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Abstract

Studying how mesenchymal celis organize to cause arteriosclero-
sis, a disease where the mesenchymal cells on the vascular wall of the
arteries or the cardiac valves turn to bone tissue and harden. could
give insight into its cellular mechanisms. Mesenchymal cells secrete
the morphogen activator bone morphogenic protein (BMP-2) and the
inhibitor matrix carboxyglutamaic acid protein (MGP) that drive the
formation of striped patterns. Previous continuum models (Garfinkel
et al. [3]) can predict this pattern formation by displaying high con-
centrations of BMP-2. This model uses the reaction-diffusion equa-
tions to adjust the concentrations of the morphogens over time by
having them fuel their own production autocatalytically. However,
the Garfinkel et al. model omits the cells and assumes cellular signals
even in the absence of cells, thus neglecting the cells’ feedback. In
order to make the model closer to how a biological system actually
works a cell based model is needed. Qur cellular Potts model substi-
tutes autocatalytic production of BMP-2 for chemotactic recruitment
of mesenchymal cells.
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1 Introduction

1.1 Arteriosclerosis

Unspecialized mesenchymal cells differentiate or morph into a variety of con-
nective tissues such as fat, bone tissue and cartilaginous tissue[l]. In adult
diseases like arteriosclerosis, these cells differentiate into many different types
of cells like osteoblasts (bone cells) and aggregate within the artery wall re-
sulting in vessel hardening[2]. Arteriosclerosis occurs in the aorta and on
artery walls where the mesenchymal cells on the inside of the vascular wall
calcify into bone tissue. The bone tissue forms focal and nodular patterns, a
process oceurring throughout the blood vessels in atherosclerotic lesions [3].

Mesenchymal cell tissue cultures provide a popular in wvitro model of ar-
teriosclerosis. When mesenchymal cells are placed in a tissue culture they
sort to form a striped pattern [3]. Fig. 1 shows the development of the cell
aggregation over 20 days. The cells develop from swirls to stripes, eventually
calcifying into the bone mineral hydroxylapatite [3]. Garfinkel et al. observe
that the cells “can be seen to orient perpendicular to the edges of the mul-
ticellular ridge” [3] and conclude that the mesenchymal cells aggregate into
striped patterns as a result of a process known as chemotactic migration.

Chemotaxis is a mechanism whereby a chemical guides cell aggregation
[5]. Cells migrate up gradients of a chemical called a chemoattractant. Such
chemotactic migration, or chemotaxis, occurs in many different types of cells,
such as in nerve cells and endothelial cells which line the blood vessel walls.
Aggregation plays a role in several biological systems, like in Dictyostelium
discoideum where chemotaxis causes all the cells to move together to form
something similar to a “slug”[8]. When a certain type of cell is in the presence
of its chemoattractant, it moves up the concentration gradient toward the
highest concentrations of the substance. During processes such as embryonic
development, one cell type will secrete a chemoattractant for a different cell
type[10]. Oftentimes, as is the case with mesenchymal cells, the cetl will
secrete its own chemoattractant, making cells clump.

Mesenchymal cells secrete bone morphogenic protein (BMP-2) and matrix
carboxyglutamaic acid protein (MGP) [3][1]. BMP-2 is a chemoattractant
3]. MGP serves as an inhibitor for BMP-2 by decreasing part of the BMP-2
signalling system and increasing its binding to the extracellular matrix, a
protein web that provides the scaffolding that keep the cells in position[7].
This binding has the effect of decreasing the cells’ ability to move around,
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Figure 1: From Garfinkel et al.[3] Vascular mesenchymal cells (VMCs) ag-
gregating in vitro over a 20 day period. (a) The initial random assortment
of VMCs (approximately day 1} (b) swirl patterns form (approximately day
4). (c) the cells form stripe-like patterns{approximately day 10}, {d) the final
labrynthine pattern (approximately day 16). [Bar= 250um (a and b); ¢ and
d are at the same magnification as bj

because they are being held stationarv in the protein web of the extracel-
lular matrix. MGP diffuses more rapidly than its activator because of its
smaller molecular mass {4]. Because of the properties of these two chemicals,
Garfinkel et al. suggest that these are the chemicals that play the major role
in the pattern formation of vascular mesenchymal cells [3].

1.2 Reaction-Diffusion Models

In 1952, Turing created a new approach to explain possible mechanisms of
idealized embryo development using reaction-diffusion equations, explaining
how periodic patterns emerge from a homogeneous field of chemicals. In his
paper [6], Turing describes how the interaction of chemical substances called
morphogens diffusing through a system of cells can account for most mor-
phogenesis, the development of an organism from an embryo. A morphogen
controls the growth patterns of tissues, which is very important in embryonic
development [6]. All that is necessary in Turing’s model is a minimum of two
morphogens, the first enhancing cell growth and the other inhibiting it. As




the chemicals diffuse throughout a ring of cells, “chemical waves” are pro-
duced. The initially homogeneous stable state of the ring of cells is disturbed
slightly by an internal or external process. Slow changes to the arrangement
of the cells form patterns because of the cells’ response to the morphogens.
Small instabilities in the configuration of cells may effect the immediate area
surrounding the cell but have no effect far away because the morphogens only
diffuse over a finite area[]. Over the ycars, this method has been modified
and used to model a variety of different chemical and biological systems [3].
Turing-like models, involving activator and inhibitors, have been studied for
a long time. An activator is a morphogen that acts over a short range. An
inhibitor acts over a longer range and diffuses faster than the activator. As
happens in the vascular mesenchymal cell reaction-diffusion model described
below, activator-inhibitor models use auto- or cross catalysis to account for
pattern formation from graded distributions of the morphogens. The chem-
ical gradients are controlled by the morphogens’ diffusion and decay within
the system of cells [11].

Garfinkel et al. use the reaction-diffusion equations to model the inter-
action of BMP-2 (U) and MGP (V') in mesenchymal cells. Their equations
are:
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where U(z,y) and V{z,y) are the effective concentrations of the activator
and inhibitor respectively at position (. y). In these equations, the diffusion
term where D = D/ Dy is the ratio of the diffusion coefficients.
Autocatalysis is the process by which the presence of one substance causes
more of the same substance to be produced in that arca. The most interesting
term in Eq. (1) is the autocatalytic term with the U2, So that the morphogen
is not produced indefinitely, Eq. (1) has a saturation component of 1/(1 +
kU?). The inhibitor reduces the concentration of the activator by reducing
BMP-2 production in areas of high MGP concentration. This relationship is
incorporated into Eq. (1) by the 1/V component of the autocatalytic term.
The production of MGP in Eq. (2) depends heavily on the concentration
of BMP-2. Both equations have a degradation term where ¢ and ¢ are the
degradation rates of the activator and inhibitor respectively. For the inhibitor



Figure 2: from Garfinkel et al.[3] Numerical solutions of Egs. (1) and (2)
corresponding to the same points in development as in Fig. 1. The black in
the pictures are high levels of U, not cells. (a) Random spotty patterns of
high concentrations of U form. (b) The arrows show that U increases in a
specific direction, grad U, which would correspond with cell orientation in a
cell culture had there been cells in the system. (¢) Stripe-like concentrations
of U develop. (d) The labrynthine pattern forms. The length scale of the
simulation is the same as those in the cell culture

there is an exogenous or external source term, S, that describes the external
addition of MGP in Garfinkel et al.’s experiments. One of the characteristics
of the pattern formation predicted by the reaction-diffusion model is that by
adding a constant amount of MGP to the system, the patterns change from
stripes to spots[3]. The reaction-diffusion equations model concentrations of
the chemicals, not of the cells themselves. Fig. 2 shows Garfinkel et al.’s
simulated concentrations of the activator, represented in black, at different
times.

In their Supporting Text, Garfinkel et al. add another equation to the
reaction-diffusion Eqs. (1) and (2) in an attempt to take into account cell
density, n [3],
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Eq. (3) only allows the system to regulate the ceils, but not for the cells to
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feedback on the system. The activator and inhibitor determine the migration
of the cells in Eq. {3}, but the cell density n does not affect the concentration
of the morphogens i.e., n does not enter any of the terms in Egs. (1) and (2).
Garfinkel et al. propose that adding cell density equations will not signifi-
cantly change the pattern formation, but in their model the concentration of
cells does not effect the concentration of the morphogens. It assumes cellular
signaling even though the model does not have cells in it. The cells therefore
do not give feedback to the morphogen concentrations. The only new thing
Eq. (3) takes into account is cell migration up activator gradients {3]. In a
real system, the cells secrete BMP-2 and MGP, so cell density is very impor-
tant. The more cells concentrated in an area, the higher the concentration of
the chemoattractant and the inhibitor will be. The autocatalytic term in the
reaction-diffusion equations tries to account for this principle but in order
to more cloesely model a real system the cells should be secreting the mor-
phogens. The goal of this thesis will be to construct such a model in order to
account for the cells seereting the morphogens, as well as responding to the
chemoattractant. We intend to replace the autocatalytic term by the more
biologically realistic cell migration.

2 Methods

2.1 Cellular Potts Model

Continuum models, like the reaction-diffusion model, can efficiently model
the extracellular matrix, fluids, and other noncellular materials like bone, but
often are unable to reproduce tissue level processes originating from the col-
lective behavior of cells[12]. Cell-centered models use biological experiments
from the scientific literature as a basis for determining which cecll behav-
lors to include and allow us to add more cell behaviors if the model does
not reproduce experimental observations[12]. Once one pattern formation
can accurately be reproduced, we can alter the parameters to predict new
pattern formations that can then be verified experimentally [12]. The cellu-
lar Potts model accomodates many cellular behaviors by modeling the cell
membrane and cell dynamics on a mesoscopic level [12]. This model is one
method that has been developed to efficiently predict cell pattern formation.
In the cellular Potts model, the cells explore different configurations in order
to find the one with the lowest energy. Most cell behavior, such as cellular




adhesions and cellular responses to a chemical, can be represented as terms
of a generalized energy called a Hamiltonian [12]. The model uses a Monte
Carlo model which uses Metropolis dynamics to determine how cells move.

In the cellular Potts model the features of cells are represented by the
sites of a discrete lattice. Each site on the lattice has a degree of fredom
o, which we will call a “spin”. The value of & denotes the presence of
either an individual cell or the background host, the medium. The “spin”
can take on one of the discrete values 0.1,2,....N where 0 denotes the host
medium and ¢ = n denotes the presence of cell number n. Individual cells
extend over multiple lattice sites and arce represented by a connected cluster
of sites with the same value of ¢. Every cell has an area and a cell type
associated with its spin ¢. The area, a(o}, is just the number of lattice
sites covered by the individual cell. The cell type. (o), determines a variety
of characteristics associated with the particular cell. For example, these
characteristics could include whether it secretes certain chemicals, adheres
to different types of cells in a specific way, responds to chemical substances
uniquely, and has a unique target area. This target area, A, (), is the cell
type 7's ideal size. The adhesion of one cell to another, J(7(o), 7(¢’)), takes
on different values depending on the type of cells, ¢ and ¢, involved. In a
system of multiple cell types, every different cell type has a specific strength
of how well the cell binds to its own type, different types, and the medium.
In our model of mesenchymal cells the only relevant adhesions are between
the mesenchymal cells and between the mesenchymal cells and the medium.
For a basic cellular Potts model, the area and the adhesion give the terms
that form the Hamiltonian, the energy of the system [9]. If (i, 7) denotes
the coordinates of a site of the two dimensional lattice of points defining the
model, then the Hamiltonian is given hy:

H = > J(r{a(i, 7)), (o (@ 3N = datigyoir 59)
(#.5)(i" Y neighbors
+ A {alo) = Arry)*. (4)

To implement the cellular Potts model, the simulation starts with a ran-
dom configuration of cells over the lattice. Then it selects a random site and
a random neighboring site tries to copy into the first site. The difference
in the Hamiltonian AH from before the neighbor site tries to copy into the
random site, and after it copies, is put into a probablility function [9] to
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decide whether the copying will occur:

- i ¢ mAHEET) i AH > 0
Pla(i,j) — o'(i.j)) = { 1 if AH <0 )

In Eq. (5), kgT is the Boltzman energy that accounts for thermal energy
of the system. As usually happens in thermal systems, there is a threshold
temperaturc above which the cells will not aggregate any more because it is
too hot, and a critical temperature below which the cell movement freezes
[9]. Once it is decided whether the site will copy or not according to the
probability of Eq. (5}, another site is chosen at random and the process
repeats.

2.2 Cellular Potts Model for Modelling Vascular Mes-
enchymal Cells

In order to adapt the reaction-diffusion model to the the cellutar Potts model,
Eqgs. (1) and {2) have to be modified to include cellular feedback. Using the
Potts model, we aim to drop the biologically non-realistic autocatalytic term
and have the cells secrete BMP-2 and MGP themselves. As cells aggregate,
the conecentration of both the activator and inhibitor should increase since
the cells are secreting them at a more or less constant rate. In the model, the
morphogens only degrade outside of the cells. Adapting the reaction-diffusion
equations to include the cellular Potts model, the equations become:

QUG Gt) oo V=g 0 ‘
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Here k is a scaling term that regulates the degree to which the inhibitor
gives feedback to the system. The reaction-diffusion equations have been
discretized to the same grid of sites as used in the cellular Potts model.
U(#,7,t) and V(i,j,t) are the chemical concentrations on the site (i,j) at
time #. The Kronecker delta in thesc equations separates the processes that
happen inside the cell from those that happen outside. For example, 6, )0
will be 1 if ¢(i, j) = 0 meaning the degradation happens outside of the cells.

Other parts of the Potts model remain basically the same as the standard
model. The general equation for the Hamiltonian in the original model still

8




holds, but needs to have an additional term to take into account the energy
lost to chemotaxis. Because the cells are moving up BMP-2 gradients, energy
will be transferred in the system. The Hamiltonian of the system becomes:

o = > (o (i, ) (@ N = datigporn)  (8)

(,7)(¢ 7" \neighbors

+ A Y (alo) — Ay ZXSU vt T = Ootigio) (9

spins o ij E ] f)

In Eq. (9), x is the strength of the chemoattractant response. The parameter
s 1s the Michaelis-Menten constant of chemotactic response that controls how
well the cell reacts to the chemoattractant[5)].

The first step in the algorithm is to run a full Monte Carlo step of selecting
random sites on the lattice, o(7, j), compute the Hamiltonian and update the
cell pattern for each random site. Then the next step is to run though every
site on the lattice and alternate between secreting or degrading the chemicals
and diffusing the morphogens twenty times to ensure the chemicals have
increased and diffused sufficiently over the entire lattice. Because of the time
it takes for the chemicals to be produced and then diffuse over the lattice,
each round of secretion, degradation, and diffusion corresponds to a certain
period of time characteristic of the chemicals involved. For any lattice site
that corresponds to a cell, the algorithm updates the chemical concentrations
according to:

. . dtvy,
U('ﬂ.j.t+dt) - U(l,},f) m (10)
V(i gt +dt) = Vi j.t) 1+ dtv (1)

where dt is a constant representing the time increase. Whenever the site is
outside a cell, the chemical concentrations update according to a different,
set of equations:

Uli,j.t+dt) = Uli, j,t) — dtvecU(i, j. t) (12)
V(i j.t+dt) = V(i, j.t) — dinfeV (i, j, ) — S (13)

In the last step of the process, both chemicals are then diffused over the
entire lattice, regardless of whether any site is inside or outside a cell. The




boundaries of the lattice arc no flux so the cells do not adhere to the edges
of the simulation space. The V? terms in Eqs. (6) and (7) are taken as the
discrete Laplacian defined by

VU ) =UG+1,5)+ U -1, )+ UG+ D+ UG, §—1) —4U (i, j) (14)

VAV = V{E+ L) +Vi—1,)+V{E j+ 1+ V(i,j—1)—4V (4, 5). (15)

When diffusion occurs, the concentration of the chemicals at every site is
then replaced by the equations:

U(ivj.t +dt) =U(i,j,t) + VU3, §,t)dtD (16)
Vi, 5, t+dt) = V(i jt) + VV{i, j t)dt (17)

Once the diffusion has been evaluted, a new timestep begins and the process
repeats.

2.3 Methods of Analysis

Omnce the simulation runs for a specified number of Monte Carlo steps, the
lattice of cells and chemical concentrations is converted to an image. The
lattice points corresponding to the medium (where o {4, ) = () become white,
while the lattice points corresponding to celis (where ¢(7, 7) # () become red.
Any place where there are two different values of (i, j)} next to each other,
a black cell boundary is produced. Finally, the chemical concentrations are
converted to contour lines of equal concentration. The activator morphogen
U(t, j) is green and the inhibitor morphogen V' (4, 7) is purple. An example of
such an image resulting from our simulation is shown in Fig. 3. The image
produced from the lattice then needs to be analyzed to quantify the nature
of the cell pattern formation.

An important goal of running these simulations is to ensure that the
labrynthine patterns formed by the simuiations are not becoming larger in-
definitely, but that instead the width of the white space approaches a char-
acteristic wavelength. We use the method of autocorrelations to determine
whether the width of the stripes is finite,

In this method. the image is converted into a matrix B(¢, j) where B(i, j) =
1 if a cell occupies the site (¢,7) and B(i,j) = 0 otherwise. The Wiener-
Khinchin Theorem is then used to quickly calculate the autocorrelation func-
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Figure 3: An example of the result of a simulation. Lattice size is 400 x 400.

tion in Fourier space. First, the discrete Fourier transform of the matrix is
found using the equation:

B(E) = > B(F)e*T. (18)

In the vector ¥ = (i,j), both ¢ and j run from 0 to L — 1, where L is the
length of the simulation lattice. B(7), then, is the value (1 or 0) of the matrix
at the site ¥ = (4, j). The autocorrelations. A, of the image are then given
by:

AR = Sle | (E ! (19)
The vector k = (k2. k), with K, an and k, ny, and the variables
ng.ny = 0,1,..., L — 1. The vector r'is recentered S0 that i,j = —% e i;—

Then we sum up all the contributions to a certain direction using angular
integration of A(7) to get the autocorrelation, C'(r), as a function of the
distance between two points independent of the orientation of the line con-
necting those points. The angular integration is:
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Figure 4: Plot of the autocorrelations. The absolute minimum represents the
thickness of the stripes and the first maximum represents the width of the
gaps. The initial number of cells was 1350. There was no source term. The
correlation was computed after 84000 MCS.

1 2T _ }
Clr) = —/ A(rcosd, rsin @) do. {20)
2m Jo
Eq. {20) is evaluated by approximating
K)
0= 5 (21)
z; = int[(r + %) cos ¢, (22)
1
y, = int[(r + 5) sin ¢, (23)

where N = 100 and i = 0,...,99. The terms z; and y, are taken to be
integers to ensure that they refer to points of A(¥). The autocorrelation,
C(r), is then approximated by:

N
Cr) ~ iz Alxy, w) (24)

i=1

An example of the autocorrelation is shown in Fig. 4. The value of r at
the absolute minimum of C(r) represents the thickness of the stripes. The
value of r at the first maximum value represents the width of the gaps. If
over time this width approaches a constant value, then the distance between
the stripes is not growing indefinitely, and the pattern formed is stable.
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Figure 5: Increasing values of the parameter & at 20000 MCS. £ = 2,4,6.8
respectively. The parameter v = .5.

3 Results

3.1 Parameters

The parameters in the Hamiltonian stayed largely fixed once a value that
corresponded to the physical parameters and which produced the striped
patterns was found. In these simulations, the dimensionless scaled value
of the temperature, T, in Eq. (5} is 10, which corresponds to the usual
temperature of the cell cultures at 37°C". We chose the dimensionless energy
of Joeli—medivm to be the same as the dimensionless temperature as a way of
scaling all the energies in the Hamiltonian. In the units of our simulation,
10 is room temperature. The cell-cell adhesion value, Jeey_cer = 20 and the
cell-medium adhesion value, Jeoi—medive = 10, were set to ensure the cells
adhered to each other twice as much as they adhered to the medium. While
this choice of values allows the cells to favor binding to each other rather
than to the medium; it still allows the cells freedom to move around. The
parameter y from Eq. (9} is the strength of chemotactic response, making
the constant specific to the cellular Potts model. Its value was determined by
studying the rate of pattern formation by cells for different values of y. If the
parameter is much larger than 5, the cells stay in one place longer because
it is hard for them to move. Similarly, if y is too small the cells move too
easily. The value of ¥ = 5 1s a good balance between these extremes.

Although it is not a parameter per se, the spatial dimension in the cel-
lular Potts model simulation differs from the length of the cell culture and
Garfinkel et al.’s simulation. While the cell culture and Garfinkel et al.’s
simulation lengths were 4 cm across, ours was only 1 mm. The number of
computations required by a larger lattice makes the simulation prohibitively
long.

13




The parameters in the equations regulating the concentrations of the
morphogens contribute more to the pattern formation. As evidenced by Fig.
3, we chose k = 6 in Eq. (6) becausc at that value the cells form stripes. The
parameter k controls the effect of the inhibitor on the production of BMP-2.

As in Garfinkel et al., D is the ratio of the diffusion coefficients. The dif-
fusivity of BMP-2 and MGP have not been directly measured in experiments,
but since these molecules are similar to other molecules whose diffusivity has
been determined, it is possible to approximate the diffusivity of these mor-
phogens [4]. To estimate the diffusion coefficient of the BMP-2, we compared
this activator to a protein, decapentaplegic, that has similar structure and
diffusion behavior and diffuses at a rate of &~ .1 x 10 %em?/sec [4]. Beeause
the diffusion of large molecules slows nonlinearly due to of the extracellular
matrix, their diffusivity can be reduced as much as 10 to 20 fold in muscle
tissue [4]. Keeping this in mind, the diffusion of BMP-2 was estimated as
0.3 x 10 %¢m?/sec. The diffusivity of MGP was kept as the same estimated
value as Garfinkel et al., 30 x 107%¢m?/sec. Using these estimated diffusion
coefficients, I = Dy, /Dy =~ 1/100.

To estimate the degradation rates of the morphogens, the same protein
that was used to estimate the diffusion rate of BMP-2, decapentaplegic, was
examined. It was found to be 5% of the production rate [4]. Therefore, con-
servatively estimating the degradation of BMP-2 to be 0.5% of the production
rate (¢ = .005) is reasonable. Garfinkel et al. found that the extracellular
matrix takes up MGP more avidly than BMP-2, therefore estimating the
degradation of MGP to be 5% of the production rate (e = .05) is a reason-
able estimate,

The values of the parameters used in our simularion arc summarized in
table 1.

3.2 Cell Aggregation

Fig. 1 shows experimentally obtained striped patterns of mesenchymal cells
as time evolves. The cellular Potts model also predicts the striped formations.
Fig. 6 shows the labrynthine patterns. The stripes do not have as many “Y-
connections” (they are not as interconnected) as the cell cultures in Fig. 1 do.
There are also more clusters of celis that are not connected to a stripe. This is
not changed by running the simulations for more Monte Carlo steps. The only
effect a longer simulation time has is that the stripes become slightly more
connected and any “holes” in the clumps of cells disappear. Adding more
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Table 1:

Parameter Estimated Cellular Reaction
Physical Value | Potts Value | Diffusion Value
b% 5
Adhesion
Jcell—cdl """ 20 —
Jeell—medium 10 —
Termperature
T 37°C 10 -
Length of
L 4 cm 1 mm 4 cm
Diffusion Coefficients
D, inem?/sec| &~ .1x107% 3 x 107 15 x 1078
D, in em?/sec | ~30x 1078 30 x 10°% 30 x 1078
D, - 1/100 1/200
Degradation Rates
BMP-2 (c) 5% 5% {c=.005) 1% (¢ = .01)
MGP(e) ~ 10% 5% (e = .05) 2% (e =.02)
Y — 1-9 —
Yo - .1-.9
Source term S 40ng/ml 003-3 6 x concentration

Figure 6: After 40000 MCs, the pattern forms stripes that do not have many
“Y-connections”. Initially, there are 1350 cells in this simulation.
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Figure 7: After 40000 MCS, the pattern is more connected and striped.
There are initially 1800 cells in this simulation instead of 1350. The source
term S=.6.

cells to the simulations initially makes the patterns become more connected,
and form more of a striped pattern as in Fig. 7.

The cellular patterns evolve over the Monte Carlo steps. just as a cell
culture develops over time. As shown in Fig. &, the patterns develop from
a random assortment of cells into swirls and finally into stripes similar to
the cell culture in Fig. 1. Looking at how the pattern develops over time
and comparing it to how patterns evolve in cell cultures, each Monte Carlo
step can be determined to correspond to about 10 min/MCS in real time.
Autocorrelations on pictures over several different Monte Carlo steps show
that the width between the stripes approaches a constant value. As shown
in Fig. 9, after about 50000 MCS the width of the stripes does not grow
anymore. However by about 20000 MCS the pattern is formed well enough
that the additional tens of thousands of Monte Carlo steps does not make a
significant difference.

Any wvariations in the parameters -+, and <, alters the pattern. These
parameters appear in Egs. (6) and (7) as means of scaling the extent of pro-
ductino and degradaton of the corresponding morphogen. Fig. 10 shows that
as the parameter ~, {which scales the production rate of MGP) increases, the
stripes become finer. According to Garfinkel et al., more MGP in the system
causes the chemoattractant to have its strongest concentration close to the
cell patterns, forming spots. In cellular Potts simulations, the concentration
gradients of MGP show that when v, = .9 and ~, = .1 the MGP gradients
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Figure 8: Increasing MCS. MCS: 0.500.1500,3000. 7000, and 10000. There
are initially 1350 cells in this simulation.
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Figure 9: Logarithm of the width of the stripes over time. Each new picture
was after 10000 MCS beginning at 10000 MCS. The source term S=.06, 1350
= initial number of cells
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are just as steep and close to the cell as the BMP-2 gradients, so the cell
patterns are heing sculpted into fine patterns.

The parameter ~, scales the production of BMP-2. Garfinkel et al. found
that in cell cultures as more BMP-2 was present in the system, the stripes
became thinner, causing a finer labrynthine pattern. In the cellular Potts
simulations of Fig. 10, the stripes thicken and almost become spot-like as ~,
increases. This result is opposite from Garfinkel et al.’s result. When v, = .9
and v, = .1, the BMP-2 gradicnts are steeper and closer to the cells that
they are when ~, = .1. This means that the BMP-2 is acting closer to cell
clumps keeping the cells from spreading out at the higher production rates.

Adding an exogenous (outside) source of MGP to the cells caused spots
to form instead of stripes in cell cultures [3]. However, adding a source term
of MGP in the cellular Potts model does not have this same effect. In Fig.
11, we see that the cells form stripes, regardless of how much MGP is added
to the system, until finally the cells dissociate into a random configuration.
The concentration gradients of MGP spread out because there is much more
of the morphogen to diffuse over the entire system while the concentration
gradients of BMP-2 are steep and stay close to the cell since it is not highly
concentrated enough to move far from its production site. This is because
the source term, S in Eq. (7) increases the concentration of the inhibitor
so much that the chemoattractant is produced at a low rate. Therefore
there is not enough of the chemoattractant to cause the cells to form large
clumps. Adding too much inhibitor causes the cells to dissociate into a
random assortment because the chemoattractant never has a concentration
high enough to have an effect on the pattern. Changing the production rates
of the inhibitor and chemoattractant while still adding an exogenous source
of MGP does make the pattern form something other than stripes as shown
in Fig. 12. In this figure, the concentration of the chemoattractant remains
close to the cells while the inhibitor spreads out. Running the simulation
for more Monte Carlo steps with the original number of cells produces fully
formed spots under the inlfuence of the v parameters as shown in Fig. 13.
So the cellular Potts model does produce spots, just not by a process that
was originally expected.
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Figure 10: Across: Increasing Concentrations of MGP (v, = .1,.5,.9).
Down:Increasing concentrations of BMP-2 {~, = .1,.5,.9). At 20000 MCS.
There are 1350 cells in this simulation.




Figure 11: After 20000 MCS. The source termS5 is 0,.3, and 3. v, = 7, = .5.
There are 1350 cells in this simulation.
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Figure 12: After 30000 MCS. § = .6, v, = .1, and v, = .9, 1350 is initial
number of cells. Changing the production rates of the inhibitor and chemoat-
tractant while still adding a source term does make the pattern form a mix
of a spot and stripes.

Figure 13: After 80000 MCS. S = .6, 7, = .1, and ~, = .9. Starting with
1350 cells and running for more MCS makes spots form.
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4 Conclusions

The cellular Potts model can reproduce spots and stripes without the au-
tocatalytic term and including cellular dynamics, making the model more
biologically realistic. However, the model needs some modifications to com-
pletely reproduce the results, For instance, the spots are not formed by the
addition of a source term, S. In Garfinkel et al.’s reaction-diffusion model,
when they added the source term, they added it over a short period of time.
For future work on this cellular Potts model, we would change how the source
term is added so that it too is only added over a few Monte Carlo steps, in-
stead of every Monte Carlo step. Then the added MGP would still effect the
pattern formation, but would not overwhelm the system.

There are very few “Y-connections” in the simulations producing stripes.
Perhaps altering some of the parameters, such as cell adhesion values, would
make the cells interconnect more. Even though adding more cells to the
simulation makes the stripes more connected, a truly labyrinthine pattern
does not appear. In reaction-diffusion models, patterns can be altered by
a saturation term [11]. As shown in Fig. 5, altering the saturation term
changes the pattern from stripes to spots. Altering & further may also help
increase the number of “Y-connections”. Such modifications to explore how
to make the stipes more labyrinthine are left for future work.

The cellular Potts model predictions are limited by the simulation size.
As the size of the lattice increases, the time it takes to complete each Monte
Carlo step increases significantly. It is also hard to run many Monte Carlo
steps because of the extremely long time it takes. However, there are some
encouraging aspects of the cellular Potts model. Once more cells were added
to the system initially, the stripes interconnected more. Also, the cellular
Potts model does show the formation of spots after several Monte Carlo
steps. Further modifications to the parameters of increase “Y-connections”,
and changing how the source term is added on the model may predict the
formation of more of the patterns.
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