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ABSTRACT

DNA sequence databases are growing at an almost
exponential rate. New analysis methods are needed to extract
knowledge about the organization of nucleotides from this vast
amount of data. Fractal analysis is a new scientific paradigm that
has been used successfully in many domains including the
biological and physical sciences. Biological growth is a nonlinear
dynamic process and some have suggested that to consider fractal
geometry as a biological design principle may be most productive.

This research is an exploratory study of the application of
fractal analysis to DNA sequence data. A simple random fractal,
the random walk, is used to represent DNA sequences. The fractal
dimension of these walks is then estimated using the "sandbox
method." Analysis of 164 human DNA sequences compared to three
types of control sequences (random, base-content matched, and
dimer-content matched) reveals that long-range correlations are
present in DNA that are not explained by base or dimer
frequencies. The study also revealed that the fractal dimension of
coding sequences was significantly lower than sequences that
were primarily noncoding, indicating the presence of longer-range
correlations in functional sequences.

The multifractal spectrum is used to analyze fractals that

are heterogeneous and have a different fractal dimension for



subsets with different scalings. The multifractal spectrum of the
random walks of twelve mitochondrial genome sequences was
estimated. Eight vertebrate mtDNA sequences had uniformly
lower spectra values than did four invertebrate mtDNA sequences.
Thus, vertebrate mitochondria show significantly longer-range
correlations than do invertebrate mitochondria. The higher
multifractal spectra values for invertebrate mitochondria suggest
a more random organization of the sequences.

This research also includes considerable theoretical work on

the effects of finite size, embedding dimension, and scaling

ranges.
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1. INTRODUCTION

Deoxyribonucleic acid (DNA), the genetic blueprint of most
living organisms, was discovered only 40 years ago by James D.
Watson and F. H. C. Crick. Just 20 years ago, F. Sanger and W.
Gilbert independently developed techniques to discover the
nucleotide sequence that defines a living organism. Since then,
DNA has been studied with unprecedented fervor, leading to
important discoveries in genetics, molecular biology, and
evolution. The Human Genome Project has the goal of sequencing
the entire human genome, and the United States Congress has
budgeted $200 million to this endeavor. The task of discovering
the sequence of nucleotides that defines man is fairly simple, but
to understand the meaning of the sequence of bases is a task of
tremendous complexity. The discovery of abnormal sequences that
cause many human diseases will revolutionize the practice of
medicine. Of equal importance are the discoveries that will
explain how four simplé nucleotides control the growth,
development, and differentiation of organisms. Can the language
and grammar of life be elucidated from the patterns found in DNA?

This is the goal of DNA sequence analysis.

1.1 The Structure of DNA
DNA is composed of two strands that bond by a specific

base-pair bonding rule. Adenine (A) always pairs with thymine (T)



2
and cytosine (C) always pairs with guanine (G). DNA replicates in
a very specific manner. A new strand elongates by placing
subsequent bases on what is referred to as the 3' end. DNA
sequences are listed in 5' to 3' order by convention, 5' being the
*head" of the sequence and 3' the "tail." The complementary strand
runs in an antiparallel direction. The following example
illustrates the antiparallel nature of the two strands of DNA and

base-pair bonding rule:

5'->AACTGGGATATATTTGGG->3"'

trrrrerrrrrrrrrinl
3'<-TTGACCCTATATAAACCC<-5"'

The subsequence 5'->AACTGG->3' on one strand is complementary
to 5'->CCAGTT->3' on the opposite strand. In general, DNA with
both strands bound together does not have direction and neither
strand has precedence.

It has been estimated that less than 5% of DNA actually
codes for protein. The pufpose and function of the remaining 95%
are presently unknown.

When DNA is copied to make messenger RNA (mRNA), the two
strands are distinct. One strand is the sense strand and the other
is the coding strand. An mRNA sequence is synthesized from §' to
3' using the sense strand template read from 3' to 5. A protein is
made from mRNA by reading it in a 3' to §' manner, grouping the
bases into triplets called codons that code the specific amino
acids to be used to construct the protein.

To summarize, DNA is double-stranded and has no direction.

The two strands in noncoding DNA are complementary and of
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unknown biological function; mRNA, on the other hand, is single-
stranded, and its base sequence is biologically distinct from its
reverse complement. The mRNA nucleotide sequence defines a
specific sequence of amino acids composing a protein.
Nucleotides are translated in groups of three (codons) starting
with a specific base, defining the three-base frame. If
translation begins with a different nucleotide (a frame-shift), a
different protein is produced. If the mRNA was translated in the
reverse direction, it would also result in a different protein.
Therefore, both frame position and direction are important for
translation of mRNA sequences into proteins.

It is well known that the genetic code is redundant and that
some amino acids are represented by more than one codon. In fact,
only 20 different amino acids are represented by the 64 possible
codons. The four bases composing the DNA of an organism do not
occur uniformly. Table 1.1 shows the base compositions of
selected gene and genome sequences that demonstrates this
nonuniformity. It is also interesting that synonymous codons are
not used equally, and some are rarely used. Some of this codon
preference or bias is explained by base and two-base dimer
frequencies, but there appear to be other influences such as speed

and accuracy of translation (Dix and Thompson 1989).

1.2 DNA Sequence Analysis Methodologies
The goal of DNA sequence analysis is to discover important
patterns in the organization of DNA. (! distinguish these analysis

methods from homology search, alignment algorithms, and



Table 1.1

Base composition of selected sequences shows
nonuniform frequency patterns (Weir 1985).

No. of
Sequence bases A C G T
human mitochondrion 16,669 31% 31% 13% 25%
hepatitis B virus 3,182 28% 22% 27% 23%
human fetal globin exons 882 24% 25% 28% 22%
human fetal globin introns 1,996 27%  17% 27% 29%

sequence comparisons.) These patterns are then used to predict
structure and function. For example, codon preferences have been
used to determine whether a sequence codes for protein by
analyzing the different framing possibilities. Important
information about patterns identifying mRNA splice sites has been
deduced from analysis of sequences. Finding an open reading
frame is important in specifying whether a sequence codes for a
protein.

Sequence analysis has also been used to identify the position
of a nucleosome along a sequence and to predict the secondary
folding structure of a protein. Other important patterns identify
mutation patterns and regions of DNA that have a high probability
of being polymorphic. These discoveries help explain how proteins
function and how genes are expressed, help identify and map genes
through the use of polymorphic genetic markers, and allow
identification of mutations in defective proteins that cause

diseases. DNA sequence analysis is very important for future
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discoveries and greater understanding of this molecule of

heredity.

1.2.1 Oligonucleotide frequencies

Some of the first DNA sequence analyses involved frequency
measures of short oligonucleotides, particularly dinucleotides.
Oligonucleotide frequencies allow researchers to estimate the
frequencies of longer oligos in a genome and the frequency of
restriction enzyme cutting sites (Bishop, Williamson, and Skolnick
1983). The molecular weight of a strand of DNA and the melting
point or hybridization temperature may also be estimated using
oligonucleotide frequencies.

Nussinov (1981) found consistent asymmetries in the
frequency patterns of dinucleotides in prokaryotes and
eukaryotes--AT was more frequent than TA, CT more frequent
than TC, TG more frequent than GT, and GC more frequent than CG.
After analyzing 44 sequences comprising more than 70,000 bases,
she concluded that there was ‘“irrefutable evidence for the
existence of nearest neighbor preferences and asymmetries in DNA
sequences” (Nussinov 1980, p. 4545).

Later, Nussinov (1984a) found distinct patterns in DNA
dimer frequencies. Nonvertebrate sequences showed more uniform
dimer distributions than vertebrate sequences. Eukaryotic
sequences showed almost equal frequencies of complementary
dimers. The occurrence of CG in eukaryotes was rare but was
common in prokaryotes. Bacterial phages that were primarily

single-stranded genomes had different frequencies for
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complementary dimers. Eukaryotic viral sequences tended to show
the same dimer preferences as eukaryotic organism sequences. In
general, dinucleotide frequencies were different for
evolutionarily distinct groups. In a follow-up paper she showed
that doublet preferences were primarily due to conformation
constraints of the DNA double helix (Nussinov 1984b). in
eukaryotes, purine-purine and pyrimidine-pyrimidine dimers are
preferred over purine-pyrimidine and pyrimidine-purine dimers.
The tight packaging of DNA in nucleosomes disfavors these in
eukaryotes primarily due to steric repulsion of opposite-chain
nearest-neighbor purine clashes.

Blaisdell (1983) evaluated the occurrence of base runs in
coding and noncoding DNA. He found that coding sequences
generally contained a significant excess of dimers and trimers
composed of A or T (AA, AT, TA, TT, AAA, AAT, ATA, ATT, TAA,
TAT, TTA, TTT) and of C or G (CC, CG, GC, GG, CCC, CCG, CGC, CGG,
GCC, GCG, GGC, GGG). Noncoding regions, in contrast, generally
contained a significant deficit of dimers or trimers of purines
(AA, AG, GA, GG, AAA, AAG, AGA, AGG, GAA, GAG, GGA, GGG) and
pyrimidines (CC, CT, TC, TT, CCC, CCT, CTC, CTT, TCC, TCT, TTC,
TTT) and a significant excess of long runs of purines and
pyrimidines. The differences between coding and noncoding DNA
composition were significant enough to distinguish them, and the
runs results were not explained by nearest-neighbor preferences.

Volinia and colleagues (Volinia et al. 1989) studied the
frequencies of k-tuples (oligonucleotide of Ilength k) in

mammalian DNA up to length 6. Some of the patterns found were
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that the frequencies of the 2-tuples, AA, AG, AT, GT, TA, and TT,
were lower than expected in coding DNA and higher than expected
for CA, CC, CG GC, and TG. CG is suppressed in noncoding DNA and
TA is suppressed in coding DNA. In 3-tuples, there is a high
incidence of triplets containing only A and T in noncoding DNA and
low incidence in exons. (This is opposite of Blaisdell's findings.)
This same pattern was also present for the 3-tuples, AGT, TAG,
TTG, TTC, TGT, TCT, GTA, GTT, and GGG. The 3-tuples, NCG and
CGN (where N is any base) occur more frequently in exons than
noncoding regions. Noteworthy among 4-tuples was that TATA
occurred almost 10 times more frequently in noncoding DNA than
coding DNA. These occurrences were independent from the TATA
box that occurs upstream from an open reading frame of a
sequence encoding a protein. 5-tuples composed of A and G
combinations were more frequent in exons than noncoding DNA.
TATA-containing 6-tuples were rare and AAAAAA and TTTTTT
were six times more frequent than expected on base composition
in DNA examined. In general, k-tuples containing A and T, except
for TATA, are prevalent in noncoding DNA and k-tuples of G and C
are more frequent in coding DNA.

Hong (1990) used the results of nearest-neighbor analyses
to predict the frequencies of hexanucleotides in DNA. He
concluded that hexanucleotide frequency predictions based on
dinucleotide frequencies alone were as satisfactory as those by
third-order Markov chains (See discussion under Markov chains)

that require tetranucleotide and trinucleotide frequencies as raw

data.



1.2.2 Entropy measures

DNA is not just a random sequence of bases. The fact that it
provides the genetic blueprint for a living organism implies that
there is inherent order or nonrandomness in the sequences of
bases. Information theory techniques attempt to quantify the
amount of information contained in a sequence. Shannon's
information entropy measure (1948) reaches its maximum for
completely random sequence and is lower for sequences with
nonuniform base frequencies. Gatlin (1972) refers to Shannon's
entropy as ‘information potential® and introduced a measure that
quantifies “"stored information." (See Equation 2.10 for a formal
definition of entropy.)

One of the first studies of information content in DNA was
calculated from viral DNA sequences (Rowe 1983). Viral genes
show significant information content only on levels of single
bases, dimers, and trimers with little or no information content
for quadruplets and quintuplets. The noncoding regions in the viral
genomes studied showed some order on all levels tested. These
results suggest that noncoding regions have more order than
coding regions that cannot be explained on a functional basis.
Genes coding for structural proteins tended to show stronger
triplet correlations than other genes, an effect primarily due to
codon preference or bias.

Information content from an evolutionary view was
evaluated by Subba Rao and colleagues (Subba Rao, Hamid, and
Subba Rao 1979; Subba Rao, Geevan, and Subba Rao 1982). They

concluded that information content of DNA tends to increase with
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evolution. However, Konopka (1984) tested Rao's hypothesis with
an entropy measure that adjusted for codon preference and found
numerous contradictory examples. Entropy measurements for
globin genes, which are fast-evolvers, were actually lower than
those for histone genes, which are slow-evolvers. Entropy
measurements for human nuclear genes were lower than human
mitochondrial genes even though mitochondrial genomes are known
to mutate seven times faster. He concluded that entropy was not
a good indicator of evolutionary differences.

Entropy measures have been used to identify sets of
homogeneous nucleotide sequences that define a class of DNA
sequences (Ragosta et al. 1992). Genes from Escherichia coli were
classified according to level of expressivity using a homogeneity
index based on entropy. After identifying and eliminating genes
that appeared to be a transitional element between classes, 67%
of the genes were correctly classified using the homogeneity
index.

A recent paper measures entropy in coding and noncoding
regions of Escherichia coli genome DNA (Lauc, llic, and Heffer-
Lauc 1992). The calculated entropies were not sufficiently
different to distinguish coding from noncoding DNA on a nucleotide
level. However, the entropies for nucleotides of reading frames
were significantly lower than those of frame-shifted sequences,
indicating the presence of information content for functional
nucleotide sequences. Unexpectedly, protein sequences showed
significantly higher entropies than sequences translated into

protein using frame-shifted sequences.
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1.2.3 Markov chains

A number of papers have been published on Markov chain
analysis of DNA sequences. Markov chain methods attempt to
evaluate the predictability of sequence occurrences based on the
frequencies of shorter sequences. They are also useful in
evaluating differences in the statistically expected frequencies
with actual observed frequencies to discover unexpected patterns
in DNA.

A process has the Markov property if the outcomes of the
preceding n states are all that are required to predict the outcome
of the next state (Kemeny and Snell 1976). A zero-order Markov
chain defines an independent or random process where knowledge
of previous outcomes does not have any predictive value for the
next state. A Markov process is said be an n-order process if the
previous n states are required to predict the next state. If a DNA
sequence is viewed as a Markov chain of first-order, the preceding
base in the sequence is all that is required to predict the next
base in the sequence. Likewise, a second-order chain requires the
preceding two bases to predict the next and a third-order chain
requires the preceding three bases.

One of the first papers using Markov chains to analyze DNA
sequences (Elton 1975) reported a study of dimer frequencies.
Interesting results were found for the dimer CG in vertebrate DNA.
He found that the extreme shortage of CG in bulk vertebrate DNA
does not occur in ribosomal and transfer RNA genes. The Markov
chain model assumes that the probabilistic structure is the same

regardless of the position in the sequence being considered.
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Interestingly, the sequences he analyzed from Escherichia coli did
not show significant heterogeneity whereas viral sequences did.
Also, significant doublet heterogeneity was found between
translated sequences in bacteriophage data and untranslated
sequences.

Garden (1980) analyzed viral DNA and RNA sequence using
Markov chains. He found that a third-order model fit the ¢X174
virus, a second-order model fit the early and late regions of the
SV40 virus, and a zero-order model fit the replicase gene of MS2.
In general, the short-range order for MS2 contrasted with the
longer-range order for SV40, and ¢X174 showed the lack of a
common layout of genetic information for all species.

Fuchs (1980) found a disconcerting result in Markov chain
analyses. The selected order of the Markov model tended to
increase with the length of the sequence analyzed. The majority
of nucleotides of length 500 were well-fitted by a order zero or
one model as expected for short sequences. This result brought
into question the conclusions on the appropriate order of the

models from previous DNA analyses.

Blaisdell (1985) again found strong nearest-neighbor
influence by Markov chain analysis. Most of the sequences he
analyzed required at least a second-order Markov chain for their
representation, and some required chains of third-order. This was
true for both coding and noncoding sequences.

Phillips et al. analyzed the Escherichia coli genome using
Markov chains. He studied the accuracy of Markov chains in

predicting the frequencies of nucleotide sequences of length one
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to eight bases. Immediate neighbors could be predicted with high
accuracy. A third-order Markov chain was relatively accurate in
predicting most pentanucleotide frequencies. In general, a third-
order Markov chain was a reasonable predictor of nucleotide
frequencies up to eight bases in length. Interestingly, the coding
strand of the genome was enriched for oligomers in high
abundance sequences, and the noncoding strand was enriched for
low abundance sequences.

Almagor (1983) used Markov chains to study two viral DNA
sequences. In general, first-order correlations determined the
triplet frequencies and the correlations between nearest
neighbors seem to be the primary influence in nonrandomness
found.

Tavare (Tavare and Song 1989) analyzed coding regions using
Markov chains. In general, homogeneous Markov chains were not
adequate to describe codon preference and amino acid usage. A
simple spatially heterogeneous Markov model reflected these

coding features more accurately.

1.2.4 Signal processing methods

Signal processing techniques search for recurrent
periodicities in DNA sequences and have been used to find
homologies between nucleotide or amino acid sequences.

Veljkovic (Veljkovic et al. 1985) represented DNA sequences
as numeric values representing the potential electron-ion
interaction value of each nucleotide or amino acid. This

representation of DNA was then analyzed using Discrete Fourier
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Transform, a common tool in signal processing, to extract any
information present corresponding to biological function. They
evaluated over 200 different protein sequences and found
consistent results. Functionally related sequences exhibited
significant frequency peaks, whereas unrelated sequences did not
show these peaks. Different peaks were present for different
biological functions. The importance of this result is the ability
to detect functional relatedness among proteins without
significant similarity in the underlying DNA sequences.

Silverman and Linsker (1986) wused a tetrahedron
representation for DNA sequences and a Fourier transform to
detect periodicities. Their base-independent representation of
DNA successfully identified tandem repeats of TG in the human
somatostatin | gene, a GGCGGCGGC repeat of length 320 flanking
the T24 human bladder carcinoma oncogene, and several five- and
six-base repeats involving either three or four contiguous guanine
bases. Another periodicity found in the T24 oncogene was a
recurrence of guanine in the third codon position of a number of
contiguous codons.

Benson (1990) introduced some novel variations of the
classical Fourier transform for DNA sequence analysis. These
enhancements enable the detection of clusters of matching bases,
facilitate the insertion of gaps to enhance sequence similarity,
and accommodate varying densities of bases in the input
sequences.

Signal processing techniques have been used to predict

nucleosome formation sites. Satchwell (Satchwell, Drew, and
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Travers 1986) found a strong 10.2 base-pair periodicity for the
dimers AA and TT and a phased 10 base-pair periodicity of the
dimer GC about 5.1 bases away from AA/TT pattern. These
periodicities correlate with one turn of the double helix with the
AA/TT pattern forming the minor groove facing inward and the GC
pattern facing outward. Uberbacher (Uberbacher, Harp, and Bunick
1988) using Fourier transform detected a strong 10 base-pair
repeat pattern for the dinucleotides AA (or TT) as well as 21, 6.4,
and 7.1 base-pair periodicity that correlate with phases in
rotational conformation for major and minor grooves of the DNA

helix.

1.2.5 Heterogeneity detection

Staden (1984) characterized heterogeneity by scanning the
sequence with a fixed-size window and computing summary
statistics of local composition. This involves an arbitrary choice
of window size but provides a powerful tool to show local
properties graphically. However, it does not provide a method of
determining significant departures from homogeneity.

An ad hoc test for heterogeneity divides a sequence into k
segments of equal length. Then a chi-square test is applied to
test for differences in the proportions of single bases or dimers.
This approach uses an arbitrary number of segments and window
sizes. Although it provides a test statistic for overall
heterogeneity, it fails to identify regions of difference and does
not estimate local properties. Churchill (1989) developed a

stochastic technique to evaluate heterogeneous DNA sequences
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using a state-space model as a hidden Markov chain. It finds local
departures from homogeneity, estimates change points, and uses
likelihood estimates to find the best fitting state-space model.

None of the above analysis methods adequately describe or
model DNA sequence patterns. Markov chains show only low-order
dependence. Signal processing techniques detect recurrent
periodicities. Heterogeneities show transitions of base or dimer
content across arbitrary-sized windows. Oligonucleotide
frequency counts show departures from uniformity or expected
patterns based on base content. However, none have shown
sufficient power to differentiate coding from noncoding sequences
in anonymous DNA. Dimer contents are different for evolutionarily
distinct organisms but cannot be used to differentiate organisms
per se. Entropy measures have not differentiated evolutionary
groups and are not sufficiently different to distinguish coding and
noncoding regions. All these methods seem to find fairly localized
properties successfully but have not found large-scale
correlations that intuitively should be present in DNA. Other tools

are needed to extract long-range information in DNA sequences.

1.3 Fractal Analysis, a New Paradigm
Chaos theory is in an embryonic state of development yet is
sufficiently developed to use as a scientific tool. Thomas S. Kuhn,

in his classic, The_Structure of Scientific Revolutions, defines a

paradigm as an achievement:
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. was sufficiently unprecedented to attract an
enduring group of adherents away from competing
modes of scientific activity. Simultaneously, it was
sufficiently open-ended to leave all sorts of problems
for the redefined groups of practitioners to resolve.
(1970, p. 10)

Physicists were the first to apply chaos theory and have used it
successfully to model a variety of problems including turbulence
and dynamic systems that were difficult by other methodologies.
The number of publications now available involving fractal
analysis in virtually all scientific disciplines attests to the fact
that fractal analysis has reached the state of development to be
called a paradigm. The discussions and disagreements among
scientists (Pool 1990) confirm that much is still unknown in the
applicability and methodology of chaos theory. However, this fact

has not discouraged them from experimenting with it:

Chaos has opened new horizons in science and it is
already considered by many the third most important
discovery in the twentieth century, after relativity
and quantum mechanics. Philosophically speaking,
chaos has brought some pessimism since it imposes
limits on prediction. At the same time, however, it
has offered a new forum for the understanding and
description of irregularity, complexity and unpre-
dictability in Nature. (Tsonis and Tsonis 1989, p. 31)

Kuhn noted an important fact about new paradigms in scientific

research:

To be accepted as a paradigm, a theory must seem
better than its competitors, but it need not, and in fact
never does, explain all the facts with which it can be

confronted. (1970, pp. 17-18)
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Mandelbrot, the father of fractal geometry, notes:

While the diversity of nature appears to be without
bound, the number of techniques one can use to grasp
nature is extremely small and increases very rarely.
Therefore, the enthusiasm usually generated by the
birth of a new technique and the desire to test it more
widely is healthy, and must not be disparaged. (1989,

p. 11)

1.4 What Is Fractal Analysis?
The word ‘fractal' was coined by Mandelbrot (1977) from the
Latin fractus, meaning broken, to describe objects that were too

irregular to fit into a traditional geometrical setting. He defines

a fractal as follows:

Broadly speaking, mathematical and natural fractals
are shapes whose roughness and fragmentation neither
tend to vanish, nor fluctuate up and down, but remain
essentially unchanged as one zooms in continually and
examination is refined. Hence, the structure of every
piece holds the key to the whole structure.

(Mandelbrot 1989, p. 4)
Falconer (1990) suggested that a fractal be defined in the manner
that biologists define “life"--using a list of characteristics that
are usually present but exceptions exist. He lists five

characteristics of a set F that define a fractal:

1. F has a fine structure, i.e., detail on arbitrarily
small scales.

2. F is too irregular to be described in traditional
geometrical language, both locally and globally.

3. Often F has some form of self-similarity, perhaps
approximate or statistical.
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4. Usually, the ‘'fractal dimension' of F (defined in
some way) is greater than its topological
dimension.

5. In most cases of interest F is defined in a very
simple way, perhaps recursively.

Fractals may possess certain inherent characteristics. A
self-similar fractal may be decomposed into smaller, reduced
copies of the whole. The reductions are linear and identical for
all directions. The Sierpinski triangle gasket in Figure 1.1 is a
standard strictly self-similar fractal. A self-affine fractal is a
self-similar object in which the reductions are still linear but the
reduction ratios in different directions are different.

The primary task of fractal analysis is to estimate the
fractal dimension of an object, which describes its spatial
complexity. In general terms, it describes how the mass of the
object changes with scale. (The term fractal dimension is
formally defined in Chapter 2.) In Euclidean geometry, dimensions
take integer values. A point has a dimension of 0, a line has a
dimension of 1, a surface such as a square has a dimension of 2,
and a solid sphere or cube has a dimension of 3. In fractal
geometry, dimensions are fractional and describe how much the
space is filled by a fractal. The Sierpinski gasket in Figure 1.1 is
a partially filled triangle and has a fractal dimension of 1.58,
which is less than 2 (the dimension of a solid square) but greater
than 1 (the dimension of a line).

It is important to note that the estimate of fractal

dimension depends on the scale used to measure the object. If a
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Figure 1.1 Sierpinski triangle gasket, a partially filled
triangle, has a fractal dimension of 1.58.

pine tree is viewed from a great distance, it has a dimension
between 1 and 2--it looks like more than just a line but does not
quite fill a surface. [f the pine tree is viewed from a closer
perspective, it has a dimension between 2 and 3--it does not
totally fill the three-dimensional space but is clearly more than a
planar object with a dimension of 2. If the pine tree is viewed
extremely close up so all that is distinguishable is the end of one
pine needle, it has a dimension of 0. (It looks like a point.) If
viewed less closely, the needle would look like a line with a
dimension of 1. If the pine tree is viewed just inches from its
trunk, it has a dimension of 2. (It looks like a surface.)

Therefore, depending on the perspective, a pine tree may have a
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dimension of 0, 1, between 1 and 2, 2, or between 2 and 3. It
should be obvious that none of these dimension estimates are
necessarily the fractal dimension of a pine tree. They are
estimates of fractal dimensionality at a specific scale.

Complex fractals that do not cover the embedding space
uniformly may not be adequately described by a single fractal
dimension. A spectrum of fractal dimensions that emphasize
different scaling densities may be necessary. Multifractals have a
different fractal dimension for subsets of points with different
scalings. The multifractal spectrum may provide important
information about an object that is lost or averaged out when a
single fractal dimension is used to describe it. Two fractal
objects may have the same fractal dimension at one scale but have
very different multifractal spectrums. Therefore, an object's

multifractal spectrum may be an important distinguishing

property.

1.5 Why Fractal Analysis of DNA Sequences?
One of the intriguing characteristics of fractals is the fact
that very simple mathematical equations can generate infinitely
complex and beautiful patterns. The Julia and Mandelbrot sets
show ever-changing variety of color and intricate detail with
recurring shapes and patterns as iterations of the generating

equations progress. Mandelbrot (1989) describes this process:
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The process of iteration effectively builds up an
increasingly complicated transform, whose effects the
mind can follow less and less easily. Eventually, one
reaches something that is ‘'qualitatively' different
from the original building block. (p. 6)

DNA behaves similarly. The almost infinite variety of living
organisms on the earth is based on just four simple nucleotides.
The DNA sequence of an organism defines it completely through
every stage of its existence. The vast differences between
organisms are traced to differences in their DNA sequences.

it has been proposed that the DNA molecule has evolved by
multiple transformations that have been iteratively repeated over
millions of years. There are consistent, recurring patterns in DNA
that are universal, reflecting this possible origin as well as a
certain element of seeming randomness. Ohno (1988) made an
interesting observation that the so-called codon preference is
just a mere reflection of the the construction principle of coding
sequences. He showed how two coding sequences that
demonstrated classic codon preference were derived from a
repeating, mutating heptameric unit that defined the sequence
rather than any selection process. Nussinov (1984a) noted that
the symmetries present in complementary dimer frequencies
probably reflect early evolutionary events such as simple and
inverted duplication. This repetitive and iterative process of
mutation, transformation, and replication results in an end
product that is vastly different from the four nucleotide building

blocks--a living, functional organism.
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The observation that growth in biology is a nonlinear
dynamic process and living tissues demonstrate fractal properties

led one scientist to conclude:

To consider fractal geometry as a biological design
principle is heuristically most [sic] productive and
pro-vides insights into possibilities of efficient
genetic programming of biological form (Weibel 1991,

p. L361).

It is the goal of this research to use fractal analysis as an
exploratory tool. Other DNA sequence analysis methods have
successfully revealed patterns and structure of a localized nature.
It is important to remember that an estimate of fractal dimension
depends on the scale used to measure it and the way the data is
represented. The fractal dimensions estimated in this research
are not the fractal dimensions of the sequences in an absolute
sense; rather it is a heuristic measure of complexity and the
departure from randomness of a sequence. What can be discovered
about DNA using this new paradigm? Does it reveal patterns in
DNA not readily discoverable by other methods? What long-range

correlations in DNA are revealed by fractal analysis of sequence

data?



2. METHODS OF ESTIMATING
FRACTAL DIMENSION

2.1 Introduction

The most common fractal dimension is the "Hausdorff
dimension" or "global fractal dimension." This is a single real
value that characterizes how the density of an object varies with
length scale. It is generally adequate for very simple objects.
More complicated objects can be described by a continuous
spectrum of fractal dimensions called "multifractal spectrum of
generalized fractal dimensions." The multifractal spectrum may
be helpful in distinguishing two objects that are inherently
different but have identical global fractal dimensions.

A number of different methods of estimating a fractal
dimension have been developed. Some are applicable only to a
random walk representation, whereas others can be applied to any
time series representation. Some can be used to find the
multifractal spectrum, whereas others will only calculate the

global fractal dimension.
In this chapter, the various algorithms are presented and

experimentally applied to fractal analysis of DNA sequence data
represented as pseudorandom walk. The random walk is defined in

Equation 2.1
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Equation 2.1 A random walk where {;;} is either

(¢1,0,0,0), (0,%£1,0,0), (0,0,%1,0) or (0,0,0,x1) chosen
at random with equal probability.

i

i
2%
j=1

(See section 3.2.2 for method of mapping DNA sequence into a
random walk.) The estimates of fractal dimension for DNA
sequences are calculated using four different algorithms and the
results are compared. A conclusion is made about the
appropriateness of each of these algorithms and the approach of

choice for this research.

2.1.1 Gate's Manhattan distance

An early paper (Gates 1986) on ways to represent DNA
sequences data graphically also presented one of the first
methods of estimating fractal dimension. Gates suggested a
fractal dimension measure for large scale structure in random
walks (Equation 2.2). It is the logarithm of the number of bases in
the sequence divided by the logarithm of the Manhattan distance of
the endpoint from the origin. Another method he proposed was the
logarithm of the number of bases in the sequence divided by the
logarithm of the Euclidean distance of the endpoint from the
origin. (Note: For a DNA sequence using the two-dimensional
embedding scheme, the Euclidean distance equals
VI n@)-n(c) 12 + [ n(M-n(a) ¥ where n(A), n(C), n(G), and n(T) are

number of each of the bases {A,C,G,T} in the sequence. The
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Manhattan distance equals IN(G) - n(C) +In(T) - n(A)) Manhattan and

Euclidean distances are formally defined in Equations 2.3 and 2.4.

Equation 2.2 Gate's global fractal dimension based on
the Manhattan distance between the endpoints of a

random walk. N is the number of bases and M is the
Manhattan distance defined in Equation 2.3.

D= logN
Iogl?l

Equation 2.3 The Manhattan distance of the endpoint
of a random walk from the origin. DE is the embedding
dimension.

. D
HX")T”=Z|Xi’Yi|
i=1

Equation 2.4 The Euclidean distance of the endpoint of
a random walk from the origin.

150 Sinon

2.1.2 Asphericity measure

Random walks are known to be asymmetrical in the distance
travelled along each axis. Rudnick and Gaspari developed a method
of estimating fractal dimension that quantifies the amount of
asymmetry or asphericity of the trail left by a random walker
(Rudnick and Gaspari 1987). Although this approach may produce
useful results, my research did not apply this technique to DNA

sequences.
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213 Maximum radial distance
Another way to estimate fractal dimension uses the

maximum distance the walk travels from the origin (Equation 2.5).

Equation 2.5 The global fractal dimension of a random
walk based on the maximum radial distance from the
origin. R is the maximum radial distance travelled
from the origin and N is the number bases required to
reach that distance.

_logN
log R

2.1.4 Grassberger-Procaccia aigorithm

The Grassberger-Procaccia algorithm (GPA) uses box-
counting (Grassberger and Procaccia 1983). The number of
uniformly sized boxes required to cover the trajectory of the
sequence is determined for a range of box sizes. The exponent
relating the increase in box size to the decrease in number of the

boxes required is the fractal dimension (Equation 2.6).

Equation 2.6 The global fractal dimension by the
Grassberger-Proccacia algorithm (GPA). N is the
number of boxes required and L is the box size.

D= Iim - .l_o_g_N_
L—yoo lOgL

GPA presupposes an optimal covering using the fewest possible
non-overiapping boxes. However, finding an optimal covering is

computationally intractable, so box counting is done using non-
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overlapping boxes aligned on a grid as a practical approximation.
The steps in the random walk are exactly one unit in length so the
coordinates are always integer values. To avoid ambiguity of box
assignment for points falling on box boundaries, the grid is
shifted by 0.5. This guarantees that every point in the graph
belongs to one and only one box in the grid. The choice of box size
range has a critical effect on the estimate of the fractal
dimension. The most linear region of the log/log plot is generally
used to select the range. My experiments with fractals of known
theoretical fractal dimensions (data not given) indicate that good
approximations are produced using a minimum box size of 2.5% and
maximum box size of 30% of the maximum span of the fractal.
Maximum span is defined as the maximum difference between the

most negative and most positive coordinate of each axis.

2.1.5 Tel's sandbox algorithm

Tel's sandbox algorithm estimates the global fractal
dimension by counting how many data points are within a region of
radius R centered on a selected data point and measuring how the

mass changes over a range of radius lengths (Equation 2.7).

Equation 2.7 The global fractal dimension by Tel's
sandbox algorithm. R is the radius, p; is the number
of points within the circle around radius R divided by
the total number of points in the fractal, and i indexes
the N circles around the randomly selected points.

N
log |1 3 pj’
N .
Do=1lim- i=1 —
R—0 log R
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Well-defined dimensions that are independent of local behavior
are obtained by averaging the results over a number of randomly
sampled points on the fractal (Tel, Fulop, and Vicsek 1989).

The critical parameter for the sandbox algorithm is the
choice of radius lengths. The largest radius length should be
significantly smaller than the size of the fractal. The smallest
radius should be slightly larger than the smallest particle size. In
a random walk this equals a step of one unit. However, the range
of radii needs to be as large as possible. There are two other
parameters that have an effect on the calculated estimates--the
number of points to be sampled and the how the sampling is done.

Tel sampled about 1% of the points randomly distributed
over the fractal (Tel, Fulop, and Vicsek 1989). However, the
multifractal he analyzed visits a coordinate only once whereas the
random walks may visit a site muitiple times and a frequently
visited site may be sampled more than once using random
sampling of data points. Sites could be sampled rather than data
points to avoid the possibility of examining the same radius
region more than once. Another sampling option uniformly

samples every ith data point along the walk.

2.1.6 Estimating generalized
fractal dimensions

The Hausdorff dimension is only one of an infinite number of
different generalized dimensions that characterize a fractal
(Hentschel and Procaccia 1983). Dq provides information about

the fractal at different levels of density in the random walk. The



29

generalized dimension spectrum is defined in Equation 2.8.

Equation 2.8 Generalized dimension spectrum by the
Grassberger-Proccacia algorithm. L is box size, b is
the number of boxes, and pjis the number of points in
the ith box divided by the total number of points. q is
varied over a range of negative and positive values.

b
Dq = "m 1 i=1
L-0 q-1 log L

q=1

The theoretical Dq curve of a multifractal is smooth and
monotonically decreasing (Halsey et al. 1986). Within the
spectrum of Dq are several commonly used fractal dimensions: the
Hausdorff dimension, Dg=0; the information dimension Dq=1; and
the correlation dimension, Dq=2 (Halsey et al. 1986). Thus, the
information dimension (Dg=1) is less than the Hausdorff dimension
(Dq=0) but greater than the correlation dimension (Dq=2).

A simple modification of GPA allows calculation of Dq. The
number of points contained in each box is accumulated and then
divided by the total number of points. The range of box sizes is
again an important parameter in Dq estimates. This range is
usually specific to the fractal and found by experimentation.

The box counting method of calculating Dq curves has a
serious drawback. The calculation of Dq for negative q is a well-
documented problem yielding spectra that may be completely
irrelevant (Hakansson and Russberg 1990). The boxes are not
necessarily centered on the data points and the resolution is

necessarily finite so some boxes will contain very few data points
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resulting in a disproportionate contribution when raised to a
negative power (Hakansson and Russberg 1990). The sandbox
algorithm has been successful in estimating the fractal spectrum
to within 3% of the theoretical value for a known multifractal for
q as low as -8 (Tel, Fulop, and Vicsek 1989).

There have been a number of modifications made to GPA to
make the algorithm more efficient for calculating the
multifractal spectrum. The original box-counting algorithm for a
sequence of length N requires a computation time of order N2,
Block (Block, von Bloh, and Schelinhuber 1990) found a way to
reduce the CPU time to order N log2 N, which requires less
computer memory to do the computation. Grassberger (1990) also
came out with an optimized box-counting algorithm. Dvorak and
Klaschka (1990) modified GPA to handle high embedding
dimensions.

The sandbox algorithm for estimating the generalized
fractal dimensions overcomes the problem of nonoptimal box-
covering or noncentered boxes over the points. It produces linear
log/log plots that are free from the oscillations that occur in GPA
for negative q (Tel, Fulop, and Vicsek 1989). The sandbox esti-

mate of Dq is defined in Equation 2.9.

Equation 2.9 Generalized dimension spectrum by Tel's
sandbox algorithm. R is radius length and i indexes
the N circles around the randomly selected points.

N
log (LY pSQ-1)
1

, N _
Dq=||m =1
R—0 q-1 log R

q=1
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2.2 Methods

An important rule in fractal theory involves the choice of
embedding dimension to represent the data. The embedding
dimension must be at least as high as the highest possible fractal
dimension rounded up to next whole number plus one (Greenside et
al. 1982; Takens 1981). Methods of estimating the global fractal
dimension are known to be biased. The bias in fractal dimension
estimates increase with embedding dimension (Ramsey and Yuan
1989). Higher embedding dimensions require longer sequences.
Therefore, it is important to reduce the effect of bias by
minimizing the embedding dimension. A positive side effect of
this goal is a corresponding decrease in computation time.

The choice of DNA sequences of adequate length is also
important. It has been suggested that the number of points
required to estimate the correlation dimension within 5% of its
true value is at least 42M where M is the largest integer less than
the dimension of the fractal (Smith 1988). However for simple
models, 5,000 is a rough lower bound for the number points needed
to achieve approximate results (Ramsey and Yuan 1989). The
estimate obtained for attractors is known to be biased high but
this bias decreases with sequence length; estimates for random
noise are actually biased low (Ramsey and Yuan 1989). The effect
of finite length may be reduced by applying the widest possible
range of scaling. In a random walk, the resolution is limited by
the distance travelled since this distance is a function of the

number of steps in the walk. (See Chapters 3 and 4 for discussion
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and results of embedding dimension and length issues for DNA
sequences.)

Human sequences were selected for analysis from GenBank
version 55, based entirely on length of the sequence. There were
164 human nucleic acid sequences of length 4,500 to 15,000 and
all were included in the study. The sequences analyzed are not
necessarily representative of the human genome. Several
sequences are from gene families, some chromosomes are
underrepresented and the sample is severely deficient in
noncoding DNA. The sequences came from GenBank so the sample
includes mostly important or interesting genes rather than

genomic sequences in general.

2.3 Results

The fractal dimension of 164 human DNA sequences,
represented as four-dimensional pseudorandom walks (see section
3.2.2) was estimated using four methods: (1) Gate's Manhattan
distance, (2) Maximum radial distance, (3) Grassberger-Procaccia
algorithm (GPA), and (4) Tel's sandbox algorithm (Table 2.1).

These results reveal several things. All estimates were
calculated using a four-dimensional embedding scheme. All
algorithms produced global fractal dimensions greater than 2.0.
This is evidence that a four-dimensional embedding with this
representation is appropriate. It also indicates that any
embedding dimension less than four is invalid according to the

embedding dimension rule. Global fractal dimension estimates for
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Table 2.1

Statistics on the estimated global fractal dimension,
D, of 164 human DNA sequences by four different

algorithms.

Method Mean Standard  Minimum  Maximum
D Deviation D D

Gate's 1.536 0.185 1.172 2.348

Radius 1.653 0.185 1.265 2.194

GPA 1.660 0.209 1.165 2.254

Sandbox 1.631 0.137 1.300 2.253

the same 164 DNA sequences using a two-dimensional embedding
scheme corroborates this fact. Virtually every DNA sequence
produced a D that was lower for the two-dimensional embedding
compared to four-dimensional embedding with an average
decrease of 0.264.

Table 2.2 compares the calculated D by GPA method for two-
and four-dimensional embeddings. A one-tailed paired t-test
indicates that D for the 164 DNA sequences using the two-
dimensional embedding is significantly lower (p<0.0001) than D
using four-dimensional embedding. (A formal discussion and
analysis of the effect of embedding dimension is in section 3.3.1.)

GPA and sandbox methods use basically the same underlying
approach. It appears to provide more accurate estimates of D
since the standard deviation of sandbox method is lower than GPA.
The difference between mean D for GPA and sandbox method is due

to nonoptimal box covering of the random walks using GPA. The
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Table 2.2

The two-dimensional embedding scheme produces
significantly suppressed estimates of global fractal
dimension compared to the four-dimensional embed-
ding scheme.

Mean Standard Minimum Maximum
D Deviation D D
2D GPA 1.395 0.146 1.084 1.802
4D GPA 1.660 0.209 1.165 2.254

box-covering method in the above calculations used a tiling that
started at the origin, Method 1. Three other tiling approaches
were tried to see if better results for GPA could be obtained.
Tiling Method 2 tiled from a box centered over the origin. Tiling
Method 3 tiled from a box centered over the center of the random
walk. Tiling Method 4 tiled from a box positioned at the minimum
value of each axis. Figure 2.1 demonstrates these four tiling
schemes.

The results of estimating the global fractal dimension of
164 human DNA sequences by the four different tiling schemes are
in Table 2.3. Paired t-test between the estimates for the 164
sequences by tiling method indicates that all tiling methods
compute significantly (p<0.0001) different D with only one
exception. Tiling methods 2 and 3 give approximately the same D
for each sequence (p=0.213).

The fractal dimension estimate of 164 DNA sequences by the

maximum radial distance method shows a high degree of.
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centered over center of positioned at minimum
the spans of the walk coordinates of the walk

Figure 2.1 A two-dimensional representation of four
different methods of tiling to box count using GPA
algorithm. When applied to four-dimensional space,
Methods 2 and 3 produce essentially the same global
fractal dimension. Methods 1 and 4 produce signifi-

cantly different D.
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Table 2.3

Estimates of the global fractal dimension of 164 DNA
sequences using four tiling approaches indicate signi-
ficant sensitivity to box tiling for the GPA algorithm.

Tiling Mean D  Standard Minimum  Maximum
Approach deviation D D
Method 1 1.377 0.079 1.182 1.589
Method 2 1.304 0.058 1.145 1.467
Method 3 1.308 0.060 1.163 1.500
Method 4 1.419 0.084 1.207 1.624

correlation with the estimates of D obtained by box counting
(r2=0.737). A test for difference between means of the two
samples indicates that is no difference between the two groups
(p=0.75). A paired t-test also indicates that there is no
difference between the two estimates for individual sequences
(p=0.44). Therefore, if only a generalized fractal dimension is
needed to describe a system, the maximum radial distance method
is a valid and very efficient approach.

Box counting provides the same estimate for D as maximum
radial distance method, but only if issues of box-size range,
sequence length, tiling methods, and logarithmic box-size
increments are carefully addressed. If the range is too narrow, a
poor line fit gives unpredictable estimates of D. If the maximum
bok size is set too low or too high, the estimate of D is decreased.
Ds, which were equivalent to maximum radial distance estimates,
were obtained by box-counting by using a minimum box size of

five and a maximum box size equal to 30% of the maximum width
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of the fractal. A linear box size increment gives disproportionate
weighting to small box sizes. Equation 2.6 measures the
logarithmic change in number of boxes needed as the box size
changes. Therefore, the box size increment in box counting should
be logarithmic. Finding the box size range to obtain a good
estimate of D using box counting can be difficult. Maximum radial
distance method is a better algorithm than box counting because it
is not plagued by this difficulty. Despite the fact that maximum
radial distance is a better algorithm to estimate the global
fractal dimension, it cannot be extended to compute the
multifractal spectrum of generalized fractal dimensions.

The estimate of D for 164 DNA sequences using the
Manhattan distance between the beginning point and end point of
the random walk shows minimal correlation with box counting
(r2=0.699). However, there is a very significant difference
between the means (p<10-8) with the average fractal dimension
by Manhattan distance significantly lower than box counting.
Furthermore, a paired t-test indicates that there are significant
differences between the estimates for individual sequences by
method (p=.0001). The estimate of D by Manhattan distance has an
even stronger correlation with maximum radial distance
estimates (r2=0.882). However, the difference between means and
the paired t-test results are the same as the comparison with box
counting--that is, the Manhattan distance estimator is
significantly lower and differences exist for individual sequences.

Entropy, S, from thermodynamics, defined by Boltzmann
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(Equation 2.10), is a measure of disorder, randomness, or lack of

information in a system.
Equation 2.10 Boltzmann entropy. kB is the Boltzmann

constant (log n)'1 and pj is the probability of the ith
occurrence.

n
S=-kg), p;lnp
i=1
For a perfectly ordered system S=0 and for a totally random
system S=1. In the case of dimer frequencies, S measures the
amount of divergence from the uniform distribution of dimers.
There are 16 possible dinucleotides in a DNA sequence. The

Boltmann entropy of dinucleotide frequencies is defined in
Equation 2.11.

Equation 2.11 Boltzmann Entropy of dinucleotide
frequencies of a DNA sequence. p; is the probability

of the ith dimer (of the 16 possible dimers) occurring
in the sequence. Boltzmann constant is 1/log(16) in

this case.

16
Y. piInp;
i=1

-In 16

Dimer-frequency entfopy measurements were obtained for
DNA sequences ranging from 0.934 to 0.993, which indicate only
minor divergence from uniform dimer frequency distributions.
Furthermore, no correlation (r2=0.024) was found between the

estimate of D for a sequence and its dimer-frequency entropy.
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Attempts to calculate multifractal spectra using GPA were
unsuccessful. Nonoptimal box-covering plagued the process
significantly, and it was difficult to obtain Dq curves that were
monotonically nonincreasing. Log/log plots of the scaling range
versus density changes revealed considerable sensitivity to edge
effects and open areas in the random walk. The log/log plot in
Figure 2.2 was puzzling at first. It did not seem logical that more
of a larger sized box would be required to cover the graph. This
phenomenon is explained graphically in Figure 2.3. The smaller
sized box fits exactly inside the hole of the gasket so requires one
less boxes to cover the gasket than the larger sized box. Attempts
to calculate the multifractal spectrum using GPA were abandoned
when it was discovered that Tel's sandbox method was much less
sensitive to edge effects and open areas in the graph. It was much
easier to obtain a monotonically nonincreasing Dq curve using the
sandbox method. Chapter 5 details the research done with

multifractal spectra.

2.4 Discussion
The fractal dimension obtained by box counting and maximum
radial distance are equivalent. Both can be used to estimate the
well-defined Hausdorff or similarity dimension, but maximum
radial distance method is clearly more efficient. The Manhattan
distance estimator calculates fractal dimension, but it is not
equivalent to box counting or maximum radial distance. No

attempt was made to prove or disprove its validity, but this
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Figure 2.2 A puzzling log/log plot where the number of

boxes required to cover a graph occasionally increases
for a larger box rather than monotonically decreasing.
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research has shown that using a two-dimensional embedding
produces invalid results. If the technique is valid when used with
proper embedding dimension, it is not known where it belongs in
the Dq spectrum of fractal dimensions.

Further research is needed to find a more systematic way of
determining the proper scale to apply to individual fractals. The
range to be used may be influenced by length of the sequence, the
distance travelled along each axis of the random walk, the
presence of long linear regions, and the size of the clusters. A
systematic approach will allow a more definitive study of the

fractal dimensions of DNA sequences.



3. GLOBAL FRACTAL DIMENSION OF
HUMAN DNA SEQUENCES TREATED
AS PSEUDORANDOM WALKS

3.1 Introduction

To a first approximation, DNA behaves like a random
sequence, so any direct measurement of the D of DNA sequences
will yield arbitrarily large dimensions. Nevertheless, when a DNA
sequence is treated as a list of pseudorandom numbers and used to
generate a pseudorandom walk, deviations from typical random
walk behavior are immediately apparent as long periodic,
correlated and anticorrelated subsequences (Gates 1986). The
pseudorandom walks derived from DNA sequences in Figures 3.1-
3.6 show obvious qualitative deviations from the paired random
walks shown in Figures 3.7-3.12. The large scale structure of the
walks reflects underlying correlations within the sequences. The
D of the walk should reflect the overall importance of these
correlations since it quantifies the average density of the
clustering of data points in the walk and ignores localized
behavior.

Recently, there have been efforts to apply the techniques of
chaos theory to molecular biology. This effort has been made at
all levels from protein folding (Dewey and Datta 1989; Helman,

Coniglio, and Tsallis 1984; Isogai and Itoh 1984; Stapleton et al.
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Figure 3.1 Pseudorandom walk of the human opsin
gene sequence, Accession# K02281, 6,953 bps,
D=1.650.
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Figure 3.2 Pseudorandom walk of human factor V
mRNA sequence, Accession# M16967, 6,909 bps,
D=1.490.
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Figure 3.3 Pseudorandom walk of the human T-cell
receptor germline beta-chain sequence, Accession#
M14158, 4,913 bps, D=1.541.
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Figure 3.4 Pseudorandom walk of the human PRH1
gene sequence (Hae Il-type subfamily), Accession#
M13057, 4,946 bps, D=1.532.
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Figure 3.5 Pseudorandom walk of human apolipo-
protein(a) mRNA sequence, Accession# X06696
M17399, 13,938 bps, D=1.547.
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Figure 3.6 Pseudorandom walk of human alpha-1-acid
glycoprotein-2 gene sequence, Accession# M21540,

4,944 bps, D=1.671.
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Figure 3.7 Pseudorandom walk of a random control
sequence for human opsin gene, D=1.891.
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Figure 3.8 Pseudorandom walk of a base-matched
control sequence for human opsin gene, D=1.701.
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Figure 3.9 Pseudorandom walk of a dimer-matched
control sequence for human opsin gene, D=1.744.
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Figure 3.10 Pseudorandom walk of a random control
sequence for human factor V mRNA, D=1.779.
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Figure 3.11 Pseudorandom walk of a base-matched
control sequence for Human factor V mRNA, D=1.536.
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Figure 3.12 Pseudorandom walk of a dimer-matched
control sequence for human factor V mRNA, D=1.600.
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1990; Wang and Shi 1990) to three-dimensional structures of DNA
(Takahashi 1989) and RNA (Purugganan 1989). There also has been
some limited fractal analysis of DNA sequences.

Gates (1986) suggested that nucleic acid sequences could be
represented as random walks in two-dimensional space with the
bases C/G on opposite ends of one axis and A/T on the other. He
suggested two methods to calculate D, which were reviewed in
Chapter 2 (see Equations 2.2, 2.3, and 2.4).

Luo (Luo and Tsai 1988) calculated D for nucleic acid
sequences from 14 different organisms to study the relationship
between D and the evolutionary complexity of organisms. They
represented nucleic acid sequences as random walks in a two-
dimensional space using the same scheme as Gates and calculated
D using the mean square separation between endpoints of a
segment of the sequence containing N bases. The standard
deviations for their estimates of D were generally 20% of the
mean value of D. They found that D increased with organism
complexity and that it correlated statistically with the entropy
measure from information theory (Shannon 1948). Their study
assumed that the D of a single, relatively short DNA sequence is
representative of all DNA of an organism.

Jeffrey (1990) investigated a graphic representation of
nucleic acid sequences using iterated function systems (Barnsley
1988). He represented DNA sequences by points within a square
with each base represented by a corner of the square. The first

point, representing the first base in the sequence, is plotted
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halfway between the center of the square and the corner
representing that base. Subsequent bases are plotted as points
located halfway between the previous point and the corner
representing the base. The result is a bit-mapped image with
sparse areas representing rare subsequences and dense regions
representing common subsequences. He found interesting visual
patterns in nucleic acid sequences but did not attempt
mathematical characterization or estimation of D.

In a recent abstract, Lim (1991) presented a fractal analysis
of sequence data. He found that introns and exons are distinct and
suggested that fractal techniques could be used to create a
classification scheme.

Just as | was completing this dissertation, an article was
published about long-range correlations found in nucleotide
sequences (Peng et al. 1992). They represented DNA sequences as
walk in a one-dimensional embedding with steps based on whether
the base was a purine or pyrimidine. They concluded that long-
range correlations were present in intron-containing genes and in
nontranscribed regulatory DNA sequences. Long-range corre-
lations were absent in DNA seuqences that were purely coding
DNA. One the problems in the research design that may have led to
this conclusion is the fact that they used a one-dimensional
embedding. This research has shown conclusively that at least a
three-dimensional embedding is required to obtain valid results.

These five fractal analyses of DNA sequence data have

produced suggestive results on the utility of chaos techniques.
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However, they are limited to estimating D for a small number of
short sequences, generally in two dimensions or lower.

A detailed exploration of fractal analysis including the
estimation of D is presented in this chapter. The technique of
pseudorandom control sequences is used to evaluate the Ds of 164
relatively long human sequences (4,500-15,000 bases). The
issues of adequate sequence length, proper embedding dimension,
and scaling ranges have been addressed in the design of the

calculations and analyses.

3.2 Methods

3.2.1 Methodological issues

As discussed in section 2.2, sequence length is an important
issue because of finite length errors. To evaluate the effect of
finite sequence length on the estimate of D, random sequences
were generated composed of equal base frequencies over a range
of lengths, 25 of each length, and D was estimated for each.
Figure 3.13 demonstrates that the average estimate of D
increases with length and the standard deviation of the estimate
of D decreases with length. The mean D of random sequences of
length 50,000 is 1.93 with a standard deviation of 0.03. The
standard deviation of D is only 1.6% of the mean at this length.
The mean D for random sequences of length 5,000 is 1.847 with a
standard deviation of 0.101. The standard deviation of D is 5.5%
of the mean at length 5,000. Although D did not converge to D=2

at these lengths, finite-length errors can be controlled by always
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Figure 3.13 D versus length for random sequences. D

increases with the length of random sequences and the

standard deviation decreases.
comparing length-matched sequences. DNA and control sequences
of the same length will be affected by finite length errors in
precisely the same way, which does not affect the statistical
analyses. Therefore, reasonable estimates of D are possible for
random walks at least 4,000 bases in length with a standard
deviation of D less than 6% of the mean. To assure convergence to
a D of 1.995, a sequence longer than 500,000 is needed, which

rules out analysis of available DNA sequences, typically 5,000-

50,000 bases in length.
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Human sequences were selected from GenBank version 55 for
analysis based entirely on length of the sequence. There were 164
human nucleic acid sequences of length 4,500 to 15,000. (Average
length was 7,178 bases.) All 164 were included in the study.
Although 57 mRNA sequences are included, the group is loosely
referred to as DNA sequences. The mRNA sequences are composed
primarily of coding segments. The remaining 107 came from
genomic DNA and have coding segments separated by introns and
other noncoding segments that comprise the majority of the bases
in the sequence. The sequences analyzed are not completely
representative of the human genome. Several sequences are from
gene families, some chromosomes are underrepresented and the
sample is severely deficient in noncoding DNA. The sequences
came from GenBank so the sample includes mostly important or

interesting genes rather than representative sequences.

3.2.2 Random walk representation

The following natural method was used to convert a DNA
sequence into a pseudorandom walk in N dimensions. A DNA
sequence is represented as a series of vectors )7; representing the
four base types A, C, G, and T. The complementary base-pairing of
A with T and C with G suggests a natural embedding of a sequence
into a two-dimensional space. The axis assignments were
specifically chosen so the representation was strand independent.
In two dimensions, any single base axis assignment will produce a

dimension that is the same for a sequence and its complement.
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The fractal dimension of a sequence is unchanged under a
transformation if the transformation causes only a reflection or
rotation of the pseudo-random walk structure and does not take
any nonzero length trajectories into zero length trajectories.
Higher embedding dimensions will not vyield this result for
complements in all representations. The requirement that D be
unchanged for complements is the only strict biological constraint
on the representation. Other symmetries suggested by biololgical
factors are discussed below and in section 3.3.2. For a true
random walk, the assignment of the symbol types is arbitrary and
the direction in which the walk is read should be unimportant.
Therefore, to preserve the symmetries of the random walk in the

embedding structure, the following were required:

1. Complementarity symmetry: The estimate of D
must be the same for both DNA strands; that is, a
strand read 5' to 3' will produce the same D for its
reverse complement read 5' to 3'.

2. Reflection symmetry: The estimate of D must be
the same for a single strand regardless of reading
direction; that is, a strand read 5' to 3' will produce
the same D if read 3' to 5"

3. Compatibility symmetry: Representations of dif-
ferent embeddings must be compatible; that is,
dimers that produce the same trajectory in a higher
dimension do so in a lower dimensional scheme.

4. Substitution symmetry: D remains unchanged under
the single exchange of either A<-->T or G<-->C.
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Complementarity symmetry (1) is a special case of (2) and (4). (4)
is also suggested by the natural biological grouping of A and T as
weak-bonding and G and C as strong bonding bases.

In two dimensions complementarity (1), reflection
symmetry (2), and compatibility (3) are satisfied for any single
base representation. Substitution symmetry (4), however,
requires that {A}=-{T} and {G}=-{C}. Otherwise, the sequence AG is
a zero-step trajectory, whereas AC is not, which violates
substitution symmetry (4). Therefore, the axis assignments

employed were:

Axis 1: {A}=(-1,0) and {T}=(1,0)
Axis 2: {C}=(0,-1) and {G}=(0,1).

In four and higher dimensions a new y; for each base in the
sequence is begun. Thus, the representation is independent of
reading frame and each base is used in two successive vectors.
The four-dimensional embedding was determined as . follows:
Complementarity (1) requires that {AA}=-{TT}, {AC}=-{GT},
{AG}=-{CT}. {AT}=-{AT}, {CA}=-{TG}, {CC}=-{GG}, {CG}=-{CG},
{GA}=-{TC}, {GC}=-{GC}, and {TA}=-{TA}. Reflection symmetry (2)
requires that {AC}={CA}, {AG}={GA}, {AT}={TA}, {CG}={GC},
{CT}={TC}, and {GT}={TG}. Thus, {AC}, {CA}, {GT},.and {TG} must be
grouped on one axis and {AG}, {GA}, {CT}, and {TC} on another axis.
If {AC}={TG} are paired rather than {AC}={CA}, compatibility with
the two-dimensional scheme is violated. Similarly, compatibility
symmetry means that {AC}={CA}={GT}={TG}=0 cannot be true or
{AG}={GA}={CT}={TC}=0 by substitution symmetry. Therefore, the
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only possible grouping is to set {AC}={CA}=-{GT}=-{TG}<>0 and
{AG}={GA}=-{CT}=-{TC}<>0. In four dimensions the only scheme

that obeys these conditions is:

Axis 1: {AA}=(-1,0,0,0) and {TT}=(1,0,0,0)

Axis 2: {CC}=(0,-1,0,0) and {GG}=(0,1,0,0)

Axis 3: {AC}={CA}=(0,0,-1,0).and {GT}={TG}=(0,0,1,0)

Axis 4: {AG)={GA}=(0,0,0,-1) and {CT}={TC}=(0,0,0,1)
{AT}={TA}={CG}={GC}=(0,0,0,0).

Axes 3 and 4 correspond to dimers that form 45 degree angle lines
in two dimensions. Figure 3.14 gives a graphic representation of
the two-dimensional and four-dimensional embedding schemes.
To expand to six dimensions, {AT}, {TA}, {CG}, {GC} can be
split or the other two quartets ({AC}, {CA}, {GT}, {TG} and {AG},
{GA}, {CT}, {TC}) from axes 3 and 4 can be split. The latter was

chosen to preserve the compatibility of the assignments of the

G GG
A AGGA A GT:TG
A T AA > TT
AC:CA CT:TC
C CcC
two-dimensional embedding four-dimensional embedding

Figure 3.14 Embedding schemes in two and four
dimensions for pseudorandom walk representations of
DNA sequences.



zero trajectories in lower dimensional embeddings as much as
possible. However, the choice here is arbitrary. (The six-
dimensional embedding was not used for any of the major
calculations.) The six-dimensional embedding is:

Axis 1: {AA}=(-1,0,0,0,0,0) and {TT}=(1,0,0,0,0,0)

Axis 2: {CC}=(0,-1,0,0,0,0) and {GG}=(0,1,0,0,0,0)

Axis 3: {AC}=(0,0,-1,0,0,0) and {CA}=(0,0,1,0,0,0)

Axis 4. {GT}=(0,0,0,-1,0,0) and {TG}=(0,0,0,1,0,0)

Axis 5: {AG)=(0,0,0,0,-1,0) and {GA}=(0,0,0,0,1,0)

Axis 6: {CT}=(0,0,0,0,0,-1) and {TC}=(0,0,0,0,0,1)
{AT}={TA}={CG}={GC}=(0,0,0,0,0,0)

There is only one possible eight-dimensional embedding for dimer
pairs. Two axes for the AT/TA and CG/GC pairs are added, which
were zero-step trajectories in lower dimensions:

Axis 1:  {AA}=(-1,0,0,0,0,0,0,0) and {TT}=(1,0,0,0,0,0,0,0)

Axis 2: {CC}=(0,-1,0,0,0,0,0,0) and {GG}=(0,1,0,0,0,0,0,0)

Axis 3: {AC}=(0,0,-1,0,0,0,0,0) and {CA}=(0,0,1,0,0,0,0,0)

Axis 4: {GT}=(0,0,0,-1,0,0,0,0) and {TG}=(0,0,0,1,0,0,0,0)

Axis 5: {AG}=(0,0,0,0,-1,0,0,0) and {GA}=(0,0,0,0,1,0,0,0)

Axis 6: {CT)}=(0,0,0,0,0,-1,0,0) and {TC}=(0,0,0,0,0,1,0,0)

Axis 7:  {AT}=(0,0,0,0,0,0,-1,0) and {TA}=(0,0,0,0,0,0,1,0)
Axis 8:  {CG}={0,0,0,0,0,0,0,-1) and {GC}=(0,0,0,0,0,0,0,1)

In future studies the fact that the estimate of D is not
independent of representation can be exploited by relaxing the
symmetry conditions to allow other representations. As
discussed in section 1.1, DNA sequences that code for protein have
a strong bias for content and arrangement of certain dimers. The
axis assignments can be changed to emphasize these dimers in the
estimated fractal dimension to evaluate whether the global

fractal dimension based on a strand-dependent scheme is useful in



determining which strand is the coding strand and which is the
sense strand.

The pseudorandom walk is defined in Equation 2.1. A true
random walk of infinite length will be space filling with D=2 for
all embedding dimensions (Mandelbrot 1983; Rudnick and Gaspari
1987) However, the representation of a DNA sequence in dimen-
sions greater than 2.0 is not a true random walk. In a true random
walk every step is totally independent of any of the previous or
subsequent steps. The sliding dimer scheme used to map DNA into
a pseudorandom walk is a correlated walk because each step in the
walk has partial dependence on the previous step. An important
parameter of any random walk is the mean-square displacement of
the walker after n steps. The mean-square displacement of a

random walk is defined in Equation 3.1.

Equation 3.1 Mean-square displacement of a random
walk after n steps is a function of the square root of n
multiplied by a constant, b, for all n.

(R,2,> =nb?
The mean-square displacement for a walk with finite correlation

is defined in Equation 3.2.

Equation 3.2 Mean-square displacement of a random
walk with finite correlation after n steps is a function
of the square root of n multiplied by a constant, A,
where A depends on the exact nature of the correlation.

<H,2,>=An N — oo
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The fact that the exponent in Equation 3.2 is just a scaling
exponent meéns that this is basically a variant of the maximum
radial distance method of estimating the global fractal dimension
in Equation 2.5. The four-dimensional embedding scheme used is a
single partial correlation Cy, corresponding to a walk with each
step dependent on its immediate predecessor. The mean-square
displacement for this correlated walk is defined in Equation 3.3

(Barber and Ninham 1970).

Equation 3.3 Mean-square displacement of a correlated
random walk after n steps where each step depends on
its immediate predecessor. C4, the correlation func-
tion is less than 1 for single partial correlation.

R,gz(icin

1-Cq

The numerator will be greater than 1 and the denominator will be

less than 1 in this representation, so the multiplier will increase
the mean-square displacement after n steps. For example, an
uncorrelated random walk (C1=0) will have a mean-square
displacement of 425,000 or about 158 units. A random walk with

a 0.25 correlation will have a mean-square displacement of

/(1.25/0.75) 25,000 or about 204 units. The increased mean-
square displacement will reduce the density of the walk yielding a
lower fractal dimension. A totally random DNA sequence mapped
into the four-dimensional space using a sliding dimer window is
this type of correlated walk. Each step has the possibility of
being followed by one of four dimers rather than one of sixteen.

For example, a step in the CT direction can only be followed by
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either a step in the TA, TC, TG, or TT direction and TA is a
zero-vector dimer. The graph in Figure 3.13 reflects this effect
with D converging to D=1.93 rather than D=2 for a random
sequence as long as 50,000 bases. Some of this error is due to
finite length effects and some is because the representation is a
correlated walk rather than a true random walk. As stated before,
this lack of convergence does not affect the statistical results
because finite length effects and the correlation functions are the
same for DNA and length-matched controls. The standard
deviations are less than 7% of the mean for the shortest sequence
evaluated, which allows reliable statistical analyses despite lack

of true convergence.

3.2.3 Control sequences

Control sequences were generated to match the length of
each DNA sequence using a random number generator. Pairing the
DNA sequences with control sequences of the same length controls
the effects of finite length. To avoid introducing sequential
correlations in the control sequences, a linear congruential
random number generator (Press et al. 1988) was used with a
randomized shuffle and an effective period of at least 714,025,
which is significantly longer than any of the sequences analyzed.
Three types of control sequences were generated: (1) random
controls: each base occurs with a probability of 0.25; (2) base-
matched controls: the frequency of each base is determined from

the DNA sequence and that frequency is used to generate the
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control sequences; and (3) dimer-matched controls: the frequency
of each dinucleotide pair is determined and the control sequences
are generated using the probability of the what the next base will

be, given the base selected previously.

3.2.4 Estimating the global
fractal dimension

The global fractal dimension, known as the Hausdorff
dimension, was calculated using the sandbox algorithm (Tel, Fulop,
and Vicsek 1989). The sandbox method estimates D by counting
the number of data points that lie within a region of radius R
centered on a selected data point and measuring how the number
of points within the radius changes over a range of radius lengths.
Well-defined dimensions that are independent of local behavior
are obtained by averaging the results over a number of randomly
sampled points on the fractal (Tel, Fulop, and Vicsek 1989). D is
defined in Chapter 2, Equation 2.7.

To estimate D for a given sequence, the slope of the log/log
plot of the sum of the fraction of the data points within radius R
centered at each sampled point versus the radius is calculated.
The critical parameter for the sandbox method is the range of
radii (Tel, Fulop, and Vicsek 1989). The largest radius should be
significantly smaller than the size of the fractal. The smallest
radius should be slightly larger than the smallest particle size. In

a random walk in four dimensions with each step equal to one unit,

the smallest particle size equals Y1 +1+1+1 or two metric

units. Within these constraints, the range of radii should be as
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large as possible but must try to minimize the amount of probable
overlap of radius regions. After extensive investigation of the
scaling properties of random and pseudorandom walks, the
optimum scaling range was determined to be [2,26] for this range
of sequence lengths. A radius range [2,26] was used with an
increment of two. Thus, all random walks were evaluated over the
same range of scales, a factor of 13.

Two other parameters have an effect on the calculated
estimate—the number of points to be sampled and how the
sampling is done. (See section 2.1.5 for the discussion on the
effects of sampling procuderes.) The random walks applied in this
research may visit a site multiple times, so a frequently visited
site may be sampled more than once in a random sampling of data
points. It was decided to randomly sample 1% of the data points
of each random walk. Studies on the sampling rate (data not
shown) indicated that a 1% sampling produced the same fractal
dimension as 10% sampling. The probability of examining the
same radius region more than once is roughly 2% at this sampling
rate. Any duplicate sampling that does occur is a function of the
frequency of site visitations and may be an important descriptor
of the behavior of individual random walks. Thus, random point

sampling incorporates density into the estimate of D.
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3.3 Results

3.3.1 The effects of sequence length
and embedding dimension

The effect of sequence length on the estimate of D was
evaluated for the 164 DNA sequences. Although length clearly
affects the error in the estimate of D for sequences longer than
4,000 bases, no correlation (r2 = .024) was found between the
length of a DNA sequence and its estimated D. A minimum length
cutoff of 4,500 base pairs was determined.

Ten of the 164 DNA sequences were randomly selected to
evaluate the effect of embedding dimension. A dimer-matched
random control was generated for each sequence and the D
calculated for each pair embedded in two, four, six, and eight
dimensions. D increased between two- and four-dimensional
embeddings but remained relatively constant between four, six,
and eight dimensions (Figure 3.15).

Both DNA and random sequences demonstrated this effect,
confirming that it was appropriate to use the same embedding
dimension for both types of sequences. Analysis of the 164 human
sequences using two-dimensional embedding yielded a mean D of
1.395 and a standard deviation of 0.146. The maximum D was
'2.348 so an embedding dimension of at least four must be used to
satisfy the embedding dimension rule (D>1+[2.348]=4).

A four-dimensional embedding yielded a mean of 1.68 and
standard deviation of 0.209. The increase in D from two-

dimensional embedding to four-dimensional embedding indicated
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Figure 3.15 Fractal dimension versus embedding
dimension averaged for 10 DNA sequences. The increase
in D from two to four dimensions indicates that a
two-dimensional embedding is insufficient. The gradual
decrease in D for larger embedding dimensions
demonstrates the effect of finite sequence length for
higher embedding dimensions.

Mean estimate of D

that the two-dimensional embedding was insufficient and a higher
embedding was required. Embeddings greater than four did not
result in a significant increase in the estimate of D, indicating
that the four-dimensional embedding was sufficient. The slight
decrease in mean D for embedding dimensions higher than four was

the result of bias due to finite sequence length.
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3.3.2 Estimate of D for DNA
sequences and controls

The estimated Ds for the 164 human sequences using the
four-dimensional embedding scheme were compared to three
control types: (1) random, (2) base-matched, and (3) dimer-
matched. All controls match the paired sequence in length. To
estimate the statistical distribution of D, 30 of each control type
were generated for each DNA sequence. A z-score (Equation 3.4)
was then calculated for each DNA sequence.

Equation 3.4 Standardized score or z-score where Dg

is the estimated D of a sequence, Bc is the mean D for
its matched controls, and sd(D.) is the standard

deviation of the controls.

,_Ds-Do
sd (Dc)

The z-score describes the approximate position of D for each DNA
sequence within the distribution defined by its controls. To eval-
uate the group of sequences as a whole, a t-test was performed
using the mean and standard deviation of the z-scores. Thus, D for
each DNA sequence is compared to the probability distributions of
its controls.

The mean D for the 164 human DNA sequences was 1.631
with a standard deviation of 0.137. The lowest D was 1.300 and
the highest D was 2.253. The standard deviation was 8% of the
mean D. The standard deviation for random controls was 1.8% of
the mean D, for base-matched controls, 7.5% of mean D, and for

dimer-matched controls, 6% of the mean D. Therefore, at least
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75% of the variation found in D for the DNA sequences is due to
intrinsic properties of their random walks and not stochastic
variation.

The aggregate results for all 164 DNA sequences evaluated
are presented in Table 3.1. The mean D was significantly lower
than for random controls (t=-20.813, N=164, p<10-39), base-
matched controls (t=-6.111, N=164, p<10-8), and dimer-matched
controls (t=-10.280, N=164, p<10-18), The histogram in Figure
3.16 shows a predominance of negative z-scores.

Nonparametric statistics using the rank of D among its
matched controls are also revealing. The rank of a sequence is
one plus the number of matched control sequences that have a
lower estimated D. The histogram in Figure 3.17 indicates that
over 50% of the 164 sequences have a rank below eight when
compared to 30 base-matched or 30 dimer-matched controls. The
number of sequences with a D rank of one was significant in both
cases (p=0.0001 by chi-square test) with 23% (38/164) ranking
lowest among their base-matched controls and 25% of the
sequences (41/164) ranking lowest among their dimer-matched
controls. Approximately 75% of the sequences had a rank lower

than 16 for both base and dimer-matching.

It was expected that dimer-matched controls would match
the DNA sequences better than base-matched controls. The fact
that dimer-matching increased the magnitude of the difference
rather than decreasing it requires further explanation. The base-

matched and dimer-matched controls had bases and dimers



Table 3.1

Global fractal dimensions for DNA sequences and
controls. Both the genomic DNA and mRNA subgroups
show significant differences from random, base-
matched, and dimer-matched controls.

~ Genomic
Combined DNA mRNA
No. of Sequences 164 164 57
DNA Sequences
mean D 1.631 1.641 1.613
sd (D) 0.137 0.140 0.130
"Random Controls
mean D 1.863 1.865 1.859
sd (D) 0.027 0.027 0.027
mean z -2.624 -2.603 -2.665
sd (2) 1.615 1.665 1.530
t value -20.813 -16.171 -13.152
p value <10-44 <10-29 <10-18
"Base-matched Controls
mean D 1.702 1.709 1.690
sd (D) 0.127 0.126 0.129
mean z -0.865 -0.833 -0.925
sd (2) 1.812 2.004 1.397
t value -6.111 -4,298 -5.000
p value <10-8 <10-4 <105
‘Dimer-matched Controls
mean D 1.702 1.718 1.672
sd (D) 0.109 0.105 0.111
mean z -1.068 -1.193 -0.834
sd (2) 1.331 1.444 1.059
t value -10.280 -8.543 -5.950
p value <10-18 <10-13 <10-7
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Figure 3.16 The distribution of z-scores for D of 164
DNA sequences compared to random, base-matched, and
dimer-matched controls. The distribution is shifted in
the negative direction indicating that D of human DNA
is significantly lower than for all controls.
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Figure 3.17 The distribution of D rankings for 164
human DNA sequences. The rank of D indicates how
many matched-control sequences had a lower D.



distributed uniformly within each sequence. The increased
differences for dimer-matched controls reflect nonuniform base

and dimer distributions within the DNA sequences, with greater
differences in dimer distributions than base distributions. Each

DNA sequence was divided into 500-base subsequences, and the
base and dimer content in these subsequences were compared to
the overall base and dimer content. Wide fluctuations in base and

dimer content were found within the sequences. Table 3.2 sum-

marizes the results of base distribution analysis.

Only 8/164 (4.9%) of the sequences show uniform
distribution of all four bases, whereas 85/164 (51.8%) show
significant nonuniformity of all four bases. Over 75% of the
sequences show significant nonuniformity for each of the four
bases. The distribution of dimers within sequences was even

more divergent (see Figure 3.18). Over 95% of the sequences

Table 3.2

The distribution of bases within sequences. Bases within
DNA sequences are not uniformly distributed.

Number of sequences showing

Base nonuniformity %
A 126 76.8

C 135 82.3

G 131 79.9

T 127 77.4
No base 8 4.9
Only one base 10 6.1
Any two bases 15 9.2
Any three bases 46 28.1

All four bases 85 51.8
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Figure 3.18 The distribution of dimers within
sequences. The distribution shows marked non-
uniformities with symmetries between mirror image
dimers.

showed significant nonuniformity of AA or its complement, TT, or
of CC or its complement, GG. Two-thirds of the sequences showed
significant nonuniformity of AT, CG, GA/TC, GC, or TA. There is
also a symmetry in the frequency of nonuniformities between
mirror image dimers. The frequency of CG nonuniformity is
approximately equal to the frequency of GC nonuniformity, and the
frequency of AT nonuniformity is equal to the frequency of TA

nonuniformity. AG/CT nonuniformity is as frequent as GA/TC non-
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uniformity. AC/GT nonuniformity and CA/TG nonuniformity are
the least frequent. This symmetry between the nonuniformity of
mirror image dimers provides a biological justification for the
requirement of reflection symmetry in the embedding scheme.

The 164 nucleic acid sequences in the sample consisted of
two types: (1) mRNA sequences composed primarily of coding
segments but with &' and 3' untranslated segments; and (2)
genomic DNA sequences, which are predominantly introns and
other noncoding segments. The mean D for the genomic DNA group
was 1.641 $0.14 and for mRBRNA 1.613 0.13. However, this
difference was not significant (p=0.20 by an unpaired t-test).
Therefore, the z-scores of DNA and mRNA groups for random,
base-matched, and dimer-matched controls were compared to
determine if there was any difference in D between genomic DNA
and mRNA. It was found that both groups showed significantly
lower D estimates than random controls (p<10-2° for genomic DNA
and p<10-18 for mRNA), base-matched controls (p<10-4 for
genomic DNA and p<10-5 for mRNA), and dimer-matched controls
(p<10-13 for genomic DNA and p<10-7 for mRNA). The mean
z-score for genomic DNA (-1.193 *1.444) was significantly

(p=0.05) lower than the mean z-score for mRNA (-0.834 +1.059).

3.4 Discussion
Matching for base frequencies and even dimer frequencies
does not explain the nonrandomness of DNA sequences. The D

estimates for the DNA sequences are significantly lower than the
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Ds found for all three types of random controls (length matched
only, base-frequency matched, and dimer-frequency matched),
indicating the presence of regions in the pseudorandom walks
generated from DNA that are relatively more linear or less
clustered than in the controls. It appears that much of the
nonrandomness revealed by fractal analysis is due to nonuniform
distributions of bases and dimers within sequences. Quasi-linear
segments may result from single base runs, dimer runs of GT, CT,
GA, or CA, and other oligo n-mers. Runs of CA and other short
tandem repeats in mammalian DNA are frequent, as are n-mers
composed of periodic short runs of T or A, which have been
associated with nucleosome formation sites (Kimura, Takeya, and
Takanami 1989; Pennings et al. 1989; Shrader and Crothers 1989;
Uberbacher, Harp, and Bunick 1988). This finding correlates with
the results of Markov chain analyses (Almagor 1983; Blaisdell
1985; Garden 1980; Kieffe and Langbecker 1990), which found
strong nearest-neighbor effects in DNA sequences. There are also
families of repetitive elements present in human DNA, which
often contain internal short repeats.

The Ds of sequences composed primarily of noncoding
segments (genomic DNA) are different from those composed
primarily of coding segments (mMRNA). Using an unpaired t-test on
the z-scores, which includes dimer-matched controls, distin-
guishes the populations at p=0.05. Using an unpaired t-test
directly on the estimates of D fails to distinguish the populations

(p=0.20). Genomic DNA and mRNA are not totally distinct since
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their sequences contain both coding and noncoding segments,
reducing the power to discriminate between coding and noncoding
populations.

This difference in D between genomic DNA and mRNA
sequences agrees with the findings of Blaisdell (1983) that coding
sequences generally contain a significant excess of runs of length
1 or 2 of weak-bonding bases (A or T) and of strong-bonding bases
(C or G). Noncoding sequences generally contain a significant
excess of long runs of purine (A or G) and pyrimidine (C or T). Long
runs produce linear regions in the random walk that decrease D.
Short repeated sequences should decrease D less than long
repeated sequences. It was found that both genomic DNA and mRNA
have significantly lower estimates of D than all three types of
matched controls. However, sequences of genomic DNA have
significantly lower dimer-matched z-scores than those of mRNA.
Thus, this difference cannot be due to differences in dimer
frequencies (Elton 1975).

The results obtained in this study were based on one of many
possible axis assignments. Do these results and conclusions
change when an alternate four-dimensional scheme is used? To
address this issue, a subset of 33 DNA sequences were studied,
randomly selected from the original set, and D was calculated

using a second alternative embedding scheme in which all dimers

step (Figure 3.19).
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Figure 3.19 Second four-dimensional embedding
scheme in which all dimers step.

So the new four-dimensional embedding is as follows:

Axis 1: {AA}={CC}=(-1,0,0,0) and {GG}={TT}=(1,0,0,0)
Axis 2: {AT}={TA}=(0,-1,0,0) and {CG}={GC}=(0,1,0,0)
Axis 3: {AC}={CA}=(0,0,-1,0).and {GT}={TG}=(0,0,1,0)
Axis 4: {AG}={GA}=(0,0,0,-1) and {CT}={TC}=(0,0,0,1)

This embedding preserves D for complements, reflections, and
substitutions, but it is not compatible with the two-
dimensional representation (compatibility symmetry). The
incompatibility is caused by the fact that this new
representation converts the zero-vector dimers of
AT/TA/CG/GC into nonzero vectors. A significant difference
was found (p=0.005 by paired t-test) in the estimate of D for

individual DNA sequences from that obtained using the first

82
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embedding scheme. There was no correlation (r2=0.159) be-
tween the two estimates of D (Figure 3.20).

D obtained for DNA was compared to D obtained for base-
matched controls using the second embedding scheme (Table 3.3).
The mean global fractal dimension of the DNA sequences (1.519
10.085) was significantly lower than for base-matched controls
(1.580 $0.128). The mean D was also lower for both DNA and
controls using the second embedding scheme, and the standard
deviation of D for the DNA was smaller (+0.085 versus +0.137).
The mean z score for the second embedding scheme was -1.338
with a p-value of <10-3 compared to -0.865 with p-value of <10-8
for the first scheme. In other words, the second four-dimensional
embedding scheme produced the same general result--that the
average fractal dimension of DNA is significantly lower than that
of base-matched controls (Figure 3.21).

It is impressive that despite the absence of correlation
between the individual D values for DNA sequences in the two
schemes, the differences between the DNA sequences and their
controls and their ensemble statistical properties are unaffected
by the change in representation. Although it is not proposed that
all axis assignments will produce the identical result (some may
be more or less discriminating than the two used in this
research), this equivalence is strong evidence that the qualitative
differences between random controls and DNA will persist

regardless of embedding scheme.
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Figure 3.20 Scatterplot for a subset of 33 DNA
sequences. There is no correlation between estimates
of D using the first embedding scheme in Figure 3.14
and the second embedding scheme in Figure 3.19.
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Table 3.3

Global fractal dimensions for DNA sequences and
controls using a second four-dimensional embedding.
The estimated global fractal dimension for a 33
sequence subset of original data using the embedding
scheme in Figure 3.19 is significantly different from
that obtained using the scheme in Figure 3.14.
However, it is still significantly lower than D for
base-matched controls.

" First 4D Second 4D
Embedding Embedding _

No. of sequences 164 33

DNA sequences
mean D 1.631 1.519
sd (D) 0.137 0.085

Base-matched Controls

mean D 1.702 1.580
sd (D) 0.127 0.128
mean z -0.865 -1.338
sd (2) 1.812 2.171
t value -6.113 -3.540

p value < 10-8 0.0006
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4. EFFECTIVE MULTIFRACTAL SPECTRA FOR
RANDOM WALK AND SIERPINSKI CARPET

4.1 Introduction

The multifractal formalism is a useful way to characterize
the spatial inhomogeneity of fractals (Grassberger and Procaccia
1983; Halsey et al. 1986; Hentschel and Procaccia 1983). It has
been widely applied to analyze both theoretical and experimental
fractal patterns. Of the common examples of a multifractal, the
best known is the exactly soluble two-scale Cantor set, which is
representative of a large class of point-like deterministic
attractors. For many purposes, however, it is more convenient to
have a model that is stochastic and higher-dimensional. The
simplest example is the random walk on a lattice, which finds
many applications in polymer physics, biology and economics. In
this chapter numerical calculations of the Dq spectrum are
presented for a random walk and Sierpinski carpet. These results
should be particularly useful to compare to short data sets for

which a true bulk multifractal spectrum cannot be obtained.

4.2 Methods
A true random walk of infinite length is space-filling with
D=2 in two-dimensional embeddings. Higher embeddings also

produce D=2 (Rudnick and Gaspari 1987). Local fluctuations can
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result in a local fractal dimension above two, so a four-
dimensional embedding is used to work in a space at least one
higher in dimension than the set examined (Takens 1981). The
random walk is defined in Equation 2.1. The direction of each step
is chosen at random with equal probability using a random number
generator. To avoid sequential correlation, a linear congruential
random number generator was applied that uses a randomized
shuffle and produces a sequence with an effective period of at
least 714,025 (Press et al. 1988). This is much larger than the
longest DNA sequence in that data set, so no sequential
correlations in the computations are introduced.

The Dq spectrum was calculated using the sandbox method of
Tel that has been shown to converge substantially faster than box
counting for the two scale Cantor set (Gould and Tobochnik 1990;
Tel, Fulop, and Vicsek 1989; Viscek, Family, and Meakin 1990).
The Dq spectrum by Tel's sandbox algorithm is defined in Chapter 2

(see Equation 2.9).
For an ideal fractal, Dq is defined according to Equation 4.1.

Equation 4.1 The multifractal spectrum is defined by
Dq where R, the radius of spherical balls and Dq is the
fractal dimension estimate at different values of q.
Large negative values of q emphasize the sparsest part
of the walk and large positive values of q emphasize
the densest part of the walk.

Dg=lim Dq(R)
R—0
In practice a linear fit is performed on Dg(R) over a range of R

[Rmin, Rmax] with Rmin=2 and Rmax adjusted to the Iength
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representing the most linear region of the log/log plot of radius
versus data point density. A two-unit increment is used over the
range Rmin to Rmax since the smallest particle size is the equal to
the square root of 4.

To compare results from pseudorandom walks with a known
fractal, extensive computations were done with the square
Sierpinski gasket, also called Sierpinski carpet (Figure 4.1). In
theory, this carpet is a monofractal (D=log(8)/10g(3)=1.893) since
it should have the same fractal dimension at all scaling ranges
(Vicsek, Family, and Meakin 1990). However, this is based on an
infinitely large square that is subdivided an infinite number of
times. A finite-sized carpet will have an effective multifractal
spectrum due to inclusion of the edges of the carpet.

Four different sampling techniques using the sandbox method
were applied to the carpet to evaluate what effect the edge had on
the estimate of the multifractal spectrum. Method 1 randomly
sampled points anywhere on the carpet. Method 2 randomly
samples points that are at least Rmax Or more inside the outside
edge of the carpet (Figure 4.2). This insures that range being
studied never runs off the outside edge as radius is increased but
it does over sample the center edge. Method 3 samples points
within a strip that is equidistant from the outside and inside
edges (Figure 4.3). This method includes both outside and center
edges equally. Method 4 randomly samples points that were
within Rmax of the outside edge of the carpet (Figure 4.4). This
technique totally avoids the center region but runs off the edge of

the carpet with about half of the points sampled.



16 49 147 440

Figure 4.1 A 440x440-unit, level 3 Sierpinski carpet
with the dimensions of intermediate components. Method
1 samples points randomly anywhere on the carpet.
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Region

Figure 4.2 Method 2 samples in the middle of the
carpet and avoids the outside edge completely but over
samples the center edge.
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Figure 4.3 Method 3 samples points within a strip that
is equidistant from outside and inside edge and avoids
both the outside and center edge.
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Figure 4.4 Method 4 samples points within Rmax of the
outside edge of the carpet and avoids the center edge
completely.
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The Dq spectrum was calculated for 10 random walks of
lengths 50,000, 100,000, and 250,000 steps. As discussed in
Chapter 3, the mean-square displacement of the path of a walker
after n steps is a linear function of the square root of n (Equation
3.1). To apply a uniform scaling range to the random walks, the
range used was [2,Rmax], where Rmax is the average span of the
walk along the four axes. Average span, like mean-square
displacement, is a linear function of the square root of the number

of steps in a walk and is defined in Equation 4.2.

Equation 4.2 Average span of a walk where d is the
embedding dimension, imax and imin are the most
distant points, maximum and minimum values, visited
on the ith axis.

Q

=1_ . i
P d.1(|max lmln)

Random walks of various lengths were generated, 30 of each
length, and then the mean-square displacement and the average
span were calculated for each walk. Figure 4.5 demonstrates that
average span and mean-square displacement both scale by the
square root of the length of the walk. They differ only by a
constant with average span slightly smaller than mean-square
displacement.  Therefore, to compute Dg for random walks of
various lengths, Rmax is set to the average span of each walk.
Several different sampling rates were applied in the sandbox
technique. Sampling rates above 2% did not significantly change
Dq (data not shown). Therefore, in each case, 2% of the points in

each random walk were sampled.
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Figure 4.5 Average span and mean-square dis-
placement of a random walk are both a linear function
of the square root of n, the length of the walk.

4.3 Results

Results of a level 3 Sierpinski carpet using different
sampling techniques were revealing. Sampling Method 1, which
used randomly selected points anywhere on the carpet, produced
an effective multifractal spectrum at Rmax equal to the actual
size of the fractal (see Figure 4.6). This correlates with the
application of the average span for Rmax for pseudorandom walks.
If Rmax is less than the size of fractal, the Dq curve is not
monotonically nonincreasing. If Rmax is greater than the size of

the carpet, the Dq curve is monotonically nonincreasing but the Dgq
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values are decreased. The amount of decrease appears to be a
linear function of Rmax. The multifractal spectrum has signifi-
cantly lower values than the theoretic fractal dimension because
blank area beyond the edge of the carpet is included (i.e., running
off the edge of the fractal). Also, the blank area at the center of
the carpet is encountered.

Results of sampling Method 2, which randomly samples
points that are Rmax or more from the outside edge of carpet, are
in Figure 4.7. This technique never runs off the outside edge of
the fractal but over samples the center region.

Results of sampling Method 3, which sampled within a strip
that was equidistant from the outside edge and center region, are
in Figure 4.8. This technique runs off the edge of the carpet and
samples the center region about equally. At Rpmax=50, which
represents the distance of the edge of the sampling region from
the outside edge and center, a multifractal spectrum is produced
that is much closer to the theoretic value of D=1.893 than any of
the other techniques. Smaller Rnhax produces Dq curves that are
not monotonically nonincreasing and larger Rpax increase the Dq

values.
Results of sampling Method 4, which selects points that are

within Rmax of the edge, are in Figure 4.9. This method clearly
fails to produce any Dq curve that is monotonically nonincreasing
for any Rmax. This method runs off the edge very inconsistently
and never includes the center region. The Dq values do not

approach the theoretic D=1.893 for any q either.
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Figure 4.6 Multifractal spectra for a level 3 carpet of
size 440x440 using Method 1, which randomly sampled
points for different Rmax values, reveals that mono-
tonically nonincreasing spectra are obtained when Rmax
is equal to size of fractal (440 units) or larger. All
spectra values are less than the theoretic value of

D=1.893.
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Figure 4.7 Muiltifractal spectra of a level 3 Sierpinski
carpet using Method 2 sampling, which totally avoids
the outside edge but over samples the center portion.
Rmax=100 is almost monotonically nonincreasing, and
all points sampled were 100 units or more from the
outside edge.
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Figure 4.8 Muiltifractal spectra of a level 3 Sierpinski
carpet using Method 3, which samples within a strip
that is equidistant (50 units) from outside edge and
center region, produces an effective spectrum that is
close to the theoretic D=1.893 for Rmax=50.
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Figure 4.9 Multifractal spectra of a level 3 Sierpinski
carpet using Method 4, which samples points within
Rmax of the edge, fails to produce a monotonically
nonincreasing multifractal spectrum for any scaling
range.
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Figure 4.10 compares the multifractal spectra obtained by
the four sandbox sampling techniques for Rmax=100, which is
about 23% of the size of this fractal. This demonstrates that
different multifractal spectra are possible depending on how the
sampling of points is done. Method 3, which avoids both the
outside edge and center region, produces a monotonically
nonincreasing Dgq curve, which is elevated over the theoretical
fractal dimension of the carpet at this Rmax. Method 4, which
samples along the outside edge, produces a poor Dq curve with very
depressed values and is not monotonic. Method 1, which randomly
samples points anywhere on the carpet, does not produce a
monotonic Dgq curve either. Method 2, which totally avoids outside
edge but over samples the center region, produces a Dq curve that
increases slightly at positive q at this Rmax. However, the Dq
values are all within 5% of theoretical fractal dimension of 1.893.

These simulations with the Sierpinski carpet reveal two
important aspects of estimating the multifractal spectrum. First,
the theoretical Dq curve is best approximated by sampling points
that totally avoid both the outside and center edges using a
narrow scaling range [2,40]. An effective multifractal spectrum,,
which is monotonically nonincreasing, is achieved by randomly
sampling points over the fractal and using a scaling range with
Rmax equal to size of the fractal. Scaling ranges smaller than this
do not produce a monotonic Dq curves. These facts can now be
applied to estimating the multifractal spectra for random walks.

The Dq curves were estimated for random walks of length

50,000, 100,000 and 250,000, 10 of each length. Over a very
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Figure 4.10 Multifractal spectra of a level 3
Sierpinski carpet, obtained by four sampling methods
using scaling range of R=2-40, demonstrates the
effect of outside and center edges on the calculated Dq.
Method 3, which samples within a strip and totally
avoids both center and outside edges at this scaling
range, produces an almost monofractal Dq curve that is
very close to the theoretic fractal dimension of this

Sierpinski carpet.
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limited scaling range, [2,20], the random walks of all three
lengths are monofractal with the average Dq close to 2.0 for all q
(Figure 4.11). The standard deviations are smallest at q=0 for all
lengths and largest at the extremes, q=-15 and q=+15, with all
standard deviations less than 5% (Gould and Tobochnik 1990:;
Viscek, Family, and Meakin 1990). Therefore, the repeatability of
the result from walk to walk is good. In general, the longer the
random walk, the smaller the standard deviations. Empirically, it
was found that the shortest random walk to yield a valid
monofractal spectrum was 4,000 steps with standard deviations
of about 10%. However, this is over a scaling range [2,4] with all
line fits based on just the changes in mass between radius=2 and
radius=4.

A larger Rmax examines the surface of a random walk as well
as the bulk. The log/log plot in Figure 4.12 demonstrates the
linearity obtained over a long scaling range of a 50,000 step
random walk at q=-15.

When Rmax is set equal to the average span of the walk along
the four axes, the three Dq curves are identical in shape, and the
values themselves depend on the length of the walk (Figure 4.13).
The longer the walk, the lower the standard deviations obtained.
It is interesting to note that the entire spectrum for 250,000
steps is above 2.0, the theoretical value for an infinite random
walk.

Figure 4.14 reveals that there is very little difference in the
average multifractal spectrum over a fairly wide scaling range.

Here the 250,000-step random walks were scaled with Rmhax equal
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Figure 4.11 The average Dq curves for 10 random walks
of 50,000, 100,000, and 250,000 steps are monofractal
over a very limited scaling range [2,20] with fractal
dimension close to 2.0. Error bars indicate the standard
deviations obtained for 50,000-step walks.
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Figure 4.12 Log/log plot for a 50,000-step random
walk using the sandbox algorithm for gq=-15 shows a
long linear scaling range. A line fit for this plot
produces r2=0.989 indicating a very good fit.
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Figure 4.13 The average Dq curves for 10 random
walks of length 50,000, 100,000, and 250,000 over a
long scaling range are multifractal, and the spectra
are unique for each length. The scaling range is
[2,Rmax] where Rmax equals the average span along the
four axes for each walk length. Rmax equals 160, 200,
and 240 for the 50,000-, 100,000-, and 250,000-step
walks respectively.
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Figure 4.14 The average Dq curve for 10 random walks
of 250,000 steps changes very little over a rather
wide scaling range.
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to 160, 200, and 240 respectively with minimal change in the Dq

curve.

Figure 4.15 shows the multifractal spectrum obtained when
Rmax is set to incorporate half of the data points of the walk on
average rather than average span. The curves are distinctly
different with this scaling range and the spectrum for 250,000-
step walk still exceeds the theoretical value of 2.0.

For standard box counting, the Dq curve does not converge for
these parameters (Ramsey and Yuan 1989; Smith 1988). Also, the
sandbox method appears to be computationally faster than box
counting. Because the mean radius of a random walk scales with
the square root of its length, Dq curves were calculated with
Rmax=100 for the 50,000 length walk, Rmax=120 for the 100,000
length walk and Rmax=224 for the 250,000 length walk. It was
expected that these curves would be indistinguishable. These
results show that the curves for 50,000 and 100,000 were within
one standard deviation of each other for all q, with better
agreement at negative q. The 250,000 curve was significantly
different for all q values. This result appears to be caused by the
inclusion of a significant sampling of the walks' surface. Both the
surface and the bulk of a random walk scales as the square root of
the length of the walk. However, the exponents are different
(Figure 4.5).

A variety of sampling methods were used to calculate the
multifractal spectrum of the Sierpinski carpet that include or
exclude the center and/or outside edge of the carpet. This cannot

be done for a random walk. Finding the outside edge of the walk is
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Figure 4.15 The average Dq curves for 10 random
walks of length 50,000, 100,000, and 250,000 with
scaling range [2,Rmax] where Rmax is set so that the
ball around each sampled point, on average, contains
50% of the data points of the walk. These Dq curves
are also multifractal.
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a convex hull problem that is computationally intractable. An
infinite length random walk would essentially have no edge.
Finite length random walks will invariably have an edge, and there
is no way to totally avoid the edge in computing Dgq. There has
been some work on adjusting measures of fractal dimension for
edge effect (Taylor and Taylor 1991). However, these adjustments
apply to graphs of continuous functions when using box counting
and do not apply for finite unit-step random walks. The random
walk is also different from the carpet in that there will not be
regions within the fractal without data points that have distinct
edges. However, random walks will typically have holes within
the bulk of the walk of varying sizes and shapes. This blank space
within a walk is difficult to predict, and estimating the effect it
has on multifractal spectrum is even more difficult. Thus, the
only way to calculate the multifractal spectrum of a random walk
is to randomly sample points over the walk using a scaling range
that can be applied consistently. It was found that the average
span of the walk among the axes provides an adequate scaling
range. Average span produces reproducible results among walks of
the same length. It is important to note that these values are
arbitrary but do provide a usable spectrum for comparison
purposes.

Fractal analysis of DNA sequence data is the motivation for
developing techniques to calculate multifractal spectrum. DNA
sequences are mapped into four-dimensional pseudorandom walks
according to mapping procedure and the axis scheme in Chapter 3

(Figure 3.14). The multifractal spectra of these walks are then
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computed using the sandbox algorithm with Rpmax equal to the
average span. Three types of control sequences are then used for
comparison: (1) random bases where each base has equal
probability of occurring; (2) base-matched where the control
sequences are generated using the probability of each base
occurring according to proportion of bases in the DNA; (8) dimer-
matched where the control sequences are generated using the
probability of each dimer-pair occurring according to proportion
of dimers in the DNA. The multifractal spectra of these control
types are then calculated. Figure 4.16 shows a clear difference

between the human beta globin gene and all three control types.

4.4 Conclusion

A unit-step random walk on a lattice is homogeneous over a
scaling range that is very limited (Rmax about 10% of average axis
span). Scaling ranges larger than this yield a mulitifractal
spectrum that may be used to examine the perimeter of the walk
in addition to the internal structure. The sandbox algorithm gives
converged spectra for much shorter random walks than does box
counting. The problem of edge effect in computing the
multifractal spectrum with the square Sierpinski carpet has been
demonstrated. Because the edge of a finite length random walk
cannot be avoided, methods must be used to obtain a converged
multifractal spectrum that can be applied consistently.‘ The
ability to calculate a converged effective multifractal spectrum

allows the use of the random walk as a typical model fractal for
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Figure 4.16 The multifractal spectrum of the human
beta globin gene (length=73,326 base pairs) converges

at Rm ax=700.

Significant differences exist between

its Dgq curve and the average curves of random, base-
matched, and dimer-matched control sequences.
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comparison with short experimental data sets such as DNA

sequences mapped into pseudorandom walks.



5. MULTIFRACTAL SPECTRA DISTINGUISH
VERTEBRATE mtDNA SEQUENCES FROM
INVERTEBRATE mtDNA SEQUENCES

5.1 Introduction

In Chapter 3, | have shown that the global fractal dimension
is useful in the study information content. However, the global
fractal dimension produces a measure averaged over the entire
time series. Important local patterns may be lost or masked with
this averaging. The multifractal spectrum reveals more about
localized patterns and may provide more information about
internal organization of DNA sequences than just the global
fractal dimension.

In Chapter 4, | have shown, using pseudorandom walks, that
relatively long DNA sequences (minimum of 15,000 base pairs for
nonrandom sequences) are needed to calculate a multifractal
spectrum. A number of animal mitochondrial genomes have been
tofally sequenced. A total of 12 complete genomes, 4
invertebrates and 8 vertebrates, were found in GenBank. Animal
mitochondria are typically 15,000-20,000 base pairs in length and
have a high rate of mutation. Therefore, mitochondrial DNA
(mtDNA) sequences are good material for the application of
fractal analysis and the exploration of fractal dimension and

information content. With mtDNA, the entire genome may be
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efficiently analyzed rather than minute segments of larger
genomes. Furthermore, they are all about the same length so the
estimated fractal dimensions can be compared directly without
the need for control sequences.

Information content and entropy in DNA sequences have been
studied before. Subba Rao (Subba Rao, Geevan, and Subba Rao
1982) observed that mutations in human hemoglobin genes tend to
occur such that the frequency of a codon that mutates is greater
than the frequency of a codon to which it mutates. He concluded
that the codon frequency distribution should be more equiprobable
after the mutation than before it. Thus, the entropy of a coding
region of DNA should be a nondecreasing function of the number
DNA generations.

Konopka (1984) disagreed with Subba Rao arguing that the
entropy measure, H, assumes that all codons are equally probable
regardless of length or origin. Therefore, it depends on relative
codon usage frequencies and is independent of the length of a DNA
coding region and is only useful for comparing genes coding the
same polypeptide in the same genome or across species. He
proposed a function, D, which adjusts for genetic code degeneracy,
and found that the D value for human mitochondrial genes was
almost the same as for human nuclear genes even though
mitochondria mutate at a much faster rate. The value of D for the
average mitochondrial gene was greater than the value for the
corresponding human nuclear genes. He found the same results on

comparing histones, which are slow-evolvers, and globins, which
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are fast-evolvers. He concluded that entropy is not a good indi-
cator of evolutionary differences and that information content
does not tend to increase with evolution.

Rowe (1983) studied the information content of viral DNA.
He found that viral DNA is a Markov chain with memory of two, and
that most of the structure is on the level of pairs and triplets
with little or no structure on levels 4 and 5. Noncoding regions of
viruses have a nonrandom structure, often containing a higher
level structure than the surrounding genes. He did find some
correlation between levels of information storage and virus
families. A strong codon bias exists in viral genes, and genes that
code for structural proteins often showed stronger triplet
correlations than other genes. He concluded that new ways of
detecting and measuring information storage are needed,
particularly for long range correlations.

At least one study has been published that used fractal
dimension to study information content in DNA sequences. Luo and
Tsai (1988) used fractal dimension to study its relationship to
evolutionary level. He found that the average fractal dimension
(AFD) grows gradually with increasing evolutionary level and
suggested that this represents randomization of vocabulary
composition of genetic language perhaps due to random drift. He
also noted an increased correlation of neighboring bases and
suggested that this represented the clarification of grammatical
construction of genetic language, which may be a result of natural

selection. He estimated the fractal dimension of mammalian
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mtDNA at D=1.154, and found this to be significantly lower than

nonmammalian mtDNA and eukaryote viruses.

5.1.1 Characteristics of
mitochondrial genomes

Mitochondria are small organelles found in the cytoplasm of
eukaryotic cells that produce energy for the cell. They exist as
complete, compact genomes and carry out their own DNA
replication, DNA transcription, and protein synthesis. Animal
mitochondrial genomes form a circular double helix composed of
15,000-19,000 base pairs. Each organelle may have 5-10 of these
DNA molecules.

The genome is almost entirely coding sequence with just 5%
of the genome making up the displacement loop (D-loop), which
does not seem to code for protein but may perform regulatory
functions for structural genes. The genome codes for 2 ribosomal
RNAs (12S and 16S rRNA subunits), 22 tRNAs for protein
synthesis, and 13 proteins (3 cytochrome oxidase subunits, 7
NADH dehydrogenase, ATPase6, ATPase8, and cytochrome b). No
introns have been found in mitochondria and there are very few
intragenic bases, if any.

Mitochondrial genomes of animals are highly conserved,
showing 50-90% homology for coding regions. The noncoding
D-Loop is very divergent with almost no homology. However, there
seems to be secondary structure homology in the D-Loop despite
the lack of sequence homology. The D-Loop typically contains the

origin of replication. Gene organization and arrangement are
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identical for the mitochondria of human, cow, rat, mouse, and frog.
The chicken mitochondria genome has a simple translocation
affecting only four genes. Invertebrate mitochondria do not show
this conservation of genome organization. Yet, the coding DNA
shows the same high level homology with other animals.

The mitochondrial genetic code is very much like the
universal genetic code but does show some differences.
Interestingly, the codon differences seem to be organism specific.
For example, the codon UGA, which is a STOP codon in the
universal code, specifies tryptophan in mtDNA. AGA and AGG,
which specify arginine in the universal code, specify a STOP codon
in mammalian mtDNA and serine in drosophila mtDNA. With only
22 tRNAs, mitochondrial genomes show a high level wobble in the
third base position of codons. Codon preferences exist but are
species specific and usually reflect the base composition of the
genome. For example, drosophila mtDNA is 77% A+T and 94% of all
codons end in A or T. These variations in genetic code suggest
that random drift has occurred in the genetic code of
mitochondria.

In animals, mtDNA is transcribed at the same rate from a
single promoter region on each strand, producing two different
giant RNA molecules, each containing a full-length copy of one
DNA strand. Transcription is completely symmetrical. The
transcripts made on one strand, called the heavy strand (H strand)
are extensively processed by nuclease cleavage to yield the 2
rRNAs, 14 of the 22 tRNAs, and about 10 poly-A-containing RNAs.
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The light strand (L strand) transcript is processed to produce only

eight tRNAs and one small poly-A containing RNA. The remaining

90% of this transcript does not appear to contain any useful

information (except being complementary to the coding sequences
on the H strand) and is degraded.

Mitochondrial genomes show a high rate of mutation with a

rate of nucleotide substitution 10 times that of nuclear genomes.

This high mutation rate makes mtDNA a good subject for

evolutionary studies.

5.2 Methods

Twelve complete mitochondrial genome sequences were
found in GenBank. Information on base content of the eight
vertebrate and four invertebrate mitochondrial genomes is in
Figure 5.1. The invertebrate group consisted of mtDNA sequences
from two species of sea urchin (Paracentrotus lividus and Stron-
gylocentrotus purpuratus), Drosophila yakuba, and Leishmania
tarentolae. The vertebrate group consisted of mtDNA sequences
from human, chicken, frog, mouse, rat, cow, fin whale, and carp.

Using the method described in Figure 3.14, the 12 mtDNA
sequences were mapped to pseudorandom walks in four-
dimensional embedding scheme. The multifractal spectrum was
calculated using the sandbox method (Equation 2.7). Resuits in
Chapter 4 revealed that converged and reproducible Dq curves were
possible when the scaling range was adjusted to the behavior of

the individual walk. The scaling range applied to each walk was
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Figure 5.1 Base composition of the heavy strand of
eight vertebrate and four invertebrate mitochondrial
genomes.

its average span over the four axes, which was defined in Equation
4.2,

Previous researchers have used entropy to evaluate
evolutionary levels, so entropy measures were calculated for the
base, dimer, trimer, 4-mer, 5-mer, and 6-mer composition of each
genome. Entropy, S, is a measure of disorder in a system. For a
perfectly ordered system S=0 and for a totally random system

S=1. In the case of dimer frequencies, S measures the amount of
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divergence from the uniform distribution of dimers. This is

defined in Equation 2.11.

5.3 Results

The two-dimensional projections of the pseudorandom walks
of the 12 mtDNA were very revealing. Virtually all of the
vertebrate genomes show the same basic walk (Figures 5.2 and
5.3) even though they differ somewhat in base content. The high
level of sequence homology is quite obvious with this graphic
representation. The invertebrate genome walks (Figure 5.4) are
dramatically different from the vertebrates. It is not surprising
that the two sea urchin species have walks that look a lot alike.
Drosophila and Leishmania genome walks are grossly very
different even though their base contents show the same trend--
excess A+T and deficient in C+G.

Predictably, the multifractal spectra for the vertebrates are
all very close, reflecting the linear character of these walks. The
multifractal spectra of the invertebrates also clustered together.
In Figure 5.5, the multifractal spectra of the vertebrates are
distinctly different from invertebrates.

Entropy measurements for the 12 genomes were calculated
from base content up to a word size of 6. Figure 5.6 shows that
all the vertebrate except the fin whale have basically the same
entropy for sequence composition. The invertebrates, however,
show two distinct patterns. The two sea urchins have entropy

measures much closer to 1.0 than the vertebrates demonstrating
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Figure 5.4 Two-dimensional pseudorandom walks of four
invertebrate mtDNA genome sequences.
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Figure 5.5 Multifractal spectra distinguish vertebrate
mtDNA sequences from invertebrate mtDNA sequences.
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invertebrates show two distinct patterns with the fin
whale most like the sea urchins.
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more inherent disorder. Entropy for the fin whale also shows the
same level of randomness as the sea urchins. Drosophila and
Leishmania, on the other hand, have much lower entropy measures
than the vertebrates, demonstrating more inherent orderliness in
content. Despite the difference in entropy, however, the
multifractal spectra for the invertebrates appear the same.

Vertebrate mitochondria have virtually the same gene order
and organization, except chicken has a simple translocation.
Invertebrate genomes have very different gene orders from the
vertebrates as well as the others in the group. To study what
effect gene ordering had on multifractal spectra, the invertebrate
mtDNA was rearranged to match the gene order of the vertebrates.
The multifractal spectra for the rearranged invertebrate
sequences are the same as that for their natural ordering. Only 37
different genes are present in mtDNA, so this rearrangement
would move large chunks of about 500 base pairs, which does not
disrupt the underlying long-range correlations. Thus, gene order
and organization are not the explanation for the differences
between the multifractal spectra of the two groups (Figure 5.7).

Chi-square tests were performed using the base and dimer
content data for the two groups of organelles. The base and dimer
content of vertebrate genomes is significantly different from the
invertebrate group (p<.0001). The genomes of vertebrate group are
significantly different from each other (p<.0001) as are the

invertebrates (p<.0001). Statistically speaking, the unique
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Figure 5.7 The muitifractal spectra of invertebrates do not
change when mtDNA is rearranged to the same gene order as
vertebrate genomes.
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groupings revealed by multifractal spectra cannot be explained by

base or dimer content.

5.4 Discussion

The multifractal spectra of mtDNA sequences mapped into
four-dimensional random walks reveal that invertebrate genomes
are more randomly organized than vertebrate genomes. Long-range
correlations in vertebrate mtDNA produced lower multifractal
spectra for all vertebrates. The difference is not explained by
base and dimer frequency differences since the groups show
statistically significant differences among themselves. It is not
explained by entropy measures of word content since the
invertebrate group shows two divergent patterns of
nonrandomness and the fin whale shows the same level of disorder
as the sea urchins. Although the genomes of the invertebrate
group have a very different gene order and organization, the
difference is still present when the genomes are rearranged to
match the mammalian mitochondrial genome order.

The multifractal spectra of mtDNA reveal the presence of
long-range correlations that are significantly nonrandom.
Vertebrate mtDNA sequences show more long-range correlations
than invertebrate genomes. The lower multifractal spectrum for
vertebrates indicates the presence of significant differences in
information content that is independent of their base and dimer
contents. These long-range correlations are visually obvious from

the two-dimensional graphs of the random walks. The vertebrate
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genomes are significantly deficient in G with excess A and C and
near-normal T content. Even though A+T content is about 57-60%
of the genome, the random walks travel only a distance of 1,500
on the A<->T axis compared to 3,000 on the C<->G axis. Both
vertebrate and invertebrate mtDNA is extremely deficient in both
CG and GC and very rich in AA, AT, TA, and TT. This disparity in
distance traveled on the two axes for vertebrate genomes must
mean that A+T tends to occur in short runs such as AATT, ATAT,
TATA, TTAA, or longer combinations like this. The two-
dimensional projection places A and T on opposite poles of the
same axis. Thus, the walks of these sequences oscillate in short
spurts in either direction and fail to make any significant travel
along that axis. In contrast, significant travel is accomplished
along the C<->G axis with travel in the C direction. This behavior
is uniform across the sequence, showing long-range correlations
that are sustained throughout the genome. Invertebrates also
show long-range correlations, but their paths have distinct
changes in direction, indicating shorter long-range correlations
that are nonuniform. The multifractal spectra successfully

quantified these differences, which were not elucidated using

entropy.



6. DISCUSSION AND CONCLUSION

6.1 What Has This Research Revealed?

Fractal analysis of DNA sequences has revealed several
things. Human DNA sequences on average have a lower fractal
dimension than three control types--random, base-matched, and
dimer-matched sequences. The DNA sequences appear to have
long-range correlations that are more than just near-neighbor
effects. The nature of these correlations is not totally
understood. One possible type of correlation is the presence of
heterogeneous segments that differ in base and dimer content.
This heterogeneity was most marked for the dimers AA, CC, GG,
and TT with over 95% of the sequences analyzed showing
nonuniform frequency distributions within a 500 base-pair
window. This reflects the fact that base-runs of length 5-6 are
common in DNA. Over 50% of the sequences showed heterogeneity
for AG, CG, CT, GA, GC, GC, and TA. About a third showed
heterogeneity for AC, AT, CA GT, and TG.

Sequences that code for protein have a lower fractal
dimension than sequences that do not have a coding function. It is
unlikely that the correlations in coding DNA, which produce the
lower fractal dimension, can be totally explained by codon
preference. DNA sequences were mapped into a four-dimensional

space using a sliding-dimer scheme. This essentially ignores the
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fact that codons are found in triplets in a specific frame. A
neural net algorithm for finding coding regions in anonymous DNA
uses fractal dimension as one of eight inputs (Uberbacher and
Mural 1991). My research concurs with their conclusions that
coding DNA usually has a lower fractal dimension than noncoding
DNA. The fact that coding sequences seem to have longer-range
correlations than noncoding sequence producing lower fractal
dimensions is consistent with research on the entropy of
Escherichia coli sequences. Lauc (Lauc, llic, and Heffer-Lauc
1992) found that the entropy of coding sequences was lower than
noncoding sequences. Rowe's research on viral DNA, however,
yielded an opposite conclusion--that noncoding DNA was more
correlated than coding DNA (Rowe and Trainor 1983).

Peng et al. (1992) concluded that intron-containing gene
sequences showed long-range correlations whereas pure coding
sequences did not. The findings of my research clearly indicate
that both coding and noncoding DNA show some long-range
correlations, and that coding DNA shows stronger correlations
than noncoding. One explanation for this disagreement is that
their research used a one-dimensional embedding. This research
has shown that any embedding less than three is inadequate and
will yield invalid results.

Mitochondrial DNA sequences from vertebrate genomes have
a lower fractal dimension and multifractal spectrum than
invertebrate genomes. Evolution by random mutation would
produce more randomness and less correlation over time. Luo

(1988) found that the fractal dimension in DNA sequences



134
increased with increasing evolutionary level. However, his
analysis was based on a single gene sequence for each organism,
which may not be representative of the entire organism. This
research analyzed the entire genome sequence of each organism.

The quantified fractal dimension of a DNA sequence alone
does not discriminate coding from noncoding DNA sequences. It
cannot be said that any sequence with dimension below a certain
value codes for protein. The fractal dimension of a sequence must
be compared with the fractal dimension of controls to be useful.
However, if the difference between D for a sequence and its

controls is examined, coding DNA can be distinguished from

noncoding DNA.

6.2 Fractal Algorithms

Fractal analysis methods are computationally intensive.
Even the most efficient algorithms would be difficult to apply to
very long DNA sequences. The iterative nature of these algorithms
make them ideal candidates for parallel processing. Without
parallel processing, it is very important to use efficient
programming to reduce computation time. New methods are
needed to evaluate dimension estimates directly, without the need
for control sequences.

A random walk representation was selected because it is a
very simple random fractal. More complex representations may be
more informative and provide more specific information about the

sequences studied.
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6.3 Unsolved Theoretical Problems

Much theory exists about random walks, but there are many
theoretical issues about fractal dimension that have not been
solved in this research and need to be addressed. What is the
theoretical fractal dimension of a correlated random walk? Can
finite size effects be estimated theoretically?

No theoretical research has been done on the multifractal
spectrum of a correlated random walk. A true, uncorrelated walk
is a monofractal with a fractal dimension of two for any
embedding dimension. The multifractal spectrum of an object
quantifies nonhomogeneity. Because the random walk repre-
sentation used in this research is a correlated walk, it may be a
valid multifractal. Research is need to quantify the theoretical
values for the multifractal spectrum of a correlated random walk.

In this research, a multifractal spectrum was obtained for a
theoretical monofractal, the Sierpinski carpet, by using a scaling
range that went beyond the outer edge. Is the fractal dimension
estimate obtained by "running off the edge" of the fractal
meaningful? What does it really tell us? To be theoretically
valid, a Dq curve must be monotonically nonincreasing. Smaller
scaling ranges that did not run off the edge failed to produce valid
Dq curves. The Dq values for negative q were consistently less
than Dq at zero. Although not considered theoretically valid, does
a Dq curve that is not monotonically nonincreasing contain useful
information?  To obtain Dq closer to the theoretical value, a
different scaling range for each q might be needed rather than

applying the same range for all q.
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It would seem that since the mean-square displacement of a
walk is a function of its length, scaling by a function that is a
square root of the length should yield the same multifractal
spectrum for random walks of all lengths. Yet the spectrum
values are not the same and actually increased with the length of
sequence. Why does the multifractal spectrum for a random walk
increase with sequence length when scaling by a function that is a
square root of the length?

There does not seem to be agreement on how entropy relates
to information content. Does high entropy mean more random but
more information content? Does low entropy mean less random?
Is there more information in a system with low entropy or high

entropy? How does fractal dimension relate to entropy?

6.4 Future Research

Ways to apply fractal analysis to smaller data sets need to
be discovered. The smallest data set, in which a reasonable
fractal dimension estimate could be obtained using the random
walk representation, was about 4,000 base pairs. The shortest
random walk to yield a valid multifractal spectrum was 15,000
base pairs. These are serious limitations. The average exon of a
gene is about 120 base pairs. The coding portions of a gene
sequence are rarely longer than 5,000 base pairs. To apply fractal
analysis successfully to distinguish coding regions from
noncoding regions, methods of estimating the fractal dimension of

small data sets must be found. Perhaps other representations will

reduce this length limitation.
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Another issue is how to assign dimers to axes in a random
walk representation. Will other axis representations indicate
something different about these sequences or are the results too
general? Future analyses of D using controls that match for
trimer and longer n-mer frequencies may be quite revealing, as
may investigation of the effects of nonuniform distribution of
oligonucleotides within sequences. Investigation of D for DNA of
other species and organisms may reveal differences that have not
been measurable by other methods of sequence analysis.

The random walk is a heuristic representation for DNA
sequences. Is there a different representation that might be more
informative? Lastly, what type of nonrandomness does fractal
dimension actually measure? Is it just heterogeneity or does it

describe other long-range correlations?

6.5 Conclusion

This research has shown that measurements of fractal
dimension of DNA sequences may be quite useful in quantifying
long-range correlations. The differences in long-range corre-
lations between sequences may be useful in distinguishing
functional DNA sequences from nonfunctional sequences. A
significant amount of theoretical and computational work has
been completed in this research to establish the basis of fractal
analysis of DNA sequences. Ambiguous or contradictory findings
are possible when fractal analysis is applied without adherence to
basic rules and premises of the paradigm. Fractal analysis

promises to uncover information about the internal organization
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of DNA sequences, which has not been possible by traditional

methods.



APPENDIX

COMPUTER SOURCE CODE

/* Begin program sandbox.c: does sandbox counting and saves
data to file to be processed by computedq.c */

#include <stdio.h>
#include <math.h>
#include <malloc.h>

#define TRUE 1
#define FALSE 0
#define MaxDim 4

typedef struct {
int coord [MaxDim];
} *Dptr, DPstruct;

static float *distblock;

static Dptr datablock;

static int minR, maxR, NUMRANDS;
static long rwien;

#define M 714025
#define 1A 1366
#define [IC 150889

float ran2 (idum)
long *idum;
/*This is linear congruential random number generator that has an
effective cycle not less than 700,000 (Press et al., p. 212.)%/
{
static long iy, ir[98];
static int iff=0;
int j;



if (Yidum < 0 Il iff==0) {
iff=1;

if ((*idum=(IC-(*idum)) % M) < 0) *idum = -(*idum);

for (j=1; j<=97; j++) {
*idum=(IA*(*idum)+IC) % M;
ir [i1] = (*idum);
}
*idum = (IA*(*idum)+IC) % M;
iy = (*idum);
} |
j=1 + 97.0%iy/M;
iy=ir[j];
*idum=(IA*(*idum)+IC) % M;
ir[jl=(*idum);
return (float) iy / M;
}

long string_value (locusname)
char *locusname;
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/* Produce unique and reproducible seed value based on name */

{

char *charptr;
int stringlength, i;
long tempseed = O;

charptr = locusname;
stringlength = strlen (locusname);
for (i=0; i<stringlength; ++i)
tempseed = tempseed + *(charptr++);
return tempseed;

}

long load_data_points (npoints, locus)
long npoints;
char *locus;

/* Read in data points from file and load into RAM datablock™/

{
long np, bp;
int x,y, z, w, q, d;
char filename[50];
Dptr this;
FILE *pointFile;
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pointFile = fopen (locus, "r");

if (pointFile == NULL) {
printf ("%s file not found\n“,locus);
exit (1);

}

this = datablock;

np = 0;

while (!feof(pointFile)) {
fscanf (pointFile, "%d%d%d%d%Id", &x, &y, &z, &w, &bp);
this->coord[0] = x ;
this->coord[1] = y ;
this->coord[2] = z ;
this->coord[3] = w;
++np; ++this;

}

fclose (pointFile);

return np;

}

float euclid_distance (data, p1, p2)

DPstruct data[];

long p1, p2;
/* Compute euclidean distance between point 1 and point 2 */
{

int dim, Diff(MaxDim];

double sumsq=0.0;

for (dim=0; dim<MaxDim; ++dim) {
Diff[dim] = data[p1].coord[dim] - data[p2].coord[dim];
sumsq += Diff[dim] * Diff[dim];

}

return sqrt(sumsq);

}

void find_distances (rn, data, dist, np)
long r, np;
DPstruct data[];
float dist[];

/*Compute the distance between point np and all other points and
store values in distance matrix */
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long dp, i;
float d;
i=0; dp=0;

while (dp<np) {
if (dp !'=m) {
dist[i] = euclid_distance (datablock, dp, rn);
++i;
}
++dp;

}

void sort_distances (ra, n)
float ra[];
long n;
/*Sort distances in distance matrix by increasing values. This is
a heap sort (Press et al., p. 247). */
{
long |, j, ir, i;
float rra;

I=(n>> 1)+1;

ir=n;
for (3) {
if (I > 1)
rra=ra[--1];
else {
rra=rafir];
rafir]=ra[1];
if (--ir == 1) {
ra[1]=rra;
return;
}
}
i=l;
j=l << 1;

while (j <= ir) {
if (j < ir && rafjl < ra[j+1]) ++j;
if (rra < ra[j]) {



}
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rafi] = ra[j];
j += (i=j);
}
else j=ir+1;
}
rafi]=rra;

void sandbox_count (npoints, dist, minR, maxR, locus)
long npoints;

int minR, maxR;

float dist[];

char *locus;
/* Count number of points within radius range minR to maxR using

the sorted distance matrix and output data to sandbox file */

{

}

int r;

ong count, i;
float radius;
FILE *outfile;
char outname[50];

strcpy (&outname([0], locus);
outfile = fopen (outname, "a");
i=0; count = 1; r = minR;

while (r <= maxR) {

}

radius = r;
while ( (dist[i] <= radius) && (i<npoints) ) {
++count; ++i;

}
fprintf (outfile, "%d\t%Id\n", r, count);

r+=2;

fclose (outfile);

long process_data (npoints, locus, minR, maxR, NUMRANDS)
long npoints;

int NUMRANDS, minR, maxR,;

char *locus;
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/*load data points, select NUMRANDS data points and do sandbox
for each point finding distances, sorting, and then counting*/

{

long np, randnum;

int nrands, nradii;
float maxdistance, rn;
long seed;

char newlocus[50];

np = load_data_points (npoints, locus, &avgspan);
distblock = (float *) calloc (np, sizeof (float));
if ( (float *) distblock == NULL) {

printf (" Unable to allocate Distance memory\n");
exit(1);

}

seed = - (string_value(locus)); /*seed based on locus name*/

nradii = (maxR - minR + 2) * 0.50;
for (nrands=1; nrands<=NUMRANDS; ++nrands) {
rm = ran2 (&seed);
randnum = (m * np) + 0.5;
find_distances (randnum, datablock, distblock, np);
sort_distances (distblock-1, np-1);
sprintf (&newlocus[0], "%s.%d_%d.%d.sb", locus, minR,
maxR, NUMRANDS);
sandbox_count (np-1, distblock, minR, maxR,
&newlocus[0]);
}
free ( (float *) distblock);
return nradii;

sandbox (npoints, locus, fName, minR, maxR, NUMRANDS)

long npoints;
int minR, maxR, NUMRANDS;
char *locus, *fName;

char Lname[50];
int nradii;
FILE *monitor;
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datablock = (Dptr) calloc (npoints, sizeof (DPstruct));
if ( (Dptr) datablock == NULL) {
printf (" Unable to allocate memory for datablock\n");
exit (1);
}
else {
nradii = process_data (npoints, locus, minR, maxR,
NUMRANDS);
monitor = fopen (fName, "a");
fprintf (monitor, "%s.%d_%d.%d.sb\t%Id\t%d\t%d\n",
&locus[0], minR, maxR, NUMRANDS, npoints, nradii,
NUMRANDS);
fclose (monitor);
free ( (Dptr) datablock);

}

main (argc, argv)
int argc;
char *argv(];

{
char locus[50], fName[50];

if (argc 1= 6) {
printf ("Parameter error\n");
exit (1);

}

strcpy (&locus[0],argv[1]);

rwlen atol(argv(2]);

minR = atoi(argv([3]);

maxR = atoi(argv([4]);

NUMRANDS = atoi(argv[5]);

strcpy (&fName[0],"gene.batch");

sandbox (rwlen, &locus[0], &fName[0], minR, maxR, NUMRANDS);

}

/* End of program sandbox.c */
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/* Begin program computedq.c: process data file created by
sandbox.c and compute Dq curve */

#include <stdio.h>
#include <math.h>
#include <malloc.h>

#define MaxQ 14
#define MaxSamples 1500

struct LOGARRAY {
double boxsize, boxcount;
} “*logblock;

int DQ[MaxQ];

struct CIRCLE ({

int radius;

long sum, center [MaxSamples];
} *circleblock;

static float sqrarg;
#define SQR(a) (sqrarg=(a), sqrarg*sqrarg)

void fit (ndata, a, b, siga, sigb, chi2, q)
double *a, *b, *siga, *sigb, *chi2, *q;
int ndata;
/ * Linear regression (Press et al., p.527) */
{
int i;
double t, sxoss, sx=0.0, sy=0.0, st2=0.0, ss, sigdat;
struct LOGARRAY *logdata;

logdata = logblock;

*b=0.0;

for (i=0; i<ndata; ++i) {
sx += logdata->boxsize;
sy += logdata->boxcount;
++logdata;

}

ss=ndata;
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$X0SS=8X/sS;

logdata = logblock;

for (i=0; i<ndata; ++i) {
t=(logdata->boxsize)-sxoss;

st2 += t*t;
*b += t*(logdata->boxcount);
++logdata;

)

*b /= st2;

*a=(sy-sx*(*b))/ss;
*siga=sqrt((1.0+sx*sx/(ss*st2))/ss);
*sigb=sqrt(1.0/st2);
*chi2=0.0;
logdata = logblock;
for (i=0; i<ndata; ++i) {

*chi2 += SQR((logdata->boxcount)-

(*a)-(*b)*(logdata->boxsize));

++logdata;
}
*q=1.0;
sigdat = sqrt((*chi2)/(ndata-2));
*siga *= sigdat;
*sigb *= sigdat;

void load_data (fname, nradii, ncenters, circ_array, maxradii)
char *fname;
int nradii, ncenters, maxradii;
struct CIRCLE circ_array|];

/* load data from File created by sandbox.c. Data structure is an
array of circles representing from size minRadius to maxRadius
sized balls. Each of the randomly selected points has a count to be
filled into the appropriate circle element. So there are nradii
circles with ncenters sandbox values. Each circle has a radius
value and a sum value representing the total number of points
covered by all the balls that size. Program is written so that
different scaling ranges can be applied using same sandbox file.
Although nradii may have been sandboxed, you may choose to only
go to maxradii over a shorter range */
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{
FILE *datafile;
int ¢, r, radii;
long npoints;
if ( (datafile = fopen (fname, "r")) == NULL) {
printf ("datafile not found\n");
exit (1);
} _
for (c=0; c<ncenters; ++c) {
for (r=0; r<nradii; ++r) {
fscanf (datafile, "%d%d", &radii, &npoints);
if (r<maxradii) {
circ_array[r].center[c] = npoints;
if (c==0) {
circ_array[r].radius = radii;
if (r==0) circ_array[r].sum = O;
}
circ_array([r].sum += npoints;
}
}
}
fclose (datafile);
}

void do_dqs (circ_array, nradii, ncenters, totalpoints, locus)
struct CIRCLE circ_array(];
int nradii, ncenters;
long totalpoints;
char *locus;

FILE *outfile;

double a, dq, siga, sigb, chi2, gs;

struct LOGARRAY *LB;

char outname[60],

double qval, pTotal, pCover, dsum, radsize;
int r, ¢, logpoints, q, i, Ip;

double dbitotal, dblcenter, dbinc;

strcpy (&outname([0], &locus[0]);
strcat (&outname[0], “.DQ");
outfile = fopen (outname, "w"),
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logblock = (struct LOGARRAY *) calloc (nradii,
sizeof (struct LOGARRAY));

if (logblock == NULL) {
printf ("can't allocate logblock\n®);
exit (1);

}

dbltotal = totalpoints; dbinc = ncenters;

for (g=0; q<14; ++q) {

LB = logblock;

qval = (double) (DQ[q]-1);

logpoints = O;

for (r=0; r<nradii; ++r) {
dsum = 0.0;

radsize = (double) circ_array[r].radius;
for (c=0; c<ncenters; ++C) {
dbicenter = circ_array[r].center([c];
pTotal = dbicenter / dbltotal;
pTotal = pow (pTotal, qval);
pTotal /= dblinc;
dsum += pTotal,
}
LB->boxsize = log10(radsize);
LB->boxcount = log10(dsum);
++LB; ++logpoints;

}
fit (logpoints, &a, &dq, &siga, &sigb, &chi2, &qs);
dq /= qval;

fprintf (outfile, “%d\t%.3f\n*, DQ[q], dq);

/* This section dumps log/log arrays if needed for visualization
of log/log plot
LB = logblock;
for (Ip=0; Ip<logpoints; ++Ip) {
printf (*%.6it%.6fin", LB->boxsize, LB->boxcount);
++LB;

*/

}
free ( (struct LOGARRAY *) logblock);
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main (argc, argv)
int argc;
char *argv[];

FILE *batchfile, *datafile;
char bname([50];

long npoints;

int nradii, ncenters, maxradii;
char locus [50];

if (argc == 1) {
printf (“No batch file specified\n");
exit (1);

}

strcpy (&bname[0], *++argv),
if ((batchfile = fopen (bname, "r")) == NULL) {
printf ("%s NOT FOUND\n", &bname[0]);

exit (1);
}
DQ[0] = -15;
DQ[1] = -10;
DQ[2] = -5;
DQ[3] = -4;
DQ[4] = -3;
DQ[5] = -2;
DQ[6] = -1;
DQ[7] = 0;
DQJ8] = 2;
DQ[Q] = 3;
DQ[10] = 4;
DQ[11] = 5;
DQ[12] = 10;
DQ[13] = 15;

while (!feof(batchfile)) {
fscanf (batchfile, "%s%Id%d%d%d",
&locus[0], &npoints, &nradii, &ncenters, &maxradii);
circleblock = (struct CIRCLE *) calloc (maxradii,
sizeof (struct CIRCLE));
if ( (struct CIRCLE *) circleblock == NULL)
printf (“Unable to allocate memory for circles\n");
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else {
load_data (&locus[0], nradii, ncenters, circleblock,
maxradii);
do_dqgs (circleblock, maxradii, ncenters, npoints,
&locus(0]);

free ( (struct CIRCLE *) circleblock);

}
}
fclose (batchfile);

}

/* End of program computedq.c "/



REFERENCES

Almagor, Hagai. 1983. A Markov analysis of DNA sequences.
Journal of Theoretical Biology 104: 633-645.

Barber, Michael N., and B. W. Ninham. 1970. Random and restricted
walks: Theory and applications. New York: Gordon and
Breach, Science Publishers.

Barnsley, Michael. 1988. Fractals everywhere. San Diego:
Academic Press, Inc.

Benson, Donald C. 1990. Fourier methods for biosequence analysis.
Nucleic Acids Research 18: 6305-6310.

Bishop, D. Timothy, John A. Williamson, and Mark H. Skolnick.
1983. A model for restriction fragment length distributions.
American Journal of Human Genetics 35: 795-815.

Blaisdell, B. Edwin. 1983. A prevalent persistent global
nonrandomness that distinguishes coding and noncoding
eucaryotic nuclear DNA sequences. Journal of Molecular
Evolution 19: 122-133.

Blaisdell, B. Edwin. 1985. Markov chain analysis finds a
significant influence of neighboring bases on the occurrence
of a base in eucaryotic nuclear DNA sequences both protein-
coding and noncoding. Journal of Molecular Evolution 21:
278-288.

Block, A., W. von Bloh, and H. J. Schelinhuber. 1990. Efficient box-
counting determination of generalized fractal dimensions.
Physical Review A 42: 1869-1874.

Churchill, Gary A. 1989. Stochastic models for heterogeneous
DNA sequences. Bulletin of Mathematical Biology 51: 79-94.



153

Dewey, T. G., and M. M. Datta. 1989. Determination of the fractal
dimension of membrane protein aggregates using
fluorescence energy transfer. Biophysics Journal 56:. 415-
420.

Dix, Daniel B., and Robert C. Thompson. 1989. Codon choice and
gene expression: Synonymous codons differ in translational
accuracy. Proceedings of the National Academy of Science,
USA 86: 6888-6892.

Dvorak, Ivan, and Jan Klaschka. 1990. Modification of the
Grassberger-Procaccia algorithm for estimating the
correlation exponent of chaotic systems with high
embedding dimension. Physics Letters A 145: 225-231.

Elton, R. A. 1975. Doublet frequencies in sequenced nucleic acids.
Journal of Molecular Evolution 4: 323-346.

Falconer, Kenneth. 1990. Fractal geometry: Mathematical
foundations and applications. Chichester, England: John
Wiley and Sons.

Fickett, James W. 1982. Recognition of protein coding regions in
DNA sequences. Nucleic Acids Research 10: 5303-5318.

Fuchs, Camil. 1980. On the distribution of the nucleotides in
seven completely sequenced DNAs. Gene 10: 371-373.

Garden, Peter W. 1980. Markov analysis of viral DNA/RNA
sequences. Journal of Theoretical Biology 82: 679-684.

Gates, Michael A. 1986. A simple way to look at DNA. Journal of
Theoretical Biology 119: 319-328.

Gatlin, L. L. 1972. Information theory and the living system. New
York: Columbia University Press.

Glazier, James A., and Albert Libchaber. 1988. Quasi-periodicity
and dynamical systems: An experimentalist's view. [EEE
Transactions on Circuits and Systems 35: 790-807.



154

Gould, Harvey, and Jan Tobochnik. 1990. More on fractals and
chaos: Multifractals. Computers in Physics Mar/Apr. 202-

207.

Grassberger, Peter, and Iltamar Procaccia. 1983. Characterization
of strange attractors. Physical Review Letters 50: 346-

349.

Grassberger, Peter. 1990. An optimized box-assisted algorithm
for fractal dimensions. Physics Letters A 148: 63-68.

Greenside, H. S., A. Wolf, J. Swift, and T. Pignataro. 1982.
Impracticality of a box-counting algorithm for calculating
the dimensionality of strange attractors. Physical Review A
25: 3453-3456.

Hakansson, Jan, and Gunnar Russberg. 1990. Finite-size effects
on the characterization of fractals sets: f(alpha)
construction via box counting on a finite two-scaled Cantor
set. Physical Review A 41:. 1855-1861.

Halsey, Thomas C., Mogens H. Jensen, Leo P. Kadanoff, Itamar
Procaccia, and Boris I. Shraiman. 1986. Fractal measures
and their singularities: The characterization of strange
sets. Physical Review A 33: 1141-1151.

Helman, J. S., Antonio Coniglio, and Constantino Tsallis. 1984.
Fractons and the fractal structure of proteins. Physical
Review Letters 53: 1195-1197.

Hentschel, H. G. E., and Itamar Procaccia. 1983. The infinite
number of generalized dimensions of fractals and strange
attractors. Physica 8D: 435-444.

Hong, Juan. 1990. Prediction of oligonucleotide frequencies based
upon dinucleotide frequencies obtained from the nearest
neighbor analysis. Nucleic Acids Research 18: 1625-1628.

Isogai, Yoshinori, and Toshiyuki Itoh. 1984. Fractal analysis of
tertiary structure of protein molecule. Journal of the
Physical Society of Japan 53: 2162-2171.



155

Jeffrey, H. Joel. 1990. Chaos game representation of gene
structure. Nucleic Acids Research 18: 2163-2170.

Kemeny, John G., and J. Laurie Snell. 1976. Finite Markov chains.
New York: Springer-Verlag.

Kimura, T., T. Takeya, and M. Takanami. 1989. Reconstitution of
nucleosomes in vitro with a plasmid carrying the long
terminal repeat of Moloney murine leukemia virus.
Biochimica et Biophysica ACTA 1007: 318-324.

Kleffe, Jurgen, and Uwe Langbecker. 1990. Exact computation of
pattern probabilities in random sequences generated by
Markov chains. Computer Applications in the Biosciences 6:
347-353.

Konopka, A. 1984. Is the information content of DNA
evolutionarily significant?  Journal of Theoretical Biology
107: 697-704.

Kuhn, Thomas S. 1970. The structure of scientific revolutions, 2d
ed., enlarged. Chicago: University of Chicago Press.

Lauc, Gordan; Igor llic, and Marija Heffer-Lauc. 1992. Entropies
of coding and noncoding sequences of DNA and proteins.

Biophysical Chemistry 42: 7-11.

Lewis, M., and D. C. Rees. 1985. Fractal surfaces of proteins.
Science 230: 1163-1165.

Lim, H. A. 1991. A fractal representation approach to classify the
functional regions of DNA sequences. In The DOE Human
Genome Program contractor-grantee workshop, February 17-
20, 1991. Santa Fe, New Mexico: 86, photocopied.

Luo, Liaofu, and Lu Tsai. 1988. Fractal dimension of nucleic acid
sequences and the relation to evolutionary level. Chinese
Physical Letters 5. 421-423.

Mandelbrot, Benoit B. 1983. The fractal geometry of nature. New
York: W. H. Freeman and Co.



156

Mandelbrot, Benoit B. 1989. Fractal geometry: What is it, and
what does it do? Proceedings of the Royal Statistical
Society, London A 423: 3-16.

Nussinov, Ruth. 1980. Some rules in the ordering of nucleotides
in the DNA. Nucleic Acids Research 8: 4545-4562.

Nussinov, Ruth. 1981. The universal dinucleotide asymmetry
rules in DNA and the amino acid codon choice. Journal of
Molecular Evolution 17: 237-244.

Nussinov, Ruth. 1984a. Doublet frequencies in evolutionary
distinct groups. Nucleic Acids Research 12: 1749-1763.

Nussinov, Ruth. 1984b. Strong doublet preferences in nucleotide
sequences and DNA geometry. Journal of Molecular Evolution
20: 111-119.

Ohno, Susumu. 1988. Codon preference is but an illusion created
by the construction principle of coding sequences.
Proceedings of the National Academy of Science, USA 85:
4378-4382.

Peng, C. K., S. V. Buldyrev, A. L. Goldberger, S. Havlin, F. Sciortino,
M. Simons, and H. E. Stanley. 1992. Long-range correlations
in nucleotide sequences. Nature 356: 168-170.

Pennings, S., S. Muyldermans, G. Meersseman, and L. Wyns. 1989.
Formation, stability and core histone positioning of
nucleosomes reassembled on bent and other nucleosome-
derived DNA. Journal of Molecular Biology 207: 183-192.

Phillips, Gregory J., Jonathan Arnold, and Robert Ivarie. 1987.
Mono- through hexanucleotide composition of the Escherichia
coli gnome: A Markov chain analysis. Nucleic Acids
Research 15: 2611-2626.

Pool, Robert. 1990. Fractal fracas. Science 249: 363-364.



157

Press, William H., Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. 1988. Numerical recipes in C: The
art of scientific computing. Cambridge, Mass.: Cambridge

University Press.

Purugganan, M. D. 1989. The fractal nature of RNA secondary
structure. Naturwissenschaften 76: 471-473.

Ragosta, Maria, Carmelina Cosmi, Vincenzo Cuomo, and Maria
Macchiato. 1992. An application of maximum entropy
techniques to determine homogeneous sets of nucleotide
sequences. Journal of Theoretical Biology 155: 129-136.

Ramsey, James B. and Hsiao-Jane Yuan. 1989. Bias and error bars
in dimension calculations and their evaluation in some
simple models. Physics Letters A 134: 287-297.

Rowe, Glenn W., and L. E. H. Trainor. 1983. On the informational
content of viral DNA. Journal of Theoretical Biology 101:

151-170.

Rudnick, Joseph, and George Gaspari. 1987. The shapes of random
walks. Science 237: 384-389.

Satchwell, Sandra C., Horace R. Drew, and Andrew A. Travers.
1986. Sequence periodicities in chicken nucleosome core
DNA. Journal of Molecular Biology 191: 659-675.

Shannon, C. E. 1948. A mathematical theory of communication.
Bell System Technical Journal 27: 379-423.

Shrader, T. E., and D. M. Crothers. 1989. Artificial nucleosome
positioning sequences. Proceedings of the National Academy
of Science USA 86: 7418-7422.

Silverman, B. D., and R. Linsker. 1986. A measure of DNA
periodicity. Journal of Theoretical Biology 118: 295-300.

Smith, Leonard A. 1088. Intrinsic limits on dimension
calculations. Physics Letters A 133: 283-288.



158

Staden, R. 1984. Measurements of the effects that coding for a
protein has on a DNA sequence and their use for finding
genes. Nucleic Acids Research 12: 551-567.

Stapleton, H. J., J. P. Allen, C. P. Flynn, D. G. Stinson, and S. R.
Kurtz. 1980. Fractal form of proteins. Physical Review
Letters 45: 1456-1459.

Subba Rao, G., Z. Hamid, and J. Subba Rao. 1979. The information
content of DNA and evolution. Journal of Theoretical Biology
81: 803.

Subba Rao, J., C. P. Geevan, and Giva Subba Rao. 1982. The
significance of the information content of DNA in mutations
and evolution. Journal of Theoretical Biology 96: 571.

Takahashi, Manabu. 1989. A fractal model of chromosomes and
chromosomal DNA replication. Journal of Theoretical
Biology 141: 117-136.

Tavare, Simon, and Brenda Song. 1989. Codon preference and
primary sequence structure in protein-coding regions.
Bulletin of Mathematical Biology 51: 95-115.

Taylor, Charles C., and S. James Taylor. 1991. Estimating the
dimension of a fractal. Journal of the Royal Statistical
Society B 53: 353-364.

Tel, Tamas, Agnes Fulop, and Tamas Vicsek. 1989. Determination
of fractal dimensions for geometrical multifractals.
Physica A 59: 155-166.

Tsonis, Panagiotis A., and Anastasios A. Tsonis. 1989. Chaos:
Principles and implications in biology. Computer
Applications in the Biosciences 5: 27-32.

Uberbacher, Edward C., Joel M. Harp, and Gerard J. Bunick. 1988.
DNA sequence patterns in precisely positioned nucleosomes.
Journal of Biomolecular Structure and Dynamics 6: 105-120.



159

Veljkovic, V., I. Cosic, B. Dimitrijevic, and D. Lalovic. 1985. Is it
possible to analyze DNA and protein sequences by the
methods of digital signal processing. IEEE Transactions on
Biomedical Engineering BME-32: 337-341.

Viscek, T., F. Family, and P. Meakin. 1990. Multifractal geometry
of diffusion-limited aggregates. Europhysics Letters 12:
217-222.

Volinia, S., R. Gambari, F. Bernardi, and |. Barrai. 1989. The
frequency of oligonucleotides in mammalian genic regions.
Computer Applications in the Biosciences 5: 33-40.

Wang, Cun Xin, and Yun Yu Shi. 1990. Fractal study of tertiary
structure of proteins. Physical Review A 41: 7043-7048.

Weibel, Ewald R. 1991. Fractal geometry: A design principle for
living organisms. American Journal of Physiology 261:
L361-L369.

Weir, B. S. 1985. Statistical analysis of molecular genetic data.
IMA Journal of Mathematics Applied in Medicine and Biology
2: 1-39.





