow and

active uctuations of cell membranes govern the dynamics.

During the time evolution of developing patterns, a common growth mechanism

is the coalescence or fusion of interacting domains, especially in tissues and liquids

where the coalescence of two clusters or drops governs the morphology and kinetics.

In liquids, coalescence is hydrodynamic, driven by the interfacial tension � between

the two phases and damped by the viscosity � of the more viscous phase [136, 137].

Experiments with uids under reduced gravity provide some very general results

for uid droplet coalescence [138]. To what extent does the theory for uids apply

to biological tissues? We have experimentally measured the size distribution and

growth law for cell clusters during sorting. We wish to develop an hydrodynamic

model for cell sorting similar to that for uids. Can we generalize the uid analogy

for embryonic tissues to interpret the kinetics of sorting?
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When we thermally quench a homogeneous mixture of two uids (from its one

phase region to the two-phase region) through its critical temperature at its critical

concentration, it phase separates, in spinodal decomposition. The domains of

the two phases nucleate and grow. Figure 3.21 shows the evolution of the pattern

by droplet coalescence during spinodal decomposition [8].

Figure 3.21. Pattern evolution during spinodal decomposition in OCL/OS
(oligomeric mixture), at intervals 2s, 9s, 60s, 120s and 1110s respectively after
quenching through the phase-separating temperature (150ÆC). Adapted from [8]

Two alternative regimes of coarsening are possible. When the volume of the

minority fraction � is lower than a threshold, the domain size grows as:

R / t1=3; (3.3)

where R is a characteristic domain size and t is the elapsed time [139]. The do-

mains grow as spherical drops. Recent experiments [140] show that for 0.1 < � <

0.3, the mechanism of Brownian drop motion and coalescence can explain the t1=3

growth. Droplets of the minority phase di�use due to thermally activated Brownian

motion. When two droplets collide, they recombine to form a drop of larger size.

Hydrodynamic interactions do not play an important part in this regime. (When
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� < 0.1, the mechanism is a Lifshitz-Slyozov growth which also yields R / t1=3.)

Smoluchowski �rst considered the Brownian mechanism for coagulation of colloids

and Binder and Stau�er [141] and Siggia [136] applied it to phase separation.

For large volume fractions (� > 0.3), coalescence creates a complicated inter-

connected network of droplets. The droplets collide and coalesce due to attractive

hydrodynamic interactions [138]. The domains of the minority phase grow and the

coarsening law is linear in time. The tube instability explains the linear growth

rate. For concentrated mixtures, spinodal decomposition results in the initial for-

mation of an interconnected mixture. We can idealize the interconnected structure

as a long uid tube of radius R. The capillary pressure at any point along the in-

terface will be approximately �=R. However, this pressure must match that in the

bulk uid given by the Navier-Stokes equation which is roughly ��v. Dimensional

analysis then leads to the growth law:

R � �

�
t: (3.4)

These results hold for three dimensional uids. In two dimensions, which we will

not discuss here, somewhat di�erent results obtain [142, 143].

3.7.1 Growth Law for Dense Aggregates

In this section, we show evidence that mixtures of two types of tissues can behave

like phase separating liquids, qualitatively and quantitatively. The liquid droplets

correspond to individual cells and when two highly adhesive cells come in contact,

they adhere to each other and change shape to form a larger spherical cluster, just

as two droplets merge to form a bigger droplet of larger radius. Cells are in very

close contact with each other. To move within the aggregate, they need to squeeze
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past other neighboring cells. This type of motion could lead to some hydrodynamic

interactions similar to those found in liquids.

To examine growth laws, we considered the cell sorting experiments with neural

retinal and pigmented epithelial cells which we described before. Figure 3.22 shows

the growth of pigmented clusters in neural retinal tissue.

The image analysis was the same as before. We calculated the radius of gyration

of each of the cell clusters at every time step. We took the average value and plotted

it as a function of time. The smaller clusters grew larger until only one large cluster

of dark cells survived. Figure 3.23 shows that the cluster sizes grow linearly in time,

in agreement with the theory for the case of large volume fractions. We �t the data

to:

L = A+Bt; (3.5)

with A = (32.3 � 5) �m and B = (2.7�0.3) �m s�1.

We can thus understand cell sorting as a consequence of the fusion of cells and

cell clusters. We can describe it in terms of an e�ective tissue viscosity and surface

tension, both of which depend on the degree of cell adhesion. As cells move, they

constantly rupture and reform their bonds with other cells. The greater the binding

energy of the adhesion molecules, the more stable the bonds will be. The friction

experienced by the cells (which directly relates to the viscosity) will be proportional

to the number of adhesion molecules on the surface.

The rate of sorting should depend on the particular tissue types used. By con-

ducting experiments on several tissue-pairs (e.g liver-pigmented, neural-liver etc.),

we should be able to obtain sorting rates for the di�erent cases. The values obtained

from the linear growth law yield the binding energies between cells [144].
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t = 38 hr

t = 64 hr

t = 88 hr

Figure 3.22. Sorting out of pigmented (dark) and neural (light) cells. The dark cell
clusters coalesce and grow to form eventually a fully sorted aggregate with only one
large cluster.
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Figure 3.23. Growth of mean size of pigmented cell clusters in neural aggregate as
a function of time. The graph shows a linear growth law.

3.7.2 Phase Diagram

We estimate the volume fraction of the tissues from the surface fraction of the

minority phase. To calculate the surface fraction, we analyze the digitized images

as explained before. We separate the dark cells, light cells and surrounding medium

into distinct regions with a single grey level value for each. We then count the total

area of the dark and light phases to give the surface fraction f . This value depends

on the value of threshold chosen to identify the di�erent regions. To make the

process more consistent, we choose the threshold in such a way that the boundary

between dark and light cells is at the point of highest contrast (as explained in

Section 3.3). However, the relation between the surface fraction f and the volume

fraction � is not simple. We cannot extract � from the earlier pictures of the time

evolution where the dark clusters are scattered. In the last picture of the fully

sorted tissue, we can get a crude estimate of the volume fraction by assuming that
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the aggregate roughly resembles two concentric spheres. We then obtain:

� = f 3=2: (3.6)

The time taken to complete sorting will depend on several factors: the surface

fraction of dark cells, the size of the aggregate and the particular cell types used

(since they have di�erent adhesion properties). We conducted several sorting ex-

periments with aggregates of di�erent sizes and with varying fractions of dark cells.

The number ratios for neural retinal cells to pigmented retinal cells ranged from 10:1

to 50:1. Our goal was to study the size of the aggregate versus the surface fraction

of dark cells with respect to the time taken for complete sorting. Did aggregates of

all sizes and surface fractions always sort? We also wanted to determine the growth

rate at low volume fractions.

Figure 3.24 shows a plot of aggregate sizes as a function of volume fraction of

dark tissue 76 hr after aggregate formation (circles and bullets) and 120 hr after

aggregation (stars). We see that all small aggregates, with high or low volume frac-

tions have sorted completely (denoted by open circles). On the other hand, most

large aggregates (> 8x104 �m2) are only partially sorted (denoted by solid bullets).

Only the large aggregates that have about 30% surface fraction of pigmented cells

have sorted fully. We also see that after 120 hr, even some large (� 8x104 �m2)

aggregates (denoted by crosses) have sorted out completely. The largest such ag-

gregate (16x104 �m2) has a surface fraction of 0.22 which corresponds to a volume

fraction � = 0.1 that is 10%. From these data, a threshold of 30% below which

phase separation is not complete, as for liquids, seems unlikely. However, we need

to test this threshold with experiments using very dilute concentrations of dark cells

in large neural aggregates. Preliminary experiments show that due to the very low

mobility of cells in tissue, growth of dilute aggregates is extremely slow and quan-
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titative results with adequate scaling are diÆcult to obtain. As cluster sizes grow,

the di�usivity decreases. Clusters do not grow much over the time that we can keep

aggregates alive.
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Figure 3.24. Graph depicting degree of sorting of aggregates of various sizes as a
function of the fraction of dark (pigmented epithelium) cells. Open circles: Fully
sorted aggregates 76 hours after aggregate formation. Bullets: Partially sorted
aggregates after 76 hours. Stars: fully sorted aggregates 120 hours after aggregate
formation

3.7.3 Preliminary Simulations

The several types of simulation of the phase separation of binary uids include

molecular dynamics and lattice Boltzmann approaches which take into account the

detailed hydrodynamic contributions [145]. Some of them are inconsistent with

scaling arguments based on dimensional analysis (as described in Section 3.7). For

example, Ma et al. [145] found a growth exponent of 0.6�0.1 for the domain size, not
1. Do cells and tissues really behave like liquids, even if the they happen to follow

the same growth laws? Potts model simulations may be able to answer this question.
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A comparison of the growth laws for dense and dilute simulated cell mixtures with

those found for liquids and real tissues will be very useful and may provide valuable

insight into how cells behave. We have performed preliminary simulations (using the

original positive energy Hamiltonian, Equation 2.7) of sorting in two-dimensional

aggregates with varying concentrations of dark (more cohesive) cells. Simulations in

three dimensions (which are computationally very intensive) and using the negative

energy Hamiltonian are the subject of current research.

In Figure 3.25, we plot the heterotypic interface length as a function of time

for three di�erent concentrations of dark cells: 30%, 50% and 70%. We see that

the time scale of sorting is logarithmic for all cases. The aggregate with (50%)

concentration has an interconnected dark cell cluster almost throughout the sorting.

The aggregates with 30% and 70% of dark cells form isolated clusters of dark and

light cells respectively.
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Figure 3.25. Fractional boundary length of the heterotypic (dark-light) interface
for di�erent concentrations of dark cells. Solid: concentration is 30%. Dashed:
concentration is 50%. Dotted: concentration is 70%.
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In Figure 3.26, we show the �nal images of the aggregates after the sorting sim-

ulations. When the concentration is 30%, the dark cells form several large clusters

which are well separated from each other. The boundary length between dark and

light is still decreasing slowly as we can see from the solid curve of Figure 3.25.

However, from about 1000 MCS, when most of the small clusters have fused into a

few large clusters, the curve has a smaller slope than before. Eventually, the cells

may sort out, but they will take an extremely long time. Or, they may remain

stuck in a metastable local minimum. At a concentration of 50% dark cells, sorting

is complete by 10000 MCS. The boundary length (dashed curve) is still decreasing

due to rounding of the inner cluster. For a dark cell concentration of 70%, an outer

light monolayer forms as expected, but the fewer light cells in the interior of the

aggregate trap within the large mass of dark tissue. In some ways, we see a reversal

of positions due to the peculiar two-dimensional geometry. Again, the cells do not

sort out on the observed time scales, and may stick in a local minimum.

(a) (b) (c)

Figure 3.26. Simulation of cell sorting in 2D aggregates: (a) Concentration of dark
cells is 30%. (b) Concentration is 50%. (c) Concentration is 70%.
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Future work will involve simulation of cell sorting for varying concentrations

of dark cells in large three-dimensional aggregates. We expect that, in three-

dimensional aggregates, we will not observe the formation of these metastable states

at low and high concentrations. The extra degree of freedom should allow the cell

clusters to connect to each other and facilitate sorting. For extremely low concentra-

tions, we may observe trapping. We have yet to determine the critical concentration

below which aggregates do not sort. We will also repeat our analysis of the growth

rate of the characteristic wavelength (or domain size) for the simulations in two and

three dimensions to compare with the theory for uids.
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CHAPTER 4

TISSUE ENGULFMENT

4.1 Introduction

Any two immiscible liquids in contact have a characteristic interfacial tension. Be-

cause a change in the area of the interface has a cost in terms of free energy for

uids at equilibrium, the interface will have a well de�ned shape. In other words,

the degree of mutual spreading of contiguous liquids or the engulfment of one liquid

(or tissue) by another, will depend on the relative strength of the interfacial tension

between the two liquids compared with the tensions at the interfaces of the two

liquids with their other bounding medium [9] (Figure 4.1). Because the relative

balance of adhesive interactions at the various interfaces determines the extent of

spreading, the adhesion or de-adhesion of a cell population to di�erent bounding

surfaces can drive its motion [146].

Individual cells also exhibit uid properties and can locomote along adhesive

substrates by interfacial tension. This phenomenon is called haptotaxis [31]. How-

ever, a single cell can move along its substrate by haptotaxis only if the substrate

becomes progressively more adhesive with distance i.e. in the presence of an adhe-

sion gradient. On the other hand, the liquid-like spreading of the tissue as a whole

along a substrate, much like the spreading of a �lm of oil on water, can explain the

concerted movement of a cell population. The substrate needs to be adhesive, but

need not contain an adhesion gradient.
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Figure 4.1. Photographs of the stages of complete engulfment of water plus 1%
malachite green (black drop) by a drop of polyglycol oil, suspended in silicone oil.
Frames 1 to 6 show the penetration of the aqueous phase into the oil phase, and
frames 7 to 9 show the subsequent relaxation of the deformed water drop into the
oil drop. The total elapsed time is 0.9 sec. The diameter of the polyglycol oil is 0.8
mm. Adapted from [9]
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In this chapter, we present the �rst quantitative studies of experiments and

computer simulations of engulfment in embryonic chicken tissues. We measure com-

parable parameters in both cases and establish that di�erential adhesion is the key

mechanism driving tissue spreading. We also compare engulfment with the coa-

lescence of liquid drops using the theory for liquids. The simulation predicts that

engulfment does not require active uctuations of cell membranes. We test this

hypothesis by carrying out engulfment in the presence of Cytochalasin-B and at

reduced tempreratures.

4.2 Theoretical Background

We treat the two types of tissues and the culture medium as analogous to three liquid

phases. In Figure 4.2, we show schematically three phases, �, � and , occupying

the dihedral angles between locally planar interfaces (��, �, and �), which meet

at the three-phase line. The contact angles �, � and  are named after the phases

they contain. We have:

� + � +  = 2�: (4.1)

At equilibrium, the net force on any element of the three-phase line vanishes.

Resolving this force in directions that are along the ��, �, and � interfaces and

are perpendicular to the three-phase line, we have:

��� + �� cos � + �� cos� = 0; (4.2)

��� cos � + �� + �� cos  = 0; (4.3)

��� cos� + �� cos  + �� = 0; (4.4)

(4.5)
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Figure 4.2. Schematic diagram of three uid phases �, � and , meeting in a three-
phase line

where ��� is the tension of the �� interface. From Equations 4.1 and 4.5, we can

obtain the generic relations:

���

��
=

sin 

sin�
; (4.6)

and similarly for the other tensions. That is, we can only determine ratios of surface

tensions, rather than the tensions themselves, in terms of the contact angles. The

physical reason is that the forces on any element of the three-phase line would still

balance with the same contact angles, if we multiply all the tensions by a common

factor. Solving Equation 4.5, we obtain the cosine of the contact angles as:

cos � =
(��)2 � (���)2 � (��)2

2�����
: (4.7)

From Equations 4.6 and 4.7, we see that the interfacial tensions and the sup-

plements of the contact angles form the sides and angles of a triangle (Figure 4.3).

This triangle is called Neumann's triangle. The three interfacial tensions satisfy

the triangle inequalities [147]:
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�� < �� + ���: (4.8)

The largest of the three tensions must be less than the sum of the other two.

When this condition is met, the equilibrium con�guration is that shown in Fig-

ure 4.2. When the largest of the three tensions (��) equals the sum of the other

two, the Neumann triangle degenerates to a line (Antonow's Rule).

π−α π−γ

π−β σβγ
σαβ

σαγ

Figure 4.3. Schematic representation of Neumann's triangle

When two immiscible liquid drops suspended in a third immiscible liquid come

into contact, three equilibrium con�gurations which depend on the spreading coef-

�cients are possible. Suppose we consider the situation in which two drops (phases

1 and 3) with radii b1 and b2 come into contact in the liquid medium (phase 3).

In this situation, we have three interfaces - the 12, 23 and 13 interfaces. The ba-

sic assumption is that the three interfacial tensions �ij solely determine the �nal

equilibrium (gravity, uid motion and inter-particle interactions do not determine

the equilibrium con�guration, though they may play an important role in attaining

equilibrium). We de�ne the spreading coeÆcient as:

Si = �jk � (�ij + �ik): (4.9)
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The three possible sets of values for Si are:

S1 < 0; S2 < 0; S3 > 0; (4.10)

S1 < 0; S2 < 0; S3 < 0; (4.11)

S1 < 0; S2 > 0; S3 < 0: (4.12)

σ23
σ12

1 3

2

σ13

Figure 4.4. Schematic diagram of two drops of phase 1 and phase 3 immersed in
medium of phase 2. The arrows indicate the three interfacial tensions �12, �13 and
�23.

Our experiments fall in category (4.11) in which we observe complete engulfment.

Phase 3 completely absorbs phase 1 to form a spherical drop with two spherical

interfaces (23 and 13). The external radius of this compound drop is:

r23 = (b1
3 + b3

2)1=3: (4.13)

Engulfment occurs by two competing processes: (i) the penetration of phase 1

into phase 3 under the action of a positive capillary pressure di�erence:

�p13 = 2(�12=b1 � �23=b3); (4.14)
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across the 13 interface; and (ii) the spreading of phase 3 over phase 1 under the

action of S3.

The second condition (4.12) is the case of partial engulfment. The three interfa-

cial tensions form the sides of a Neumann triangle with the 12, 13 and 23 interfaces

in equilibrium along a 123 line bounding the three phases, as explained earlier. If

the last condition (4.12) holds, the 13 interface cannot form spontaneously, and the

drops remain separated.

4.3 Experiment

4.3.1 Basic Protocol

We have conducted experiments on tissue engulfment with di�erent combinations

of cell aggregates from chicken embryos - neural retinal, heart and liver cells. Let us

�rst consider the case of heart and neural retinal cells. We dissected these tissues

from chicken embryos and dissociated them using the standard protocol described in

Appendix A. Using the uorescent dye DiI, we stained the heart cells. We then made

spherical aggregates with stained (heart) and unstained (neural retinal) cells and

centrifuged two aggregates at a time to make adherent pairs (one stained and one

unstained) for observation. (See complete protocol in Appendix A). We transferred

each aggregate pair to one well of a 24-well cell-well plate for observation under the

microscope.

We took images using the microscope-video-computer setup as described in

Chapter 3 and saved them digitally on the computer every 30-60 min to obtain

two-dimensional projections of the three-dimensional aggregates. We viewed the

uorescent aggregates by exciting the dye molecules with light of wavelength 460

nm. (The emission wavelength is 580 nm). Simultaneously, we used regular white

light illumination of reduced power to see faintly the non-uorescent aggregate. In
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the images, then, the uorescent aggregate is the brightest, the second aggregate has

an intermediate level of brightness and the surrounding medium is the darkest. We

histo-equalized the images and thresholded to bin them into three intensity regimes:

dark, medium and light. We then located the boundaries of both aggregates as

well as the boundary of the interface between the two. Since the uorescence is

bright, we can easily locate the sharp interface between the uorescent and non-

uorescent aggregate using a boundary tracing algorithm. We used FORTRAN and

MATLAB programs for the image analysis.

4.3.2 Use of Cytochalasin

We wanted to observe whether engulfment does indeed occur in the absence of ac-

tive uctuations of the cell membrane. The ability of Cytochalasin to inhibit active

cellular motion makes it useful for investigating the movement of cells in three-

dimensional cell aggregates. We use Cytochalasin-B in our experiments to suppress

membrane activity (see Chapter 3 for more details). We modify the medium by

adding Cytochalasin-B which we have �rst dissolved in DMSO (di-methyl sulfox-

ide). We carry out the entire experiment, after the formation of aggregates, in the

presence of Cytochalasin-B, allowing enough time for the drug to di�use into the

cells and inhibit actin polymerization. After we have fused the aggregates together,

we move them from regular medium into medium containing Cytochalasin-B. The

rest of the steps are unaltered. We carried out the experiment at several di�erent

concentrations of Cytochalasin-B ranging from 0:1�g/ml to 10�g/ml. In some cases,

we allowed the aggregates to engulf normally for a few hours and then placed them

in medium containing Cytochalasin-B.

Cytochalasin inhibits the actin dynamics of the cells at the leading edge, thus

a�ecting the cells' ability to move. Will tissue engulfment proceed without active
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cell motility? Is engulfment really a surface tension driven ow? If the values of the

relative surface tensions are not a�ected, then the tissues should still engulf, accord-

ing to the theory of di�erential adhesion. However, at least minimal uctuations

might be essential to allow the cells to overcome viscous drag. The surface tensions

may also change as we discuss in Section 4.4.4.

4.4 Results

4.4.1 Experiment

Figure 4.5 shows a time series of images of a pair of heart and neural aggregates.

The bright, stained tissue is the heart tissue and the darker unstained aggregate

is the neural tissue. As we can see in the �rst frame (5 hr after we made the two

aggregates adhere), the heart tissue forms a convex interface with the neural tissue,

indicating that the neural tissue has a lower surface tension, agreeing with Foty et

al. [83]. In later time steps, we see the neural retinal aggregate \engul�ng" the heart

aggregate. Eventually, after about 72 hr, the neural tissue completely surrounds the

heart tissue. The heteroptypic interface (between the heart and neural tissues)

grows and the contact angle between these two phases decreases. Qualitatively, the

sequence of images looks analogous to the images of engulfment of a water drop by

oil, (Figure 4.1). During the intermediate stages, the heart aggregate elongates a

little (as does the water droplet) under the e�ect of the opposing forces of surface

tension and drag.

An important di�erence is that oil-water engulfment is orders of magnitude faster

than the tissue pair engulfment. The total time in the former is 0.9 s while the latter

takes 72 hr. This time reects that cellular tissues have viscosities that are much

higher than those of normal liquids. Forgacs et al. [85] have measured the viscosities

of several types of chicken embryonic tissues, in the range of 105 Poise, many orders
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Figure 4.5. Complete engulfment of heart tissue (bright sphere) by neural retinal
tissue (dark sphere) from chick embryo. Elapsed time is 9 hr. The heart tissue is
325 �m in diameter.

101



of magnitude larger than the viscosity of water (10�2 Poise.) The surface tension of

water (at 20ÆC) is 72.8 dyne/cm. The interfacial tension of mineral oil and water

is about 30 dyne/cm, the same order of magnitude as the e�ective surface tensions

of embroynic tissue aggregates; the surface tension of heart is 8.5 dyn/cm and that

of neural retinal tissue is 1.6 dyn/cm. These values indicate that the extremely

high viscosity of the tissues slows down engulfment compared to liquids. In vitro,

slowing limits the size of aggregates that we can use to study complete engulfment,

since aggregates remain viable only for 2-3 days. Larger aggregates take longer to

engulf, but we have not systematically studied the quantitative e�ect of aggregate

size on the rate of engulfment. The growth of the interface should be linear in time

irrespective of aggregate size. The length parameter will depend on the particular

geometry of the situation, the slope of the curve between the appropriately scaled

length parameter and time should be equal to the surface tension to viscosity ratio.

4.4.2 Simulations and Comparison

We simulated engulfment using the Potts model. The initial condition was a light

and dark aggregate in contact. The light is the less cohesive aggregate and the

dark is the more cohesive. The surface tension ratio (between the dark-medium

and light-medium interfaces) matched that determined from independent experi-

ments on neural retinal and heart tissues from chick embryo. As expected, the

light tissue slowly engulfs the dark tissue (Figure 4.6). The results shown are for

three-dimensional aggregates. In two dimensions, we observe much slower engulf-

ment, because the interface of the three phases is a point rather than a line. Only

this point directly experiences the surface tension caused by the light-medium dark-

medium energy di�erence. As time evolves, this point (spin) has to pull the entire
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mass of engul�ng tissue. In three dimensions, a one-dimensional line of cells drags

a two-dimensional monolayer, therefore the cell motions are less constrained.

To compare the results of the experiments with the simulation, we plotted in both

cases a length parameter which depends on the geometry of the observed drops. For

the sake of simplicity, let us consider the fusion of two drops of a viscous liquid.

When placed in contact, the two drops (each of radius a), slowly fuse together to

form a larger drop with radius 21=3a. Coalescence or fusion is driven by surface

tension and damped by viscosity. We may describe the beginning of such fusion for

highly viscous liquids by [148]:

x2 =
3a�t

2��
; (4.15)

where a is the radius of each drop, t is the time, x is the radius of the circle of

contact between the spheres, � is the interfacial tension, and � is the viscosity of

the drop material. The time course of the engulfment of two immiscible, viscous

liquids is unsolved. However, when spreading dominates (which is a reasonable

�rst assumption), engulfment is similar to fusion, and Equation 4.15 ought to be

an applicable approximation. Then � would be the interfacial tension between the

two tissue types. Heterotypic interfacial tension of tissues is diÆcult to measure.

However, one theoretical model [149] predicts:

�12 = �1 + �2 � 2(�1�2)
1=2; (4.16)

where �12 is the interfacial tension between the two tissues and �1 and �2 are the

surface tensions of the tissues with respect to the suspending medium.

We measured the interface between the two tissues and plotted the length pa-

rameter z = 2�x2=(3a) vs: the time t. We �nd that in both cases z grows linearly

in time (Figure 4.7; (a) experiment, (b) simulation). This growth di�ers greatly
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Figure 4.6. Engulfment of more cohesive tissue (dark sphere) by less cohesive tissue
(light sphere) as obtained from Potts model simulation. The times are 20, 7000
and 10000 MCS respectively from top to bottom. Figures show two-dimensional
projections of three-dimensional aggregates.
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from the logarithmic decrease in interfacial length observed during sorting. The

energy landscape in this situation is smooth, without the local minima present in

the cell sorting case. The linear growth rate is reasonable, since the time evolution

is spontaneous.

Calculations of the slopes for the interfacial growth rate may provide a method

to convert real time (seconds) to simulation time (MCS), which we could not do

earlier. If we know the spatial conversion between �m and pixels (which we can

calculate by matching cell sizes in the simulations and experiments), then, equating

the respective slopes for engulfment should �x the number of Monte Carlo Steps per

second.

We also varied the temperature of the simulations and observed the e�ect on the

rate of growth of the interface. As expected, engulfment slows down with reduced

temperature, but does not freeze entirely until we reach T = 4. With values ranging

from T = 10 to 32, the growth rate is approximately linear; the slope of the curve

decreases as engulfment takes longer to complete (Figure 4.8). We also �nd that

the graphs are not exactly linear; as engulfment proceeds, it gradually slows down.

This e�ect is more pronounced at lower temperatures and could be due to the ever-

increasing mass of the light cell layer that the cells at the interface have to drag. At

T = 20, we notice that two distinct slopes appear: at later times, the rate of growth

is slower.

We expect that the lower temperatures in the simulation correspond to di�erent

concentrations of Cytochalasin-B in the experiment. Cytochalasin inhibits mem-

brane uctuations, while reducing the temperature in the simulations reduces the

amplitude of the uctuations of the simulated cells. We describe in Section 4.4.4

the e�ect of Cytochalasin on the engulfment of tissues.
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Figure 4.7. Top panel: Length parameter (z) of heterotypic interface during the
engulfment of heart and neural tissue from chick embryo. The solid line is a linear �t
with a slope of 3.38x10�3 �m/s. Bottom panel: Length parameter (z) of heterotypic
interface during Potts model simulation of engulfment. The solid line is a linear �t
with slope 8.96x10�2 pixels/MCS.

106



0 2000 4000 6000 8000 10000 12000 14000 16000
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

Time (MCS)

F
ra

ct
io

na
l B

ou
nd

ar
y 

Le
ng

th

Figure 4.8. Rate of growth of the heteroptypic interface length in simulated aggre-
gates: E�ect of varying the temperature; crosses: T = 4, stars: T = 10, squares: T
= 15, triangles: T = 20, circles: T = 25

4.4.3 Liquid Drop

We are unaware of any systematic study of the kinetics of coalescence of two liquid

drops. A quantitative comparison of the engulfment of tissues and the coalescence

of liquid drops would be very instructive.

For an approximate idea of what to expect, we digitized the images of the time

series of the coalescence of oil and water droplets from the paper by Torza and

Mason [9]. We calculated the length of the interface between the oil and water as

well as the total perimeter of the water droplet. In Figure 4.9 we show the rate of

growth of the length parameter z as a function of time. Except for the last point, the

length grows linearly in time as predicted by Equation 4.15. (At later times, growth

appears to slow down slightly, similar to what we see in simulations). To a �rst

approximation, then, we can describe tissue engulfment as analogous to coalescence

of liquid drops. The last step shows a sharp increase in interfacial length as the
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oil droplet \swallows" the water droplet. This type of discontinuity resembles the

discontinuity when a drop of water from a faucet after swelling gradually, suddenly

pinches o�.

A more accurate comparison would require the exact hydrodynamic relation for

the rate of coalescence in terms of the interfacial tension and the two viscosities.

Simulating coalescence in liquids would also be important. Several molecular dy-

namics and lattice Boltzmann simulations [150] of binary liquids have examined

the growth of interfaces. These simulations systematically included the e�ects of

surface tension and wetting on liquid-liquid interfaces [151]. Rupture and fusion of

two-dimensional liquid drops have been addressed in [152]. However, we have not

found a treatment of the case of two liquid drops suspended in a third liquid. Most

previous studies have been two-dimensional due to computational constraints.

4.4.4 E�ect of Cytochalasin

If we add Cytochalasin-B to the cell suspension before aggregation, it a�ects the

aggregation properties of the cells and we do not obtain tightly bound aggregates.

We therefore added Cytochalasin to the medium after the cells had aggregated to

quasi-spheres and aggregates of the two types had fused together. After we placed

the aggregates in medium containing Cytochalasin-B, we monitored their progress

and that of control aggregates (no Cytochalasin in the medium), as before.

For aggregate pairs that have just started engul�ng, Cytochalasin freezes the en-

gulfment and the heterotypic interface stops moving. Initially, when the aggregates

fuse, the interface is such that the tissue with higher surface tension is convex and

starts to invade the tissue with lower surface tension (Figure 4.10). After the addi-

tion of the drug, the interface attens. The contact angles change at the point of

intersection of the three phases and remain static. In the drug-free case, the contact
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Figure 4.9. Rate of growth of the length parameter (z) for oil-water coalescence.
The top graph shows the entire time series. The bottom graph shows a linear �t for
the �rst eight points with a slope of 1.40x103�m/s.
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angle containing the tissue phase with greater surface tension decreases continuously

to zero when engulfment is complete. This e�ect is even more dramatic when we

treat a tissue pair that is already halfway through engulfment (Figure 4.10). The

invading tissue retracts and the curved interface becomes noticeably at.

This change in shape of the interface reects changes in the relative surface

tensions of the two tissue pairs. Under normal conditions, the interface between

the tissue phases is not in equilibrium, therefore it moves until it achieves equi-

librium. Under the inuence of Cytochalasin-B, the triple interface between the

liquid medium and heart and neural tissues appears to be in equilibrium. Surface

tension in tissues is the consequence of adhesion molecules on the cell membrane.

The adhesion molecules are transmembrane proteins that also link to the cell cy-

toskeleton. Cytochalasin-B disrupts the actin cytoskeleton of the cells, which in

turn binds to the adhesion molecules on the cell membrane through several actin

binding proteins (e.g. talin, vinculin, �-actinin). Therefore, disrupting the actin

cytoskeleton will interfere with the adhesion properties of cells and change the ef-

fective surface tensions of the tissues. Measurements of e�ective surface tensions of

genetically modi�ed cell lines (using the method of Foty et al. [83]) have shown that

these values indeed change on the addition of Cytochalasin and other cytoskeleton

disrupting drugs. However, we have not yet made corresponding measurements on

chicken tissues, which would illuminate our results.

4.5 Future Work

The contact angle is a parameter that smoothly decreases to zero during complete

engulfment. Further analysis of the experimental and simulation results will charac-

terize the time dependence of contact angles at the interface of the two tissues and
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Figure 4.10. E�ect of the drug Cytochalasin-B on engulfment. The top two images
show the initial stages of normal engulfment. The last image shows the e�ect of
treating the tissues with Cytochalasin-B.
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compare with liquids. Repeating our work for di�erent tissue type combinations is

important to establish that the liquid analogy indeed holds for a wide variety of tis-

sues. Preliminary experiments with Hydra tissues show that ectodermal aggregates

engulf endodermal aggregates. The ectodermal tissue should have a lower surface

tension as expected from cell sorting and some reaggregation studies. We had more

diÆculty obtaining quantitative results with Hydra because forming clean spherical

aggregates was diÆcult.

The Potts model simulations of engulfment allow us to study a wide variety of

tissue behaviors. After establishing a reasonable level of comparison between exper-

iments and simulations, we can use the model to predict the results of experiments

that are more diÆcult to carry out in the lab. Further simulations could study the

dependence of engulfment rates on relative surface tensions and on the relative sizes

of the two tissue spheres and comparisons with the corresponding experiments. We

could also investigate the dependence of the contact angles at the triple-interface on

surface tension values.
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CHAPTER 5

SINGLE CELL MOTION

5.1 Introduction

In this chapter, we explore the thermodynamics of cell migration and membrane

uctuations in tissues. Qualitatively, the shape and structure of a cell depend

greatly on whether it is on a substrate or within an aggregate. The pictures in

Figure 5.1 show embryonic chicken cells partially spread out on the surface of a

culture plate. Most of the cells have thin, translucent extensions from the main

cell body which are called lamellipodia. Cells use lamellipodia to attach to the

substrate and move as we can see for the cells in the lower left corner and the upper

left of the images. The polymerization of actin �laments takes place at the leading

edge of such membrane protrusions and drives the cell forward.

In Figure 5.2, we see the group of cells at the corner of an aggregate. At the

very edge, a few cells have attened extensions (lamellipodia) onto the culture vessel

whereas cells are rounded up inside the aggregate and their boundaries are hard to

distinguish. Cell-cell interactions dominate rather than cell-substrate interactions.

Clearly, the dynamics of cell locomotion will depend greatly on the immediate en-

vironment.

Only a few authors have studied the behavior of cells within aggregates of other

cells [6, 91, 153], and none to our knowledge have studied the cell deformations. Sev-
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Figure 5.1. Chick embryo cells spread out over the surface of a culture plate (the
surface has not been treated with any protein). The images are a few minutes
apart. We can see that the cells stretch and move with the help of lamellipodia.
Magni�cation is 1000x.

Figure 5.2. One corner of an aggregate of pigmented and neural retinal cells (from
chick embryo) showing at extensions at the edge. Magni�cation is 1000x.
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eral factors inuence the motion of cells within tightly packed aggregates of other

cells. During in vitro cell-sorting or in vivo [1] cellular reorganization in embryos,

cells directly contact other cells of the same or di�erent types. Cells moving in

a compact aggregate of other cells are strongly interacting subunits, where each

subunit's (cell's) movement depends on the others. How each cell moves depends

strongly on its environment. Many factors, including adhesion (due to adhesion

molecules on the surface of all cells), internal cytoskeletal dynamics (polymerization

- depolymerization of actin �laments) [45], elasticity of the cell membrane and col-

lective motion due to the close packed nature of the aggregates, a�ect cell motion.

Both displacements and deformations may depend on the individual cell proper-

ties as well as tissue properties (cell-cell adhesion [46, 58, 154], correlations due to

close-packing of cells in the aggregates). Cells may then migrate as coherent groups

(for instance if adhesion is strong), or independently of each other (if homotypic

adhesion is weak) [39].

We study, simultaneously, displacements and deformations of endodermal cells

in two-dimensional aggregates of dissociated Hydra cells. Extensive experiments

on sorting out of Hydra cells [64, 155] have shown that, from initial random mix-

tures of the two tissues, endodermal cells sort to the center of the aggregates and

ectodermal cells form a surrounding layer (as described in Chapter 3). Indirect

measurement of relative surface adhesivity show that the adhesion energies are in

the order E(endo� endo) < E(endo� ecto) < E(ecto� ecto) [155]. Here, the

endo-endo contacts are the strongest [135].

To study the motion of individual cells, Rieu et al. tracked cell trajectories within

two-dimensional Hydra aggregates [6]. They have shown that cell motion during

sorting consists both of random and coherent parts. Rounding of the aggregate
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and internal endodermal clusters induces coherent motion. We focus on a simpler

experiment to analyze the motion of endodermal cells in non-sorting environments

(mainly one cell-type aggregates). We could then avoid the large scale coherent ows

generated by the sorting and study the microscopics of the motion independent of

the global sorting-out.

In this chapter, we describe the statistical properties of the two-dimensional mo-

tion of single endodermal Hydra cells in two di�erent aggregate types - endodermal

and ectodermal. We chose a two-dimensional geometry mainly for ease of obser-

vation and the need for long time sequences. We had two main goals: First, very

few studies have attempted to obtain a complete physical description (dynamics

and thermodynamics) of cell motion. Can a statistical physics framework describe

biological cell motion? We know little about the statistical mechanics of single cell

motion in di�erent types of cellular aggregates. Do the surroundings a�ect the ob-

served statistics or do they only alter speci�c parameter values? Second, we wanted

to characterize the dynamics of cell deformations within aggregates, and to learn

how they relate to cell displacements.

5.2 Experimental Protocol

5.2.1 Strain and Culture

Hydra viridissima shows good contrast between unstained endodermal and ectoder-

mal cells due to the presence of symbiotic algae inside endodermal cells [156]. We

cultured Hydra supplied by Dr. H. Shimizu (National Institute of Genetics, Mishima,

Japan) at 18ÆC in Loomis' solution [64], fed them four times a week with freshly

hatched Artemia nauplii shrimp and transfered them to fresh culture solution �ve

hours after feeding. We starved the animals for 24-36 hours before experiments.
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5.2.2 Preparation of Dissociated Cell Aggregates

We carried out mechanical dissociation and reaggregation of Hydra cells in disso-

ciation medium (DM) at 4ÆC according to the method of Gierer et al. [64]. After

removing the heads and feet from a group of 8-10 animals, we separated the inner

and outer layers of the body column using Procaine-HCl [157], and dissociated the

tissues using a standard protocol. We minced the tissues separately, almost com-

pletely dissociated them into single cells by gentle shearing by repeated pipetting.

We held the cell preparation (5-8 ml) at 30 min. in DM at 4ÆC to sediment and

sheared it again. We then �ltered it using a 53�m nylon mesh (NRK, Tokyo, Japan)

and centrifuged it at 250 g for 5 min to sediment and collect the epithelial cells. We

observed two situations: (A) endodermal cells in an endodermal aggregate and (B)

endodermal cells in an ectodermal aggregate. For case (A), we used pure endoder-

mal aggregates and for case (B), we mixed a small percentage of endodermal cells

(� 10%) into ectodermal aggregates.

5.2.3 Microscopy

We cut the pellets into fragments about 1 mm in diameter and clamped them be-

tween cover-glass pairs with 25 �mwidth spacers to form essentially two-dimensional

aggregates. We placed the cover-glass assembly in a Petri dish containing medium

and observed it with a confocal microscope (Olympus, IX70-KrAr-SPI). We imaged

the auto-uorescent endodermal cells to track the cells' center-of-mass and mem-

brane uctuations. Only about 50% of the endodermal cells are autouorescent

when illuminated with light of 568 nm. In regions of pure endodermal aggregates

where only some endodermal cells are uorescent they can be tracked. We ensured

that the aggregates under observation were rounded and that the tracked cells were
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in the center of the aggregates (to avoid large scale external ows due to rounding

of the aggregate).

We recorded the two-dimensional motion of several sets of cells for both case

(A) and (B), with each set containing 15-30 cells in the �eld of view. We took

images at intervals of 30 s (1 min in some cases) during 40 to 80 min typically

with an Olympus 20X objective lens (10X in some cases). We digitized the images

directly using Olympus dedicated software and stored them on the computer. The

resolution was about 0.15 �m/pix, �ner than needed to track center of mass motion

and enough to characterize large scale membrane uctuations for cells of 10 �m

diameter.

5.2.4 Image Processing

We analyzed the images using NIH-Image software to obtain the time series of the

center of mass of each cell. We used the x and y coordinates of the center of mass of

each cell to study cell displacements and their relevant statistics. To analyze the cell

shape changes, we saved images from NIH-Image as text �les of intensity images and

used FORTRAN and MATLAB to calculate the cell contours and other statistics.

We extracted cell contour from the intensity pro�le as follows: We chose the value for

the intensity threshold to be the point at which the pro�le had maximum slope. We

obtained the cell contour by binary thresholding - we considered intensity values

above the threshold to be outside the cell and values below the threshold to be

within the cell. Determining the cell contour was then simple. To characterize

deformations, we studied the amplitude (�) and direction (�) of maximum and

minimum deformation between two successive time intervals. We calculated these

quantities as follows: (i) For each time t, we calculated 18 cell diameters di(t) along

every 10Æ �xed direction i. (ii) We calculated the amplitude of deformation during
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time intervals of �t = 30s along the direction i as �i(t) = di(t+�t)�di(t). (iii) We

kept as working parameters the time series of the amplitudes �max(t) and �min(t),

and their corresponding orientations �max(t) and �min(t).

5.3 Center of Mass Motion

As previously stated, we used unstained Hydra endodermal and ectodermal cells.

Comparison of transmission and uorescence images of a single endodermal cell on

a solid substrate (Figure 5.3 a,b) shows that the auto-uorescent symbiotic algae

uniformly �ll the cytoplasm. The ectodermal cells, only visible by transmission, (c)

are lighter than the endodermal cells (a). Within aggregates, cell contours become

indistinguishable in transmission at 20X magni�cation (d). In uorescence, we can

clearly see cell displacements and deformations in time-lapse images (Figure 5.3 e,f).

These motions appear random, but watching larger areas of the samples over a

longer time, we often observed cell ows and collective motion in some parts of the

aggregates.

Figure 5.4 shows the trajectories of a set of endodermal cells in an endodermal

aggregate for a typical experiment. Endodermal cells in an ectodermal aggregate

show similar trajectories. Some cells seem more di�usive (with many random dis-

placements, as the short arrows in the lower left of the �gure show) while others

approach ballistic behavior (displacement proportional to time, as the long arrows

on the upper right indicate). Several neighboring cells in parts of the aggregate

display highly correlated motions. Qualitatively, we can see this correlation in time-

lapse images as regions of the aggregate moving together collectively. Looking more

closely at individual trajectories, we can see intervals of random cell motion alter-
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Figure 5.3. Confocal images of Hydra cells. Single endodermal cell on a solid
substrate observed (a) by optical transmission and (b) by uorescence; (c) single ec-
todermal cell by optical transmission; (d) endodermal aggregate observed in optical
transmission and (e,f) in uorescence at 3-min interval. Bars: (a-c) 10 �m, (e-f) 25
�m
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nating with correlated motion. Figure 5.5 shows this behavior more clearly, showing

fewer cells at a higher magni�cation.
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µm

Figure 5.4. Trajectories of endodermal Hydra cells in an endodermal aggregate in
a �eld 160 �m x 160 �m. The small arrows on the lower left indicate cells moving
randomly and the long arrows on the upper right show cells approaching ballistic
motion.

We �rst characterized the cell di�usion. For each experiment, we averaged the

cell displacements, hr2(t)i = h(x(t0+ t)�x(t0))
2+(y(t0+ t)� y(t0))

2i, over all cells
in the set (typically 15 to 30) and calculated the mean squared displacement. The

mean squared displacement (or variance) is:

hhr2(t)i = Dt�; (5.1)

where D is an e�ective di�usivity, and � is an exponent which can be greater than,

less than or equal to one. Previous studies of cell motion on substrates [89] or cell
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Figure 5.5. Trajectories of 15 endodermal Hydra cells in an endodermal aggregate.
Images were taken at 30-s intervals for 39 min. Big circles show the approximate
cell size and the initial cell position. Bar is 10 �m. Inset: The enlarged trajectory
of the cell indicated with an arrow, numbers correspond to time after the beginning
of the experiment in min. Bar is 4 �m.
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motion in three-dimensional aggregates [91] found normal di�usive behavior (� =

1). In our experiments, we obtain � = 1.23 � 0.14. � is always greater than or

close to 1 , indicating that these cells undergo normal to super-di�usive motion. In

experiments with � close to 1, cells execute a biased random walk because the drift

velocity V = hri=t is non-zero. In fact, the drift is very small compared to
q
hri2

(less than 10% ).

Figure 5.6 shows the variance of displacement as a function of time hr2i vs: t
for sample experiments showing super-di�usion (� > 1). These plots show that the

e�ective di�usion constant (y-axis intercept) of the endo-endo (ed) case is smaller

than that of the endo-ecto (ec) case. For comparison to normal di�usion, the solid

line has a slope of 1.2 while the dotted line has a slope of 1.

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Time(min)

<r
 2 > 

(µ
m

2 )

endo−endo

endo−ecto

Figure 5.6. hr2i vs. t plot for endo-endo cells (blue �lled symbols) and endo-ecto
cells (red open symbols). The solid line has a slope of 1.2 and the dotted line has
slope 1.

For a typical experiment, Figure 5.7 shows clearly the deviation of the mean

squared displacements from normal di�usion represented by the straight line. Fig-
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ure 5.8 shows hr2(t)i for two experiments exhibiting almost normal di�usion (� � 1).

We �nd that the di�usion constant D (slope of the curve) de�ned as hr2(t)i = 4Dt

is always smaller for the endo-endo case. On average, we obtain Dect = 1:2 � 0:5

�m2/min and Dend = 0:4 � 0:2 �m2/min. Consistent with the above results for

di�usivity, we �nd that the endodermal cells have higher RMS speeds in an ecto-

dermal aggregate than in an endodermal aggregate, Vect � 100 �m/h, Vend � 60

�m/h, consistent with our intuition that cells will move faster in a less cohesive

environment. The endo-endo cell contacts are more adhesive than the endo-ecto

contacts, possibly increasing the e�ective viscosity of the cellular medium traversed

by the endodermal cell. Recent experiments by Forgacs et al. [85] have shown that

an aggregate of cells behaves like a viscoelastic medium, with more adhesive cells

showing a higher e�ective viscosity.
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Figure 5.7. Mean squared displacements of a typical experiment showing anomalous
di�usion. The circles are experimental data points. The curved (red) line is a
nonlinear �t with exponent 1.2, and the straight (black) line is a linear �t.
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rapidly than t�1), they do not a�ect the dynamics and di�usion is normal. For

example, �nite-range correlations, like those that decay exponentially, result in

a persistent random walk, where the time constant of the decay determines the

persistence time. On the other hand, if the correlations are long range, i.e when

C(t) � t�k with k < 1, they modify the typical behavior of the variance, enhancing

di�usion. In our experiments, we calculated the temporal auto-correlation function

of the velocities, C(t), and �t it to a power law. For large t, we observe C(t) � t�k.

For those experiments which present collective behavior and anomalous di�usion

(exponent � > 1), the power law �t gives k < 1 (k � 0.9). For other experiments

with normal di�usion, the correlations decay very rapidly: k is either greater than

one or the decay is exponential. Figure 5.9 shows the data for long range correla-

tions with a power-law �t. Spatial correlations can also change the dynamics. In a

space dimension, d, larger than 2, only long range correlations give rise to anomalous

di�usion. But if d � 2, even weak spatial correlations can induce anomalous di�u-

sion [161]. Figure 5.10 shows short-range spatial correlations of the cell velocities.

The correlation length is on the order of 10-15 �m.

To study the underlying thermodynamics of the motion, we calculated the prob-

ability distribution function of the velocities. For small time scales (�t = 30s),

the velocity distributions are non-Gaussian. Figure 5.11 shows a histogram of the

speeds with a Maxwellian �t. The experimental distribution has a heavier tail,

with signi�cantly more high velocity events than predicted by Maxwell-Boltzmann

thermodynamics. However, if we look at longer time scales (2 to 3 min), the veloc-

ity distribution approaches a Gaussian for those experiments which display normal

di�usion.
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Figure 5.9. Temporal correlation of the velocity C(t) for experiments showing col-
lective motion of endodermal cells. The solid line is a �t to a power law.
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Figure 5.11. Histogram of endodermal cell speeds. The solid line is a �t to the
Maxwell distribution of speeds for a Brownian particle: F (V ) = aV exp(�bV 2).

We also calculated the histogram of angles between orientations of the velocity

vector at successive observation times, as shown in Figure 5.12. A large percentage

of events have angles less than 30Æ, rather than the at distribution which would

result from randomly distributed successive orientations. Thus the cell velocities

have correlated direction and speed components.

To quantify the degree of deviation from Boltzmann thermodynamics, we calcu-

lated the non-Gaussian indicator (or atness factor) of the velocity PDF,

� =
h(vx � hvxi)4i
h(vx � hvxi)2i2 : (5.2)

For a Gaussian PDF, � = 3. The atness of the experimentally obtained velocity

PDF is around 10, much greater than 3, showing that the velocity distribution is

non-Gaussian.

Zanette and Alemany have developed the thermostatistical foundation of anoma-

lous di�usion for Levy-type distributions [162] and Tsallis, Bukman and Borland for
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Figure 5.12. Histogram of angles between succesive orientations of the displacements
of endodermal cells

correlated-type di�usion [163, 164]. Generalized thermodynamics derives from the

non-extensive entropy [165]:

Sq =
1� R

dx[f(x)]q

q � 1
; (5.3)

where q is a parameter quantifying the degree of non-extensivity and f(x) is the

probability distribution function. The limit of q ! 1 recovers the regular Gibbs

entropy. Optimizing Sq under normalization and mean energy constraints yields

a generalized probability density function as well as the q-distribution of veloci-

ties [166]:

F (v) = Aq[1� (1� q)
�mv2

2
]

1

1�q : (5.4)

Again, q ! 1 recovers regular Maxwell-Boltzmann thermodynamics with Gaussian

velocities.
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ight dynamics have a broad distribution of elementary displacements X during �t

without any correlated jumps:

P (X; t) = 1=Xa with a < 3: (5.6)

In correlated-type anomalous di�usion, the distribution P (X; t) can be narrow (a >

3) or Gaussian, with a non-linear growth of the variance. We measured the exponent

a for the probability distribution of cell displacements and obtained a � 4. This

value of a is consistent with q � 1:5 if we approximate the Tsallis form of P (X; t)

by a power law for large X and shows that our experimental distribution is narrow

rather than broad.

The relation between q and the exponent � of the variance further elucidates

which dynamics gives rise to the observed statistics. We consider an alternate way

of obtaining probability distribution functions for anomalous di�usion - by solving

the Fokker-Planck equations. A di�usion equation with fractional derivatives can

describe Levy-type di�usion [167]. On the other hand, a non-linear Fokker-Planck

equation [163, 167] has been proposed for correlated anomalous di�usion. The

explicit form of the non-linear Fokker-Planck equation (FPE) is:

df�

dt
= � d

dx
(Kf�) +Q

d2

dx2
(f �): (5.7)

Interestingly, the solutions of the nonlinear Fokker-Planck equation are same as the

distributions that optimize the generalized entropy [164, 163].

For correlated anomalous di�usion, q = 1 + � � � and � = 2�
�+�

, giving � =

2�
2��q+1

[163]. The experimentally obtained values are � = 1:24 and q = 1:54,

corresponding to � = 1:4 and � = 0:86. On the other hand, for Levy-type di�usion,

� = q�1
3�q

[163]. For the observed value of q we should obtain � = 0:33, while our

131



experimental � � 1:2. Thus, cells display correlated-type rather than Levy-type

anomalous di�usion.

For a physical explanation of this result, we can consider the underlying micro-

scopic dynamics which ultimately gives rise to a macroscopic level of description.

Borland [164] has shown that the Langevin equation (which represents the micro-

scopics) corresponding to the nonlinear Fokker-Planck equation is of the form:

dx

dt
= K(x; t) +

p
Qf(x; t)(��1)=2�(t); (5.8)

where the Fokker-Planck Equation 5.7 gives the evolution of f . The f -dependence

of the Langevin equation implies the presence of feedback from the macroscopic level

of description (f) to the microscopic dynamics. We can think of the f -dependent

term as a phenomenological description of the complex interaction of the particle

(in this case, the cell) with the bath (the cellular environment).

A calculation of the Hurst exponent for a process showing anomalous di�usion

can determine whether it arises from a non-linear Fokker-Planck Equation or frac-

tional Brownian motion. The Hurst exponent (H) is de�ned as in [26]:

R

S
= (

�

2
)H ; (5.9)

where the range R is given by:

R = maxX(t; �)�minX(t; �); (5.10)

with X equal to the accumulated departure from the mean of the stochastic incre-

ment � within the time interval � ,

X(t; �) =
tX

i=1

[�(i)� h�i� ]; (5.11)
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and the standard deviation S is:

S =
�1
�

�X
t=1

[�(t)� h�i� ]2
�1=2

: (5.12)

If H = 0:5, the process is either regular Brownian motion or correlated anoma-

lous di�usion with the non-linear Fokker-Planck Equation. On the other hand,

H > 0:5 implies a Levy-type di�usion. We calculated the Hurst-exponents for the

cell displacement time series of our experiments (we have to calculate H separately

for each cell trajectory, and then average over all cells). Averaging over all the ex-

periments, we obtain H = 0:66 � 0:18, within error of H = 0:5, again supporting

the correlated anomalous di�usion picture.

5.5 Potts Model Simulations of Cell Motion

We have successfully used simulations based on the Potts model to describe global

cellular pattern formation phenomena like cell sorting and engulfment (as described

in the previous chapters). Can we use the same model to describe the motion

of single cells? Understanding the limits of its validity is important. Mombach et

al. [91] attempted to compare the motion of single chick embryonic cells in aggregates

with results from simulations. They found that pigmented cells from chick embryos

perform a pseudo-random walk in neural aggregates and have a Gaussian velocity

distribution. Simulations with the original model (Hamiltonian 2.7) give similar

results. Velocity distributions are Gaussian and di�usion is random. Figure 5.14

shows the distribution of cell speeds of a light cell in a light-cell aggregate. A

Maxwell distribution function �ts the observations quite well.

However, we encounter some serious discrepancies when we try to compare the

experimental results presented in this chapter with simulations of single cells within

aggregates. In the simulations, cells move faster in a more cohesive (dark) envi-
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Figure 5.14. Probability distribution of cell speeds in a two-dimensional simulated
light cell aggregate. Simulation parameters are: J(2; 2) = 2; J(1; 2) = J(2; 1) =
11; J(1; 1) = 14; J(1; 3) = J(3; 1) = 16;� = 1; T = 20: The solid line is a �t to the
Maxwellian distribution.

ronment than in a less cohesive (light) one. Figure 5.15 shows the mean squared

displacement as function of time in simulations for a dark (more cohesive) cell in

a dark aggregate and a dark cell in a light (less cohesive) aggregate. Di�usion is

faster in the dark aggregate (Ddd = 14:4x10�3 pix2/MCS) than in the light aggre-

gate (Ddl = 6:8x10�3 pix2/MCS). Biological cells, on the other hand, move slower

in a more cohesive (endodermal) aggregate than in the less cohesive (ectodermal)

aggregate.

To make the simulations more realistic, we modi�ed the Hamiltonian and the

simulation parameters as discussed in Chapter 2, to use negative energies (Equa-

tion 2.12). The surface energy values are negative and an additional term constrains

the surface area (perimeter in two dimensions) of each cell. We �nd that, in simu-

lations with the new Hamiltonian, if the perimeter constraint is the same for both
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Figure 5.15. Two-dimensional Potts model simulation of cell di�usion with positive
energy Hamiltonian. Mean squared displacements as a function of time for a dark
cell in a dark aggregate (circles) and in a light aggregate (squares)

cell types, dark cells typically have a slightly greater deviation from their target

perimeter than light cells. Dark cells tend to have greater boundary length due to

their more negative surface energy values. Therefore, they lose energy by increasing

boundary length but gain energy due to the perimeter constraint. Since the energy

terms balance out, the two cell types di�use at the same rate. To �x this problem,

we weighted the perimeter constraint (�) so that both cells deviate equally from

their target perimeters. With a larger value of �, the dark cells di�use slower than

the light cells, consistent with the experimental observations. Figure 5.16 shows

mean-squared-displacement curves for simulations using the negative energy Hamil-

tonian. The di�usion constant is Dl = 10:3x10�3 pix2/MCS in the light aggregate

and Dd = 5:99x10�3 pix2=MCS in the dark aggregate. We can view the perimeter

constraint as a tension of the cell membrane, and could possibly be di�erent for

di�erent cell types.
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Figure 5.16. Two-dimensional Potts model simulation of cell di�usion with negative
energy Hamiltonian. Mean squared displacements as a function of time for a dark
cell in a dark aggregate (circles) and in a light aggregate (squares)

Our experiments with Hydra also show that cells in a tissue do not move ran-

domly. We observe anomalous di�usion and non-Gaussian velocity distributions due

to correlations in the cell motion. Potts model simulations may be useful in elucidat-

ing the mechanisms by which these correlations arise. We modi�ed the Hamiltonian

to introduce temporal correlations in the cell velocities (Equation 2.13, as explained

in Chapter 2). We would like to determine whether introducing correlations leads

to anomalous dynamics and non-Gaussian thermodynamics. Further, can temporal

correlations induce spatial correlations and if so, to what extent?

Figure 5.17 shows the distribution of cell speeds for simulations with induced

velocity correlations. The parameters are as given in the �gure caption; � is the area

constraint and � is the velocity constraint. The probability distribution is clearly

non-Maxwellian. We see a greater occurrence of high velocity events as observed in

the experimental graph (Figure 5.11). Indeed, the presence of velocity correlations
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changes the observed thermodynamics. We are characterizing the motion further in

terms of cell di�usion, angle distributions and the Tsallis formalism of non-extensive

thermodynamics.
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Figure 5.17. Probability distribution of cell speeds in a two-dimensional simulated
light cell aggregate. The simulation parameters are: J(2; 2) = 2; J(1; 2) = J(2; 1) =
11; J(1; 1) = 14; J(1; 3) = J(3; 1) = 16;� = 0:5; � = 3500;T = 20: The solid line is
a �t to the Maxwellian distribution for cell speeds.

5.6 Cell Deformations

Cell motion intimately couples to the membrane protrusions driven by cytoskeletal

activity. A complete understanding of the cell center of mass dynamics requires

detailed study of these membrane uctuations. In this section, we investigate the

role of cell membrane deformations in the movement of cells within aggregates.

From images of the cell contours, we observed that we could approximate most of

the cells as quasi-spheres. Figure 5.18 plots the contours at 1 min intervals of an

endodermal cell within an ectodermal aggregate. The overall shape changes slowly

but some bumps appear frequently (see for instance in Figure 5.18a or Figure 5.18e
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on the left side). The cell contours are always smooth and do not present �lopodia

or ru�es. Some cells do not change their shape during long periods of time even

when they move long distances

In order to characterize these deformations, we �rst study the time series of cell

expansion amplitudes �max, contraction amplitudes �min and directions. Figure 5.19

shows the time series of �max and �min for the endodermal cell whose trajectory is

depicted in the inset of Figure 5.8. On average, �max and �min are symmetric

with similar amplitude, indicating that the cell area is roughly constant during the

analysis as expected. More interesting are the estimates of the mean amplitudes

of deformations in the two kinds of cellular aggregates. On average, over 5 cell

data sets in both cases, we obtain h�maxiend = 0.29 �m in endodermal aggregates

and h�maxiect = 0.45 �m in ectodermal aggregates. Hence, as we previously found

for di�usion constants and instantaneous velocities, the amplitude of deformation is

higher in ectodermal aggregates (1.5 times higher). Figure 5.19 shows the time series

of the amplitude of the center of mass displacement. This displacement is always

larger or equal to �max. It also shows large uctuations, while the deformations are

rather uniform. Large displacements corresponding to the persistent periods in the

inset of Figure 5.8 do not seem to correlate with large �max.

We calculated the time correlation of the cell deformations following the method

of Schneider et al. [168]. Their analysis is for uctuating vesicles in a liquid medium.

We consider a cell in an aggregate to be analogous to a vesicle in a uid, with

cytoskelatal activity playing the role of an e�ective temperature and the surrounding

cellular aggregate behaving like a viscoelastic liquid with an e�ective viscosity arising

mainly due to the friction caused by cell-cell adhesion. (The e�ect of cytoplasmic

and intrinsic membrane viscosity is negligible [109]). Despite important di�erences
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Figure 5.19. Time series of the cell extension amplitude (�lled circles), the cell
contraction amplitude (circles), and the center of mass displacements (solid line)

between vesicles and cells the analogy provides a simple, physical framework to

quantify cell membrane uctuations. We calculate the cell deformation as r = d(�)�
d(� + �

2
) which is the di�erence between perpendicular diameters of the uctuating

cell. The time correlation function is R(t) =< r(to + t)r(t) >, where the average

is over the 18 diameters i and over to. For the sake of simplicity, we studied only

the ellipsoidal deformation, but results are qualitatively the same for other kinds of

deformation. Figure 5.20 shows R(t) for a cell within an endodermal aggregate. It

is reasonably exponential, decaying as A exp(�t=� ) for both aggregates, indicating

that deformations decorrelate beyond a characteristic time � . The two parameters

A and � represent repectively the mean squared amplitude and correlation time of

the deformations. A measures the driving force for uctuations and � measures

the e�ective viscosity that damps the relaxation of the membrane. We �nd Aect =

0:55� 0:25 �m2, �ect = 3:2� 2 min for the endo-ecto case and Aend = 0:35� 0:20 �
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Figure 5.20. Temporal correlation of the cell deformations, R(t) =< r(to + t)r(t) >
as a function of time interval for an endodermal cell within an endodermal aggregate

m2, �end = 5:1� 2 min for the endo-endo case (values averaged over 5 cells in both

cases). Interestingly, the correlation time for the deformations is approximately the

same as the correlation time for the displacements.

In Figure 5.21A, we present the histogram of j�max � �minj. This angle is the

di�erence between the directions of extension (�max) and contractions (�min). The

distribution extends between 30o and 100o indicating the presence of di�erent kinds

of deformations. Unexpectedly, the maximum of the distribution is not at 90Æ

(ellipsoidal deformations) but rather at 60Æ. These deformations seem to correspond

to the appearence of small bumps in the cell contours of Figure 5.18. In order to

study whether the deformation and center of mass displacement directions correlate,

we plotted the histogram of j�max� �dispj where �disp corresponds to the direction of
displacement. The distribution is approximately at (Figure 5.21B). The variations

are within the statistical error. We obtain the same kinds of histograms for j�min �
�dispj, j�maxj, j�minj and j�dispj respectively. We conclude that our data set does not
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show any correlations between the directions of displacements and deformations at

the same time. We also studied cross-correlations between �disp at time to and �max

or �min at time to + t. Again, we did not �nd any evidence of correlation.

5.7 Discussion

We have shown that in addition to a regular biased random walk, cell motion in ag-

gregates shows a novel type of statistics. Cells move faster in a less adhesive cellular

environment, although the type of observed dynamics is the same in both kinds of

surroundings. All observed cells show non-Gaussian probability distributions and

correlations, analogous to physical examples of spatial or temporal correlations, e.g.

in turbulence, porous media and granular materials. Both temporal and spatial

correlations play an important role in changing the dynamics. The physics resem-

bles a granular material with very high packing density. Recent experiments and

simulations of two-dimensional vibrated beds of granular media showed anomalous

di�usion with exponent � 1:2 and non-Gaussian velocity distributions [169, 170].

Obvious di�erences are that cells are deformable while grains in general are not.

Cells are self driven, whereas grains need an external driving driving force (e.g. vi-

brated beds). We can attempt to construct an analogy by thinking of the aggregate

as a dense collection of soft, deformable objects being driven by internal noise (cellu-

lar machinery). Molecular dynamics simulations of deformable matter can provide

the basis for more accurate modeling.

Since cells are in such close contact with one another, they cannot move indepen-

dently. The motion of each cell depends on its intrinsic machinery but also depends

on the motion and inuence of neighbors via adhesive interactions, inter-cellular sig-

naling, and geometrical constraints due to the densely packed con�guration and the
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Figure 5.21. (A) Distribution of the di�erence between directions of extension and
contraction. (B) Distribution of the di�erence between directions of extension and
center of mass displacement
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collective behavior of the surrounding domain. We observe, in the same experiment,

several di�erent types of dynamics. Cell motion appears to consist of \intervals"

of random and correlated motion. The natural inhomogeneity of the cells, e.g. re-

gions of high and low adhesion, leads to uctuations in the packing density and the

strength of interactions, possibly giving rise to the di�erent modes of behavior. The

strong interactions between cells induce correlations and collective motion. In some

cases, pure ectodermal aggregates show a spiralling motion similar to that observed

in Dictyostelium cells [171] and bacterial colonies [172, 173, 174].

Vicsek et al. have constructed a model of \self propelled particles" in which

the particles locally interact by choosing at each time step the averge direction of

motion of their neighbours with some random perturbation added [175, 176, 177].

Their model reproduces a wide variety of cooperative phenomena from bacterial

colonies and ocking of birds to traÆc movements. However, the model is for point

particles and does not take into account the actual shape and plasticity of cells.

Dimensionality plays an important role in causing cooperative motion. A di�using

particle in two dimensions returns to the vicinity of any point in its trajectory with

probability 1, while the probability for the same to occur in three dimensions is less

than 1 [177]. Therefore, clusters of particles are more likely to interact and order in

two dimensions, than in three dimensions.

We can hypothesize the following scenario for cell motion. The motion of each

cell exhibits: 1) Regimes where it is trapped in a cage of its nearest neighbors, all

of which are uctuating, 2) The cell has a �nite probability of a sudden escape from

the cage. Escape corresponds to the almost linear parts of the observed trajectories.

The above process could also occur at di�erent length scales e.g. trapping and

escape of a cluster from surrounding clusters. The escape probability could depend
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on the adhesion and the membrane uctuation amplitude; the size of typical clusters

formed could also depend on the cell-cell adhesivities. Spatial correlations between

cells due to such mechanisms may lead to temporal correlations. More careful work

is needed to characterize the di�erence in spatial correlation functions for the two

cell types considered. The role of cell membrane protrusions driven by internal

actin dynamics is a key factor in understanding the various motile processes. Non-

Gaussian behavior is a consequence of microscopic non-linearity, and, of memory, i.e.

an incomplete time scale separation between the \macroscopic" di�using variable

and the \microscopic" dynamics [178]. In our case, this mixing could results from

the similar time scales of membrane uctuations and center-of-mass displacements.

We also �nd that both the di�usion constant D and the deformation amplitude

� of the same endodermal cells depend on the cellular environment (endo or ecto).

The direction and amplitude of cell deformation seem uncorrelated with the direction

and amplitude of cell displacements. Thus, unlike the situation of an isolated cell on

a substrate [88, 89], the displacement of a cell within an aggregate is not caused only

by its own deformations, but is rather the result of the forces exerted by the cellular

environment. The situation in a sense is similar to Brownian motion in liquids. The

Brownian particle (cell, in our case) moves randomly because it receives random

kicks from liquid molecules (other cells). The di�erence between the two cases is

that the liquid molecules have uncorrelated random uctuations (thermal bath)

while in our case strongly interacting and deformable units (the cells) constitute the

bath and the uctuations may not be uncorrelated. No time scale separation exists

between the random deformations of the cells and their random displacements as

suggested by the correlation times obtained from Figures 5.9 and 5.20.
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However, the comparison with Brownian motion is useful in order to discuss the

physical parameters governing cell motion and cell deformations within aggregates.

Using Stokes law for the viscous drag of a particle moving in a viscous uid relates

the di�usion constant to the temperature T and viscosity �:

D = kBT=6��R; (5.13)

where kB is the Boltzmann constant and R the particle radius. For the cells, T is

of course an e�ective temperature. kBT is the uctuation energy arising from cell

activity (actin polymerization dynamics) and from the energy released during bond

formation. The viscous dissipation arises from the energy required to rupture bonds

and to deform the cells (membrane rigidity and cytoplasmic viscosity). We expect

the viscous dissipation to be larger in the more cohesive tissue because it costs more

energy to break bonds. From our experiments, we indeed �nd the expected result

that the di�usion is three times smaller in the more cohesive endodermal aggregates.

A di�erence in uctuation energy of the cellular bath could also contribute to the

observed di�erence in di�usion constant. The deformation amplitude and the in-

stantaneous velocity which are 1.5 and 1.3 times smaller respectively in endodermal

aggregates may reveal this di�erence.

To qualitatively explain our observations, let us consider the following cellular

model. Each cell can uctuate a little, but, as it is bound to its nearest neighbors,

these uctuations do not generally produce center of mass displacement (trapped

regime). When the pressure exerted by the neighbors becomes signi�cant in some

direction, the cell has a �nite chance to escape from its cage and to �nd a new local

con�guration with new neighbors. The pressure could arise from many simultane-

ous deformations in the same direction - causing localized synchrony. In the less

cohesive ectodermal aggregates, as the probability to break bonds and change local
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Figure 5.22. Two possible mechanisms of local con�guration change are: (A) T1
process; and (B) sliding of cell layers.

con�guration is higher, the di�usivity is higher. We examine in Figure 5.22, two

possible changes of con�guration. For both, we have drawn initial, intermediate and

�nal con�gurations. Clearly, the intermediate situation costs a lot both in terms of

contact surface between cells (and thus in terms of the number of adhesive bonds)

and in terms of local density. Then, once a local reorganization starts from the ini-

tial con�guration, the next favorable con�guration is the �nal one. In between, the

central cell has moved by roughly a half diameter in process A and by one diameter

in process B. This motion is likely to be directed (persistent regime). We believe

that the higher proportion of correlated cells in ectodermal aggregates results from

the higher probability of changing con�guration (due to lower adhesion). In addi-

tion, we note that both processes depicted in Figure 5.22 require cooperative motion

of the cells, but process B also requires parallel displacements of the cells within the

moving layer. Such a process may explain the spatial correlations of the velocity

and also the origin of the cell ows often observed in the aggregate.
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In conclusion, the relevant parameters driving cell motion within aggregates are:

(i) The energy barrier associated with the rupture/formation of adhesive bonds; and

(ii) The packing constraints. Future work will involve modeling cell motion within

aggregates taking into account these parameters and investigating the mechanisms

which lead to coherent motion. Speci�cally, analysis of cell motion at di�erent

time scales, experiments with di�erent cell type combinations (ecto-ecto, ecto-endo)

and more detailed experiments to characterize the cooperative phenomena will be

important.
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CHAPTER 6

MEMBRANE TENSION OF TUBULOVESICULAR NETWORKS

6.1 Introduction

Tension in the plasma membrane and the membranes of other cell organelles could

be a global parameter that the cell uses to control physically plasma membrane

dynamics like secretion and endocytosis, cell-shape and cell motility. Recent ob-

servations indicate that decreasing membrane tension stimulates endocytosis and

increasing tension stimulates secretion [179, 180]. Membrane tension could also be

an important regulator of membrane traÆcking between intracellular organelles, like

the Golgi and the endoplasmic reticulum (ER). Chapter 1 gives a brief description

of their functions in the cell which consist mainly of vesicular membrane traÆc of

proteins between the nucleus and the plasma membrane. If di�erent organelles have

di�erent membrane tensions, then tension driven ow would play an important part

during traÆcking.

A dramatic example of a phenomenon in which tension could play an important

part is the rapid movement of the Golgi into the ER caused by the drug Brefeldin A

(BFA). BFA is a fungal antibacterial reagent which inhibits the transport of proteins

out of the ER and interferes with a dynamic membrane-recycling pathway between

the ER and Golgi. One explanation of the rapid Golgi movement into the ER could

be that the tension in the ER is much greater than the tension in the Golgi. The

membrane tension would then rapidly draw the Golgi membrane into the ER when
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the membranes come into contact by fusion. When a cell is treated with BFA,

the Golgi membrane starts tubulating (extends long tubulovesicular processes along

microtubules) and is rapidly drawn into the ER [181, 182]. Sciaky et al. [183] have

observed a tubule network extending throughout the cytoplasm appear and persist

for 5-10 min until the Golgi contents merge rapidly into the ER within 15-30 sec.

Their analysis of the kinetics suggested that transport of lipids and proteins from

the Golgi to the ER is not purely di�usive. The mechanism of transport may be

analogous to a wetting or adsorptive phenomenon in which tension driven membrane

ow supplements di�usive transfer of Golgi membrane into the ER. However, no

direct evidence supports tension driven ow. Measurement of the membrane tension

of these two membrane types separately can provide some answers.

The two main goals motivating the work presented in this chapter were to sep-

arate the Golgi and ER membranes to form networks and measure the membrane

tension of both membrane types. In vitro reconstitution of ER and Golgi network

formation and dynamics is useful to study the mechanical properties of these net-

works. Several previous studies have successfully formed networks in vitro both

from ER [184] and Golgi [185] membranes. The dynamics and morphology of

these reconstituted networks are very similar to those in living cells [186]. Me-

chanical measurements on these simpli�ed cell-free networks clarify their properties

in real cells. In the present study, ER and Golgi networks form on a microtubule

mesh through the action of motors pulling the membrane into thin long tubes along

the microtubule tracks. Microtubule polymerization can also drive the formation of

membrane networks [187]. In this situation, the membranes attach to growing plus

end microtubules which pull them into thin tubes. In living cells, a combination of
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these two mechanisms probably causes the formation of the reticular structure of

the ER.

The mechanical properties of the plasma membrane has been studied extensively

but no previous work has investigated the properties of membranes from intracellu-

lar organelles. We formed tubulovesicular networks of both Golgi and ER membrane

fractions from Chick Embryo Fibroblasts (CEFs). We characterized their morphol-

ogy and membrane tension. To measure the tension of these membranes we used

optical tweezers, used quite extensively to study the properties of the plasma mem-

brane [180, 188], to pull membrane tethers in vitro. We use laser tweezers to trap

beads attached to the membranes and pull tethers perpendicular to the membrane

branch to determine the tether force. Ours is the �rst measurement of the tension

of intracellular organelles, providing direct evidence that tension driven ow may

be responsible for membrane traÆc from the Golgi to the ER.

6.2 Experimental Methods

6.2.1 Formation of Membrane Networks

We obtained internal membranes from CEFs, using standard protocols. Appendix C

describes the detailed protocols ( [189]). We discarded the plasma membrane, nuclei

and mitochondria leaving only the intra-cellular membranes and the cytosol. We

used di�erential centrifugation to separate the Golgi from the ER membranes. We

obtained a pellet of the heavier membranes (H-fraction) using a low speed spin of the

diluted membranes; a high speed spin resulted in the lighter vesicles (L-fraction).

We resuspended these fractions in bu�er and used them for network formation and

uorescent assays. We discarded endogenous microtubules from the cytosol which

we used undiluted in the experiments to provide motors. We formed tubulovesicular

networks in a ow chamber between two glass coverslips. We introduced membrane
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fractions with motors and ATP at appropriate concentrations on a bed of micro-

tubules randomly attached to the coverglass surface. We observed networks about

1 - 2 hr after incubation at 37ÆC. We made our observations using video-enhanced

di�erential interference contrast (DIC) microscopy at room temperature. For the

uorescence imaging of networks, we used a cooled charge coupled device (CCD)

camera.

6.2.2 Measurement of Tether Force

After 30-60 min of incubation of the membrane extracts in the coverslip chambers,

we mounted the coverslip on an aluminum coverslip holder using silicone grease and

observed under the microscope. We owed beads (0.5 �m in size) coated with a

suitable antibody into the chamber along with motor-containing supernatant and

appropriate concentrations of GTP, Taxol and Mg-ATP. (We coated beads with

either anti-kinectin antibody, which binds to the ER membranes or Wheat Germ

Agglutinin (WGA), which binds to the Golgi membrane). We trapped the bead

with the laser, placed it on one branch of the network and allowed it to bind to the

membrane by holding for a few seconds. Then we pulled it at a constant velocity

perpendicular to the network branch. The straight branch �rst formed aV and then

a Y as a tether extended (as discussed in Section 6.3). We held the tether static for

20 to 40 s, video-recorded the whole sequence and later digitized it for analysis.

6.2.3 Calibration

We calculated the force of the optical trap by viscous drag through the aqueous

medium in the microscope focal plane. We trapped a single bead in the optical

tweezer (suÆciently above the surface to eliminate viscous coupling to the coverslip).

We generated the viscous force by oscillatory motion using a piezo-ceramically driven
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stage at a constant velocity (using a sawtooth voltage signal). The relation F =

6��av gives the Stokes drag, where � is the viscosity of the medium, a is the radius

of the bead and v is the velocity. Di�erent velocities correspond to di�erent forces.

We tracked the position of the bead using a tracking program and obtained a linear

force-displacement graph to calculate the calibration constant for the trap sti�ness.

6.2.4 Data Analysis

We used ISEE software from Inovision, Inc. to digitize and analyze the recorded

tether pulling sequences. This particle tracking program calculates the centroids

of beads with a precision of up to a few nanometers. To measure the diameter of

the network branches, we took orthogonal scans across the membrane tubules and

across beads of known diameter (500 nm). The area under the intensity pro�le curve

gave the values for the relative intensities [190]. We calculated the radius of each

type of tubule (Rt) by multiplying the radius of the bead (Rb) by the square root of

the ratio of the intensity of the tubule (It) to that of the bead (Ib). The intensity is

proportional to the square of the diameter, Rt = Rb

q
It
Ib
.

6.3 Results

6.3.1 Network Formation

Figure 6.1 shows an example of a typical membrane network from CEFs. An amor-

phous aggregate of membrane which adheres to a microtubule meshwork on the

glass coverslip is the precursor of the network. Microtubule dependent motors (ki-

nesin and dynein) attach to regions of the membrane and move along a stationary

microtubule providing the force to draw out tubular branches. In the absence of

motors, we do not observe any tubular extensions, either from the Golgi or ER

membrane aggregates. This absence suggests that the microtubule motor force it-

153



self creates tubules from a free membrane with no preferred curvature, as opposed to

motor proteins simply guiding pre-existing membrane extensions. New membrane

branches form when another active motor contacts and moves along an intersecting

microtubule. Figure 6.2 shows a cartoon for the possible scenario [184]. When

two membrane tubules intersect each other, they fuse and relax to a con�guration

connected by trigonal vertices with 120Æ angles between the branches to minimize

the local energy. The fusion and relaxation results in a reticular network of long

membrane tubules on a bed of randomly intersecting microtubules. Networks do not

form either in the absence of motors or ATP, clearly indicating that microtubule-

dependent motors are necessary for network formation.

Figure 6.1. DIC image of a typical membrane network. The white sphere is a bead
of 500 nm diameter.

For 1-2 hr after incubation, the growing network is an extremely dynamic struc-

ture. The membrane tubules exhibit many di�erent types of motion - tubule growth

and branching, polygon closure and sliding. Branching occurs when a new tubule

is drawn out from one branch of the pre-existing network, �rst bending the branch

to form a vertex from which a new tubule grows. Tubule formation suggests appli-
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Figure 6.2. Hypothesis for network formation from membrane aggregates. Mem-
branes are present as amorphous aggregates and vesicles on a bed of microtubules
(MT). Molecular motors attach to the membrane at speci�c attachment sites, move
along the microtubules and pull out long, tube-like membrane tethers which consti-
tute the tubulo-vesicular network (TN). A tube may branch when another motor
pulls a new tether along an intersecting microtubule.
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cation of a force by a single motor or a group of motors at the tip. The growing

tip either fuses with another branch or retracts to its origin. In some instances,

pre-existing polygons shrink in size due to movement of one of the branches and

eventually disappear, causing a local rearrangement of the network con�guration

but no long-range changes. Sliding occurs when a junction (vertex) moves along a

tubule and can lead to polygon-closure (shrinking and disappearance of a polygon)

as well as other local rearrangements. All these types of motion have also been ob-

served in the ER of living cells [186], indicating that our cell free network is a good

model to study ER structure and function. After a few hours, the whole structure

stabilizes and the growth and dynamics of tubules ceases, as the network achieves a

steady state con�guration. The network is interconnected and can stretch unbroken

over hundreds of microns. The tubulovesicular structure attaches to the underlying

bed of microtubules only at some discrete points, for unknown reasons, possibly due

to inactive motors or other attachment proteins. Between the points of attachment,

the tubules undergo undulations due to Brownian motion, showing that they are

not bound to the coverglass surface.

6.3.2 Tether Force

To measure the tension of these membranes, we use laser tweezers to pull membrane

tethers with the help of beads attached to the membrane. We introduce protein

coated beads into a ow chamber containing networks, trap a bead and place it on

a membrane branch. After a few seconds it binds to the membrane. We pull the

bead perpendicular to the membrane branch to determine the tether force. As we

pull the bead out, it �rst bends the membrane into aV shape and then branches into

aY as a tether pulls out. Figure 6.3 shows such a sequence, exactly analogous to the

branching of a tubule due to motor movement during the network growth phase. As
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the new tether forms, membrane ows into the tether from the surrounding branches

of the network. Since the network is interconnected, it essentially acts as an in�nite

reservoir of membrane material, especially due to the presence of large membrane

aggregates which do not exhaust during network formation. The tether is of the

same radius as the surrounding network and the triple point at the Y relaxes to a

120Æ angle. We could pull beads for long distances laterally across the branches,

indicating that the network is indeed an interconnected uid.

We pull tethers at a constant speed from the membrane tubules and hold them

stationary for 30-60 seconds while measuring the static tether force. After the tethers

form from the membrane network branches, they rapidly retract when we release

the bead from the laser trap, indicating that a signi�cant force pulls the membrane

in the tether back into the network. Figure 6.4 shows a schematic diagram of the

forces on the bead. The membrane tether exerts a force pulling the bead towards

the network branches, this force displaces the bead from the center of the laser

trap. To bring the bead back to the center, the trap exerts a restoring force on

the bead which balances the tether force. We can calculate this force by measuring

the displacement of the bead from the trap center. We measured the tether force

for tethers formed from both fractions H and L. Figure 6.5 shows graphs of typical

displacement curves for both fractions. We can obtain the force by multiplying the

displacement by the force-displacement calibration constant. As the bead slowly

pulls the membrane tube into a V, the force felt by the bead keeps increasing, until

it reaches a maximum. At this point, the tether forms, and the force relaxes to a

value corresponding to the static tether force (the horizontal part of the data curve).

We measured forces from several samples over di�erent parts of the network. For

each of the fractions, we found a �xed value of force maintained throughout the
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Figure 6.3. DIC image of a typical tether pull sequence. We hold the bead in the
optical trap and pull it orthogonal to the membrane tubule. The bead is 500 nm in
diameter.
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entire network. The tether force for the H-fraction is 11:43 � 1:4 pN whereas the

tether force for the L-fraction is 18:62�2:8 pN (see Table 1). We �nd that membrane

networks formed by the lighter fraction exert signi�cantly higher force than networks

formed by the heavier fraction.

Trap

Tether F

∆RF

Figure 6.4. Schematic of a tether pull showing the displacement (�R) of the bead
in the trap. The force of the laser tweezers on the bead balances the tether force.

6.3.3 Identi�cation of Membrane Type

After network formation, we recorded several tether-pulls from a sample and studied

the sample using uorescent staining to identify the membrane type present in that

fraction. We double-labeled each sample with (1) Ribosome receptors (found on

ER) coupled with Texas Red (TR) stain and (2) WGA (Wheat Germ Agglutinin,

which binds preferentially to components in the Golgi membrane) coupled with

FITC (Fluorescein iso-thio-cyanate). Figure 6.6 shows a typical image for mem-

brane networks from the L-fraction: the same �eld of view is observed �rst with a

uorescence �lter for Ribosome-TR staining (Figure 6.6 - top panel) and then im-

mediately for WGA-FITC staining (Figure 6.6 - bottom panel). As is evident from
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the �gures, almost all the network branches of the L-fraction stain preferentially

for ER (Ribosome receptor) and almost none for Golgi (WGA). Figure 6.7 shows

a typical image for networks from the H-fraction. In this case, the networks stain

preferentially for the WGA-FITC staining (Figure 6.7 - top panel), indicating the

presence of Golgi membrane; Ribosome-TR staining (Figure 6.7 - bottom panel)

shows negligible staining of the network branches, indicating absence of ER mem-

branes. These results show that the heavier fraction (H-fraction) is highly enriched

in Golgi membranes and the lighter fraction (L-fraction) is enriched in membrane

from the endoplasmic reticulum.

We also determined that membranes from the trans-Golgi network do not par-

ticipate in in vitro network formation. We pre-incubated the cells in medium mixed

with the uorescent dye FM-143 (1 �M) for 30 min before harvesting. FM-143 is

endocytosed into the cell by the plasma membrane and enters the vesicle traÆcking

pathway between the ER and Golgi. It localizes in the trans-Golgi network 30 min

after endocytosis. We extracted membranes as before and formed networks. Obser-

vation of the samples showed that FM-143 labeled none of the networks from either

fraction indicating that trans-Golgi membrane was not present.

6.3.4 Morphology

The polygonal networks formed from the two fractions had somewhat di�erent mor-

phology. The networks in the H-fractions are more `oppy' (larger Brownian uctu-

ations) than the networks from the L-fraction, consistent with the lower tension of

the H-fraction. Di�erent widths also characterize the network branches in these two

fractions. Figure 6.8 shows DIC images from the Golgi fraction (a) and ER fraction

(b). The contrast of the membrane branch images in the Golgi network is higher

than that in the ER network, suggesting that the former has a larger radius than
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Figure 6.6. Double labeling of L-fraction network samples with Ribosome Receptor
coupled to Texas Red - ER speci�c (top panel), and Wheat Germ Agglutinin coupled
with FITC - Golgi speci�c (bottom panel)
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Figure 6.7. Double labeling of H-fraction network samples with Ribosome Receptor
coupled to Texas Red - ER speci�c (top panel), and Wheat Germ Agglutinin coupled
with FITC - Golgi speci�c (bottom panel)
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the latter. We calculate the diameters of the tubules by determining the intensity

pro�le by orthogonal scans across the DIC images of both kinds of membranes, and

comparing them to intensities for beads of known diameter (as shown in Figure 6.9).

We �nd that membrane tubules from networks of the H-fraction (Golgi) have an

average diameter of � 180 nm while the L-fraction (ER) network branches are � 115

nm in diameter. Membrane tubules from the ER (E) are thicker than membrane

tubules from the Golgi (G) by a factor RG=RE = 1:57 � 0:2. The inverse ratio of

tether forces is FE=FG = 1:63� 0:3. Table 6.1 tabulates these results.

TABLE 6.1. TETHER FORCES AND RADII OF GOLGI AND ER MEM-
BRANES.

Tether Force (pN) Radius (nm)

H-fraction (Golgi) 11.43�1.4 180�12
L-fraction (ER) 18.62�2.8 115�8

Ratios FE=FG = 1:63 RG=RE = 1:57

6.3.5 E�ect of Motor Inhibitors and Membrane Fusion

To check whether the molecular motors kinesin or dynein are responsible for gen-

erating the observed tensions, we used motor inhibitors to knock out these motors

and then measured the tether forces. We incubated pre-formed network samples

with (1) Kinesin inhibitor - adenylylimidodiphosphate (AMP-PNP, 2mM), and (2)

Dynein inhibitor - sodium orthovanadate (Na3VO4, 0.5�M). We measured the tether

force as for controls (with no inhibitors). Preliminary data shows that neither drug

has any e�ect on the tether force for ER or Golgi membranes. To study the fu-

sion between di�erent membrane tubules, we pulled tethers, placed them above a

nearby network branch and allowed them to fuse for several seconds. For homolo-

gous membrane types (i.e. ER to ER or Golgi to Golgi) fusion occurred � 70% of
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Figure 6.8. Membrane networks from the Golgi (top panel) have larger radii than
network tubules from the ER (bottom panel)
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Figure 6.9. Representative plots of the intensity pro�les of orthogonal scans across a
bead of 500 nm radius (top panel), and a tubule of unknown radius (bottom panel)
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the time. After fusion, the local con�guration of the network changed to maintain

the reticular structure with trigonal branching. For heterogenous membrane types,

ER to Golgi or vice versa, we observed no fusion event.

6.4 Discussion

We perform a basic thermodynamic analysis of tether formation in which we equate

the work done to form a tether to the increase in free energy of the network due to

bending of the membrane when we pull a tether. The work done on the network is

due to the tether force, F , and the tension, T , when we displace the tether a small

distance dLt:

dW = FdLt � 2�RtTdLt; (6.1)

where Rt is the radius of the tether. The increase in bending energy to form a tether

of curvature c = 1=Rt is:

dE =
B

2
c2dA; (6.2)

where dA = 2�RtdLt and B is the bending modulus of the membrane. Equating

the two gives a relation for the tether force:

F = 2�RtT +
�B

Rt
: (6.3)

We see that the tether force has two components - one due to the tension and another

due to the bending. We can obtain another independent relation between the tether

force and bending by considering an isolated tether with a constant membrane

surface area. A small increment in the static tether force F produces a deformation

which causes an increase in length dLt and a small decrease in radius dRt. The

change in free energy is only due to the change in curvature:

dE = BAcdc = �2�BLt

Rt
2 dRt: (6.4)
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Equating this energy change to the work at the boundary, FdLt, under conditions

of constant surface area (RtdLt = �LtdRt) gives:

F =
2�B

Rt
: (6.5)

From these equations we can relate the tether force F , the radius of the tether

Rt, the bending sti�ness of the membrane B and the membrane tension T by the

following additional equations [191, 192]:

F = 4�RtT; (6.6)

and

F = 2�
p
2BT : (6.7)

A di�erence in tether force can arise either due to a di�erence in bending sti�ness

or due to a di�erence in membrane tension. From our results for the forces and radii

we can estimate the relative bending moduli. From Equation 6.5, the tether forces

and radii of the two membrane types ER (E) and Golgi (G) relate by:

FE

FG
=
�BE

BG

�RG

RE
: (6.8)

From the experimental data shown in Table I, the two ratios are almost the same

within error, implying that both membrane types have approximately the same

bending sti�ness (BE � BG � 3:3x10�19 Nm). The bending sti�ness is similar to

that of growth cone membranes � 2:7x10�19 Nm [188] and phospholipid bilayer

membranes: � 2:5x10�19 Nm [193] or � 3:3x10�19 Nm [194]. Since the mem-

branes have almost the same bending sti�ness, a di�erence in tether forces reects a

di�erence in membrane tensions of tubulovesicular networks from the Golgi and the

ER. Calculating the tensions explicitly using Equation 6.6, we �nd that the tension
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in the ER membrane networks is TE � 0:013 dyn/cm and the tension in the Golgi

membrane is TG � 0:005 dyn/cm. To put these tensions in perspective, membrane

lysis requires tension of 5-10 dyn/cm.

Is the observed tension di�erence suÆcient to cause membrane ow from Golgi

to ER as observed after addition of BFA [181]? From measured redistribution of

chimeras consisting of a membrane protein and green uorescent protein, Sciaky

et al. concluded that movement of membrane protein between Golgi and ER is

due to convective ow rather than di�usive movement, with velocities on the order

of 10mm/s [183]. Recently, Chizmadzhev et al. [195] have calculated the velocity

of lipid transfer between fusing membranes at di�erent tensions. Making some

reasonable assumptions about the pore geometry and viscosity of these membranes

(� 10�6 g/s) we �nd that our observed tension di�erence (� 0.01 dyn/cm ) is

consistent with the lipid ow velocities predicted by Sciaky et al., further evidence

that tension di�erences a�ect membrane ow in the cell.

Because we pull the tethers from a larger nonspherical membrane vesicle and the

tether force is independent of the tether length, the source of the membrane tension

is not clear. In plasma membranes, tether force primarily depends on membrane-

cytoskeleton adhesion; but our membranes have no obvious structure corresponding

to the cytoskeleton. Understanding the source of the di�erence in membrane ten-

sions requires further work. One possibility is that the tension could be due to the

action of microtubule motors which extend the membrane. Preliminary experiments

of tension measurements of networks under the inuence of motor inhibitors show

no e�ect on the tether force, suggesting that the motors play a passive role, just

serving to extend the network, while the tension di�erence arises from a di�erence

in the chemical composition of the Golgi and ER membranes.
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Since we were not able to observe fusion of heterogenous membrane types, we

could not test in vitro whether tension di�erences were directly responsible for lipid

ow. Possible future experiments include the use of BFA to induce fusion between

ER and Golgi to mimic the in vivo situation. We could then directly measure lipid

ow velocities and correlate with the expected velocities as predicted by the tension

di�erence. Altering the chemical compositions of the membranes (say the lipid

protein ratio) might also make it possible to investigate the e�ect on membrane

tension. We do not completely understand the formation of these networks. We

need theories based on the physical properties and the biochemistry of membranes

to explain even the basic aspects like the selection of a particular tubule radius,

branching and fusion.
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CHAPTER 7

CONCLUSIONS

Our main goal has been to attempt a physical explanation of certain biological phe-

nomena. We have obtained a picture where thermodynamics and uid properties

play an important role in examples ranging from embryogenesis to intracellular dy-

namics. In some cases, we also made analogies with new types of material such

as granular media. Qualitative resemblance between two phenomena does not au-

tomatically establish that similar mechanisms are at work. Cell sorting resembles

liquid phase separation and engulfment resembles coalescence, but, in spite of the

visual similarity, the driving forces could be quite di�erent. Only the kinetics of the

process can provide a clue about the mechanisms. We have obtained quantitative

results for cell sorting, tissue engulfment, cell motion in aggregates and intracellular

membranes to support our previous qualitative understanding.

7.1 Cell Sorting

We studied the sorting out of dissimilar cell populations in chicken and Hydra cells

and compared experiments to Potts model simulations. The simulations, which are

based on the Di�erential Adhesion Hypothesis, reproduce the experimental pat-

terns of sorting both qualitatively and quantitatively. The logarithmic evolution of

boundary lengths in both sorting experiments and simulations show that a simple
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physical model can explain the kinetics of sorting. Our work is a �rst step towards

establishing a quantitative model.

We also described sorting as analogous to phase-separation in liquids. How

far this analogy holds is still not entirely clear. For concentrated mixtures (large

volume fraction of the minority phase), the domain growth rate in tissues is linear

in time and agrees quite well with the theory for liquids. However, tissues sort

completely even at volume fractions much lower than the critical volume fraction

for complete phase separation in liquids. Further experiments will be useful in

determining whether a critical concentration does exist for tissues, below which they

do not sort (and the growth law is not linear). These experiments will require large

aggregates with low concentrations of dark cells. Even if a critical concentration

exists, we expect that it may be lower than that for liquids, because cells are actively

driven. The study of phase separation in tissues is by itself an interesting topic -

number densities of di�erent types of cells might help to regulate the dynamics of

reorganization in intact organisms.

In the linear growth regime, measurement of the rates for di�erent combinations

of tissues will give an estimate for the surface tension to viscosity ratio �=�. Since

we can measure viscosities by independent means [85], this ratio can provide an

estimate for the interfacial tension between the two tissue phases, i.e. a measure of

the heterotypic binding energies which are otherwise hard to measure.

We have just started preliminary work on Potts model simulation of phase sep-

aration. Further work will involve simulations in two and three dimensions to de-

termine the growth laws for dilute and concentrated mixtures. In the model, cells

have �nite size unlike liquid molecules. We can explore the e�ects of varying dif-

ferent parameters like membrane rigidity, uctuation temperature, surface energies
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and volume compressibility, independently of each other. Thus, we can elucidate

the role played by di�erent properties in cell sorting dynamics, giving the Potts

model some predictive power to determine which parameters are experimentally

most important.

7.2 Engulfment

For the �rst time, we quantitated the rate of engulfment between two tissues. We

found that the heterotypic interface grows linearly in time for biological tissues,

model aggregates and liquid drops. The similarity of our experimental results with

those of the Potts model simulations is encouraging - a simple model is enough to

explain the dynamics. The linear growth rate, as expected for liquids, suggests that

the two parameters surface tension and viscosity suÆce to explain engulfment. Un-

like phase separation, the kinetics of engulfment in liquids, has not been thoroughly

investigated theoretically or experimentally. The next important step is to derive a

theory for liquids to compare to our results for tissues. We must also measure the

contact angles as a function of time to complete the comparison.

We need further experiments to study the interfacial growth rate for di�erent

tissue pairs e.g. heart-liver, neural-liver, heart-neural, etc. Again, values for the

surface tension to viscosity ratios will allow us to determine interfacial tensions

between tissue types. Three-dimensional imaging of the entire tissue using recent

developments in advanced imaging techniques like two-photon microscopy would

provide much greater accuracy.

7.3 Single Cell Motion

Having viewed sorting and engulfment in analogy with liquids, the next logical

question was whether the individual subunits that control the dynamics, i.e the cells,
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actually behave like liquid molecules, i.e. are they thermodynamically equivalent?

Experiments (with Cytochalasin-B) have shown that sorting requires some random

uctuations - the cells must be actively motile. The general consensus is that cell

movements accompanying sorting result from a combination of active (internally

driven) and passive (surface tension guided) processes - \cooperative cell motion."

We �nd that cell motion in aggregates is not entirely random, as studies with single

non-interacting cells suggested. Complex interactions in a dense population lead

to non-trivial behavior. We �nd long range correlations and non-Gaussian velocity

distributions.

Our results point the way to a highly interesting �eld of research. We can

formalize cell motion using a statistical mechanical framework. What happens with

di�erent tissue type combinations? What is the relative role of e�ective temperature

versus e�ective viscosity? Can we draw some systematic conclusions? Rigorous

quantitative analysis of cell motion in di�erent environments (for example on various

adhesive substrates mimicking in vivo situations) will be vital in identifying key

mechanisms and characterizing di�erent types of cells. In vivo, cells occur in many

di�erent environments; statistical analysis of physical parameters of cell locomotion

can formally distinguish between these and identify behaviors depending on speci�c

cell properties.

Another useful extension of our experiments will be to do them in three-dimensions,

since the dynamics could depend on the dimensionality. We were not successful us-

ing confocal microscopy, due to limitations in the depth of tissue imaged. With

advanced imaging technologies, e.g. two photon microscopy, imaging cell and tissue

motion in three-dimensions should be possible.
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7.4 Membrane Tension

Membrane tension is an important physical parameter that could regulate both

plasma membrane dynamics and intracellular membrane traÆcking. Cells may use

membrane tension to control changes in cell shape and even cell motion. We have

made the �rst measurements of membrane tension in Endoplasmic Reticulum and

Golgi membranes. We used membrane fractions in the presence of cytoplasm, to

form microtubule dependent tubulovesicular networks in vitro. Using optical tweez-

ers we found that the tether force was 11.4 pN from Golgi networks and 18.6 pN from

ER networks. Consequently, membrane tension was lower in the Golgi, providing

direct evidence that di�erences in membrane tension between the two membrane

types could drive movement of the Golgi into the ER when the two membranes

fuse. Golgi network tubules were larger in diameter and were oppier in the light

microscope than ER network tubules.

We have yet to determine the cause of the tension di�erence but we believe that

di�erences in membrane composition are responsible. Further experiments in this

direction using membranes with di�erent compositions of lipids and proteins will

be very useful. Quantitative studies of physical properties of membranes will be

invaluable in understanding the e�ect of these on cell structure and function. Our

long range goals are to understand how the cell regulates cell membrane properties

and what e�ect membranes have on motion of organelles inside the cell and of the

cell itself. Our work is one of the �rst steps in this direction.

Our experiments and models have reinforced our view of cells, tissues and mem-

branes as objects with physical properties and of several biological phenomena as

\physical" processes - where the outcomes depend not only on complex genetic rules,

but are a natural consequence of the physics. Additionally, we also �nd interesting
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departures from predictions based on simple models with an inherent lack of `de-

tail.' After all, cells are living objects and quite unlike inert matter in their form and

function. Our research has been instructive - simple physical laws apply surprisingly

often at certain scales (sorting, engulfment), but also, when we probe deeper, the

situation becomes more complicated, e.g. single cell motion.

Our work though in no way complete, has opened interesting avenues of research.
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APPENDIX A

EXPERIMENTAL PROTOCOLS

A.1 Experiments Using Chicken Embryos

This section contains the complete protocols for dissection, uorescent labeling and

manipulation of aggregates obtained from chick embryonic tissues, as used in exper-

iments described in Chapter 3 and Chapter 4.

A.1.1 Basic Protocol for Dissecting Organs

(1) Sterilize instruments for 15 min in 70% ethanol.

(2) Spray eggs with 70% ethanol.

(3) Fill 3-4 Petri dishes with PBS solution.

(4) Crack open the eggs, remove the embryos with forceps and place in PBS.

(5) Wash embryos with PBS 3 times.

(6) Cover the Petri dishes and turn UV light on for 5-10 min.

(7) Dissect eyes from the embryos using �ne scissors and forceps. Open up the body

of the embryo ventrally, remove the heart and liver and place in PBS solution.

(8) Place eyes in a solution of 3% trypsin + 1% pancreatin; use 15 ml test tubes to

put 5 eyes in 1.5 ml. of solution per test tube.

(9) Incubate for 15 min. in water bath at 37 ÆC.

(10) Prepare for dissection of eyes: Put instruments back in 70% ethanol and take

a new set of Petri dishes.
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(11) Fill dishes with Minimum Essential Medium (MEM) and wash chicken eyes

four times.

(13) First remove the layer of connective tissue surrounding the eyeball. Then

separate the neural and pigmented layers using very �ne forceps.

(14) Place the separated layers in two test tube with MEM.

(15) After the separation is complete, remove all MEM from the test tubes.

(16) For dissociating into single cells, incubate the tissues in Trypsin-EDTA at 37

ÆC using the shaker bath. Incubate 25 min for neural, heart and liver tissues and

50 min for pigmented tissue.

(17) After incubation is complete, remove all the trypsin and put 1ml of MEM in

the test tubes.

(18) Centrifuge for 3 min (velocity=3), to obtain a cell pellet.

(19) Wash the cells thoroughly in MEM (5 times).

(20) Using a long thin-tip Pasteur pipette resuspend the cells into a suspension by

vigorous shearing (about 50 times for each test tube). Be careful not to introduce

air bubbles into the medium.

(21) To count the density of cells, place 2 small drops of the cell suspension in the

haemocytometer and observe under the microscope.

(22) Make aggregates either by shaking cell suspensions in culture asks at 37ÆC or

by pelleting and cutting into smaller fragments as outlined in the next section.

A.1.2 Further Steps for Engulfment Experiments

(1) Dissolve the lipophilic dye DiI in ethanol as a 2.5 mg/ml stock solution.

(2) Before use, dilute to 20-40 �g/ml in MEM, sonicate the solution and �lter

through a 0.45 �m pore size Millipore �lter.

(3) Incubate cells to be labeled in this solution for 1 hr in the dark.
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(4) Wash cell suspension in MEM three times before aggregate formation.

(5) Take about 5 x106 cells of each type in small Eppendorf tubes.

(6) Centrifuge them at 1000 rpm for 15 min to get thin pellets.

(7) Incubate the pellets at 37ÆC for 2-3 hr to allow the adhesion between cells to

stabilize and strengthen.

(9) Remove the pellets from the tubes into Petri dishes �lled with MEM at 37ÆC.

(10) Cut the pellets into tiny fragments � 200�m in diameter, using microsurgical

knife and forceps. While cutting, try to make the fragments circular in shape,

getting rid of any sharp edges.

(11) Transfer each fragment into a single well of a 24-well cell well plate �lled with

medium.

(12) Incubate the fragments at 37ÆC for 12 hr in a shaker to allow them round up.

(13) Place pairs of spherical aggregates (one of heart tissue and one of neural retinal

tissue) in 1.5 ml volume Eppendorf tubes.

(14) Centrifuge aggregate pair in a microcentrifuge at 1000 rpm for 10 min. (This

is the lowest speed and time combination required to establish adhesion between

aggregates).

(15) The aggregate pair settle at bottom of the tube and adhere to each other.

(16) Transfer the tubes to 37ÆC and incubate for 2-3 hours to strengthen the adhesion

between the aggregates.

(17) Gently transfer each pair to one well of a 24-well cell-well plate and observe

under the microscope.
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A.2 Experiments Using Hydra

This section contains the complete protocols for dissociation of Hydra cells and

separation of layers, as used for the experiments in Chapter 3 and Chapter 5.

A.2.1 Recipes for Media

To make 10 l hydra culture medium (HM), we mix the following with deionized

double-distilled water.

� 30ml solution A: NaHCO3, 0.5 M, 8.4 g, and 200 ml distilled water

� 10ml solution B: MgCl2�6H2O, 0.1 M, 4.07 g, and 200 ml distilled water

� 10ml solution C: MgSO4, 0.08 M, 1.93 g, and 200 ml distilled water

� 10ml solution D: KNO3, 0.03 M, 0.61 g, and 200 ml distilled water

� 10ml solution E: CaCl2, 1 M, 22.2 g, and 200 ml distilled water

Then use HCl bu�er to make the pH 7.4.

To make 500 ml of dissociation medium (DM), we mix the following solutions in

deionized double-distilled water.

� 25 ml solution A:

1. MgSO4�7H2O, 0.123 g, (0.245 g if 50 ml of solution A is needed).

2. KCl 0.105 g, (0.21 g if 50 ml of solution A is needed).

3. TES Bu�er, 1.238 g, (2.475 g if 50 ml of solution A is needed).

� 25 ml solution B:

1. Na2HPO4, 0.048 g, (0.095 g if 50 ml of solution B is needed).
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2. KH2PO4, 0.030 g, (0.06 g if 50 ml of solution B is needed).

� 25 ml solution C:

1. Na Pyruvic acid, 0.275 g, (0.55 g if 50 ml of solution C is needed).

2. Na3 Citrate, 0.735 g, (1.47 g if 50 ml of solution C is needed).

� 425 ml solution D:

1. CaCl2 � 2H2O, 0.368 g , (0.441 g if 510 ml of solution D is needed).

Then use HCl bu�er to make the pH 6.90 .

A.2.2 Protocol for Dissociating Hydra Cells

(1) Using a scalpel, cut o� the head and feet of 20-30 animals and place the bodies

in a test tube.

(2) Wash the bodies 3 times with ice-cold Hydra Medium (HM) and twice with

ice-cold Dissociation Medium (DM).

(3) Place the test tube on ice and incubate in the DM for about 30 min.

(4) Remove most of the DM and transfer the bodies onto a glass plate.

(5) Chop very �nely with a single edged razor blade to obtain a paste like mass of

tissue.

(6) Break the tissue into cells and cell clusters by vigorous pipetting in a test-tube

using a thin tipped Pasteur pipette. Avoid formation of bubbles.

(7) Filter the cell solution through a 53 �m mesh to allow only single cells and small

cell clusters to pass through.

(8) Centrifuge the suspension at 1500 rpm for 7 min to form a �rm pellet.

(9) Remove the pellet using a large transfer pipette into a Petri dish �lled with DM

at 18ÆC.
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(10) Cut the pellet into small aggregates, 200 �m to 400 �m in diameter, and transfer

to cell-wells.

A.3 Membrane Network Experiments

This section contains protocols for the experiments on tubulo-vesicular networks as

described in Chapter 6.

A.3.1 Preparation of Membrane Fractions

Internal membranes from Chick Embryo Fibroblasts (CEF) were obtained following

standard protocols [189]. Four Roller Bottles of conuent CEF cells were incubated

for 1 hour in 1 mM db-CAMP. Cells were washed and harvested with 0:05% trypsin-

EDTA and pelleted at 1000 g for 10 min at 4ÆC. Cells were washed twice, resus-

pended in an equal volume of bu�er PMEE0+ (35 mM PIPES, 5 mM MgSO4, 5 mM

EGTA, 0.5 mM EDTA (pH 7.4) with 1 mM dithiothreitol (DTT), 1 mM phenyl-

methylsulfonyl uoride (PMSF), 1 mM protease cocktail mix) and homogenised.

The homogenate was centrifuged at 1000 g for 15 min and the nuclear pellet (P1)

was discarded. The supernatant (S1) was centrifuged at 100,000 g for 30 min at

4ÆC to obtain the membrane pellet (P2) and supernatant (S2). 20 �M of Taxol and

1 mM GTP was added to the supernatant (S2) and incubated at 37ÆC for 15 min

to polymerize endogenous microtubules. This mixture was then centrifuged for 15

min at 21ÆC at 100,000 g. The pellet of endogenous microtubules was discarded and

the supernatant (S3) was used neat in network formation. We separated the Golgi

membrane from the ER using di�erential centrifugation. The S1 was diluted with

PMEE0+ to 1 ml. This dilution was centrifuged at low speed (10,000 g) to obtain

a pellet of the heavier membranes (H). The resulting supernatant was spun at high
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speed (100,000 g) to get a pellet of lighter vesicles (L). H and L fractions were then

resuspended in PMEE0+ and used for network formation and uorescent assays.

A.3.2 Formation and Observation of Networks

To observe the formation of tubulovesicular networks, we formed � 10 �l capacity

ow chambers assembled from a slide, a 22 x 22 mm2 coverslip and two parallel

strips of 70 �m thick double stick tape. To facilitate the formation of a microtubule

mesh, we owed anti-tubulin antiserum (1:40 dilution) into the chamber, incubated

it for 5 min at room temperature and washed it away with excess PMEE0+ (40 �l).

The chamber was then perfused with taxol stabilized microtubules (10 �l, at 0.1-0.5

mg/ml) made from tubulin puri�ed from bovine brain and incubated in a humid

chamber for 15-20 min. Unbound microtubules were washed with washing bu�er

(PMEE0+, 1 mM GTP, 20 �M Taxol). Membrane fractions (5 �l) with motor

supernatant (3 �l) and Mg-ATP (2 �l) were introduced into the ow chambers

and network formation was assayed after about 60 min incubation at 37 Æ C. The

membrane concentration was titrated by dilution in PMEE 0+.

Preparation of Beads

For the purposes of optical trapping we used 0.5 �m diameter carboxylate micro-

spheres from Polysciences, Inc. The beads were activated using standard proto-

col with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC). After activation,

beads were coated with either 2B6 antibody (anti-kinectin antibody, which has a

preference for ER membranes) or WGA (Wheat Germ Agglutinin, which binds pref-

erentially to the Golgi membrane).
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Imaging

We monitored network formation by di�erential interference contrast (DIC) mi-

croscopy at room temperature with a Zeiss Axiovert 100 microscope equipped with

a 1.4 numerical aperture (NA) oil condenser and a 100x, 1.4 NA Planapochromat

DIC objective. A halogen lamp provided illumination. A Hammamatsu Newvicon

camera collected images and a Hammamatsu Argus-10 image processor performed

contrast enhancement, background subtraction and frame averaging prior to record-

ing the images real time on a Panasonic S-VHS video recorder. We used a cooled

charge coupled device (CCD) camera (Princeton Instruments) for the uorescence

imaging of networks.
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