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MAGNETIC RESONANCE IMAGING OF STRUCTURE AND COARSENING

IN THREE-DIMENSIONAL FOAMS

Abstract

by

Burkhard A. Prause

The rate of growth of individual bubbles in three-dimensional liquid foams

(and crystallites in polycrystalline metals) is a major unsolved problem in mate-

rial science. We have used Magnetic Resonance Imaging (MRI) to observe non-

destructively the structure of disordered liquid foams. Volumetric imaging of coars-

ening foams required a robust imaging method with sufficient spatial and temporal

resolution to resolve the small liquid accumulations in the foam’s Plateau borders.

We have developed an MRI technique to optimize the image quality for foams with

very low liquid fraction. The series of three-dimensional images we acquired pro-

vides unique insight into the evolution of foams over up to four days of evolution.

Automated computerized analysis provides bubble locations, sizes, and the number

of faces per bubble. We tracked individual bubbles between data runs to determine

that the volume rate of change of a bubble as a function of its number of faces agrees

with Glazier’s proposed growth law for three-dimensional grains. Manual extraction

of vertex locations for several hundred bubbles provided exact bubble shapes and

sizes, as well as the relation between a bubble’s number of faces and volume.



This thesis is dedicated to Java, my wonderful cat and friend who spent endless

hours with me on this project, and who died much to soon.
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CHAPTER 1

THREE-DIMENSIONAL FOAMS

1.1 Overview

This thesis discusses an experimental investigation of the structure and growth

dynamics of three-dimensional liquid foams.

Foams are macroscopically structured materials, in which a network of vertices,

edges, and sometimes faces (in all liquid foams, and some solid foams) separate

individual domains. This organization at a level above molecular organization makes

foams non-Newtonian, and interfacial phenomena at the cell level dominate during

unperturbed evolution, as well as during deformation [6, 7, 8]. These properties

apply to a whole class of materials, in which relaxation and a gradual approach to

equilibrium determine the evolution [9].

All cellular patterns share a common structure; a network of boundaries that

divide space into individual, distinguishable domains. Such patterns can be ob-

served in many disciplines. Territorial patterns and cellular structures in tissues are

examples in biology [10, 11]. Geology and material science include examples such

as basalt structures and crack networks [12, 13, 14], polycrystalline structures in

metals and sintered ceramics [15].

Figures 1.1, 1.2, 1.3, 1.4 show a collection of cellular structures, ranging from

the atomic length scale, to biological cells in two and three dimensions, to the

1



honeycomb-like structure of natural cork, to bubbles at the surface of a liquid foam.

The commonality of shapes and structure is quite apparent.

In 1949 Lewis noted the similarity of shapes in biological cells and bubbles [16],

after devoting nearly three decades to the study of biological cell shapes in two

and three dimensions [17, 18, 4]. Three years later, at a metallurgy conference in

Cleveland, C. S. Smith suggested using foams to model the annealing of metallic

grains. He noted the similarity between the two materials, in which domains seek

to minimize their surface areas over time [15].

Thus foams are prototypes for the structure and evolution of cellular materials.

We will review some of the relevant recent literature in the following pages. The

remainder of this introduction will review investigations of three-dimensional cell

shapes, and the theories that are beginning to emerge on three-dimensional cellu-

lar dynamics. The discussion will at times include two-dimensional concepts and

examples, because they are more easily illustrated and more intuitive.

A separate chapter on Magnetic Resonance Imaging (MRI) follows. The tech-

nology is sufficiently new and complex to require a thorough overview, which should

illuminate its possibilities, as well as point out its weaknesses and limitations. To

preserve a sense of chronology, Chapter 3 will then discuss the experiments we con-

ducted using MRI to visualize liquid foams.

The process of finding and optimizing a technique to visualize liquid foams with

MRI is daunting in itself. An equal challenge is finding a method to extract the

shapes and sizes of individual bubbles from these images. Chapter 4 will stray from

the MRI theme of the previous chapters to discuss this analysis procedure in detail.

While the chapter specifically deals with the processing of noisy three-dimensional

MRI images and the structural analysis of liquid foams, the techniques we use (some

2



of which we invented) apply to many materials and image analysis and enhancement

problems. Chapter 5 presents and discusses the results of our experiments.

Figure 1.1. Scanning Electron Micrographs of Cork (from Pereira et al. [2]).
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Figure 1.2. Rhombohedral C35 Structure: The carbon atoms and their surround-
ing electron clouds form a complex three-dimensional lattice structure (from Bern-
holc [3]).
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Figure 1.3. C60(Buckyball) Atomic Structure: electron distribution clouds connect
the carbon atoms sitting at the vertex locations of five- and six-sided polygons (from
Bernholc [3]).
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Figure 1.4. Biological Cells. Right: Interior cells of a common weed obtained from
sectioning (from Lewis [4]). Left: Epidermal cells of undifferentiated vegetable tissue
(from Mombach et al. [5].

1.2 Current Literature

The study of cellular patterns is well developed. An extensive review on cellular

patterns (including computer simulations and theories related to the subject) by

Jiang [19] in 1998 included some 800 publications, making it the most up to date

and complete bibliography on the subject.

Scientific research into various aspects of patterns and pattern formation, as well

as popular literature (including books for school children) are published frequently.

This chapter summarizes the latest and most important works on bubbles and foams,

which provide detail on specific subjects, or serve as an entry point for researchers

trying to acquaint themselves with this field.

“The Self-Made Tapestry” by Philip Ball [20], published in 1999, gives numerous

examples and beautiful illustrations of natural patterns, along with a wonderful

narrative, outlining the history of scientific curiosity about patterns’ origins. The

book is easily readable, and while it covers a broad range of natural patterns, it
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Figure 1.5. Liquid Foams: Images of bubbles in a liquid foam. a) Shows bubbles in
the first and second layers. b) Focuses on the edges in contact with the outside wall
of the container which resemble a quasi two-dimensional pattern.
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devotes an entire chapter to bubbles, underlining the importance of bubbles as a

tool for understanding many processes in general pattern formation.

Bubbles and soap films are the fascinating subject of children’s books and early

science education texts by Cassidy [21], Lovett [22], and Isenberg [23].

Rivier [24, 25] and Stavans [26] have published excellent reviews on the evolution

of two- and three-dimensional cellular structures and their statistics. Glazier’s the-

sis [9] is another outstanding overview of two-dimensional cellular patterns, while

Jiang’s dissertation [19] provides great detail on the state of computer simulations

and theories about the dynamics of cellular patterns, again both in two and three

dimensions.

Weaire et al. have investigated bubble shapes and minimal area partitions [27,

28, 29, 30, 31, 32, 33], vertex stability [34] and foam drainage [35, 36]. A 1996

book by D. Weaire, “The Kelvin Problem” [32] is the most current and complete

study of the problem of space partitioning. Their research on the physics of foam

dynamics and foam drainage has been summarized in the dissertations by Hutzler

and Findlay [37].

Glazier [38], Weaire and Glazier [39] and Sire [40] have investigated the theory

of growth in three-dimensional cellular patters. Monnereau’s [41] confocal optical

studies of bubbles in 1998 provided the first experimental measurements of three-

dimensional coarsening of individual bubbles. de Almeida et al. [42] have developed

a statistical model for three-dimensional scaling properties, which have previously

been investigated experimentally by Durian et al. [43, 44, 45] and Gonatas et al. [46].

The relation between a foam’s structure and its mechanical and rheological prop-

erties is important in many industrial applications of foams, as well as for modeling

and understanding the properties of other cellular materials. Applications lend some

urgency to the investigation of foam structure and evolution. The mechanical re-
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sponse of bubbles to deformation has been studied by Reinelt and Kraynik [7, 8],

while Kraynik [6] reviews the theory of foam flow, as well as range of applications

which require detailed understanding of foam structure and dynamics.

1.3 Cellular Patterns

While the laws of thermodynamics imply increasing disorder for the universe as

a whole, there are many places in nature, large and small, exhibit symmetry and

order. Many of these patterns emerge from simple physical processes. Others, such

as the territorial patterns of hunting and gathering species [10], require a more

Darwinian explanation, while the multi-faceted physical origins of many ordered

geological structures are the subject of ongoing speculation [12].

Many types of patterns exist, generated by the flow of rivers, wind ripples in the

sands of deserts, chemical reactions, such as the Belousov-Zhabotinsky reaction and

Turing patterns, or the abstract geometries of fractals (Ball [20] gives examples of

many such patterns).

We will study patterns of a particular kind, a subset of cellular patterns, which

derive their name from their resemblance to biological cells, and which are char-

acterized by a continuous network of boundaries that separate individual domains.

The cellular patterns we will study are caused by surface tension, diffusion and

geometrical constraints, not described by reaction-diffusion equations as in biolog-

ical morphogenesis or Turing patterns. Rather, relaxation dictates the shapes of

domains and their evolution, in which energy minimization determines the rates of

growth or shrinkage of the domains, and the shapes they assume over time.

Such cellular patterns include foams, metallic grains and crystallites and biolog-

ical cell aggregates. For each of these classes, different physical processes shape the

evolution, but the underlying fundamental constraints are the same:
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1. The domains need to fill space.

2. Domains either have fixed volume, or diffusion (annealing, division) determines

volume rates of change.

3. In the absence of external influences, energy minimization produces minimal

surface cell shapes.

We will use the terms cells, grains and bubbles interchangeably to describe the

individual domains within a cellular pattern.

1.4 Cell Shapes

Foams are a cellular patterned material. The most fundamental question that arises

quite naturally when looking at say, a honeycomb, or the pattern on the wing of a

dragonfly, is why do we see these almost repetitive and ordered patterns? Does a

common organizing principle favor the hexagonal symmetries found in such diverse

natural patterns as basalt columns and cucumber skin?

The ancient Greeks speculated on the extent of willful execution in the bee’s

design of the honeycomb [20]. Modern scientific explanations about the origins of

naturally ordered patterns emerged in the 19th century. Charles Darwin pointed to

natural selection and minimization of metabolic cost as the origin of the efficiency

of the honeycomb design [20]. D’Arcy Thompson [47] studied the shapes of cells in

a developing geranium and honeycomb. He proposed the mathematics of minimal

surfaces and surface tension as the physical explanation for the formation of patterns.

Thompson pointed out that Darwin’s elaborate explanations were not necessary to

explain the elegant solution the bees had found for their storage space problems. He

recognized the importance of surface tension and the minimization of surface area

as the force behind the hexagonal arrangements of bubble rafts [47]. By likening the
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wax in the honeycomb to a sluggish fluid, he was able to explain by purely physical

forces the appearance of this highly organized insect made structure.

Frederic T. Lewis [17] studied many analogs in three dimensions, hoping to

demonstrate that surface tension was indeed the chief factor in the organization of

cellular structures.

1.4.1 Two-Dimensional Cells

Filling space with regular polygons leaves a limited number of choices in two di-

mensions. A space filling partition can be created using triangular, rectangular or

hexagonal regular unit cells. Neither pentagons nor octagons alone can fill space

completely.

An argument based on the minimization of the energy associated with cell bound-

aries illuminates the two-dimensional case:

Simple geometry shows that three-fold vertices with 120◦ angles require shorter

boundary lengths than non-symmetric three-fold vertices, or vertices at which four

or more edges join. Figure 1.6 illustrates that a single four-fold vertex requires a

larger boundary length per unit area than two three-fold vertices, making the later

configuration energetically more favorable.

That the energy associated with edges strongly favors three-fold vertices allows

some simple deductions using Euler’s theorem:

F− E + V = χ, (1.1)

where F is the number of faces (which in two dimensions is the number of cells), E the

number of edges, and V the number of vertices. For a simple two-dimensional foam

in the Euclidean plane χ = 1. If all vertices in the network possess a coordination

number z = 3, valence relations hold between the vertices, edges and faces:
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1. V/E = 2/3, since each edge links two vertices.

2.
∑
n nFn = 2E, where n is the number of edges for each cell F.

Using these valence relations in Euler’s theorem ( 1.1) we find the average number

of edges 〈n〉 in the pattern:

F− 1
2
〈n〉F + 1

3
〈n〉F = 1. (1.2)

Thus in the limit of large patterns (F → ∞) the average number of sides per
cell is six:

〈n〉 = 6. (1.3)

Symmetric three-fold vertices thus explain the dominance of hexagons in two-

dimensional patterns that evolve due to surface tension.

1.4.2 Three-Dimensional Cells

The case becomes more complex in three dimensions. Euler’s theorem gains an

extra degree of freedom, the number of polyhedral cells C:

−C + F− E + V = ξ, (1.4)

where ξ = 1 is the topological characteristic of three-dimensional Euclidean space.

In 1873 Joseph Plateau [48] determined rules governing the number of edges that

can meet at a single vertex, and the angles at which they meet, for three-dimensional

bubbles. In three dimensions the surfaces which bound the cells meet at 120◦,

creating an edge. Four edges meet at a vertex, with the edges radiating outward

from the vertex at equal angles of 109.5◦ (the tetrahedral angle, cos−1(−1/3)) from
one another.
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Figure 1.6. Length Minimization. The length of vectors that connect four vertices
positioned at the edges of a unit square through a four-fold vertex at the center of
the square (90◦ vertex) is 2 ∗ √2 = 2.828. The same four vertices can connect via
two 120◦ threefold vertices, where the total length of the connecting vectors is 2.732,
a 3.5% shorter boundary length.
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Similar to the two-dimensional case, Plateau’s rules lead to valence relations

between the numbers of cells, edges and vertices (e.g. 2V = E, since each edge links

two vertices, and four edges meet per vertex), from which we can obtain:

〈f〉 = 12

6− 〈n〉 , (1.5)

This relation requires two parameters, the number of faces and the number of

edges per face, to characterize structure in three dimensions.

Plateau’s rules mean that no regular space filling polyhedron (such as a simple

cube) can fulfill Thompsons minimal surface requirement. In 1887 Lord Kelvin [49]

identified a semi regular volume filling cell shape as a candidate for minimizing sur-

face area for an enclosed volume: Figure 1.7 shows the 14-faced tetrakaidecahedron,

also known as a truncated octahedron. To satisfy Plateau’s rules about adjoining

angles, the six-sided faces of Kelvin’s tetrakaidecahedron have a small but non-zero

surface curvature. A second theoretical candidate was proposed in 1994 by Weaire

and Phelan [29]. Their somewhat less elegant solution to the “repeat unit” contains

eight cells, two pentagonal dodecahedra, and six 14-faced barrels, with 12 pentag-

onal and two hexagonal faces, which is shown in Figure 1.8. While all but the

hexagonal faces are irregular in this solution, it fills space while obeying Plateau’s

rules, and has a 0.3% smaller surface area than Lord Kelvin’s proposition.

Space filling structures composed of either of the two proposed partitions will

have different geometric properties. Kelvin’s single 14-sided polyhedron has an

exact average number of faces 〈f 〉 = 14, and an average number of edges per face
〈n〉 = 5.14. The Weaire-Phelan structure requires fewer faces per domain on average,
with 〈f 〉 = 13.5, and a slightly lower average number of edges per face 〈n〉 = 5.11.
Edwin Matzke [50, 51] in the 1940’s was the first to test Kelvins proposition. An

apparently eminently bored botanist, he studied over one thousand bubbles under a
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Figure 1.7. Two Semi Regular Kelvin Tetrakaidecahedra. Lord Kelvin proposed the
fourteen-sided truncated octahedron in 1887 as the ideal minimal surface candidate
for a space filling partition. It consists of six four-sided and eight six-sided faces.
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Figure 1.8. The Weaire-Phelan β-Tungsten Partition. Left: Eight cells that make
up the partition unit for a minimal surface area partition proposed in 1994 by
Weaire and Phelan. Right: A regular arrangement of these cells. Each partition
unit contains six fourteen-sided and two twelve-sided cells.
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microscope, diligently recording the number and shapes of their faces. While trying

carefully to create ordered bubbles - one at a time, he did not observe a single

Kelvin tetrakaidecahedron. In fact, his counting found three times as many five-

sided faces as six-sided faces, and six times more five-sided than four-sided faces.

The average number of faces for all bubbles in his studies was 13.7. Matzke did not

record the relative position of bubbles with respect to one another, so he would not

have noticed a repeat unit existing of more than one irregular polyhedron.

More recently, Kose [52] (using rigid foams) and Monnereau [53] have found

similar results, with 〈f 〉 = 13.6 and 〈f 〉 = 13.4, respectively. They also found
structures dominated by five-sided faces.

Weaire and Phelan have found ordered structures resembling their proposed

minimal space filling partition in carefully prepared stacks of bubbles in narrow

columns [28]. However, not a single unit cell consisting of all eight irregular cells

has been identified, much less a repetitive pattern. Rivier also points out that the

Weaire-Phelan solution is unlikely to be the best solution to a minimal surface repeat

unit, pointing to an array of metallic phases which serve as other candidates [54].

While experimental results cannot refute the validity of the minimal area propo-

sitions, they can support the physical assumption that, indeed, foams tend to min-

imize surface area when given time to evolve, if such structures were to be found.

Since real 3-d foams always start out far from equilibrium, it is important to study

the same bubbles over long periods of time to see if ordered structures emerge. It is

intriguing to note the relative ease with which natural patters assume ideal shapes

in a two-dimensional perspective (while not actually being two dimensional), while

we seem to have such a hard time finding the mathematically idealized shapes we

predict in three dimensions.
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1.5 Grain Growth

1.5.1 Background

The study of metals provided the incentive for the modern scientific investigation

of grain growth. The growth and annealing of crystallites in metals is of great

importance to metallurgy. In 1952 Smith recognized the analogy between growth in

bubbles and crystallites, and proposed foams as a prototypical model for the study

of grain growth [15]. While many cellular structures, such as fracture patterns

observed in basalt and across the frozen surface of the moon Europa, appear fixed

in time, many evolve at their own glacial pace, driven by repeated freeze-thaw cycles

or tectonics. Biological cells divide and grow into carefully arranged patterns.

Grain growth requires time evolution, and an energy associated with the bound-

aries. More complex requirements, such as size, functionality, outside stresses influ-

ence cracking patterns and biological cell arrangements.

The domain growth we investigate applies to cellular patterns that evolve due

to diffusion and surface energy minimization.

1.5.2 Grain Growth Laws

John von Neumann related the area rate of change of a two-dimensional grain to

the grain’s number of sides [55]:

dan
dt
= κ(n− 6), (1.6)

where an is the area of a cell with n sides, and κ is a diffusion coefficient depending

on the surface tension and diffusion constant across the boundary. Equation 1.6 is

exact if the diffusion rate is linearly proportional to the pressure difference across

a boundary (in the case of foams), or for which the local boundary velocity is

proportional to local curvature (as may be the case in metallic grains) [9, 19].
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Despite the success of von Neumann’s law in describing the time evolution of

two-dimensional grains, a three-dimensional equivalent based on similarly simple

assumptions has not been found. Recent simulations have led to a better theoretical

understanding of three-dimensional growth and the scaling properties of grains [38,

39, 40, 42].

Analogous to von Neumann’s law for two-dimensional grain growth [55], based on

computer simulations, Glazier proposed an averaged growth law for three-dimensional

grains [38]:

〈Vf 〉−1/3〈dVf
dt
〉 = k(f − f0 ). (1.7)

The averaged volume rate of change for a group of bubbles with f sides depends

only on its number of sides. On average, bubbles with f greater than f0 will grow,

while bubbles with a smaller number of faces will shrink. k is a diffusion constant.

For the relation between f and f0 , Weaire and Glazier deduced that [39]:

f0 = 〈f 〉
(
1 +

µ2
〈f 〉2
)
, (1.8)

where µ2 = 〈f 2〉−〈f 〉2 measures the disorder of the foam. Eqn. 1.8 is exact provided
that the average volume of a bubble with f faces scales as 〈Vf 〉 ∝ f 3, which was true
in Glazier’s Potts model simulations.

Sire [40] used the form of Glazier’s proposed relation 1.7 and a set of topological

assumptions to derive a generalized expression for three-dimensional grain growth

from the Young-Laplace law:

V
−1/3
f

dVf
dt
= F(f ), (1.9)

where F is an increasing, almost linear function of f only.

19



Most experimental studies have concentrated on two-dimensional domain growth,

including bubble rafts, magnetic domains and lipid mono-layers, which are easy to

create and observe [56, 57, 58, 59]. The results have verified von Neumann’s assertion

in a wide range of materials, to the extent that an averaged form of his law is found

to hold. Glazier proposed the same for three-dimensional grains. Durian [43, 44, 45]

and Monnereau [41, 53] have independently studied grain growth in three dimen-

sions using Diffusing Wave Spectroscopy and Confocal Optical Tomography, but the

results could not verify Glazier’s proposed law directly.

Durian et al. used diffusing wave spectroscopy (DWS) to measure the rates of

rearrangement and the averaged grain volume growth exponents in bulk shaving

cream, [43, 44, 45]. They found that the average radius grew according to a power

law 〈r〉 ∝ tβ , with β = 0.5, consistent with “self-similar” growth, in which the
normalized distribution of bubble volumes does not change over time. DWS can

examine very large numbers of bubbles (hundreds or thousands) over many decades

of growth in length scale. But while it can measure the mean free path, and hence

averaged bubble diameters, DWS cannot provide direct information on bubble size

distributions, or grain shapes and topologies which are needed to verify growth laws.

Confocal optical tomography can determine the growth and shapes of individ-

ual bubbles in dry foams [41, 53], but only for foams with few interior bubbles

(Monnereau et al. studied a total of 28). COT is anisotropic with limited spatial

resolution, and requires black film boundaries, which restricts it to extremely dry

foams in which the volume of the liquid phase is negligible.

The most careful study of three dimensional bubble shapes was done by the

botanist Matzke (see previous section on structure) [50, 51], using a simple binocular

microscope and near endless patience. He studied 1900 individual bubbles, noting

their numbers of faces and edges. While providing valuable data on the shapes of
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such grains, he could not provide information on volumes and locations, lacking the

ability to determine exact vertex locations, or to track a bubble’s evolution over

time.

The following discussion will introduce MRI as a method to investigate the

shapes and sizes of three-dimensional bubbles. Previous work that has looked at

the shapes of bubbles, was always limited to investigating bubbles near surfaces,

and either very small or very dry samples. No one has performed studies over long

periods of coarsening. We will study samples of liquid foam over long periods of

time, allowing us to observe individual bubbles as they coarsen.

The information obtained from tracking individual bubbles, and recording the

number of faces f and volume V(t) for those that do not change number of sides

between data runs allows us to investigate Glazier’s growth law 1.7 directly. The

integral at constant topology between t0 and t of Equation. 1.7 yields for the volume

rate of change:

dV
2/3
f

dt
= κ(f − f0 ), (1.10)

where κ = 2/3k .

Verifying the form of Glazier’s growth relation would be an important step in

establishing a three-dimensional growth theory based on grain topology.
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CHAPTER 2

MAGNETIC RESONANCE MICROSCOPY

2.1 Background

2.1.1 From NMR Spectroscopy to NMR Imaging

Nuclear magnetic resonance is the accepted name describing the stimulated absorp-

tion and emission of energy from nuclei that are polarized inside a magnetic field.

Bloch and Purcell shared the 1952 Nobel price in physics for their independent 1946

discoveries of this phenomenon [60, 61]. Today NMR spectroscopy is widely used to

study the structure and dynamics of molecules and to predict a molecule’s usefulness

as a chemical reactant or metabolic agent.

This thesis will not review in detail the classical or quantum mechanical de-

scriptions of NMR principles and methods. A well established body of literature

exists, and the interested reader is advised to peruse the original work done by Pur-

cell [60] and Bloch [61, 62, 63], the first published review of the NMR phenomenon

by Bloembergen and Purcell in 1948 [64], as well as the discovery of spin echoes and

the development of complex pulse sequences described by Hahn [65] and Carr and

Purcell [66]. Fergusen published a concise review of NMR and its history was pub-

lished in 1967 in Science [67]. Since then the development of specialized applications

and the breadth of highly specialized research in NMR, has relegated introductory

writing about NMR to the realm of increasingly specialized textbooks.

Standard contemporary texts on NMR include a quantum mechanical descrip-

tion by Goldman [68], and a general NMR review by Fukushima and Roeder [69].
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Academic Press publishes regularly a series of reviews of the state of the art in NMR

under the title Advances in Magnetic Resonance [70, 71].

Lauterbur first described the possibility of using magnetic field gradients to lo-

calize the stimulated signal emission during regular NMR spectroscopy in a ground-

breaking article in Nature [72] in 1973. Mansfield and Morris developed fundamental

concepts of localized spectroscopy, such as the reciprocal-space representation that

same year [73]. While Lauterbur proposed the name “Zeugmatography” (from the

Greek word ζευγµα, “that which is used for joining”), and early texts referred to

NMR imaging, the accepted name since the mid 1980’s has been Magnetic Reso-

nance Imaging, or simply MRI. Section 2.2 will give a brief summary of concepts

underlying localized spectroscopy, MRI, while section 2.3 will discuss the specific

application of MRI to imaging of foams. For a more thorough treatment of gen-

eral MRI principles, Elster [74], NessAiver [75] and Woodward and Orrison [76] have

published excellent texts, which are easily understandable by the non-expert reader.

2.1.2 Medical MRI

MRI has evolved into a common and irreplaceable tool for diagnostic medicine. It

is ideal for studying biological tissues, muscle, brain and organs, which contain a

high natural abundance of excitable water and that are transparent to x-rays. It

is used in the early diagnosis of tumors, lesions and other organic abnormalities.

Special MR scanners aid surgeons during surgery, while drug research relies on MRI

to study the effectiveness of experimental drugs. Research is under way to monitor

organ transplant rejection, abnormal brain activity and heart conditions [77]. The

complexity of research has led to the establishment of several regularly published

journals devoted to developments in MRI. Once basic principles of NMR are un-

derstood from reading introductory texts (see section 2.1.1), the best way to learn
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about medical MRI is to study introductory textbooks into the very diverse sub

categories of MRI.

A standard text covering biomedical applications of MRI is the first thorough

and concise overview written by Mansfield and Morris [78] in 1981. Updated col-

lections of reviews have been published by Chien and Ho in 1986 [79], Wehrli in

1988 [80], and Certaines [81] in 1992. As in NMR spectroscopy, books on special-

ized MRI methods now appear on a regular basis. One recent publication by Prince,

Grist and Debatin [77] on functional three-dimensional imaging of the heart (MR

Angiography) can serve to illustrate the current complexity of the subject, as well

as the direction in which biomedical MRI is heading.

2.1.3 Non-Medical MRI

Diagnostic MRI facilities are available at most medium and large sized medical fa-

cilities throughout the developed world. These imagers typically employ magnetic

fields between 0.02 Tesla (“ultra low field scanners”) and 1.5 Tesla (“high field scan-

ners”) with many levels of hardware sophistication available [74]. Spatial resolutions

are on the order of 1mm3, and most scanning techniques employ slice-selective imag-

ing, in which quasi two-dimensional slices are selected one at a time, using typical

magnetic gradient strengths of 5-10 Gauss/cm (0.05 - 01 mT/m).

In contrast, non-medical MRI has developed comparatively slowly. First non-

biological applications in the late 1980s led to the newly emerging interest by ma-

terial scientists, chemists and physicists in complex physical structures and dynam-

ics, that could not be investigated before the arrival of sophisticated MRI scan-

ners [82]. The development of reliable high field gradients, fast digital acquisition,

high powered rf-amplifiers and resonators, and of new, specialized imaging tech-

niques have allowed researchers to investigate non-biological subject matter over
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the last decade [82, 83, 1, 84]. Imaging is possible at resolutions of a few microns

using gradients up to a hundred times stronger than those found in medical scanners,

while fields up to 14 Tesla (600 MHz proton resonance) allow relatively high polar-

ization densities. Complex excitation and signal extraction techniques can image

samples with few free protons (or other polarizable nuclei) [84].

NMR-microscopy applications range from food and agricultural sciences (disease,

spoilage, baking), to chemical engineering (fluid dynamics, turbulence, multi-phase

flow, material microstructure), to chemistry (diffusion of solvents and gases, reac-

tion anisotropy, curing, polymerizations), to material science and physics (physical

defects in ceramics, crystals, polymeric materials, stress, wear and aging) [1].

Winfried Kuhn published the first review on the technical fundamentals, as well

as the possibilities and limitations of this new field of MRI research in 1990 [82].

Komoroski published a broad based review on a large variety of applications of non-

medical MRI in 1993 [1]. While many publications in many areas of NMR/MRI

prevent singling out one authoritative text, Paul Callaghan’s 1991 book Principles

of Nuclear Magnetic Resonance Microscopy [83] is a standard reference used in non-

medical NMR microscopy.

2.2 Principles of MRI

I will briefly review the fundamental principles and terminology used in MRI. Un-

derstanding these concepts is necessary to the discussion of applying MRI to foams,

and the detailed description of the experimental setup and procedures in Chapter

3.

2.2.1 Basic Nuclear Magnetic Resonance

The most basic relationship in NMR is given by the Larmor Equation (2.1), which

describes the resonance condition for polarizable nuclei inside a magnetic field:
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ω = γB, (2.1)

where ω is the frequency of precession of the nucleus inside a magnetic field B and

γ is the gyromagnetic ratio of the nucleus. Protons are used for almost all imaging

purposes, because of their high abundance in a large variety of materials (usually

as water), and their large gyromagnetic ratio of 42.8 MHz/Tesla.

The protons can be excited by an rf-pulse which matches their precession fre-

quency ω. In this process the protons also acquire phase coherence. The amount of

maximum excitation under normal conditions and at room temperature is propor-

tional to the strength of the applied magnetic field B, and is on the order of a few

parts per million. At maximum excitation the combined magnetic moment vector of

the protons (net magnetization) precesses entirely in the plane perpendicular to the

applied magnetic field. This resonance condition is called transverse magnetization,

immediately after application of a 90◦ pulse.

The protons start to lose both their phase coherence and excitation immediately

after the rf-pulse is applied. The emission of rf energy from the protons as they de-

excite is picked up by suitable receiver circuits, and constitutes the principle signal

in NMR spectroscopy called free induction decay, or FID.

2.2.2 Relaxation Times

This FID signal is originally equal to the net transverse magnetization of the sample

M0. In the standard reference frame inside the bore of a magnet, the ẑ direction

is the direction of the primary magnetic field vector B, while the x̂ŷ-plane lies

perpendicular to it. The time dependent magnetization vectors within the x̂ŷ-plane,

and the projection along the ẑ-axis can be described in terms of two characteristic

time constants:
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Mz(t) =M0(1− e−t/T1) (2.2)

and

Mxy(t) =M0e
−t/T2 . (2.3)

The equations are named after Felix Bloch, who first derived them in 1946 [62].

Equation (2.2) describes the loss of excitation in the sample, and the time it takes

for the net magnetization to return to the longitudinal ẑ direction. T1 is called the

longitudinal relaxation time, or spin-lattice relaxation time, as it is due to interac-

tions of individual nuclei with the lattice environment [68]. Equation (2.3) describes

the loss of phase coherence within the xy-plane, which leads to a vanishing of the

transverse magnetization, typically much faster than longitudinal relaxation. T2

is called the transverse relaxation time, or spin-spin relaxation time, and is due to

the magnetic interactions of excited nuclei with their direct spin neighbors, which

causes small phase shifts [68]. Both T1 and T2 are characteristic time constants for

a given sample and need to be measured to ensure optimal resonance conditions.

Differences in relaxation times can provide additional contrast in NMR images that

contain regions with different time constants.

Due to these interaction phenomena, the FID is a dampened oscillating wave,

which carries frequency components representing the exact Larmor frequencies of all

nuclei excited by the rf-pulse. For a given B field, the amplitudes of the frequency

components are proportional to the abundance of the nuclei. In the case of an

ideally homogeneous B field, a pure water sample would emit an FID with a single

frequency component as shown in Figure 2.1A, representing the Larmor frequency

of the hydrogen bound only to oxygen in the water molecules. The time varying

NMR signal s(t) can be written as a Fourier series:
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s(t) = a0 + a1sin(ω1t+ φ1) + a2sin(ω2t+ φ2) + ... (2.4)

A discrete inverse Fourier transform can extract the frequency components from

the signal. These frequency domain data represent the NMR spectrum of a given

sample, shown in Figure 2.1B. High resolution spectra contain detailed information

about the chemical composition and even molecular structure inside the sample.

Details on NMR-spectroscopy can be found in [68, 74, 75] and many other texts.
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Figure 2.1. A) Time Varying Oscillating Signal: The “Free Induction Decay”, or
FID, is emitted by the relaxation of excited nuclei. B) shows the inverse Fourier
transform of the signal, with one single frequency component.

2.2.3 Spin Echoes

Spin echoes are a phenomenon discovered very early in the evolution of NMR by

Hahn [65], and developed into a standard spectroscopic technique by Carr and
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Purcell [66]. Due to hardware constraints, measuring the FID from the very moment

when it is strongest, which is ideally at the exact end of the rf-pulse application,

is physically impossible. The delay in measuring the FID means that the strongest

part of the signal is not recorded.

Hahn [65] showed that while a 90◦ pulse transfers the net magnetization into

the xy-plane, two consecutive 90◦ pulses, or one 180◦ pulse after that, should first

“invert” the direction of the magnetization into the ẑ direction, and then back into

the x̂ŷ-plane, only 180◦ out of phase from before. The effect of this shift is that

spins that were dephased by a positive phase shift of ∆φ in the time TE/2 between

the application of the 90◦ pulse and the 180◦ pulse, now have a phase shift of −∆φ
immediately following the 180◦ pulse. After evolving another time step TE/2 the

phase shift of these spins will be −∆φ+∆φ = 0 again, hence the original transverse
magnetization is fully restored and can be measured. This restoration is called a

spin echo, or SE. The characteristic time at which it occurs is the echo time, or

TE. Acquisition techniques using spin echoes are common today, both in NMR and

MRI.

2.2.4 Spatial Encoding: Basic Image Acquisition

MRI is concerned with obtaining spatial information from the resonance signal of a

sample. Equation (2.1) states that the frequency that is both absorbed and emitted

during the excitation and relaxation of a nucleus is proportional to the local magnetic

field B. Stimulated excitation by means of an rf-pulse also leaves the excited nuclei

in initial phase coherence.

While there are different techniques of spatial encoding, the most widely used

techniques involve successive applications of three magnetic field gradients, along

fixed orthogonal principal axes. Depending on hardware and software capabilities,
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these axes can be at oblique angles with respect to B inside the magnet and need

not be fixed along the principal x̂,ŷ and ẑ axes.

A slice selective two-dimensional Spin-Echo (SE) pulse sequence provides the

most basic two-dimensional snapshot of a region, or slice, in a sample. Figure 2.3

diagramms the detailed pulse program sequence in standard form. Figure (2.2)

shows a schematic of the applied gradients. A 90◦ and a 180◦ pulse are used to

obtain a spin echo, while a set of gradients encodes the spatial dimensions:

1. During the application of a 90◦ rf-pulse with a well defined frequency band-

width, the magnetic field gradient changes the Larmor frequencies of the pro-

tons in the sample along one axis. Due to the Larmor relation (2.1) only

protons with a Larmor frequency within the rf-pulse bandwidth experience

excitation and phase coherence. This step is called slice selection. The thick-

ness of the slice is proportional to the rf-pulse bandwidth, and inversely pro-

portional to the applied gradient strength.

2. Immediately following the slice selective rf-excitation, a gradient is applied

along the (arbitrary) x̂-axis within the image plane. This gradient is the first

of two applications of a frequency encoding gradient, effectively dephasing the

spins in a defined manner in a column along the x̂-axis.

3. Perpendicular to the frequency encoding gradient, along the y-axis, a third

phase encoding gradient is applied, dephasing the spins along the ŷ-axis by a

known, fixed amount.

4. At time TE/2 a 180◦ pulse is applied.

5. At time TE the magnetization vector rephases and the FID signal is acquired.

At this time the frequency encoding gradient is turned back on, now also
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called the readout gradient, giving spins along the x̂-axis different resonance

frequencies, while maintaining phase coherence for a short time.

Figure 2.2. Schematic of the Applied Gradients: An applied rf-pulse selects a single
slice along ẑ. The consecutive applications of a phase encode gradient along x̂, and
a frequency encode gradient along ŷ during signal readout encode the remaining two
directions.

Repeating steps 1 - 5 N times produces an image with N x N distinct frequency

and phase components, resulting in an image with N x N pixels. During the re-

peats, which are separated by a characteristic time period TR, the repetition time,

the strength of the phase encoding gradient (step 3) is changed, providing N sep-

arate FID’s, each containing the same frequency components, but different phase

information for each repetition. As the phase change for each of the N elements

along the phase encode axis can be calculated from the strength of the gradients,

each of the N x N elements corresponds to a unique phase and frequency.

Finally, two consecutive discrete Fourier transforms extract first the phases and

then the frequency components in each FID and map them to spatial coordinates, as
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Figure 2.3. Pulse Program for a Basic Two-Dimensional Spin-Echo Pulse Sequence.
A 90◦ rf-pulse selects a slice. Immediately after both frequency and phase are
encoded during signal dephasing. A 180◦ pulse begins to rephase the signal at time
t = TE/2. At time TE the “spin echo” (SE) rephases. Frequency and phase
gradients are applied again during this readout phase.
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shown in Figure 2.4. The amplitude of each component is proportional to the inten-

sity value assigned to the corresponding pixel. This technique is called a magnitude

reconstruction of a two-dimensional image. This basic technique yields a single slice

of finite thickness through a sample. An extension is to use several slice selections

during a single repetition. Steps 1 - 5 can easily be repeated for slightly different

frequency ranges in the rf-pulses, selecting different slices each time. This is espe-

cially convenient, since TR typically needs to be on the order of several hundred

milliseconds or more, due to spin-lattice relaxation times (T1) which are often of

that magnitude. This way 8, 16, 32 or more individual slices can be imaged in the

same time it takes to acquire a single slice. The limiting factors here are the ratio

of TR/TE (where TE is somewhat determined by T2), and the duty cycle of the

gradients and rf amplifiers.

2.2.5 Pulse Shapes

Two-dimensional image acquisitions rely as a first step on the simultaneous appli-

cation of a slice selection gradient and an rf-pulse. For the slice selection to work

properly, the frequency spectrum of the rf-pulse must be well defined. The shape

and bandwidth of the applied rf-pulse are the most important contributing factor

determining the exact localization and homogeneity of the spin excitation.

An ideal slice-selective rf-waveform would produce a rectangular frequency spec-

trum S(ω) under an inverse Fourier transformation. Rf-pulses are often shaped like

modified sinc functions, where:

sinc(x) =
sin(πx)

πx
. (2.5)

Figure 2.5 shows two standard NMR sinc pulse shape envelopes and their respec-

tive frequency spectra. The pulse shapes were generated using the Bruker XWIN-
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Figure 2.4. Frequency and Phase Encoding and Their Fourier Transform: 1a) and
1b) show time and frequency domain representations of two sinusoidal waveforms
with identical frequencies but 45◦ out of phase. 2a) and 2b) show the same rep-
resentation for two waveforms with identical phases but different frequencies. The
frequency domain representation can assign to each frequency and phase component
a corresponding location in space and an intensity.
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NMR standard pulse shape library and recorded on a Tektronix 400 MHz digital

storage oscilloscope. The pulse shape library defines the envelope for a selected

rf-waveform. The rf-amplifier generates the exact specified amplitude at the se-

lected “basic frequency” (the resonance frequency to which the imager was tuned).

Both pulses shown had 100µs duration. The excited frequency range is inversely

proportional to the width of the side lobes, while the homogeneity of the excita-

tion increases with the number of lobes [74]. The sketches on the left show an

approximation of their frequency spectra. The sinc5 pulse (one main lobe and four

side lobes) excites a frequency range of 100000 Hz fairly homogeneously. The sinc2

pulse excites a much narrower frequency range (40kHz) and is much less homoge-

neous across the spectrum. The quality of the slice selection will therefore depend

on the quality of the sinc pulse envelope produced by the NMR imager, and the

basic frequency of the signal. All other factors being equal, the selection of thin

slices (narrow frequency ranges) will result in less homogeneous excitation within

the slice than will a thicker slice. Ideal rectangular Fourier spectra would require

an infinite number of lobes (and hence infinitely high frequencies). Typical slice se-

lective applications in biomedical imaging require bandwidths of no more than 500

Hz to 10000 Hz, resulting in typical medical slice thicknesses of 500µm to 1500µm,

depending on the basic frequency and gradient strength. Sinc3 pulses usually suffice

for such applications.

A very different technique of imaging, volumetric imaging (discussed in Section

2.4: Imaging of Volumes), sometimes relies on so called broadband pulses (which

is why some three-dimensional imaging is also referred to as hard-pulse imaging).

A single rectangular pulse envelope is generated by the pulse program, typically

with very short duration, on the order of 5µs to 50µs. The bandwidth of the rf-

pulse is inversely related to the duration of the pulse and is of order t−1p [83]. The
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homogeneity of the excited bandwidth is determined by the time it requires for

the amplifier to reach the maximum desired power output, or by the width of a

single half-cycle of the rf base frequency (whichever takes longer). Generally the

homogeneity is better throughout the excited volume than during sinc pulse based

slice selective imaging. Bandwidths of such non-selective pulses are in excess of 20

kHz and may be as high as 200 kHz, which is sufficient to excite all nuclei of a given

spin species (with the exception of some solids).

2.2.6 Detection Bandwidth and Aliasing

When sampling a continuous wave-form for computers, the signal must be digitized

and represented in a finite space of data points. In NMR and MRI N data points

are sampled at intervals ts. This discretization limits the frequencies which can be

distinguished. Wave-forms with periods less than 2ts will appear to oscillate with

a period longer than 2ts, so that the maximum frequency that can be measured

is fmax = 1/2ts. A spectral component with frequency 1/2ts + δ will appear at

1/2ts − δ. This effect is known as aliasing. It limits the frequency components we
can detect to between ±1/2ts, so that the detection bandwidth is the inverse of the
sampling interval, namely 1/ts.

An important consequence of this bandwidth limitation is that we need to pre-

vent unwanted aliasing of signals outside the desired observation bandwidth. A

standard solution is to employ digital bandpass filters, which, in an ideal experi-

ment, should have the identical bandwidth to the detection signal. We will discuss

aliasing and its effects during foam imaging experiments and analysis in Chapters

3 and 4.
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Figure 2.5. Rf-Pulse Shapes and Their Frequency Spectra (Pulse shape images
courtesy of Dr. I. Veretennikov).
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2.2.7 Contrast

Spin-echo pulse sequences can be adjusted to enhance specific tissues such as lesions

and tumors, which contain more water than healthy tissue, and which are more

penetrable to contrast agents that alter their T1 and T2 relaxation properties. Fig-

ure 2.6 illustrates the dramatic effect of relaxation time differences on images, and

how they can be exploited for contrast. The sample imaged is a standard phantom,

which reveals geometric distortions, as well as allowing calibration of time constants

and sequence parameters. One circular region in Figure 2.6 contains liquid with re-

duced T1 and T2 compared to the rest of the sample, resulting in varying contrast,

depending on the selection of TE and TR in the imaging sequence.

The first eight images are from a sequence with increasing echo times TE. The

shorter T2 in the circular region means that as TE gets longer, fewer spins can be

rephased and the signal becomes weaker compared to the rest of the sample. The

contrast provided by choosing a long echo time TE is called T2 weighted.

The two bottom rows show the effect of T1 relaxation, which can be exploited

by changing the repetition time TR, the rate at which FIDs are acquired. The time

between consecutive rf-pulses needs to be long enough for the sample to relax to

its ground state through spin-lattice (longitudinal) interactions. The weaker the

spin-lattice interaction, the longer T1. By repeating an rf-pulse before parts of the

sample are fully relaxed, we can catch it in a partially saturated state, in which

the signal returned from each 90◦ pulse diminishes. The bottom eight images in

Figure 2.6 show a sequence of increasing TR, called T1 weighting (short TE, short

TR). While the short T1 of the small circular region relaxes fast enough to provide

good signal even at very short TR, the rest of the phantom shows increasing signal

intensity as TR becomes longer. Each image is individually rescaled to 256 gray

levels, which is why the signal in the small circular region appears to be decreasing
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in the last few images. It does not. The rest of the phantom’s signal becomes

stronger, but the images are all scaled to the same value. This phenomenon can lead

to misinterpretation of MRI images, particularly in medicine, where determinations

of tissue types are often made based on relative contrast! The last image might in

isolation suggest an extremely long T1 for the circular region.

The last few images are proton density weighted (short TE, long TR). The regions

have slightly different polarizable proton densities that are solely responsible for the

contrast.

Figure 2.6. Series of Images of an Imaging “Phantom”: The phantom contains
regions with different T1 and T2 relaxation times. Adjusting imaging parameters
changes the contrast between the regions.
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2.2.8 Imaging Techniques

The previous discussion has focused on a basic two-dimensional imaging technique,

the two-dimensional spin echo experiment, which teaches the most important fun-

damental concepts of magnetic resonance imaging. In its most basic form it enables

researchers to obtain a single slice of finite thickness, a cross-section at an arbitrary

location through a sample. An extension of this basic technique can image several

slices during a single acquisition, and, if relaxation times permit, establish a quasi

three-dimensional image by layering the separate slices back together.

For most subjects, repetition times TR are much greater than the echo time TE,

reflecting the common combination of long T1 and short T2. After acquiring an

echo, and before a new repetition begins, the MRI imager is essentially idle. Hence,

the entire process of slice selection, frequency and phase encoding can repeat several

times during this “dead time”, each time for a slightly different resonance frequency.

The ratio of TR/TE in the pulse sequence (where T2 somewhat determines TE),

and the duty cycle of the gradients and rf amplifiers determine the number of slices

that can be acquired this way, typically eight or more slices.

Acquiring many slices this way results in a quasi three-dimensional image. The

drawback of multislice imaging is that the excitation strength within each slice is not

entirely homogeneous along ẑ, and that a small interslice spacing must separate slices

to prevent signal overlap [74]. Thus we cannot achieve true isotropic resolutions

(where the linear resolution along each imaging axis is the same).

Another drawback of SE techniques is the long repetition time TR. After flip-

ping the magnetization vector by 90◦, biological tissues take from several hundred

microseconds up to a few seconds, to revert to full longitudinal magnetization (at

typical medical field strengths). TR then needs to be at least that long to obtain

transverse magnetization during consecutive excitations.
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Gradient Echo (GRE) techniques allow faster imaging [76, 74, 78]. GRE al-

lows very short TE and TR by flipping the longitudinal magnetization by only a few

degrees with each repetition. A gradient reversal instead of a second rf-pulse refo-

cusses the spins. Like SE, GRE allows multislice acquisitions with the same restric-

tions. While GRE is considerably faster, it suffers from much lower signal strength

and is more sensitive to susceptibility and chemical shift artifacts [74](Section 2.3

discusses artifacts in more detail). GRE is useful in in-vivo medical applications,

where scans have to be completed in a few seconds, and signals are usually very

strong [76, 77]. Due to the low signal intensities and sensitivity to magnetic field

inhomogeneities, GRE is not suitable for imaging of foams (as discussed in Chap-

ter 3), and is included here for completeness as the second basic image acquisition

methodology in MRI.

Many other techniques exist, some mere combinations of the previous methods,

some relying on different physical aspects of excitation. They are too numerous

to mention, filling dozens of texts, with hundreds of papers written. Most tech-

niques that are not mere alterations of SE or GRE are suitable for exotic purposes,

such as constant-time (or single-point) imaging [84], which can be used to image

bound nuclei in solids. While many texts give an overview of the most widely used

techniques in biomedical imaging, Callaghan’s 1991 Principles of Nuclear Magnetic

Resonance Microscopy [83] provides the most detailed theoretical discussion of all

major approaches to resonance localization.

2.3 MRI in Non-Medical Applications

Outside of medicine, magnetic resonance imaging provides non-invasive chemical and

physical characterization of regions in the interior of a sample. It has the unique

ability to study inhomogeneous objects, from the macroscopic, to the microscopic
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and molecular levels. Because of its high resolution, and to distinguish it from

biomedical MRI, such imaging is referred to as Magnetic Resonance Microscopy.

This section reviews the differences between medical MRI applications, and tech-

niques used in MR microscopy. Table 2.1 adapts and expands Komoroski [1], pro-

viding an idea of the range of non-medical applications of MRI.

Sample shapes and sizes vary enormously compared with samples for medical

imaging, often requiring non-standard magnet and rf-coil designs. Studies on coal

and wood use 1 - 10 cm sections of a sample, which can be sliced to avoid aliasing

effects. These samples have yielded linear resolutions of 100 µm using standard

imagers [1]. In 1989 Kuhn [82] imaged two-dimensional sections of a plant leaf

using a 7 Tesla high resolution imager with 1 Tm−1 gradients and a standard two-

dimensional spin echo sequence (see Figure 2.3), yielding a pixel resolution of 102µm2

(with a slice thickness of 100 µm), a one hundred fold increase in linear resolution

performance over medical imagers in two-dimensional imaging.

Section 2.4 covers techniques used for volume imaging, which is useful in many

areas of MRI microscopy. Figure 2.7 shows an example of the resolution attain-

able in three dimensions. The image of glass beads (average diameter 1.0 mm)

suspended in water was taken at the Notre Dame 300 MHz imaging facility, using

a 2mm solenoid rf-transmitter. The voxel (a three-dimensional pixel) resolution is

an isotropic 223µm3, which is roughly 45 times the linear resolution typically used

in medical imaging. The signal per voxel is therefore a factor 453 or nearly 100,000

times smaller! Such resolutions in three dimensions require expensive hardware, as

well as long acquisition times, making two-dimensional imaging the more widely

used method to date.

Two-dimensional spin echo techniques successfully studied aging and inhomo-

geneities in rubber and other elastomeric materials in 1989, and phase separation in
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Table 2.1. Non-Medical Applications of MR Microscopy, Based on a List Published
by Komorosky in 1993 [1]

Polymeric Materials Chemistry & Chemical Engineering

Manufacturing defects Reactions in solutions
Voids, occluded solvents or parti-
cles, cracks, channels

Spatial heterogeneity of reactants,
products or conditions, oscillations,
kinetics.

Phase structure Solid state reactions
Mixing of blends, composites,
fillers, plasticizers, foams

Anisotropy of reactions, kinetics

Reactions Chromatography
Polymerization, thermoset curing,
adhesives, crosslinking

Column packing, band spread, elu-
tion

Diffusion Coal
Swelling agents, solvents, gases Pore size, microstructure

Environmental effects Flow
Aging, wear, mechanical or other
stress, oxidation, heat distribution

Fluid dynamics, turbulence, multi-
phase flow

Bioreactors
Design

Inorganic Materials Agriculture & Food

Ceramics Wood and plant biology
Cracks, voids, binder distribution Knots, defects, water flow and dif-

fusion, disease

Oil well cores Soil and grain
Physical defects, fluid quantifica-
tion, distribution and mixing, dif-
fusion, flow

Water content, distribution and
transport

Metals and crystals Agricultural products
Hydrogen distribution, current
flow, defects

Damage, ripening, diseases, insects,
baking, storage, spoilage
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Figure 2.7. Glass Beads Suspended in Water: A slice from a three-dimensional
spin-echo acquisition shows T1 reduced water inside a 1.2 mm capillary filled with
glass beads (average diameter is 1.0 mm). Isotropic voxel resolution is 22µm. The
small distortions of the beads surfaces are dust particles.
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1991 [85], obtaining resolutions of 30 x 30 x 300 µm3. Heil analyzed water migration

and void formation in baking biscuits [86], no doubt contributing a great deal to

the unsurpassed quality and homogeneity of today’s packaged biscuits! German et

al. investigated foam drainage by measuring the water content inside a column of

liquid foam over time [87]. In keeping with this spirit, they evaluated the drainage

characteristics of beer foam [88], reinforcing the importance of MRI as a tool to

improve the lives of people everywhere.

Foams are a very good example of how MRI of physical materials differs from

biomedical MRI, and why physical MRI requires a thorough understanding of imag-

ing parameters and the interplay of different physical effects during imaging, and

places unusually high demands on many imager components.

German et al. were not able to distinguish more than a few isolated large bub-

bles during their investigations, due to the rapidly evolving nature of the sample,

including simultaneously shifting bubble boundaries, liquid drainage and gas diffu-

sion.

Biomedical imaging limits the ways in which a subject can be altered, or “op-

timized” for the purpose of imaging. Luckily, the subjects usually start out with

good potential. Not so in MR microscopy, where researchers often struggle to ob-

tain signal from inorganic materials or microscopic samples. Careful selection and

optimization of the sample are as important as the hardware and imaging method.

Gonatas et al. succeeded in imaging two-dimensional slices of an optimized foam,

measuring the bubble size distributions over long periods of time [46]. They were

able to control the coarsening and drainage rate well enough for their purpose, while

using gradient and rf-hardware capable of resolving close to 100µm.
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2.4 Imaging of Volumes

Many purposes require the exact shape or structure of a feature under investiga-

tion. In biomedical MRI the experienced radiologist can often infer from a two-

dimensional image which section of an organ is seen, and can make further assess-

ments of its extent in the third dimension. For less well studied subjects, or for

complex materials, this option does not exist. Imaging should provide a means to

visualize the third dimension, and indeed it does. This section discusses various

techniques used in three-dimensional imaging, as well as their respective advantages

and disadvantages in imaging liquid foams.

Three-dimensional images can be reconstructed from series of two-dimensional

slices acquired with conventional SE or GRE methods. These methods are inef-

ficient, however, when trying to acquire more than a few slices, and often result

in either incomplete reconstructions (due to slice spacing), or multiple aliasing, in

which the slices overlap. As discussed in Section 2.2.5, slice selection is never homo-

geneous, and requires very short and powerful rf-pulses for each slice to be imaged,

in order to attain reasonable resolution, putting tremendous demands on the imager

and resulting in unacceptably long acquisition times.

We wished to study the evolution of liquid foams in three dimensions, which

required visualizing a continuous space as homogeneously as possible. The several

ways to look at a foam present different possibilities and limitations for using MRI.

A liquid foam can be seen as a collection of isolated gas cells, or as a network of

edges and vertices that contain (mobile) liquid, similar to a network of blood vessels

in biomedical imaging. The faces resemble solid membranes, and, in a sufficiently

dry foam, the entire network structure can - as far as MRI is concerned - behave

like a solid.
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MRI approaches each case differently, though none is ideal for imaging a material

as complex as a liquid foam. This section will review some of the techniques we

considered for three-dimensional imaging of foams.

2.4.1 Non Slice-Selective Imaging

True volumetric imaging can be done quite ingeniously, using all of the already

familiar concepts. The major difference is the first step, which omits slice selection.

Instead of a slice selective rf excitation in the presence of a magnetic gradient, the

90◦ pulse is applied with no magnetic gradient present. The pulse envelope is a

close approximation to a rectangle, with rise and fall times (slopes) determined by

the imager’s basic rf-frequency (the resonance frequency). The bandwidth of the

rf-pulse is the inverse of the duration of the pulse and is of order t−1p [83].

Figure 2.8 shows the generic three-dimensional spin-echo (SE3D) sequence in the

familiar format. Instead of a slice selection gradient, the sequence uses two phase

encode directions instead of one to encode the second and third spatial dimensions.

In a typical imaging sequence of 128 x 128 x 128 data points, the imager acquires 128

phase encode steps (repetitions) along the first phase encode axis, then 128 phase

encode steps along the second phase encode axis. The efficiency of this method

arises from eliminating the series of slice excitations (which require extra rf-pulses

and slice selection gradients) within a single repetition.

A further advantage arises from using a spin echo. The 180◦ pulse is applied after

the resonance frequency is encoded along the read axis (shown in Figure 2.8). This

180◦ pulse has a finite excitation bandwidth, determined by its duration. Hence

only spins contained within the frequency range of the 180◦ pulse will be refocused

at time TE, when the echo is recorded. This feature is of great importance during

foam imaging experiments, allowing us to select the resonance frequency of water
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Figure 2.8. Three-Dimensional Spin Echo (SE3D) Pulse Sequence: The schematic
shows the timing for the three gradients and the rf transmitter/receiver channel.
Transverse magnetization is achieved without a gradient field, and two spatial di-
mensions are consecutively phase encoded.
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accumulations at the bottom of the sample to remain outside the excited frequency

range!

The technique relies on so called hard-pulses, meaning very short bursts of rf-

energy, which require much power. The 90◦ rf-pulse must now excite nuclei contained

in a large volume (instead of a slice) rapidly enough to excite a sufficiently wide

range of frequencies. Here again, the second 180◦ pulse is most important. It must

be short enough to excite the full frequency bandwidth inside the desired imaging

volume, and powerful enough to invert the net magnetization. By design, the 90◦

and 180◦ pulses have the same amplitude, with the pulse duration twice as long for

the 180◦ pulse. Selecting the correct width for the 180◦ pulse, and finding the correct

pulse power for full transverse magnetization, result in optimal signal throughout

the imaging volume.

During the high resolution foam imaging experiments with the 300 MHz imager

at Notre Dame we frequently used the rf-amplifier at the maximum allowed power

level for a series of rf-resonators. Under these conditions it becomes very important

to continuously cool the resonator. The rf-hardware specifications warn about strong

frequency drift and jumps due to heat accumulation at high power. While running

the imager at high duty cycles, and maximum allowed rf-power for several days

during many experiments (with both water and air cooling for gradients and rf-

resonators), we did not observe any serious drifts or jumps beyond regular dissipative

adjustments to the basic frequency. Figure 2.7 (discussed in Section 2.3) shows a

slice from a high resolution SE3D acquisition, which took about four hours.

2.4.2 Imaging of Gas

Gases such as 3He, 19F and 129Xe possess a net nuclear magnetic moment, and can

theoretically be used for MRI. High resolution NMR spectroscopy can easily reveal
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the presence of single atoms of 13C or 19F in a molecule (often requiring many days of

acquisition) [68], so theoretically we could use polarizable gases for imaging, despite

their low densities. Foams consist mainly of empty space (i.e. gas), making them

suitable for gas imaging.

Medical imaging of lungs and lipid bilayer membranes is notoriously difficult [89]

with conventional techniques. Spin densities in atmospheric pressure gases are too

low even to obtain two-dimensional images during a single breath cycle (lungs) or

heart beat. In 1994 Albert et al. [89] developed a new technique using laser-polarized

129Xe gas to image lungs in mice, as well as dissolved xenon in cell membranes. The

laser-polarization increased the polarization density (magnetization) of the gas by a

factor of 105, enabling faster image acquisitions than in regular proton based clinical

MRI. A drawback is the loss of polarization that occurs during consecutive excitation

cycles, which limits the number of excitations (images) that can be obtained using

a trapped volume of gas.

Saam et al. studied edge enhancement effects at gas-solid boundaries using

hyper-polarized 3He [90]. While the technique is promising, the signal enhancement

occurs near impenetrable boundaries only (where diffusion is significantly reduced),

and we do not expect any significant signal enhancement near the more permeable

membranes in liquid foams.

Using hyper-polarized gases to image bubble volumes is very promising. Setting

up polarized gas (or solution) based experiments will be initially time consuming,

and we have not attempted them for that reason. However, the techniques for

creating hyperpolarized gases, particularly xenon (which has a tremendous cost

advantage and lower diffusion compared to helium), are well established. Song et

al. [91] describe the development of applications in materials research. Albert [92]

reviews appropriate pulse sequence methodology and gives a detailed discussion of
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relaxation and material (tissue) interactions, specifically addressing the need for very

low flip angle techniques to preserve polarization. A standard imager would need no

modifications, beyond a broadband rf-amplifier and suitably tunable rf-transmitter.

In summary, hyperpolarized gas imaging can provide unsurpassed signal and

fast acquisition times, making it ideally suited for imaging materials that contain

large empty volumes. Depolarization is of concern when trying to study material

evolution over time, and needs to be addressed using suitable imaging sequences.

2.4.3 Imaging of Solids

Solids have very short transverse relaxation times T2, due to strong dipolar spin-

spin interactions and the common presence of ionic bonds and paramagnetism in

the sample. This rapid dephasing of the FID, referred to as Bloch decay [83], poses

a formidable barrier to imaging. Limitations due to signal strength and dephasing

that apply to imaging of solids also apply to liquid and solid foams.

The resonance line width in solids is the major factor limiting the attainable

resolution. The localized magnetic fields experienced by the excited nuclei fluctuate

strongly, due to the short range nature of the dipolar spin coupling in a solid molec-

ular environment, resulting in a broad resonance line. The width ∆ν of the NMR

signal is defined as the width of a Lorentzian line at half its maximum height:

∆ν =
1

πT2
. (2.6)

In order to distinguish two resonance curves that are centered inside neighboring

pixels, their peaks must be separated by ∆ν. Typical resonance line widths in true

solid materials can be 100 kHz, but most elastomeric materials, such as rubber and

polyurethane have resonance line widths on the order of 5 kH to 20 kHz. Acquiring

128 data points at ∆ν = 5kHz then requires a frequency encoding range (sweep
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width) of 640 kHz. Such wide frequency ranges result in very low S/N and place

tremendous demands on magnetic gradients.

Callaghan [83] discusses limitations and possible approaches to imaging solids

in great detail. Line narrowing techniques such as Magic Angle Spinning (MAS)

are useful in true solids, but require rotational speeds of several kHz, which would

certainly leave a liquid foam sample in a less than ideal state. Chapter 3 discusses

appropriate relaxation agents to homogenize the localized magnetic fields to narrow

line widths in liquid foams.

Fortunately this line narrowing sample preparation allows us to use regular vol-

umetric imaging techniques for liquid foams, which are easier than poorly developed

solids imaging techniques. This approach often applies,as in the case of porous me-

dia (i.e. solids), in which filling the connected space with a more suitable imaging

medium (e.g. water) produces a reverse image. Assink et al. [93] and Kose [52] have

imaged open-faced solid foams in this manner.

If this approach is not possible, a nascent technique referred to as “single point”

or “constant-time” imaging may help [83, 84]. In this technique, phase-encoding

gradients provide all spatial information, so it is not limited by bandwidth or relax-

ation times. However, the three separate phase encode steps for each voxel result

in very long acquisition times and high duty cycles for the imager. The technique

is therefore suitable only for true solid (i.e. motionless) materials.
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CHAPTER 3

THREE DIMENSIONAL IMAGING OF FOAMS

3.1 Sample Preparation

3.1.1 The Base Liquid

Liquid foams contain very little actual liquid per net volume. The liquid largely

resides in a network of vertices and edges. In foams with a finite (non-zero) liquid

fraction φ, the junctions of faces -the edges- and of edges -the vertices- are called

Plateau borders, after the Belgian mathematician who investigated the rules of equi-

librium for conjoined soap films in the 19th century [48].

For foams in which the faces can be treated as surfaces with zero thickness,

Plateau’s rules state that vertex stability requires two conditions:

1. The edges form at the intersection of three faces (or films), with mutual angles

equal to 120◦.

2. The vertices form at the junction of four edges, with mutual angles equal to

the tetrahedral angle cos−1(−1/3), or ∼109.5◦.

In practice these rules apply to less ideally dry foams, with finite thickness in the

Plateau borders and volume liquid fractions of about one percent [28, 29, 30, 34].

Weaire showed in 1996 that for foams that are not near the ideal dry limit, meta-

stable eightfold vertices can exist [34].

These considerations are important in the preparation of foam samples for MRI

experiments, which face a set of constraints:
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1. MRI requires the presence of hydrogen nuclei contained in water. A high liquid

fraction is therefore desirable.

2. A liquid fraction above φ ∼ 10% in a heterogeneous foam leaves spherical
bubbles suspended (wet limit) within the liquid phase.

3. Vertex instability and motion cause artifacts during image acquisition.

4. Gravitational drainage leads to thinning, motion artifacts, drying and collapse

during experiments.

Studies of bubble shapes and topological distributions require distinguishable

interfaces between two neighboring bubbles. The bubbles must be polyhedral, not

spherical as at high liquid fractions or in suspensions. The faces have a smaller

membrane curvature than the Plateau borders at their joining edges and vertices.

They contain very little liquid, and do not significantly contribute to drainage. This

geometry leads to very large interface areas between the liquid and the gas (air) in

the sample, with liquid present only inside the network of edges and vertices.

As a result, liquid foams with polyhedral bubbles produce very little signal for

their volumetric size, since at most a few percent of the total volume contains free

protons.

We measure the wetness of a foam in percent of volume liquid fraction φ. Optical

studies of surface bubbles in foam mixtures confirm that in order for foams to

contain only polyhedral bubbles, less than 5% volume liquid fraction is desirable.

While a suspension of spherical bubbles requires significantly more than 10% liquid,

we find that even above 5% the liquid sometimes accumulates in small pockets,

in which one or a few spherical bubbles can remain suspended. These bubbles

will not participate in diffusion driven coarsening (since they possess no thin film

walls) and basically constitute a small structure unto themselves, interfering with
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measurements of neighboring bubbles in ways which we cannot quantify. We avoid

such accumulations by keeping the total liquid fraction in the sample as low as

possible, while allowing sufficient liquid in the films and edges to permit substantial

coarsening without drying the sample.

We determined the liquid fraction in the samples by measuring the volumes of

the foam and the accumulated liquid over time, until all liquid has drained out of

the sample, and the foam collapsed. We mixed purified water (70%) and glycerin

(30%) with a commercial detergent (a mixture of ionic and non-ionic surfactants),

providing a non-drying, easy to use liquid. Fluorescein (Sigma Chemicals) is added

to provide contrast under UV-lighting.

We also used optical means to examine surface bubble size distributions in gelatin

based foams. A 720 x 470 pixel CCD camera set at a shallow depth of field recorded

coarsening over 24 hours. We attached a micrometer scale to the front of the sample

as a size reference. The study estimated the fraction of bubbles that were too small

to resolve in early two-dimensional MRI images of gelatin foams by Gonatas et

al. [46], and first three-dimensional acquisition by Prause et al. [94] in 1995.

We processed the images using a simple thresholding algorithm to create binary

images (black and white only). A Laplacian edge enhancement filter creates an

image with reasonable accurate outlines of the bubble edges [95]. Figure 3.1 shows

the raw images (with some contrast adjustment for printing purposes) and edge

outlines at two stages of coarsening. Due to a lack of appropriate computer programs

at the time, we printed the images, and measured the bubble diameters by hand,

binning them into sub-threshold (< 200µm), near threshold (200 to 400µm) and

above threshold (> 400µm) categories. Figure 3.2 shows that after 10 hours, the

fraction of bubbles below 200µm diameter is less than 20%.
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Figure 3.1. Images of Surface Bubbles After 4 (top) and 12:30 Hours (bottom). The
left side shows the images after thresholding and edge enhancement.
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Figure 3.2. Bubble Size Distributions for Surface Bubbles in a Gelatin Based Foam.
The foam was created using an electric mixer. The bubble sizes were analyzed by
manually fitting circles on images obtained with a CCD camera.

57



The optical studies we conducted allowed us to verify bubble shapes, drainage

times and bubble size distributions (for surface bubbles only) for a large variety of

liquid compositions and foam producing techniques. The experience we gained in

digital image acquisition using CCDs, as well as the development of image analy-

sis routines for two-dimensional domains, aided our investigation of the flow and

shearing dynamics of two-dimensional bubble layers.

We tested a number of liquids for their suitability to MRI experiments. The

liquid in the foam sample needs to have high viscosity and film strength, thus limiting

diffusion while draining slowly, without drying out over long periods of time. The

liquid would also have to be suitable for NMR imaging of hydrogen. Mineral oils,

agar and many protein solutions contain insufficient free hydrogen (nuclei that are

not bound to a large molecule, and whose resonance frequencies are not shifted), or

are too magnetically inhomogeneous to allow imaging.

We found that glycerin based solutions did not provide stable enough foams,

while the water content was high enough to provide a localizeable resonance signal.

Glycerin/water based foams coarsened rapidly for about 24 hours before collapsing.

Wall breakage occurred at all times.

Polyvinyl alcohol (PVA) can be hydrated to achieve a desired level of liquid

viscosity, and foams prepared using PVA and SDS as a surfactant were stable for

between 24 and 48 hours. However, the foams drained very rapidly, leaving � 1.0%
liquid within the foam after only a few hours. We measured the resonance line

width of PVA solutions, which is greater than 1200 Hz, compared with a few tens or

hundreds of Hertz for other solutions we tested. The extremely low liquid fraction,

together with a fast transverse relaxation time below 0.3ms, made it impossible to

generate a spatially localized NMR signal in the amount of time available to observe

the foam during coarsening.

58



We found that a highly purified protein gelatin solution (Norland Hi-Pure brand,

fish skin derived Teleostean gelatin) fulfills the requirements best. The foams created

with water/gelatin solutions resisted film rupture, drying and polymerization over

many days. Drainage was slow and consistent, continuing measurably for up to 36

hours. Optical studies and experiments with foams based on other gelatins (agar, or

Sigma Chemicals brand Teleostean gelatin) produced unstable foams that collapsed

within 24 hours. Our optimal mixture was 50% (by volume) Norland gelatin content,

with the rest consisting of water and added surfactants and relaxation agents.

Glycerin based foams are used in two-dimensional studies of rafts and layers,

and are useful in experimenting with foam generating techniques. Gelatin is very

hard to remove from surfaces when hardened and is best used in imaging, where its

stability is crucial.

3.1.2 Magnetic Susceptibility Matching

Interfaces between regions of different proton densities and magnetic susceptibilities

lead to localized magnetic inhomogeneities in a sample [83]. These inhomogeneities

act as random local magnetic gradients, causing spins to dephase more rapidly

than in magnetically homogeneous samples that are affected by spin-spin dipolar

interactions only [74]. The faster spins dephase, the less signal the FID produces.

This fact is exploited in medical imaging, where contrast between tissues is often

enhanced through the use of contrast agents, which alter the proton density (water

storage), or magnetic relaxation times1 T1 and T2 of specific tissues [81].

Foams represent an extreme case, however, where interfacial areas are very large,

and proton density differences between the liquid and gas are many orders of mag-

nitude. Large magnetic inhomogeneities arise from susceptibility differences caused

by the presence of paramagnetic oxygen in the air, and the diamagnetic properties

1see Chapter 2: Introduction to Magnetic Resonance Imaging.

59



of the macro-molecular protein in the gelatin. While we cannot change the foam’s

structure - which is the subject of investigation after all - we can address the low

signal and magnetic inhomogeneities through careful optimization of the base liquid.

We used a SQUID (Single Quantum Interference Device) magnetometer to mea-

sure the magnetization of the base liquid as a function of the applied magnetic

field, and for different concentrations of the paramagnetic relaxation agent DyCl3.

We took measurements at 0.5 Tesla increments between 0 and 7 Tesla. The liquid

samples were held inside sealed 5mm NMR tubes in the evacuated bore of the mag-

netometer. To compensate for contributions from the NMR tube, sample holder

and Teflon tape, an empty tube was used for background measurements and the

values subtracted. Figure 3.3 shows the sample magnetization for varying DyCl3

concentrations as a function of the applied field. A transition from diamagnetic

(negative) magnetization to paramagnetic magnetization occurs about halfway be-

tween 15 mM and 20 mM concentrations of DyCl3. As expected, the magnetization

of the samples changes linearly with the applied field.

The magnetization measurements verified the diamagnetism of the gelatin, and

indicated the amount of DyCl3 required to effectively null the magnetic susceptibility

mismatch with respect to air.

3.1.3 Relaxation Properties of the Sample

To optimize the imaging pulse sequence, we needed to measure the signal’s relaxation

times T1 and T2 (see Section 2.2.1). Due to susceptibility concerns, the method

of choice for three-dimensional imaging is a three-dimensional spin-echo sequence,

which requires large flip angles (90◦ and 180◦, respectively). While the susceptibility

induced dephasing should keep T2 very small (rapid dephasing), T1 in most liquids

is quite large, between several hundred milliseconds and a few seconds for water
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Figure 3.3. Magnetization Measurements: The magnetization values for air have
been subtracted from the measurements. A negative magnetization indicates the
liquid is diamagnetic with respect to air. Positive magnetization indicates stronger
paramagnetism than air.
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in a 7 Tesla field. Ionic contrast agents, such as many Gadolinium complexes in

human studies [81, 74], or MnSO4 and CuSO4 in non-biological applications, reduce

T1 (and to some extend T2).

While we determined the range of DyCl3 concentrations which minimized the

magnetic susceptibility mismatch between the liquid and the air, we needed to

measure both T1 and T2 for a variety of concentrations of DyCl3 as well as CuSO4,

which we added to shorten the longitudinal relaxation time T1.

Figure 3.4. Increasing TR: The repetition time TR is increased during a sequence
of eight acquisitions of a sample liquid. As TR lengthens, the signal strengthens, as
T1 relaxation allows more spins to return to longitudinal magnetization. The image
in the third row is a T1 reconstruction, where each pixel intensity is proportional to
the spin-lattice relaxation time extracted from the time series. Measuring specific
regions in this image allows extraction of T1 from any part or region in the image.
See text for details.

At the same time, we monitored the line width of the resonance signal. The

susceptibility induced changes in localized magnetic field strength aid the local de-
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Figure 3.5. Increasing TE: A multi-echo MSME sequence (Carr-Purcell-Meiboom-
Gell, or CPMG) with equally spaced echo times provides a series of images with
decreasing signal intensities. For each consecutive echo fewer spins rephase. As in
Figure 3.4 this decay gives T2 information. See text for details.
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phasing of spins, with a characteristic time constant called T2?, which is generally

shorter than T2. The relaxation line width at half maximum in the absence of

gradients is 1/πT2? [83]. In magnetically homogeneous samples, T2 determines

pulse sequence parameters, such as TE, and the number of echoes or slices that

can be acquired in a single repetition. When T2? differs markedly from T2, we use

it instead. Measuring both T2 and T2? for different concentrations of DyCl3 and

CuSO4 is another way of minimizing magnetic field inhomogeneities by minimizing

the difference between T2 and T2?.

The Bruker Avance imager and ParaVision acquisition software package provide

a set of tools to measure T1 and T2 at any point or region in a sample [96]. A basic

2DSE imaging sequence (the Bruker name is Multi-Slice Multi-Echo: MSME) allows

a series of rephasing 180◦ pulses, from which we read the signal from each echo as a

separate image. While each application of a 180◦ pulse recovers all dephasing due to

T2?, true T2 dephasing (spin-spin interactions) will lead to loss of signal with each

echo [83, 74]. Figure 3.5 shows images obtained with a sequence of eight echoes.

We can measure T1 relaxation by altering the repetition time during a series

of acquisitions. If TR is much smaller than T1, subsequent excitations will create

very little transverse (exact 90◦) magnetization, resulting in low signal intensities.

Figure 3.4 shows 8 images of a slice, obtained with increasing TR.

Substituting TE and TR into the appropriate Bloch equations, they now become:

Mz(t) =M0(1− e−TR/T1), (3.1)

and

Mxy(t) =M0e
−TE/T2 . (3.2)

Using the same intensity scaling for all images in the series, and a precise 90◦

pulse to eliminate correction factors for different transverse magnetizations M0,

64



we can extract T1 and T2 by fitting the intensity (which is proportional to the

magnetization) information contained in each pixel as a function of the time steps

TE, or TR respectively [96].

We prepared a series of liquid samples, each containing the same basic ingre-

dients as the base liquid that we use to create the foam samples. While we could

measure T1 and T2 using the foams directly, simply measuring the base liquid re-

laxation is much faster, both in preparation and experiment time. T1 and T2 are

unaffected by the magnetic homogeneity inside the sample, so that only T2? differs

between a liquid and its corresponding foam. The amount by which T2? changes

between a given liquid and its foam counterpart measures how well we have avoided

susceptibility mismatches.

We varied CuSO4 and DyCl3 concentrations independently while imaging a series

of increasing TE’s and then TR’s. Figure 3.6 shows the changes in magnetization for

constant 15 mM DyCl3 and varying concentrations of CuSO4. Figure 3.7 shows the

magnetization for varying concentrations of DyCl3 while CuSO4 is held constant

at 15 mM. Table 3.1 summarizes T1, T2, and T2? for a series of contrast agent

concentrations:
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Figure 3.6. CuSO4 concentration series: Signal intensities for varying concentrations
of CuSO4, for a series of TR and TE.
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67



Table 3.1. Relaxation Times for Variations in Concentration of DyCl3 and CuSO4.

Constant DyCl3 = 15mM
CuSO4 concentration (mM) 0.0 2.5 5.0 10 15 25 30

T1(ms) 142 95 77 45 32 25 17
T2(ms) 2.4 2.6 3.0 2.7 2.5 2.5 1.8
T2?(Hz) 300 480 460 650 500 860 780
T2?(µs) 1061 663 692 490 637 370 408

Constant CuSO4 = 15mM
DyCl3 concentration (mM) 0.0 2.5 5.0 10 15 25 30

T1(ms) 43.4 - 40.3 35.5 32.0 29.9 -
T2(ms) 8.52 - 3.1 2.6 2.5 2.4 -
T2?(Hz) 1610 - 1750 1000 500 1050 -
T2?(µs) 197 - 182 318 637 303 -

3.1.4 Preparing Stable Foam Samples

We can produce liquid foams in three different ways:

1. Chemical reaction: many industrially important foams and porous materi-

als are created by outgasing during chemical reactions [6]. Polystyrene and

Polyurethane foams are created this way, where, as the reaction slows, the

liquids polymerize and arrest at the desired stage of coarsening. The process

is complex, difficult to control, and would introduce numerous problems with

respect to imaging (time scales, chemical composition), which we have just

spent considerable time eliminating!

2. Agitation: Whipping up a good foam is as easily done as said. A cheap

electric mixer from Sears can generate a decent froth in no time. These foams

are initially very wet, φ = 50%, but drain to less than φ = 10% after a few

hours, producing a moderately wet polyhedral foam, with bubble sizes ranging

from 30µm to 300µm. The foams are polydisperse, but the bubble sizes are
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smaller than for any other means we attempted, giving us the longest time to

observe the foams as they coarsen.

3. Gas injection: We tried gas flow through pipette and syringes, which is the pre-

ferred method of Weaire and Fortes in producing two- and three-dimensional

bubbles. The high viscosity of our base liquid delayed separation of the gas

bubbles from the head of the pipette long enough to produce only large (3

to 6mm diameter) bubbles. As an alternative, we used a somewhat more

“chaotic” bubble generator, a commercial millipore (fish tank) filter. Gas flow

through this filter produced very dry (initial volume liquid fraction φ = 3%)

foam, with an initial average bubble diameter of 2.0mm ± 0.3mm.

We experimented with different preparation techniques throughout the years,

and found that both agitation and “filtering”(gas flow) work well, providing us with

different initial wetness and sizes for imaging. We will discuss details whenever they

become relevant during the imaging experiment descriptions.

Due to the non-zero liquid fraction, gravitational drainage of liquid through

Plateau borders and edges affects coarsening in the foam, as well as gas diffusion

across the films, vertex coalescence and wall breakage. During the course of the

experiments we found that holding the sealed glass cells containing the foam at

a constant temperature of about 280◦K limited the rate of drainage and kept air

from drying the foam walls. Samples prepared in this manner coarsened without

breaking down for as long as six days, at which time the gelatin in the faces started

polymerizing, inhibiting growth.
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3.2 MRI of Foams

3.2.1 History

MRI of foams was first performed in the context of studying porous materials. Many

solid foams consist of little more than a network of edges connecting the vertices,

with no faces separating the domains. Assink et al. obtained density profiles of

liquid draining through such open pore spaces in solid foam [93]. Kose used water

to fill the pores of a polyurethane foam and obtained three-dimensional images of the

water distribution [52]. His choice of a foam with very large pore sizes (2 to 6 mm in

diameter), and edges that were several hundred micrometers thick, enabled him to

acquire a “negative” image of the foam, where the pore space contains signal, and the

edge network is empty (similar to the technique we proposed for using hyperpolarized

noble gas inside closed liquid bubbles). Using a high linear resolution of 150µm he

was able to resolve the particularly wide edges and vertices in his sample. The

experiment was successful, and his analysis of the structure of two dozen bubbles

(traced by hand) closely agreed with the findings of Matzke [50, 51], in that he found

no evidence of the ordered polyhedra that were suggested by Kelvin [49] or Weaire

and Phelan [29].

Early imaging of liquid foams was independently performed by German et al. [87,

97, 88, 86] and Gonatas [46]. Both employed two-dimensional spin-echo sequences

to obtain single slice images. The experiments conducted by German et al. con-

centrated on extracting one-dimensional spin density profiles in absence of a phase

encoding gradient, which did not require optimization of the sample’s MRI signal

even at time resolutions below one minute (inferred by the author from published se-

quence parameters and standard protocols). The acquisition of full two-dimensional

images, however, took well over one hour in very wet beer and egg-white foams,
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resulting in images that revealed only few very large bubbles [87]. He could not

determine the sizes or structure of individual bubbles.

Gonatas et al. in 1995 were able to image two-dimensional slices in a gelatin

based foam with sufficient spatial resolution (100 -130µm, non isotropic) to reveal

detailed bubble structure. They optimized their base liquid for their low field spec-

trometer, resulting in acquisition times of 50 minutes for a single, high resolution

slice. The images were of high enough quality to manually determine the sizes of

individual bubbles, down to a resolution threshold of about 250µm. The results of

acquiring time series of two-dimensional slices of a single foam were used to study

the changes in bubble size distributions over time [46].

3.2.2 Early Development of Three-Dimensional MRI for Liquid Foams

We began developing suitable techniques and hardware for three-dimensional imag-

ing of liquid foams early in 1995 with visits to the Department of Radiology Magnetic

Resonance Imaging Facility at the University of Chicago under Dr. Gregory Karcz-

mar. Our efforts during the visits concentrated on the possibility of using gradient

echo techniques for rapid multi-slice image acquisitions.

During two visits in January and February 1995, we imaged several wet foam

samples with initial volume liquid fractions φ ∼ 50%. The Biospec imaging facility
consisted of a 40cm bore 4.7 Tesla (200 MHz) horizontal bore GE primary magnet,

with 10 Gauss/cm gradients and a custom 40 mm rf solenoid transmitter/receiver.

The images we obtained during these trials failed to reveal any distinguishable

bubble structure. Due to the short periods of time during which the imaging system

was available, we could perform little parameter testing and sequence optimization.

Other contributing factors were the inadequacy of sample optimization at the time,

as well as the imaging hardware and the selection of gradient echo imaging methods.
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The magnetic homogeneity inside the sample, both due to primary field fluctuations

and sample susceptibility, was insufficient for the strong demands imposed by fast

gradient switching. Typical applications in Biospec imagers require resolutions of

1mm3, while the foam experiments attempted to push in-plane resolution to 100µm2,

with 1mm slice thickness. The limited gradient strength imposed the slice thickness,

and was the main contributing factor in the failure to distinguish bubble structure.

The foams at the time were not stable enough to allow significant coarsening, so

that the largest bubbles during imaging were less than 600µm in diameter, which

was roughly half the selected slice thickness.

While the visits to the University to Chicago failed to produce usable images,

we were able to draw several valuables lessons from these first experiments:

1. The foams needed to drain and coarsen before imaging.

2. Gradient echo methods, - while intrinsically much faster - are too sensitive

to magnetic field inhomogeneities and to induction of Eddy currents. Three-

dimensional imaging of foams must rely on spin echoes, or possibly constant

time imaging.

3. High isotropic resolution would require strong gradient strengths, which could

run high duty cycles over long periods of time.

4. Acquisition times for single images should be as fast as possible, and ideally

should not exceed the integration time achieved by Gonatas et al. for two-

dimensional slices.

We obtained a first three-dimensional data set of a liquid foam [94], during a

site visit to Bruker Instruments in Billerica, MA in March 1995. We used an 89

mm vertical bore 9.4 Tesla (400Mhz) Bruker primary magnet, with an AMX console
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and water cooled gradients providing 38 Gauss/cm for the experiment. The choice

of a high field, small bore imager with strong gradients was a response drawn from

our conclusions after the experiments in Chicago. Smaller bore sizes result in much

more homogeneous primary magnetic fields, which are less aggravating to intrinsic

magnetic inhomogeneities in the sample. We designed the experimental method

with Dr. Samuel Gravina at Bruker Instruments, and for the first time obtained a

true volumetric image of foam.

We placed a whipped gelatin foam inside a 3ml plastic syringe, with an outer

diameter of 10mm, and an inner diameter of 8mm. The foam drained for about 90

minutes. A longer drainage time was preferable, but impossible due to the imaging

time constraints during the visit. A 20mm shielded birdcage rf transmitter/receiver

provided stronger signal to noise ratio than during the previous experiments. More

ideally sized 10mm to 15mm transmitters were not available at the time.

We doped with CuSO4 and DyCl3, following Gonatas et al. [46]. An inversion

recovery sequence measured the longitudinal relaxation time T1 in the sample, which

was a surprisingly long 105 ms. This T1 limited the possibility of reducing the

repetition time below 160 ms (ideally TR should not be lower than 1.5 * T1 to

prevent steady state saturation). A three-dimensional spin echo sequence provided

80 data points along each axis. Taking two averages gave a total acquisition time

of 34 minutes. Table 3.2 summarizes the imaging parameters.

Table 3.2. Acquisition Parameters: Billerica, March 1995.

Field of View (mm) TE (ms) TR (ms) Sweep Width (kHz) Resolution (µm)

8 x 9.2 x 8 0.868 160 125 100 x 115 x 100

Before reconstruction we appended a number of zeros to the time domain data

set (FID), a standard procedure known as zero filling [81], increasing the number of
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data points to process during the Fourier transform to 128 in each dimension. The

reconstructed image required extensive processing, involving application of intensity

thresholding and unsharp masking filters. We will discuss the specific details of

image processing for three-dimensional data sets and particularly MRI images of

foams in Chapter 4. Figure 3.8 shows a three-dimensional surface rendering of the

sample, in which round bubbles of varying sizes are visible suspended inside the

liquid.

Figure 3.8. Surface Rendering of a Liquid Foam: A three-dimensional MRI image
of a liquid foam with high water content. Surface renderings with selective cutouts
are the preferred visualization technique, since the high liquid content prevents a
ray-traced projection.
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The experiment proved that true volumetric imaging of liquid foams was possible,

albeit while making high demands on the imaging hardware. The sample was still

very wet at the time of imaging, providing a much stronger signal than could be

expected in a much dryer foam. The expected low signal intensities in dryer foams, as

well as the time constraints faced at the predominantly biomedical imaging facilities

that allow outside experimenters (as well as the issue of hardware limitations at these

facilities), required the search for a more specialized facility.

The conclusions drawn from the experiments to this point also defined the per-

formance envelope for a dedicated research MRI facility at the University of Notre

Dame, which could be optimized for imaging suspensions, particulates, as well as

solid and liquid foams.

A suitable high performance imager for high resolution imaging has been op-

erational since the fall of 1995 at the National High Magnetic Field Laboratory

(NHMFL) in Tallahassee, FL. This Bruker DMX 600 imager provided an, at the

time, unique 14 Tesla (600 MHz) primary magnet with an 89 mm vertical bore,

and high performance 96 Gauss/cm gradients. We contacted the NHMFL with

a request to use the 600MHz imager to evaluate the effects of high fields on the

imaging of liquid foams. Our primary contact was Dr. Steven Gibbs, who raised

the issue of worsening susceptibility mismatches in high magnetic fields. An ap-

plication to perform an evaluation experiment at the facility justified the use of

high fields by comparing quantitatively the effects of field strength on polarization

density and transverse relaxation time T2. While the signal (polarization density)

increases nearly linearly (at room temperature) with field strength, T2 decreases as

T2 ∼ √f [78].
Subsequently we became the first outside users accepted for an extended trial

run at the facility in October 1996.
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During our visit at NHMFL we encountered numerous technical problems due

to an incomplete imager installation. Particularly, the lack of water cooling for the

magnetic gradient coils, missing temperature sensors, and insufficient data storage

capacity and acquisition buffers, limited acquisition rates and gradient capabilities,

triggering numerous crashes while running experiments.

Despite the technical difficulties, our hypothesis that high fields would achieve

superior signal to noise proved right. Figure 3.9 shows an isosurface reconstruction

of a liquid foam after about 30 hours of coarsening. Table 3.3 summarizes the acqui-

sition parameters for this experiment. We chose the slow repetition time to prevent

the gradient set from overheating in the absence of water cooling and temperature

sensors. The foam was considerably more stable, after a switch in the base gelatin

brand from Sigma Chemical, to a considerably more expensive Norland Products

Hi-Pure brand gelatin. While previous foams would polymerize and break within

less than 24 hours, the foams based on Hi-Pure gelatin lasted for over two days.

Table 3.3. Acquisition Parameters: NHMFL, October 1996

Field of View (mm) TE (ms) TR (ms) Sweep Width (kHz) Resolution (µm)

11 x 11 x 11 2.7 300 125 86 x 86 x 86

In three days of imaging we were not able to obtain a time series of images, due

to technical problems. The image we did obtain for a late stage liquid foam was

by far the best to date, and proved the viability of our proposal. The results of

the evaluation were published in the NHMFL annual report for 1996 [98]. We were

encouraged to apply for extended experiment time at the facility for the following

summer, following an imager upgrade and component installations.

We received nine days of free experiment time from the NHMFL in July 1997

after a very positive review of our initial work. However, despite software upgrades,
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Figure 3.9. Liquid Foams: A ray-traced isosurface rendering of a late stage liquid
foam obtained in October 1996. The volumetric image is the first of a liquid foam
at very low liquid fraction. The voxel resolution is 863µm3, and the image is 11 mm
in height.
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the imager was even less stable than during our previous visit. We were unable

to compile acquisition macros which would have enabled us to automate the ac-

quisitions. Local disk storage was not available. Local network crashes and buffer

overflows terminated several acquisitions. We also faced the same technical limita-

tions, including missing temperature sensors and inadequate cooling.

Figure 3.10. Liquid Foams: A surface rendering of an early-stage liquid foam ob-
tained in July 1997.

While trying to overcome the technical problems, we were able to improve the

sample’s stability and reduce its coarsening rate by actively cooling the sample using

a liquid nitrogen evaporator. Several experiments searched for the ideal temperature

range, which would not freeze the sample, but keep it in the highly viscous regime

just above the freezing transition. Between 279◦K and 285◦K proved to be a safe
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temperature range. During the last three days we were able to slow the coarsening

sufficiently to obtain images of liquid foams during early stages of coarsening, at

which time the rates of diffusion, drainage and volume changes are faster than in

later stages, and image quality depends crucially on the rate of image acquisition.

Since we had already succeeded in obtaining high quality images of very dry foams

during late stages of coarsening (Figure 3.9), we focussed our attention on early

foams, which we needed to master in order to obtain reasonably long time series.

Figure 3.10 shows a surface rendering of a liquid foam that is about two hours

old. In comparison to Figure 3.8 the image reveals more detail, but required an

acquisition time of 2 hours and 40 minutes for two averages. The sample was kept

very near freezing at 278◦K during that time, and it subsequently collapsed before

we obtained more than a few images.

Overall, the experiment did not provide a usable time series of a liquid foam

as we had hoped. Instead it provided us with further insight for the planning of a

dedicated imaging facility, and a set of requirements for future experiments:

1. We are able to visualize liquid foams during early and late stages of coarsening.

2. We need to control the coarsening rate of the sample by using temperature

control.

3. A robust imager setup with all components fully tested and operational would

be absolutely necessary.

4. An MRI facilities requires full-time dedicated staff.

5. None of the MRI facilities we visited (including visits to Bruker and Varian

in 1995 and 96 during which we did not image liquid foams) were equipped

to handle the large amounts of data (in excess of 20 Gigabytes) required for

79



serial three-dimensional image acquisitions. Similarly, in order to efficiently

transfer large data sets, we required large capacity storage devices, such as

writable CD-R, optical media or high capacity tape.

6. A dedicated image processing workstation is necessary to process data sets

offline while acquisitions are running, to allow assessment of automated ex-

periments while they are under way, without interfering with the acquisition.

3.2.3 The Notre Dame 300MHz Imager

We submitted an instrumentation funding request to the NSF and secured matching

funds from the University of Notre Dame for an MRI facility in February of 1996.

The NSF grant was approved in July that year, at which time we contacted Varian,

Bruker Instruments, and ChemMagnetics to solicit quotations. These three were

the only companies that provide integrated MRI research imagers, including all

console hardware, computers, magnet, gradients, probes and software. The high

degree of specialization we had in mind for our imager favored buying separate

components from specialized manufacturers, and we did look at some components

from that point of view. We felt however, that integrating diverse components would

require considerable experience and time, and involved risks such as not meeting

performance requirements and incompatibilities.

Instrumentation selection involved testing several imagers from all three man-

ufacturers, of which only Bruker was able to provide an imager that very nearly

matched our specifications. The Varian imagers we tested (at Palo Alto and Kyoto,

Japan) both suffered from thermal problems, due to a lack of water cooling for the

gradients and malfunctioning temperature sensors. During a visit to Kyoto we tested

a 15cm bore, 300MHz vertical imager which came close to our specifications. How-

ever, the Varian pulse sequence libraries did not include three-dimensional imaging
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methods. We attempted a standard multi-slice 2DSE sequence on a water filled

polyurethane sample, during which the gradient set overheated. Inadequate circuit

protection caused one gradient to fail internally, rendering the gradient set use-

less. We deemed the Varian imagers inadequate to perform the high duty cycle,

temperature controlled experiments we designed.

ChemMagnetics provided an interesting 400 MHz imager for our inspection at

their facility in Fort Collins. The imager was very stable during testing, and pro-

vided a useful, flexible software interface and pulse program library. Water cooled

gradients and high powered amplifiers were also available. We tested a liquid foam

at a customer site at the University of Wyoming, using a narrow bore 200MHz mag-

net. The images (without much time for optimization) were very good, and we did

not encounter any technical problems. Our imager would have required extensive

customization of the rf-probes, which were provided by an independent German

manufacturer. We were also concerned about support issues for a project of this

size from a very small company, which was reinforced by a somewhat arbitrary and

confusing pricing policy, which made it nearly impossible to understand the bottom

line, as well as delivery and installation conditions. ChemMagnetics was subse-

quently purchased by Varian in 1997, and the continuation of their manufacture of

high field MRI research imagers was in doubt.

We visited Bruker Instruments twice: in March of 1995 (see previous section),

and in October 1996. During both visits we succeeded in imaging our samples. We

made velocity measurements of suspension flow (October 96), and imaged liquid and

solid foams. During the visit to Rheinstetten, Germany, we tested a 300MHz super-

wide bore (15cm) imager with water cooled 96 G/cm gradients, a DMX console

and Indy workstation running ParaVision 1.0+. The imager performed flawlessly.

Equally important, we gained a very positive impression of, and very good working
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relationship with, the responsible technical and scientific staff at Bruker, particularly

Dr. Mark Mattingly at Billerica, and Dr. Dieter Gross in Germany. We deemed this

support to be of crucial importance to the operation of such a complex machine.

Parallel to the selection of a suitable imager, we had to locate and renovate a site

for the imaging facility at Notre Dame. Due to changing requirements within the

Department of Chemistry, we could not use the location we had originally proposed

in the NSF grant. During 1997 and early 1998, we inspected and subsequently

dismissed existing locations inside the Radiation Laboratory (the Department of

Energy objected), and two locations that were primarily used for storage, which were

dismissed due to excessive vibrations and high renovation costs. The construction

of a new NMR and MRI facility to house all Notre Dame spectrometers (currently

6) proved too costly as well.

After finding a suitable location within the Department of Physics, we decided in

April 1997 to purchase a complete imager from Bruker Instruments, Billerica MA,

listed in Table 3.4.

Table 3.4. Notre Dame 300MHz Magnetic Resonance Imaging Facility

Bruker DRX 300 MHz Imager

Primary Magnet 7 Tesla
Proton Resonance 300 MHz
Bore Size 150 mm (Vertical)
Gradients MINI0.36 at 14.5 G/cm max.

MICRO2.5 at 100 G/cm max.
Gradients Amplifiers 3 x 40W
Resonators 60mm H1 for MINI0.36

2mm, 5mm, 10mm, 15mm, 25mm H1 for MICRO2.5
Rf- Amplifiers 100W H1

300W Broadband

The magnet was assembled and tested in Rheinstetten, Germany by January

1998. During the testing we obtained a first time series of coarsening in a liquid foam.
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We were able to further optimize the imaging parameters with the help of Dr. Gross

at Bruker (also see Section 3.3.3: Three-Dimensional Imaging Experiments). A very

crucial factor for the success of this test was our ability to use high repetition rates

(short TR), because for the first time we were able to use water cooled gradients.

Figure 3.11 shows two slices from different stages of coarsening inside a foam sample.

Figure 3.11. Liquid Foams: Two images from our first three-dimensional time series
of a liquid foam. The gelatin based liquid was imaged inside a 3 ml plastic syringe
of 12mm inner diameter. The liquid content was above 10% during the experiment.

The magnet arrived at Notre Dame in February and was installed in a 5 ft.

deep pit to allow for a required 15 ft. ceiling height above the center of the mag-

net. It was powered up between March 3rd and March 6th 1998, and compo-

nent testing continued through the middle of April. During that time we replaced

an HADC imaging digitizer (maximum bandwidth of 125kHz) with an upgraded

HADC-2 (theoretical 1 GHz bandwidth) model. Aside from some difficulties in

getting the vibration isolating legs pressurized, and the gradient water cooling to

work (leaks, fitting and pressure problems, which explains why water cooling did

not work in Florida), the imager met or exceeded all specifications. While we largely

used the North American Bruker software distribution, including ParaVision release
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1.1.23 [96] with XWINMR 1.2, we also installed some imaging specific source code

(IMND class codes) we obtained from Germany, which is more robust and flexible,

particularly for SE3D experiments! The facility was operational by the end of April

1998.

3.2.4 Three-Dimensional Imaging Experiments at Notre Dame

After imager installation we began testing the imaging methods provided by Bruker

Instruments for US customers, which we keep under the BII acronym in the imaging

protocol directories. We obtained a first series of liquid foam images using the BII

three-dimensional spin echo sequence. Surprisingly, we were not able to program the

short echo times and repetition times we were accustomed to from the earlier tests

in Germany. The source code contained too many fixed delays, which we attribute

to their design for slow-switching biomedical scanners (which overheat more easily,

and which have much larger time constants for the gradients). Accordingly, signal

to noise suffered in these first images shown in Figure 3.12, compared to the images

we obtained just three months earlier on the same imager (see Figure 3.11). A

further bug in the se3d.ppg pulse program prevented averaging multiple acquisitions,

which we fixed by eliminating a 180◦ phase shift in the readout direction, that had

effectively canceled consecutive averages.

We encountered other problems with BII protocols, such as the Three-Dimensional

Constant Time implementation SPI. The easiest solution to the problem was to in-

stall the imaging methods provided by Dr. Gross at Bruker in Germany under a

separate protocol directory called Bruker. While we have not extensively tested

many of the protocols provided, the SE3D method that we devised in Germany

worked as expected after installation.
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Figure 3.12. Liquid Foams: The first images we obtained in April of 1998 with the
300MHz imager at Notre Dame. Both TE (4.2ms) and TR (150ms) were too long
to optimize the S/N, due to the BII IMND source code which prevented shorter
echo and repetition times. The gelatin based liquid was imaged inside a 3 ml plastic
syringe with 12mm inner diameter.

Between the months of May and July of 1998 we used the imager primarily

for biomedical applications, including the imaging of bird brains and clusters of

embryonic chicken cells. The experiments tested several performance criteria of the

imager, including low flip-angle gradient echo imaging in three dimensions, and high

resolution microscopy (see Chapter 2).

During that time we also tested methods of cooling the foam samples, including

a liquid nitrogen evaporation/heating system. We repeatedly encountered conden-

sation inside the magnet bore, caused by the temperature of the chilled water used

to cool the gradients, and insufficient air conditioning, which to this date fails to pro-

vide adequate humidity and temperature control in the MRI facility. Condensation

throughout the laboratory caused several shutdowns during the summer months, as

excess water had to be removed from insulation materials in the ceiling above the

console electronics.
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By late July we had established a permanent bore venting system, which pro-

vided dry air flow through the bore of the magnet, and prevents condensation under

near all operating conditions. We also found that the chilled water supply for the

gradients provided sufficient cooling under the tight conditions inside the magnet to

effectively maintain a constant temperature (equal to the temperature of the chilled

water) in the sample, provided that the sample was already cold when placed in

the magnet. This auto-cooling eliminated the problem of having to continuously

monitor the nitrogen levels in the evaporator during extended experiments. The

evaporator would also regularly freeze, making it a much less reliable means of

maintaining a constant temperature for extended periods of time.

Another possible benefit of combining chilled water cooling with a low flow dry

air stream, is the prevention of overheating of the rf-transmitter during high power

pulsing. The three-dimensional spin-echo sequences require maximum power output

in the 25 mm rf-transmitter during the liquid foam experiments, under which the

transmission frequencies can experience sudden shifts and jumps [96]. While the

absence of such drifts may be due to built in rf-stability rather than efficient cooling,

the cooling certainly provided a safety margin here as well.

We resumed imaging of liquid foam samples in July and August, during which

time we obtained several moderately good series of images. We were still exper-

imenting with the liquid composition and details of the foam generation at that

time, which resulted in several unstable samples. One aspect we tested was both

hydrophyllic and hydrophobic coating of the glass container walls, to study the influ-

ence of drainage along the walls on the foam’s overall stability and wetness. Neither

helped stabilize the samples over time, and both actually contributed to early decay

of the foam. By preventing the foam from sticking to the side walls of the container,

the column essentially collapsed slowly under its own weight, possibly because the
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water inside the network had insufficient means to drain (through the “internal”

network only), thus contributing to excess weight. Allowing the water to evenly

coat the glass walls had an equally disturbing effect, efficiently draining all liquid

pockets (the vertices) in the vicinity of the walls. The signal in these parts of the

image was severely reduced, and the samples dried out much quicker.

The experiments in July and August succeeded in imaging liquid foams at very

high isotropic resolutions, better than 100µm, and at obtaining short time series of

twelve to twenty acquisitions each. Figures 3.13 and 3.14 illustrate the progress

and changes we made between the data runs in this period. At this point the

improvements in the imaging protocol reflected adjustments in field homogeneity,

frequency matching, receiver gains and minor protocol changes.

We made significant changes in the experiment preparation and sample geometry

that we used until July 1998, shown in Figure 3.13, and the protocol we devised

in August 1998, shown in Figure 3.14. The images shown from experiments in

January, April and July 1998 all show moderately wet liquid foams with volume

liquid fractions above 10%. The foams therefore have some rounded faces, with no

distinguishable films separating two adjacent bubbles, close to a suspension where

isolated round bubbles “float” in a liquid. Until July we imaged such foams in 10mm

NMR tubes, or syringes of equal outer diameter, inside a 10mm rf resonator. The

small volume combined with the relatively high liquid fraction had the advantage

of producing good signal, but was not sufficiently dry to study polyhedral cells.

In August 1998 we began using 15mm glass tubes and a 15mm birdcage res-

onator, providing twice the imaging volume of a 10mm resonator, but at the same

time requiring doubled rf power output, while losing sensitivity. The switch allowed

us to image much dryer foams produced using a millipore air filter placed inside

a base liquid reservoir. We connected the glass tube to the reservoir several cen-
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Figure 3.13. Liquid Foams: Two experiments from July 1998. Whipped gelatin foam
imaged inside 10mm NMR tubes using a 10mm resonator at isotropic resolution of
93µm.
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Figure 3.14. Liquid Foams: Two experiments from August 1998. Filtered gelatin
foam imaged inside 15mm glass tubes, using a 15mm resonator at isotropic resolution
of 101µm.
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timeters above the liquid level, so that bubbles that flowed into the glass tube were

consistent in wetness and approximately homogeneous in shape (with about a 10%

variation in diameter). The imaging protocol was able to pick up good signal from

these samples.

We decided to retain this setup, and shorten the repetition time even further,

by lowering T1 to about 30 ms (using a 16 mM concentration of CuSO4). We

obtained the first usable extended time series of a liquid foam between September

18 and September 21, 1998 (foam 9 18). We used the imaging parameters in this

acquisition for all further experiments, and stored them in the 15mm pulse program

protocol directory as “foam se3d” and “foam 98”. Figures 3.15 and 3.16 show slices

from three time steps of this experiment, and a ray traced maximum intensity

projection of the foam at about 48 hours.

Table 3.5. Summary of Acquisition Parameters

foam10 16 foam1 21 foam2 02
Imaging Method SE3D SE3D SE3D
Pulse Program se3d.ppg se3d.ppg se3d.ppg
Nucleus H H H
Acquired Data Points 256 x 1282 256 x 1282 256 x 1282

Spectral Width (Hz) 125000 125000 125000
Isotropic Voxel Size (µm3) 1013 1413 1413

Echo Time TE (ms) 2.0 1.9 1.9
Repetition Time TR (ms) 50 50 50
Homospoil 0.1ms 0.1ms 0.1ms
Dummy Scans 1.0s 1.0s 1.0s
Pulse Shape bp bp bp
Excitation Pulse Length 19.5µs 25µs 25µs
Refocusing Pulse Length 39µs 50µs 50µs
Transmitter Attenuation +1.0 dB +5dB +5dB
Receiver Gain 595-2000% 720-4500% 890-6300 %
Averages 4 to 8 2 to 12 2 to 16
Acquisition Time/Ave. (min) 13:40 13:40 13:40
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Figure 3.15. Liquid Foams: Slices from three images of the first extended time series
obtained in September 1998 (foam 9 18). Filtered gelatin foam imaged inside 15mm
glass tubes, using a 15mm resonator at isotropic resolution of 101µm. The sample
diameter is 12mm. The imaging parameters are summarized in Table 3.5.
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Figure 3.16. Three-Dimensional Rendering: A maximum intensity projection of the
MRI image of foam 9 18 after two days of coarsening, showing the three-dimensional
structure of the sample. The sample diameter is 12mm. The imaging parameters
are summarized in Table 3.5

92



Subsequently we collected one more data run using the “filtered” foam and 15mm

resonator setup on October 16, 1998 (foam 10 16). We used the same protocol

to conduct two more experiments (foam 1 21 and foam 2 02) using a 20mm glass

tube and 25mm resonator. We “whipped” these foams to produce smaller bubbles,

which we let dry to a liquid fraction of less than 10% before placing the foam

in the tubes. Using a larger tube and smaller bubbles enabled us to study the

foam for longer periods of time, allowing us to study larger volume changes. The

disadvantage is a further reduction in signal intensity, which required a doubling

of the rf power output. Table 3.5 summarizes the acquisition parameters for the

last three experiments. We will present a full analysis of these experiments in the

following chapters.

A single image acquisition average during the experiments took about 14 min-

utes. To improve the signal to noise ratio, initial scans employed two averages,

extended to four and later eight, as the sample drained. Thus a “snapshot” of the

foams took 30 minutes initially (for about 24 hours) and 120 minutes at the end of

the runs. We took data for both relatively homogeneous (filter method) and poly-

disperse (whipping method) foams in 15mm and 25mm rf-coils. The experiments

each lasted for several days, during which we acquired forty or more images of the

foams as they evolved. We automated the actual acquisitions through an acquisition

macro, which is a UNIX shellscript that invokes a series of ParaVision specific com-

mands [96]. Approximately every four to six acquisitions we had to adjust the base

frequency (due to magnet drift) and receiver gains. Gradient and bore temperature

remained constant throughout the experiments. Typically the gradients would reach

a stable working temperature of 310◦K. Table 3.6 summarizes the experiments.

Figure 3.17 shows three-dimensional, maximum intensity reconstructions of a

dry, initially homogeneous foam at different stages of development.
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Figure 3.17. Maximum Intensity Projections of Three-Dimensional MRI Recon-
structions. The foam is shown at three stages of development: a = 12 hrs, b =
28 hrs, c = 48 hrs. The sample diameter is 12 mm. See Tables 3.5 and 3.6 for
acquisition and experimental details. 94



Table 3.6. Experiment Summary

foam10 16 foam1 21 foam2 02
Dates 10.16.98 1.21.99 2.02.99

to 10.19.98 to 1.24.99 to 2.07.99
Foam Type Filtered Whipped Whipped
Sample dia. x length (mm) 15 x 30 20 x 40 20 x 40
Initial Bubble Sizes 2.0 ± 0.3mm 30 - 300µm 30 - 300µm
Sample Temperature (◦K) 282 281 281
Wetness after 4 hrs. < 2.0% ∼10.0% ∼ 10.0%
Wetness during imaging < 2.0% <2.0% < 2.0%
Imaging Method SE3D SE3D SE3D
Acquisition Time (min) 13:40 13:40 13:40
Number of Data Runs 59 40 52
Runs Analyzed 48 28 39
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CHAPTER 4

DATA ANALYSIS

4.1 Background

Visualizing and analyzing three-dimensional data, particularly spatially complex

structures or paths, are notoriously difficult. Most visual inspection of data is re-

stricted to two dimensions, such as a display on a computer screen or charts on paper.

Many tools exist to create quasi three-dimensional representations of multivariate

data. Geological and meteorological sciences use three-dimensional isosurface charts

to represent, for example, height variations, wind speeds and water distributions [14].

Color coding in conjunction with isosurfaces can contain additional information, or

add clarity.

Advances in computer processing over the last ten to fifteen years have added

the ability to represent such data at oblique angles, showing the third dimension in

surface charts more intuitively [14, 99].

Such methods cannot easily represent more complex structural data to be readily

understood by the human eye. Projections from a single perspective will hide fea-

tures from view. Three-dimensional renderings of the layout of organs or blood ves-

sels, distributions of underground deposits or aquifers, the complex three-dimensional

wind pattern in a cyclone, or a true appreciation of the layout of the Carlsberg

Caverns, cannot be understood by the human eye without providing additional in-

formation [95, 100].
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Stereoscopic displays can address these shortcomings to some extent [101], while

the most widely used method to visualize complex three-dimensional structures, is

data animation [95]. A three-dimensional data set can be rendered from a variety

of viewing perspectives, either from within or outside of the data set. By displaying

closely spaced perspectives in rapid succession, the data become animated, revealing

features from many different perspectives. In conjunction with stereoscopic render-

ing, this technique of visualization has become the state of the art in displaying,

for example, complex protein structures, or machine parts in the final stages of

design [102, 101].

We can render images of three-dimensional foams in the same way, allowing the

eye to inspect and combine information about the structure from many perspectives.

While this step in data analysis is the most interesting visually – giving direct proof

that the complete three-dimensional structure has indeed been captured – it is only

a first necessary step to extract precise structural information.

While many images readily reveal the object of interest – such as a tumor in

a three-dimensional body scan, or a crack revealed by x-ray inspection of a work

piece, – the structure of individual bubbles, their sizes and shapes, can not be di-

rectly inferred from the three-dimensional foam images. These contain secondary

information, specifically the location of water concentrations inside the Plateau bor-

ders (the vertices and edges of the bubbles). Our areas of interest are investigating

the three-dimensional growth law, and the shapes of individual bubbles, requir-

ing extensive data processing, partially using established techniques and available

software, in part using new programs.

The first section of this chapter focuses on three-dimensional image processing,

vital to preparing the data for further analysis. The rest of the chapter describes

how we extract information about the bubbles themselves from these images. We
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have developed two independent techniques that have specific advantages in deter-

mining bubble structure, but only automated reconstruction can address coarsening

dynamics in a reasonably efficient manner, without undue amounts of manual labor.

4.2 Image Processing

4.2.1 Introduction

The term image processing according to John C. Russ [95] describes two processes:

One which improves the visual appearance of images to the human viewer, and one

which measures images for structures and features present. In many cases accepted

and widely used techniques are available for both purposes, and, as is the case with

MRI images of foams, visual improvements are a necessary step before accurate

feature extraction becomes possible. An advanced reference for two- and three-

dimensional image processing techniques is The Image Processing Handbook [95],

written by Russ.

The majority of image processing done today is on two-dimensional photographs,

or sections (slices) of an object of interest. Radiologists use multiple MRI or

CAT sections through a region of interest, to approximately understand the three-

dimensional extent of features. Drafters have had to rely on representing three-

dimensional objects with orthogonal planes on a two-dimensional space. With the

development of powerful drafting software and computers this limitation has de-

creased over the last decade, and a workpiece can now be represented by as many

sections in the third dimension as there are picture elements along the axes of the

plane. Such rendering allows visual inspection of workpieces, and even functional

analyses before they are built. Geological and archaeological exploration take ad-

vantage of the same development, allowing precise localization of findings (visualized
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with sound, X-rays or NMR), thereby saving cost and limiting environmental im-

pact.

If the resolution along all three axes matches reasonably well, and if consecutive

sections have no spacing or overlap, a data set consisting of multiple sections forms

a volumetric image. Ideally a volumetric image contains isotropic picture elements,

called voxels, in which the extensions along all three orthogonal axes are equal (the

voxel is a cube). This voxel length is the isotropic linear resolution. The MRI images

we obtained of liquid foams are isotropic, volumetric images, with voxel resolutions

between 101µm and 147µm. The x,y,z extension of a voxel is the smallest observable

size object in a given data set.

Reaching back to the early days of black and white film photography, many

ways have been found to manipulate two-dimensional images, to reveal or enhance

otherwise hidden features, or to eliminate distortions or low contrast effects [95].

Before the advent of computerized processing this was achieved by using color pass

filters and out of focus, over- or under-exposure of the print positives. In the age of

digital image processing this same process involves gradient or averaging operations

applied to pixels and their neighbors, histogramming, thresholding and banding, as

well as selective alterations of individual colors or color tables.

While a three-dimensional image is fundamentally a series of two-dimensional im-

ages, we cannot treat it as such when dealing with techniques to lower or eliminate

random or systematic noise. Three-dimensional structures can easily be distorted,

connections eliminated or created when simply applying two-dimensional image fil-

ters to individual sections of an image. Figure 4.1 shows a two-dimensional section

from a three-dimensional data set. Visible are two types of noise. Uncorrelated

white noise appears as random buckshot throughout the section. Radio-frequency
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leakage from the high powered rf-transmitter creates a center artifact, which appears

as a broadening spike along the center of the x̂-axis in the image.

As discussed in Chapter 3, the very small volume which houses the water makes

standard calculations of signal to noise ratios meaningless. We therefore cannot

use thresholding, which simply suppresses signal below a certain intensity, to elimi-

nate low intensity noise completely, without eliminating some parts of the structure

(mostly in edges at or near the midpoint between two vertices, where the amount of

signal producing liquid is smallest). We need a more complicated approach, which

at first reduces both random noise and artifacts, then an erosion/dilation “closing”

operator fills gaps in the structure that could have been created by the noise reduc-

tion, or that could have been present because the signal within an edge location was

not sufficient to be distinguishable during the discrete Fourier transform.

4.2.2 Regions of Interest

We acquired all data with twice as many voxels along the vertical axis as within the

perpendicular plane. This geometry was dictated by the rf-coil geometries, which

have a resonator length of approximately 40 mm, with diameters of 15 and 25 mm

respectively. Water accumulation near the bottom, and very dry foam boundaries

near the top of the resonator volume produce less signal than the foam near the

center, where the excitation pulse is optimized. Also the rf-artifact is much broader

inside the liquid rich area near the bottom, wide enough to mask existing structural

features. Near the top, the signal from the liquid in the boundaries becomes increas-

ingly discontinuous, which makes it impossible to reconstruct complete boundaries

in this region, without masking too many small features throughout the data set.

Closing a gap of three voxels across would also possibly eliminate bubbles or faces

less than six voxels in diameter.
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Figure 4.1. Slice From a Three-Dimensional Data Set (foam2-02 run 38): “Buck-
shot” noise, as well as a strong center artifact, appear clearly in the image, along
with parts of real water signal from the liquid in the sample.
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We must therefore truncate the data sets at the top and bottom. Also, since

the samples are never perfectly centered within the field of view, and the field of

view closely corresponds to the sample size, some aliasing occurs (typically, in the

analyzed data runs, about three to six voxels at one edge each in the x̂ and ŷ

directions). Due to these limitations, we concentrated our analysis on a region of

1203 voxels at the center of the original data sets. This truncation of data is common

in MRI images, and often done in the reconstruction. We chose to reconstruct the

full images first, and perform the truncation during the early stages of analysis.

This sequence allowed us to inspect the full images at later times (which is less

sensitive to low signal or noise than most processing algorithms). All remaining

image processing and data analysis used the extracted cubes of 1203, or 1,728,000

voxels.

4.2.3 Artifact Elimination

Radio frequency noise leaking from the rf-amplifier and at the transmitter con-

nections, where the transmitted and received signal pass through in short succes-

sion [74], creates rf-artifacts. In MRI images rf-artifacts commonly appear as zero

offset frequency lines at the centers, referred to as zippers along the phase encode

axes. Zipper artifacts are usually strong when high rf-power is required, or when

the switching time between signal transmission and reception is very short.

The 90◦ pulses used in the spin echo imaging of liquid foams require near full

power from the 100 Watt rf-transmitter. This high power in conjunction with the

very short T2, which requires rapid signal acquisition after the rf-pulse is emitted,

contributes to the very prominent zipper artifact seen along the center of Figure 4.1.

Another similar zipper structure is present along the plane perpendicular to the slice,

which is the second phase encode direction during the three-dimensional acquisition.
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Figure 4.2. Spatial and Intensity Distributions (foam-10-16 run 28): Top: Compar-
ison of signal intensities inside and outside the center artifact. Bottom: Histogram
of intensity distributions in the entire data set. The inset extends the intensity scale
to show the small number of voxels with intensities above 50.
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Figure 4.2 shows the signal intensities within the artifact along the x̂-axis in

the top graph. The shape of the distribution resembles the averaged intensity

distribution of non-artifact signal voxels along x̂, measured for the entire sample.

The averaged values for non-artifact voxels at times exceeds the artifact intensities.

Overall the signal intensities in the artifact are nearly centered within the range of

values obtained from true foam signal. The bottom graph in Figure 4.2 shows a

histogram distribution of signal intensities in the whole sample. Measurements of

single background voxels in this particular data run confirm that the upper thresh-

old for random noise is at a signal intensity of about 20. While some signal from

liquid or artifact has intensities below 20, all signal with intensities above 20 is due

to liquid or an artifact. Since the intensity ranges for signal and noise overlap, band

suppression or thresholding will not eliminate random or artifact noise.
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Figure 4.3. Neighborhood Ranking: Values along the center row and column are
replaced by the average of their two nearest neighbors in the same row or column.
The center value is replaced by the average of its four diagonal neighbors. The
light-gray colored pixels on the left, indicating true signal, are left unchanged.

Hence an algorithm to eliminate the artifacts has to work along the known

center voxel locations (technically the zipper is centered about the N/2+1 voxel for

N phase encode steps), along two axes of the data. Since the zipper represents no
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real structure, we can replace its value by the average value of neighboring voxels.

This procedure is usually part of NMR acquisition software toolkits, and is included

as an application with ParaVision[96]. The supplied algorithm eliminates zipper

artifacts only along a single axis, and averages only the two nearest neighbors of

a one voxel wide artifact. Due to the high rf-power and short echo times during

our 3DSE acquisitions the artifacts in the foam images are up to 7 voxels wide (see

Figure 4.1). We designed a more flexible and powerful algorithm, that could adapt

to the varying sizes of the artifacts.

Figure 4.3 shows a schematic 7 x 7 voxel cross section of an artifact at the center

of an image on the left side. The voxel values represent signal intensity. The gray

cross shaped voxels at the center highlight the extent of the artifact (high signal),

which for illustration purposes is seven voxels wide. Typically the artifact ranges

from three to seven voxels in width. The light gray voxels on the right side of

the left figure contain real signal from the foam structure, which we need to leave

unchanged. In Figure 4.3 each element inside the dark gray area is replaced by a

simple average of its two closest neighbors. The right side shows the area after the

averaging filter has been applied. With the exception of the voxel connecting two

signal containing elements, the values inside the originally gray area are now equal

to or lower than their surrounding noise.

The geometry of artifacts in real three-dimensional MRI is considerably more

complex, and even in this example, the voxel at the very center actually had to

be replaced by the average of its four diagonal neighbors. Typically it is sufficient

to examine the shape of the artifact for one early and one late data run in an

experiment, and record its maximum extensions and shape. We can choose a number

of two- and three-dimensional neighborhood ranking filters to best eliminate all

artifact noise. The strongest artifacts occur in experiments using the 25 mm rf coil,
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and +5 dB transmitter attenuation. Best results are achieved by a three-dimensional

ranking filter, which combines first and second nearest neighbor averages with the

third nearest neighbors inside the two-dimensional plane, and weights each value by

its distance to the voxel that is replaced.

The cross shape of the artifact extends up to three voxels from the center in

each direction, and is sometimes three voxels wide. So we must first process any

non-center columns of the artifact, to avoid averaging elements that are part of the

artifact to replace other artifact voxels. Figure 4.4b shows the result of this region

selective replacement operation for experiment foam-10-16, in which the artifact

from Figure 4.4a has been removed, without otherwise altering the image. Figure 4.5

shows a second case for experiment foam-2-02. The artifact is significantly wider

and signal to noise is only half as good as in foam10-16 (corresponding to the ratios

of the imaged volumes). The artifact elimination algorithm works just as well in

this case.

4.2.4 Removing Uncorrelated Noise

Figure 4.1 shows the large amount of uncorrelated noise present in the data sets,

often referred to as buckshot noise from the way it produces featureless random spots

on the image. The intensity of this noise compared to the intensity of real signal

in MRI usually scales as Signal/Noise ∼ N/√N for N averages [74]. Most data
acquisitions during foam experiments use two or four averages, with very late stages

of development often requiring eight or twelve.

While the above
√
N relation between signal and noise is reasonably accurate

in a static tissue or in a fluid filled environment, the signal intensity during foam

imaging changes (decreases) constantly during image acquisitions, due to drainage

(changing liquid content for each voxel), and line broadening caused by changes in
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Figure 4.4. Processed Image (foam10-16 run 28): a) Raw image with a one voxel
wide artifact and random noise. b) The slice after artifact removal. c) After median
filtering and thresholding. d) Binary image, with all non-zero voxels set to gray scale
value 255. A worm algorithm removed all remaining non-connected voxels from the
image.
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Figure 4.5. Processed Image (foam2-02 run 38): Left) The data set artifact extends
over 9 pixels in some areas, with strong random noise. Right) The same image after
processing to remove random noise and artifacts. The foam structure has not been
altered in the process.

interfacial areas. Adjustment in pulse power and rf-frequencies during the experi-

ment change the signal intensities for each image, while, other than due to minor

thermal fluctuations, the level of noise usually stays constant for any single average

and throughout the experiment.
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Eliminating or significantly reducing random noise is desirable for two reasons:

One: to enhance images for visual inspection. The presence of significant buck-

shot noise when viewing a volumetric rendering obscures structure at deeper levels

of the image.

Two: to aid in further computerized image processing, which will eventually

require a noise free image, and to aid in visually based tracing of structures, by

reducing chances of misinterpreting signal.

We have already cut areas of the image in which larger gaps exist within the gen-

erally continuous foam structure (see Section 4.2.2), and where liquid accumulations

generate significantly stronger signal. This selection simplifies the noise reduction

process. Two general observations about the three-dimensional liquid foam images

are relevant:

1. Voxels which contain actual signal do not occur in isolation. The liquid is

really continuous.

2. Gaps in the structure tend to be small, so that in a disconnected edge, each

edge point and “gap” has at least one direct neighbor that also contains signal.

The continuous nature of the signal we are trying to preserve allows us to use

a neighborhood ranking filter to reduce the intensity values of isolated noise voxels

to those of their surroundings [95]. Figure 4.7 shows the application of a stepped

5 x 5 mask. The median value of all voxels contained in the defined neighborhood

replaces the center voxel of the gray region. This operation is linear, and preserves

all information of the original image [95]. The mask is then shifted by one voxel

at a time and applied again. We allow for only parts of it to be used near the

image boundaries. We can refine this process to include weighted ranking, whereby

nearer elements are given stronger weighting (in which case the mask consists of a
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Figure 4.6. Histo-Equalization: Intensity values of a single data row are scaled,
histo-equalized, binned and thresholded to improve signal to noise.
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Figure 4.7. Effect of a Median Filter: A stepped 5 x 5 neighborhood shown in gray
is chosen around a voxel. The median value of the surrounding gray area replaces
the center voxel of this region.

set of points, each of which has a corresponding multiplication factor). A three-

dimensional 5 x 5 x 5 mask with differential weighting sweeps the foam data sets,

effectively reducing random noise to background level. The weighting insures that

voxels which have one or more nearest neighbors containing true signal, and which

contain signal themselves, receive a new value that is above the background values.

A median filter with a minimal extension of three voxels along each axis, consid-

ering nearest neighbors with factor three, second nearest with factor two multipli-

cation and so on, produces the result shown in Figure 4.4c). In this image, we first

applied the median filter, and then used a low threshold of gray scale value 6 to set

most residual background to zero. Finally we linearly expand the dynamic range

of the image by scaling the gray-scale values to the maximum allowed value (for an

eight bit binary image this is 28 = 256), which is referred to as histo-equalization.

Figure 4.6 shows the effect of these operations on a single row of signal values along

the x-axis. The top graph shows the raw data intensities corresponding to the

noisy image in Figure 4.4. The bottom graph shows the same intensity profile after

all filtering operations. The peaks correspond to liquid accumulations in vertices
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that intersect the row, while the broader regions stem from edges. At this stage

almost all noise has been eliminated, and only a few disconnected “noise regions”

remain, which originally contained several noise pixels, and which the filters could

not distinguish from vertex or edge signal.

4.2.5 Dilation and Erosion

Morphological operations collectively describe an extensive class of image processing

operations [103]. These operations include erosion and dilation, as well as combina-

tions of these. A morphological closing operator fills a missing pixel within features,

or a gap between portions of a feature, and consists of successive applications of

dilation and erosion processes [95].

The operations involve value replacements for each voxel in the original image,

using the original pattern and a set of replacement rules. Similar to other neighbor-

hood filters, we define a neighborhood volume around a center voxel. The simplest

erosion application would then replace the center voxel value with a zero, if any one

voxel in the neighborhood is zero. This operation is shown in Figure 4.8. We first

evaluate a nearest neighbor region around each voxel in the original image. If a zero

is present, the center value is replaced. Otherwise it remains. The net result is the

erosion of an existing boundary by a single layer of pixels.

The opposite of erosion is dilation, which expands boundaries of features. The

morphological closing operation performs both dilation and erosion. It uses a neigh-

borhood kernel to dilate feature boundaries, and then applies the same kernel to

perform erosion. The net result is that gaps or holes in the structure that are

smaller than the applied kernel fill or close, while existing boundaries remain other-

wise unchanged [95]. The IDL programming environment [104] provides sufficiently
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Figure 4.8. The Erosion Operation: A simple nearest neighbor kernel around each
pixel replaces the pixel value with zero only if one element inside the kernel is zero.
The result is shown on the right.

flexible compiled erosion and dilation routines, which we use in all erosion/dilation

operations on foam data sets.

The foam data sets contain some very small bubbles, so that the closing operation

would almost certainly destroy some structure. We have to weigh this disadvantage

against the advantage of gaining complete liquid edges, aiding in the reconstruction

of bubble volumes and shapes.

Figures 4.9 and 4.10 show the same data set before and after application of the

above image enhancement techniques. While the processed, non-animated three-

dimensional image in Figure 4.10 looks “flat” to the eye (histo-equalization and

binning erases contrast), the absence of misleading false structures and noise, as

well as the closure of gaps in the signal distinguish it from the raw image.

4.2.6 Connected Regions: Creating a Binary Image

Any remaining noise has become insignificant for rendering or optical analysis of the

data sets. However, computer analysis of foam structure requires a complete elimi-

nation of these remaining regions, to avoid false distance mapping and topological

reconstructions.
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Figure 4.9. Three-Dimensional Maximum Intensity Projection (foam-10-16 run 28).
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Figure 4.10. Processed Data: The same data run as in Figure 4.9 after artifact
elimination, noise reduction, smoothing and histo-equalization. Gaps have been
closed using the morphological closing operation.
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For this last step, we transform the image into a binary format, in which all

non-signal voxels contain a zero, while signal voxels are set to one. Figure 4.6 shows

the near binary nature of the image after histo-equalization, with most background

voxels already set at zero. We need to determine a threshold for the values which

will be set to one instead of zero. The purpose of this processing step is to create

a network consisting of only ones to replace the original signal data points. This

creates an unambiguous data set, in which all signal is represented by the same

number, and which helps processing intensive algorithms to perform more efficiently.

We do not require an exact correspondence, so long as the binary network closely

resembles the previous structure. A rough estimate of the number of voxels which

should contain signal (i.e., φ, the liquid fraction) is sufficient. If our threshold

produces a higher voxel percentage than we expect from the liquid fraction, we

choose a lower threshold. This matching also serves to check (somewhat intuitively),

if the parameters chosen in earlier processing steps were successful. If too few voxels

scale as signal, either in absolute terms, or in comparison with previously processed

data sets from the same experiment, we can adjust any of the processing steps to

produce consistent results.

Algorithms that search a data set to find connected regions are referred to as

snake, or worm operations [102]. The operation performed on the foam data requires

the identification of a single voxel location, whose connectedness with the rest of the

lattice is to be investigated. We select a signal containing voxel near the center of

the data set (the program simply grabs a voxel of value one from a list). A 33 kernel

is placed around the voxel, and the values of all non-zero neighbors are recorded in

a list. The kernel is moved to the first neighbor in the list, and its neighbors are

evaluated. All non-zero locations are again added to the list, while a separate list is

kept of locations that have been evaluated. The two lists are sorted and compared
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after each step. When both lists have become equal, there are no more non-zero

voxels in the lattice that are connected to the original location. On rare occasions the

initial voxel is not actually part of the liquid network, but one of the few remaining

noise elements. In that case the list of connected neighbors is extremely short, and

the program simply chooses another voxel. The list of connected voxels is usually

99% or more of the number of voxels containing ones in the original binary image.

This means that less than 1% of voxels in the binary image contained disconnected

noise.

A new image lattice can be created, in which the locations of all connected

non-zero voxels are input as ones, while the rest remain at zero. This image will

be absolutely free of uncorrelated noise. Figure 4.4d) shows this final result of

the image processing on a single slice. The total lack of differentiating contrast

makes the binary image of a three-dimensional foam utterly uninteresting to look

at without some kind of animation.

For further image processing we write the lists of connected voxels for each data

set into binary files. The lists usually contain between 20,000 and 60,000 connected

voxels.

4.3 Geometric Analysis

4.3.1 Hand Tracing and Hull Construction

A somewhat labor intensive method concentrates on the exact semi-manual recon-

struction of individual bubble shapes. Kose [52] and Monnereau [41] previously used

similar manual reconstruction techniques.

We have already processed the images to eliminate artifacts and random clusters

of noise. We now cut the data run into slices, each one pixel deep, which corresponds

to the natural resolution limit. The images show signal along all intersections of
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bubble faces (edges). Scanning through the slices, we identify any point at which

such edges converge as a vertex and record its location. While scanning process for

vertices might at some point be automated, we have not yet solved some fundamental

problems with this approach. Vertices generally consist of identifiable clusters, which

a scanning program would be able to identify. However, the inhomogeneous nature

of our samples, local changes in wetness (thus varying sizes of liquid accumulations)

and signal inhomogeneities conspire against such an approach. Manual identification

is tedious but safe.

We process the lists of three-dimensional vertices, shown for a single bubble in

Figure 4.11a), that belong to each bubble using a triangulation algorithm. The

so-called Quick Hull (qhull) algorithm [105] which we used is available for free from

the University of Minnesota Geometry Center. It is useful in generating connecting

hyper-planes in a large variety of degenerate and non-degenerate geometric prob-

lems. We use it here to create a list of simplical (triangular) facets, shown in

Figure 4.11b, that constitute the smallest convex hull around the set of vertices for

a bubble, shown in Figure 4.11c.

From this list we calculate the approximate bubble volumes. We then merge the

facets to create non-simplical faces. The merging algorithm uses the direction of

the normals of each facet’s hyper-plane as an initial merging criterion. For a bubble

with a finite number of sides, the normals for adjacent faces must have identifiably

different directions. We use a very safe initial merging threshold of 10◦, allowing for

36 faces to exist within each possible cutting plane of a bubble. After merging we

calculate the topological charge χ of the resulting bubble:

∑
f nf ∗ (nf − 6) = χ, (4.1)
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where nf is the number of edges for each face f. If the topological charge χ is -12,

we have only four-fold vertices outlining the bubble. If it is greater than -12 we

have degenerate vertices, and we increase the merging angle by increments of 0.5◦,

up to a maximum of 20◦. Conversely, if the charge is less than -12 we lower the

merging angle. The exact hull is “joggled” this way, until we find the correct charge,

or reach a maximum angle. Figure 4.11d shows the result of this step, in which case

36 triangular facets have merged into an irregular dodecahedron.

The method involves a selection bias towards four-fold junctions, which are un-

der mathematically ideal conditions (i.e. a perfectly dry foam) the only stable

junctions [32]. Non-ideal foams, which have finite radii of curvature at the junctions

can have degenerate vertices at which more than four edges meet. Indeed, about

10% of the bubbles we processed this way did not reach a non-zero topological charge

before the maximum merging angle was reached. Especially for large, multi-sided

bubbles, in which adjacent faces have small separation angles between their plane

normals, the joggling possibly caused distinct faces to merge. However, the number

of bubbles containing more than about twenty-five faces is very small. So while not

quantifiable (due to the non-regular geometry of the bubbles), the selection bias

will probably not have a noticeable effect on the calculation of numbers of faces and

edges per side.

This method allows us to investigate the detailed shapes of interior bubbles, and

it is limited only by the cumbersome procedure of tracing all vertices in the sample.
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Figure 4.11. Simplical Reconstruction: a) Vertices marking the shape of a single
bubble. b) Triangulation of the minimal surface connecting the vertices. c) Simplical
hull spanning the triangular surfaces. d) Non-simplical faces, created by merging
near parallel hyper-planes.
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4.3.2 Distance Maps and Delauney Triangulation

We developed a second method to eliminate the manual identification of vertices.

We first processed the reconstructed three-dimensional images to remove all imaging

artifacts and random noise.

We used the list of connected voxels to create a Euclidean distance map of the

lattice as shown in Fig. 4.13. A distance map of a data array finds the minimum

Euclidean distance, rmin = (x− xi)2 + (y − yi)2 + (z − zi)2, from each voxel to the
nearest voxel that contains signal. If the array is free of noise, i.e. no arbitrarily

located voxels contain signal that is not part of a truly existing structure, a Euclidean

distance map will have local maxima at points that are the farthest removed from

any boundary (signal), within any empty volume that is contained by boundaries.

Next we group localized clusters of local maxima into single centers using a third

nearest neighbor scan. This grouping is required due to the non-spherical nature of

the domains. Figure 4.13 shows the nature of a distance map for polygonal bub-

bles. Ridges converge into a cluster that, depending on the shape of the domain

may contain more than one local maximum, or a group of voxels with equal values.

We group the maxima in descending order of magnitude. We then select the first

maximum in the list, and record all maxima that are closer to its location (Eu-

clidean distance) than that maximum’s value (its neighborhood. All maxima in this

neighborhood are then removed from the scan for further bubble centers.

This process also eliminates spurious maxima that can occur at the centers of

bubble faces by requiring a zero overlap between the zones of influence of all pairs of

maxima, imposing the geometric constraint that the diameters of adjacent bubbles

are larger than that of their joining face. We use a three-dimensional Delauney

triangulation [106, 107] from the center locations to compute neighbors for each

center. The averaged radius of the equivalent sphere for each center nc is estimated
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as the mean of the distances di to all its neighbors ni, each divided by (1 + Vi/Vc),

where Vc and Vi are the Euclidean distance map values for the center and each

neighbor. Finally, we discard bubbles in contact with an outside wall or the edge of

the image.

We could thus track individual bubbles over time, identifying bubbles that did

not change their number of faces between consecutive images. For each time step

we compared the centers to those in the previous image and determined the most

probable pairings according to center location, volume and number of faces.

The number of bubbles which do not change their number of sides between two

consecutive data runs is very small. Figure 4.12 shows the number of bubbles found

for each data run in the three analyzed experiments. While the slopes are mean-

ingless, due to different time intervals between acquisitions, the number of bubbles

identified between consecutive acquisitions decreases dramatically. In foam-2-02,

the number of identified bubbles between the first and last acquisition is reduced

by nearly a factor of ten. While this reduction is good from the perspective of

studying a long period of growth, it also means that between two consecutive data

acquisitions, a sizeable fraction of bubbles disappear. Since all direct neighbors of

these bubbles will change their topology at least once, they will not be counted. So

while during 36 analyzed acquisitions in experiment foam-2-02, we identify a total of

4799 bubbles, only 879 bubbles (mostly at later times) remained at constant topol-

ogy between two acquisitions. All three experiments have between 15% and 20% of

bubbles that remain at constant topology for at least two consecutive acquisitions.

While both methods for analyzing the data have limitations and some poten-

tial for error, they represent the only technique we know to date, to extract the

information we seek from the data sets we have obtained. We present our results
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in the following chapter, together with a discussion on the status of the current

experimental method, and future possibilities.
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Figure 4.12. Numbers of Bubbles in Each Experiment: A significant fraction of bub-
bles disappears between consecutive acquisitions (data runs), changing the topolo-
gies of all their neighboring bubbles.
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Figure 4.13. Euclidean Distance Map: Left) Slice of a three-dimensional Euclidean
distance map. Right) The same map superposed on the corresponding raw image
slice in a late stage foam. Darker pixels are farther from the nearest fluid edge.
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CHAPTER 5

RESULTS AND CONCLUSIONS

5.1 Bubble Structure

We used hand-tracing and hull reconstruction to investigate the shapes and sizes of

about 350 bubbles in experiment foam-2-02. Tracing the thousands of bubbles in

all data runs for a single experiment would require many months (possibly years)

of manual work. Instead, we concentrated on identifying all bubbles within the

center of the sample in a set of five individual data runs. Thus for individual data

runs, we could extract all relevant topological distributions: The numbers of edges

for all faces, the numbers of faces for all bubbles, and the volumes for all bubbles.

Figure 5.3 shows the distributions of volumes, edges and faces for data run 32 from

experiment foam-2-02, at which time the foam has coarsened for about 28 hours.

Figure 5.1 shows the relative locations and varying sizes of some fifteen reconstructed

bubbles (out of 97 measured) from this data run. The picture illustrates the strong

variations both in sizes (note the small tetrahedral shape attached to a larger bubble

in the lower left) and shapes that we are able to reconstruct using this method.

In the introduction we stated that Glazier [38] found that in simulations the

averaged volume rate of change for a group of bubbles with f sides depends only on

its number of sides

〈Vf 〉−1/3〈dVf
dt
〉 = k(f − f0 ), (5.1)
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which implies that, on average, bubbles with f greater than f0 will grow, while

bubbles with a smaller number of faces will shrink (see Section 1.5.2 for more details).

From this, Weaire and Glazier deduced for the relation between f and f0 [39]:

f0 = 〈f 〉
(
1 +

µ2
〈f 〉2
)
, (5.2)

where µ2 = 〈f 2〉−〈f 〉2 measures the disorder of the foam. Eqn. 5.2 is exact provided
that the average volume of a bubble with f faces scales as 〈Vf 〉 ∝ f 3, which was true
in Glazier’s Potts model simulations.

Using the data shown in Figure 5.3a), for 〈Vf 〉 ∝ f α we found α = 2.7 ± 0.4,
which is consistent with Glazier’s simulations. Using equation 5.2 we found the zero

growth value f0 = 16.3± 0.7, and an average number of faces 〈f 〉 = 12.3± 0.6. The
average number of edges per face is 〈n〉 = 5.1± 0.4.
Our zero growth value f0 = 16.3±0.7 is consistent with the value f0 = 15.8±0.1

obtained by Glazier [38]. The average number of faces 〈f 〉 = 12.3 ± 0.6 is slightly
lower than values reported by Glazier (〈f 〉 = 14.08± 0.02), Matzke [50, 51] (〈f 〉 =
13.7), Kose [52] (〈f 〉 = 13.6) and Monnereau [41, 53] (〈f 〉 = 13.4). Foams consisting
of ideal Kelvin (〈f 〉 = 14) or Weaire-Phelan (〈f 〉 = 13.5) partitions also require
slightly larger 〈f 〉. The average number of edges 〈n〉 = 5.1±0.4 per face agrees with
the values found by Matzke, Kose and Monnereau. Also the number of five-sided

faces was larger than for any other number of sides (see Figure 5.3c), similar to

Matzke’s finding. However the ratios of five- to six-, and five- to four-sided faces are

significantly smaller than those found by Matzke. Monnereau also reported finding

predominantly five-sided faces, but failed to give exact ratios.

A possible explanation is the distribution of bubble sizes in the foam we studied.

The volumes in this data set range from 36 voxels3, all the way to several tens

of thousands of voxels3, a range of three decades. We found several small bubbles
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which possessed exclusively three-sided faces, such as the regular tetrahedron shown

in Figure 5.2. At the same time some of the largest bubbles had many six and

seven-sided faces. Hence a more monodisperse foam should possess relatively more

five-sided faces, as Matzke found.

The large range of bubble sizes also explains the relatively low value we find

for the average number of faces 〈Vf 〉. Figure 5.3a) shows the relation between
bubble volume and number of faces. We find that 22% of small internal (not in

contact with a wall) bubbles have four or six sides, a geometry not reported by any

other investigator. Few very large bubbles exist with 20 or more faces on the other

hand. The statistical average 〈Vf 〉 then can be expected to be lower than for less
polydisperse samples studied by Matzke, Kose and Monnereau.

Table 5.1 summarizes the distributions of edges and faces, and their averages,

for the two proposed minimal area partitions and the various experimental results.

Table 5.1. Geometry of Space Filling Polyhedra

Ratio of edges Ratio of faces Ave. number Ave. number
(3:4:5:6:7) 12:13:14:15) of faces of sides

Kelvin [49] 0:43:0:57:0 0:0:100:0 14 5.14
Weaire-Phelan [29] 0:0:89:11:0 25:0:75:0 13.5 5.11
Matzke [50, 51] 0:11:67:22:0 12:30:36:18 13.7 5.11
Kose [52] -:9:70:21:- 13:38:25:25 13.6 5.12
Monnereau [41, 53] - - 13.4 5.11
Glazier [38] – – 14.1 –
This study 5:27:40:22:6 10:7:9:5 12.3 5.1

We recorded the number of faces and the number of edges per face for all bubbles.

We then scanned the individual records to see if any Kelvin or Weaire-Phelan struc-

tures would emerge. Neither complete structures were found, however, we found

several irregular pentagonal dodecahedra. These pentagonal dodecahedra are part
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Figure 5.1. Hull Reconstruction: A set of hulls constructed around some of the
bubbles traced in foam-2-02 run 32. The tracing and reconstruction method can
even discern bubbles as small as 36 voxels3 in size.
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Figure 5.2. Regular Tetrahedra: The smallest distinguishable bubbles in the foams
were several regular tetrahedra, with a volume of 36 voxels.

of the Weaire-Phelan partition, and have been observed before. Data run 32 in

experiment foam-2-02 contained two such structures, one of which is shown in Fig-

ure 5.4. The two dodecahedra were very irregular, and not connected. Four more

dodecahedra occurred in other data runs of foam-2-02 and foam-10-16.

The data confirm earlier observations that neither Kelvin’s nor Weaire-Phelan’s

space filling partitions are present in disordered liquid foams. The global level of

disorder, which was considerable in the foams we inspected, may not allow ordered

structures to emerge. Matzke and Monnereau went to great pains to ensure that

their foams were very homogeneous. Nonetheless they found not one of the predicted

structures. This lack leads us to conclude that even a minor perturbation in a foam’s

homogeneity prevents the structure from evolving to what we believe is a minimal

energy state. The freedom to evolve appears to be limited.
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Interestingly, the sample we investigated most thoroughly, foam-2-02, started

out with fairly homogeneous (see experiment summary in chapter 3) bubble sizes

(d = 2.0mm± 0.3mm). The disorder in the numbers of faces, µ2(f ) decreases over
time, as shown in Figure 5.7, while the distribution of volumes increases (as some

bubbles shrink, while others expand).

Figure 5.4. Irregular Pentagonal Dodecahedron: The only component of the Weaire-
Phelan partitions observed in a disordered foam.

5.2 The Growth Law for Three-Dimensional Grains

The information obtained from tracking individual bubbles, and recording f and

V(t) for bubbles that do not change their number of faces between data runs, allows

us to investigate Glazier’s growth law in Equation (5.1) directly. Computing the
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derivative of Equation (5.1) for constant topology yields for the volume rate of

change:

dV
2/3
f

dt
= κ(f − f0 ). (5.3)

Figure 5.5 shows the volume rate of change as a function of f for the three ex-

periments. The values calculated for the diffusion coefficient κ and the zero growth

value f0 are shown in Table 5.2. For comparison f0 is also calculated using Equa-

tion 5.2. The values for f0 found by the two methods for the three samples are

consistent with each other, due to the large error in the volume determination used

in Equation 5.3.

Table 5.2. Growth Law Results

foam10 16 foam1 21 foam2 02
κ (10−6mm2/s) 7.33 ± 2.43 7.21 ± 2.83 7.42 ± 1.98
f0 (graph) 11.6 ± 3.8 10.9 ± 4.3 12.1 ± 3.2
f0 (Equation 5.2) 14.1 ± 0.3 14.8 ± 0.6 14.9 ± 0.5

The diffusion coefficient κ depends upon the fixed diffusion constant for the

liquid in the sample, as well as the surface tension of the separating walls. While

the samples initially have different liquid content and degree of polydispersity, the

samples drain sufficiently quickly that liquid filled Plateau borders obstruct only a

small fraction of the thin membranes of the walls, through which diffusion occurs.

Because the wetness during imaging is similar, κ is the same for all three samples.

We can thus combine the statistics from all three experiments for the volume rate

of change as a function of f. Figure 5.6 shows the combined rate of change. The

error in the slope κ = 6.0 ∗ 10−2mm2
s
± 1.1 ∗ 10−2mm2

s
decreases by a factor

√
3. The

zero growth intercept increases to f0 = 12.2 ± 2.2.
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The value for f0 is lower, but within error of the values found by using Equa-

tion 5.2 and by optical tomography [41].

While the spread in the growth rates for fixed f is considerable, they are consistent

with a non-zero, linear slope. The linearity of the computed derivative in f strongly

supports the linear dependence on topology of Glazier’s growth law. The large error

in our volume determination made it difficult to determine whether the scatter in

the growth rate was intrinsic or due to measurement error. After combining the

results from three independent measurements, the standard deviation of growth

rates within a topological class remained the same, while we would expect a 1√
N

dependence if it resulted from random measurement errors. This result suggests

that the volume scatter is intrinsic, i.e. that the law holds only on average, not for

individual bubbles, as in the Potts model.

Figure 5.7 shows the development of the average number of faces 〈f 〉, the zero
growth intercepts f0 and the second moment µ2(f ) over time for all three experi-

ments. The variance in f is very large initially, particularly in foam-1-21, which we

began analyzing after 300 minutes. The variance in f decreases in all three samples

and reaches values around 17 after some 3000 minutes. The average number of faces

stays constant for all samples.

5.3 Conclusions

Magnetic Resonance Imaging is a rapidly developing experimental technique. Re-

search is on the way to extend the performance envelope and application range

of MRI in many fields. In this spirit our success in imaging liquid foams attains

considerable significance.

MRI can be used for near microscopic applications, with linear resolutions of a

few tens of microns becoming standard at high primaryB fields. Volumetric imaging
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in biological environments can be achieved in just a few seconds. Even solids can

be imaged given appropriate hardware and sufficient time.

Our experiments for the first time combined a series of capabilities of MR im-

agers, to successfully image a material that is intrinsically hostile to this method of

visualization.

Imaging of materials with low proton densities is difficult. Magnetically inho-

mogeneous conditions, such as those created by solids or multiple phases, are even

more problematic. Adding to that imaging time constraints, caused by the temporal

evolution of the foam, and the need for the entire three-dimensional structure of the

subject, creates a set of uniquely restrictive conditions. We believe imaging of ex-

tended time series under such conditions has not been attempted in MRI anywhere

before.

The experimental procedure, including consideration of the liquid’s properties,

signal optimization, careful preparation and control of environmental factors, is a

useful study in the complexities of MRI experiments. The technique is a success,

enabling us to study foams with well below 1% volume liquid fraction, while main-

taining reasonably short integration times, and while keeping the samples stable for

several days.

The images we obtained of liquid foams are themselves a success, showing the

capability of MRI to accurately visualize three-dimensional complex structures that

evolve in time.

Automated structural analysis from a sparse three-dimensional network of con-

nected domains presents a challenging problem. Our methods show workable ap-

proaches, which can be used for many similar materials, such as asphalt and con-

crete, bone, ceramics and a multitude of granular materials. Hand tracing distin-

guishes very small bubbles, with volumes near the MRI resolution limit. It also
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allows faithful reconstruction of bubble shapes. Values for 〈f 〉, f0, and growth ex-
ponents for V (f ) and V (t), are fairly accurate. The method is too labor intensive

to determine the time evolution of large numbers of bubbles.

Automated analysis using Euclidean distance maps and Delauney triangulations

is computation intensive. Its current implementation loses small bubbles because

it requires absolutely noise free data. In future experiments we can improve the

large error bars for f0 by slowing coarsening rates and further reducing imaging

times. Faster imaging will allow us to track more bubbles between rearrangements,

improving statistics. To improve our volume estimates, we are currently incorpo-

rating a three-dimensional Voronoi tessellation [107] into our automated analysis,

to reconstruct exact hulls around individual bubbles as in our manual method.

The verification of Glazier’s growth law for three-dimensional grains should aid

rational metallurgy, in which the growth rate of domains cannot be observed directly.

5.3.1 Future Improvements

With analysis of several data runs complete, we can identify two areas to improve

future experiments:

1. We need to extend the time during which we observe foam coarsening. More

precisely, we need to look at a larger total volume change over time, preferably

over two decades or more. This would require us to generate smaller polyhedral

bubbles initially. A less viscous base liquid, combined with an attempt to slow

its coarsening rate through careful temperature control may be the answer.

2. The temporal resolution between consecutive data runs is currently only marginally

acceptable. Too many topological changes occur during a single acquisition to

make tracing of topologically constant bubbles efficient. The sequence we cur-

rently use will allow further decreases in repetition time, requiring further T1
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adjustments inside the sample. Tradeoffs in T2 will have to be evaluated, but

it should be possible to achieve nearly twice the acquisition rate we currently

employ. A more challenging approach would be to rewrite the acquisition

method to allow multiple echoes (similar to the echo trains of a CPMG pulse

train used in NMR spectroscopy), or to use technically difficult low flip angle

spin-echo acquisitions, which allow much faster repetitions.
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