
A CURSORY STUDY OF THE THERMODYNAMIC AND MECHANICAL

PROPERTIES OF MONTE-CARLO SIMULATIONS OF THE ISING MODEL

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Seng Kai Wong, B.Sc.

James A. Glazier, Director

Kathie E. Newman, Director

Graduate Program in Physics

Notre Dame, Indiana

April 2005

A CURSORY STUDY OF THE THERMODYNAMIC AND MECHANICAL

PROPERTIES OF MONTE-CARLO SIMULATIONS OF THE ISING MODEL

Abstract

by

Seng Kai Wong

The Ising model has been very successful in simulating ferromagnetic and antifer-

romagnetic materials. It is, in fact, the pedagogical explanation for the behavior of

magnetic materials. Researchers have adapted the Ising model to simulate materials

as disparate as foams, cell aggregates and metallic crystals.

In this research, I used different modifications of Metropolis algorithms to sim-

ulate phase separation and Brownian motion in the Ising model. One of the algo-

rithms (Algorithm Three in the text) is a choice popular with many researchers. My

goal is to illuminate the differences in the dynamical and equilibrium properties of

various algorithms and model parameters.

I found that the most popular choice is not always the right choice. It produces

a non-Boltzmann equilibrium and its simulated droplets diffuse much slower than

other near-Boltzmann algorithms. In fact, the non-Boltzmann algorithm does not

have a critical point, while the others do.

In my phase separation simulations, I investigated a number of thermodynam-

ical properties of the two-dimensional Ising model, including the surface energy,

surface tension, partition function, free energy and entropy as a function of model

parameters and algorithms.

Seng Kai Wong

To obtain a functional form for analyzing phase-separation, I developed a second-

nearest neighbor Solid-On-Solid (SOS) model. I found that the SOS model agrees

well with the Ising model up to about one-half the critical temperature. I also used

heuristic arguments to create a modified SOS model and compared it to simulation

results for up to fourth-nearest-neighbor interactions.

I discovered unexpected behavior when I used the model to simulate Brown-

ian motion. For all the algorithms, droplets diffuse slower than predicted at low

temperatures, which I explain by assuming that the underlying lattice is sticky.

One could devise more tests to further distinguish and delineate the limitations of

the algorithms, like simulating Stoke’s flow. When one modifies or add more terms

to the Ising Hamiltonian to simulate different phenomena, one needs to modify

the algorithm’s acceptance probabilities accordingly in order to preserve detailed

balance and Boltzmann equilibrium. I have presented a clear method to create

algorithms that obey detailed balance and produce near-Boltzmann equilibria.

CONTENTS

FIGURES . iv

TABLES . x

SYMBOLS . xii

ACKNOWLEDGMENTS . xv

CHAPTER 1: INTRODUCTION . 1
1.1 Polymers . 3
1.2 Soap films . 8
1.3 Bulk Liquid Surfaces . 12
1.4 Discrete Lattices . 13

CHAPTER 2: THE ISING MODEL AND MONTE-CARLO SIMULATIONS 17
2.1 Lattice States . 19
2.2 Markov Processes . 20
2.3 Detailed Balance . 21
2.4 Ergodicity . 22
2.5 Spectra and Degeneracy of Stochastic Matrices 25
2.6 Metropolis Algorithm . 25
2.7 Generalized Perron and Frobenius Theorems 29
2.8 Modified Metropolis Algorithms . 30

2.8.1 Algorithm One . 32
2.8.2 Algorithm Two . 34
2.8.3 Algorithm Three . 36

CHAPTER 3: SOLID-ON-SOLID MODEL 38
3.1 Step Energies . 39
3.2 Partition Function of the SOS Model 42
3.3 Special Cases of the SOS Model . 46
3.4 Dependence of Tc on the Ratio J2/J1 50
3.5 The Interface Width and the Roughness Exponent 55
3.6 Angular Dependence of Surface Tension 59

ii

CHAPTER 4: SIMULATION RESULTS FOR PHASE SEPARATION 66
4.1 Rate of Equilibration . 67
4.2 Modified SOS model . 73
4.3 Temperature Dependence of 〈ε〉eq for a Zero-Angle Interface 76
4.4 Interface Width . 77
4.5 Non-zero-angle Interfaces . 86
4.6 Dependence of kTc on the Range of Interaction 93
4.7 Discussion . 97

CHAPTER 5: SIMULATIONS OF BROWNIAN MOTION 99
5.1 The Digitized Droplet . 102
5.2 Modifying the Ising Model and the Metropolis Algorithm 103
5.3 Brownian Motion Simulation Results 108
5.4 Frequency of Collisions . 121
5.5 Energy-Area Distribution of Droplets 124
5.6 Discussion and Conclusion . 129
5.7 Lessons for Future Research . 132

APPENDIX A: Euler’s Theorem . 133

APPENDIX B: Generating the Surface Tension Polar Plot of the SOS model . 134

APPENDIX C: Using the Matlab nlinfit Function for Curve-fitting 136

APPENDIX D: Digitising a Droplet . 138

APPENDIX E: A C++ Object-Oriented Program for Brownian Motion Sim-
ulation . 140

iii

FIGURES

1.1 Plot of surface tension σ (equation 1.17) as a function of length L for
a simple model of a polymer. 7

1.2 Soap film stretched inside a rectangular wire frame. I have exagger-
ated the magnitude of dx for clarity. 8

1.3 Phase diagram for water. A is the triple point. B is the critical
point. The critical temperature of water is about 647◦K. The curve
AB traces the locus of boiling points. 10

1.4 Liquid-vapor equilibrium based on empirical equation 1.28. (a) Sur-
face tension (equation 1.28), (b) normalized surface internal energy
(equation 1.25) and (c) normalized surface specific heat (equation
1.27) as a function of temperature for three different values of µ and
σ = Tc = 1. 11

1.5 Schematic showing the subtraction of bulk fluctuations from the lat-
tice. In (a), the “white” phase and “grey” phase each occupy ap-
proximately 50% of the lattice, and a boundary line extends across
the lattice at mid-figure. Additionally, small droplets of grey phase
penetrate the white, and of white the grey. In (b), the primary white
phase has small droplets of grey phase. In (c), I have suppressed the
bulk fluctuations, leaving just an interface between the two phases. . 15

2.1 A 10× 10 square lattice. 17

2.2 Examples of (a) non-ergodic and (b) ergodic state diagrams. Circles
denote states, while arrows denote allowed transitions. 23

2.3 Metropolis acceptance probabilities at three different temperatures
(in units of Jij). The interaction range is up to fourth-nearest neigh-
bor, z = 20. 28

2.4 Bulk fluctuations at three different temperatures. The interaction
range is up to fourth-nearest neighbors. 31

2.5 Acceptance probability for Algorithm Two (equation 2.34), with z = 20. 35

2.6 A comparison between interface shapes for different algorithms. The
temperature is 6Jij. The interaction range is up to fourth-nearest
neighbors. 37

iv

3.1 (a) An interface with overhangs and isolated particles, and (b) an
interface with no overhangs or isolated particles. 38

3.2 (a) First- and second-nearest neighbors (arrows). (b) Energies from
first- (left) and second- (right) nearest-neighbor interactions. The
energy of a pixel corresponds to the number of arrows pointing away
from that pixel. I only show the neigbhbors of some surface pixels,
that is why some arrows are single-headed, while others are double-
headed. 39

3.3 Diagrams depicting the energies of steps of height (a) one pixel (ri =
1), (b) two pixels (ri = 2) and (c) three pixels (ri = 3). Left dia-
grams: energies from first-nearest-neighbor interactions. Right dia-
grams: energies from second-nearest-neighbor interactions. By defi-
nition, ri−1 = 0. Only neighbors of surface pixels nearest to the step
are shown, that is why some arrows are single-headed and some are
double-headed. 40

3.4 (a) Probability of an r-pixel-height step. (b) Probabilities of the
three smallest steps as a function of temperature, for J1 = J2 = J .
Equation 3.17 gives Ξ, the partition function. 44

3.5 Temperature dependence of thermodynamic variables for the first-
nearest neighbor SOS model. (a) Surface tension σ, (b) entropy per
unit length S/L, (c) energy per unit length U/L and (d) heat capacity
per unit length Cv/L for a horizontal interface. Division by the energy
parameter J normalizes all energies to be dimensionless by. Dashed
lines indicate the critical temperature kTc. 47

3.6 Temperature dependence of thermodynamic variables for the second-
nearest neighbor SOS model (J1 = J2 = J). (a) Surface tension σ,
(b) entropy per unit length S/L, (c) energy per unit length U/L and
(d) heat capacity per unit length Cv/L for the horizontal interface.
Division by the energy parameter J normalizes all energies to be
dimensionless. Dashed lines indicate the critical temperature kTc. . . 50

3.7 The dependence of kTc on the relative strength of first- and second-
neighbor interactions for the SOS model and various approximations.
I obtained the SOS Tc by numerically solving for σ = 0 (equation
3.18) and setting J1 = 1. The references are Fan & Wu [37], Gibberd
[43], Dalton & Wood [25], Oitmaa [93] and Nauenberg & Nienhuis [87]. 51

3.8 The phase diagram of the Ising model below Tc, for interactions up
to second-nearest neighbors in zero magnetic field. 52

3.9 zKc vs. number of neighbors z for the SOS model and various approx-
imations to the Ising model. The references are Bragg-Williams [14],
Bethe [10], Domb-Potts [28] and Hiley-Joyce [58]. The dimensionless
quantity Kc is given by Kc = J1/kTc. 55

v

3.10 Interface width
√

〈r2〉 of the Ising model and the SOS model in two

special cases: (a) J1 = J , J2 = 0, (b) J1 = J2 = J . The arrows
indicate kTc/J for each case. Compare the result for the Ising model
with (a). 58

3.11 An interface at an angle θ relative to the horizontal. 60

3.12 (a) and (c): Surface tension σ as a function of normalized temperature
kT/J at various angles for the SOS and Ising models respectively. (b)
and (d): Polar plots of surface tension at various temperatures for the
SOS and Ising models respectively. Here, J2 = 0 and all energies are
in units of J . 63

3.13 Surface tension σ of the SOS model up to second-nearest-neighbor
interactions (a) as a function of normalized temperature kT/J at
various angles, (b) as a function of angle at various temperatures. . . 64

3.14 Comparison of the anisotropy φ between (a) nearest-neighbor SOS
and Ising models, (b) nearest- and second-nearest-neighbor (J1 = J2)
SOS models as a function of temperature. 65

4.1 The average energy per unit lateral length (average step energy for
the SOS model) of a horizontal interface as a function of time (MCS).
×: Algorithm One, #: Algorithm Two. Each data point is a result
of averaging 100 simulations. Solid lines are best fits to equation
4.1. The interaction range is up to fourth-nearest neighbors. All
interactions are of equal strength, J1 = J2 = J3 = J4 = J 68

4.2 The equilibrium step energies in the SOS model (energies per unit
lateral length) as a function of algorithm and temperature. Error
bars are smaller than the data points. Solid lines are best fits to
equation 4.11. 69

4.3 (a) Variation of the time constant tr with temperature kT . (b) Varia-
tion of growth exponent β with temperature kT . ×: Algorithm One.
#: Algorithm Two. ¤: Algorithm Three. 70

4.4 1−R vs. t for Algorithm One, at kT = 3J , where R is the normalized
average step energy. The solid line is the best fit to equation 4.1.
At t = 100MCS, 1 − R 6 10−2, therefore, R is within 1% of its
equilibrium value. Regardless of temperature, fluctuation amplitudes
remain mostly in the range between 10−2 and 10−3. 72

4.5 (a) Surface tension σ, (b) entropy S per step and (c) specific-heat
capacity Cv per step. Results for J1 = J2 = J3 = J4 = J , a zero-angle
interface and simulations for kT up to 6.0J . In all cases, Algorithm
One is indistinguishable from Algorithm Two. 78

4.6 rrms (equation 4.16) vs. kT . Algorithm One is indistinguishable from
Algorithm Two. 80

vi

4.7 (a) Schematic of a typical magnetization profile across an interface.
(b) The first derivative (slope) of the magnetization profile. 82

4.8 (a) Log-log plot of w3 vs. d at the beginning and the end of simulations
of phase separation using Algorithm One at fixed kT = 3.0J . The
lateral length of the interface is 512 pixels. Each data point averages
20 independent simulations. (b) Log-log plot of w3 vs. d at t =
10, 000MCS at various temperatures. (c) Variation of the slope α in
time for fixed kT = 3.0J for different algorithms. (d) Variation of wo

with time at fixed kT = 3.0J for different algorithms. 84

4.9 (a) Average α and (b) average wo of w3 (equation 4.23) as a function of
temperature for phase-separation simulations using Algorithms One,
Two and Three. Error bars in (b) are as thin as the lines. 85

4.10 The figure illustrates how I skew the lattice to simulate interfaces at
an angle. 86

4.11 (a) A lattice with a 45◦ interface. I show only first- and third-neighbor
lists. (b) Regular (0◦) neighbor lists (arrows and shaded pixels). . . . 88

4.12 Surface tension σ for up to fourth-nearest-neighbor interactions at
kT = 0 for the Ising model with J1 = J2 = J3 = J4 = J . The dashed
circle is at σ/J = 22. 89

4.13 (a) and (b) Plots of U/L vs. kT . Solid lines are best fits. The statis-
tical error for each point is no bigger than the symbols. (c) and (d)
Surface tensions σ = F cos θ/L vs. kT for Algorithms One and Three
respectively. 90

4.14 Normalized energy per unit length for four different interaction ranges.
Error bars are smaller than the size of the symbols. Solid lines are
best fits. 94

4.15 Comparison of zKc vs. z for Algorithms One and Three (table 4.10)
and the Ising model as predicted by Domb and Potts (equation 3.28). 95

5.1 Log-log plot of the solution of the Langevin equation 5.3. In this plot,
I have set Ω/m = 1 and 2kT/Ω = 1. 101

5.2 A digitized droplet of radius 8 pixels. Pixels within the droplet are
gray (spin 1). A medium (white pixels) having spin 0 surrounds the
droplet. 102

5.3 Properties of digitized droplets. (a) Area vs. radius. Solid line is πa2.
(b) Energy vs. radius. Solid lines are best fits. 104

vii

5.4 (a) The mean-squared displacement vs. time for droplets of radius 3
pixels (AT = 32 pixels) using Algorithm Two-A. The unit of mean-
squared displacement is pixels squared. The slope is proportional to
the diffusion constant D. (b) log-log plot of (a). The intercept is
proportional to D. The slope is close to 1, which we expect because
the mean-squared displacement is linear in t. 108

5.5 The mean-squared displacement vs. time for droplets of different radii
for kT = 6.0J using Algorithm Two-A. The unit of radius is pixels.
The smaller the droplet, the higher the rate of diffusion, as equation
5.6 predicts. 108

5.6 Mean-squared displacement vs. rescaled time (kT/a)t for Algorithms
Two-A, Two-B and Three. Droplet radii included in the plots are
3, 4, 5, 6, 7, 8, 12 and 16 pixels. For each droplet size, I include
temperatures 2.0J, 2.5J, 3.0J, 3.5J, 4.0J, 4.5J, 5.0J, 5.5J and
6.0J . The straight lines are results from linear regressions. On the
right are the corresponding log-log plots for each algorithm. 110

5.7 Results of 〈r2〉 (pixels2) vs. rescaled time (kT/a)t for Algorithm Three.
Left column: superposition of plots for all temperatures for three
different droplet sizes (a = 3, 8, 16 pixels). Right column: super-
position of plots for all radii at three different temperatures (kT =
0.5J, 1.0J, 2.0J). I omit error bars for clarity. 112

5.8 (a) An imaginary potential that exists on a continuum extension of a
regular lattice. The black dot representing the center of mass is ini-
tially in one of the potential’s minima. The black arrow indicates the
magnitude of the temperature. (b) Moving a droplet entails moving
its surface layer. 113

5.9 The diffusion constantDFc=0 as a function of kT/Ea for three different
potentials. 121

5.10 (a) Number of spin flips per Monte-Carlo step, λ, vs. temperature for
various droplet radii for the Ising model using Algorithm Two-A. (b)
Normalized number of spin flips per Monte-Carlo step, λ/a, vs. kT .
Solid lines are best fits to equation 5.54. Plots for Algorithms Two-B
and Three are similar. 123

5.11 Energy-area distribution of droplet simulations for the Ising model
and with Algorithm Two-A. (a) Left column: a = 3 pixels. (b) Right
column: a = 16 pixels. Probability is in descending order from red
to blue. 125

5.12 Energy-area distribution of droplet simulations for the Ising model
and with Algorithm Two-B. (a) Left column: a = 3 pixels. (b) Right
column: a = 16 pixels. Probability is in descending order from red
to blue. 126

viii

5.13 Energy-area distribution of droplet simulations for the Ising model
and with Algorithm Three. (a) Left column: a = 3 pixels. (b) Right
column: a = 16 pixels. Probability is in descending order from red
to blue. 127

5.14 Average droplet energy vs. average droplet area at different temper-
atures. Solid lines are best fits to equation 5.55. Simulations used
Algorithm Two-A. Results from Algorithms Two-B and Three are
similar. 128

5.15 (a) Total droplet energy E = EJ + EA vs. area A. The target area
is 32 pixel2. The minimum of E occurs at A < AT . (b) The ratio of
average area to target area as a function of the target area. The solid
line is the locus of minima of E for different target areas AT 129

ix

TABLES

3.1 STEP ENERGIES FOR DIFFERENT STEP SIZES FOR UP TO
SECOND-NEAREST-NEIGHBOR INTERACTIONS. 41

3.2 CRITICAL TEMPERATURES IN THE SOSMODEL. NN1: NEAR-
EST; NN2: UP TO SECOND-NEAREST-NEIGHBOR INTERAC-
TIONS. 65

4.1 THE CHARACTERISTIC TIME CONSTANTS, tr, AND GROWTH
EXPONENTS, β, OF THE EQUILIBRIUM STEP ENERGY FOR
ALGORITHMS ONE, TWO AND THREE AS A FUNCTION OF
TEMPERATURE FOR FOURTH-NEAREST-NEIGHBOR INTER-
ACTIONS (J1 = J2 = J3 = J4 = J). 70

4.2 AVERAGE GROWTH EXPONENT β FOR 2J 6 kT 6 6J 71

4.3 NORMALIZED AVERAGE STEP ENERGY, R AS A FUNCTION
OF TIME FOR FOUR DIFFERENT VALUES OF β. 72

4.4 RESULTS OF FITTING AVERAGE STEP ENERGIES TO EQUA-
TION 4.11 FOR A ZERO-ANGLE INTERFACE WITH J1 = J2 =
J3 = J4 = J . THE PARAMETERS δ AND A ARE DIMENSION-
LESS. 77

4.5 CRITICAL TEMPERATURES IN THE SOSMODEL FOR AHOR-
IZONTAL INTERFACE FOR DIFFERENT ALGORITHMS USING
AN EQUIVALENT NEIGHBOR MODEL (J1 = J2 = J3 = J4 = J). . 78

4.6 THE AVERAGE VALUE OF THE ROUGHNESS EXPONENT
α OF THE INTERFACE FOR ALGORITHMS ONE, TWO AND
THREE. THE RANGES OF TEMPERATURES OVER WHICH I
AVERAGE α ARE: FOR w1, FROM 1.5J TO 6.0J ; FOR w2, FROM
2.0J TO 6.0J ; FOR w3, FROM 1.0J TO 6.0J 85

4.7 RESULTS OF FITTING SIMULATED VALUES OF ENERGY
PER UNIT LENGTH U/L TO EQUATION 4.11 OF THE MOD-
IFIED SOS MODEL FOR INTERFACES AT VARIOUS ANGLES
h = tan θ. 91

4.8 COORDINATION NUMBERS AND ENERGIES OF STEPS OF
HEIGHT ZERO AND ONE AS A FUNCTION OF THE INTER-
ACTION RANGE FOR EQUAL JS ON A SQUARE LATTICE. . . 93

x

4.9 RESULTS OF FITTING EQUATION 4.11 TO SIMULATION RE-
SULTS IN FIGURE 4.14. THE TOP FOUR ROWS ARE RESULTS
FOR ALGORITHMONE, THE BOTTOM FOUR ROWS ARE FOR
ALGORITHM THREE. 94

4.10 CRITICAL TEMPERATURES OF VARIOUS INTERACTION RANGES
FOR THE SOS MODEL WITH EQUAL JS. TOP FOUR ROWS
ARE FOR ALGORITHM ONE, BOTTOM FOUR FOR ALGO-
RITHM THREE. 95

5.1 AREAS (NUMBER OF PIXELS) OF DIGITIZED DROPLETS
AS A FUNCTION OF RADIUS. NN4 MEANS UP TO FOURTH-
NEAREST-NEIGHBOR INTERACTIONS. ALL INTERACTIONS
ARE OF EQUAL STRENGTH. 103

5.2 FITS OF THE ENERGYOF ADIGITIZED CIRCULAR DROPLET
TO EQUATION 5.9. p/2π IS THE ENERGY PER UNIT PERIME-
TER LENGTH. THE TOTAL ENERGY OF THE LATTICE IS
TWICE THE ENERGY OF THE DROPLET. THE ENERGY PER
UNIT LENGTH OF A CIRCULAR DROPLET IS CONSISTENTLY
HIGHER THAN THAT OF A FLAT INTERFACE (SEE TABLE 4.8).104

5.3 AVERAGE SLOPE OF 〈r2〉 VS. (kT · t)/a. 109

5.4 RESULTS OF FITTING NUMBER OF SPIN FLIPS PERMONTE-
CARLO STEP TO EQUATION 5.54. 123

5.5 RESULTS OF FITTING AVERAGE DROPLET ENERGY AS A
FUNCTION OF AVERAGE DROPLET AREA USING EQUATION
5.55. 128

xi

SYMBOLS

In order of appearance:

U internal energy

Q heat flow

W work done, interface width

N number of moleclues

µ critical exponent, chemical potential, index of lattice states

T temperature

S entropy

P pressure

V volume

L length, lattice dimension

σ surface/line tension, spin of lattice point

F Helmholtz free energy

k Boltzmann’s constant

Z partition function

f force

A area

Tc critical temperature

z coordination number, the number of neighbors within the interaction range

H energy of a lattice, Hamiltonian of spin-spin interactions

Jij coupling constant between spins i and j

xii

Z integers

µ, ν states of a lattice

M number of unique lattice states

ωµ(t) probability of a lattice being in state µ at time t

pµ probability of a lattice being in state µ at equilibrium

P (ν → µ) transition probability per unit time

A(ν → µ) acceptance probability

T transition matrix

hi height of interface from baseline at position i

ri step size, defined as the difference in height between adjacent positions

εr energy of a step of size r

J1 coupling constant between first-nearest neighbors

J2 coupling constant between second-nearest neighbors

nr number of steps of height r pixels

E total energy of an interface

CL
{nr}

number of permutations possible in arranging L steps

ζr exponential of εr divided by the temperature

Ξ the partition function of a unit horizontal length of interface in the SOS model

γ1 exponential of J1 divided by the temperature

γ2 exponential of J2 divided by the temperature

Pr probability of occurrence of a step of height r pixels

K ratio of Jij to temperature

α roughness exponent

Tr roughening temperature

Hm external magnetic field

τ torque field

xiii

h slope of an interface with respect to the baseline

G Gibbs free energy

φ lattice anisotropy

tr equilibration time constant

β growth exponent

εa fitting parameter for step energies

εb fitting parameter for step energies

εc fitting parameter for step energies

δ fitting parameter for degeneracies in step energies

A fitting parameter for virtual steps

Df fractal dimension

D diffusion coefficient

Ω friction coefficient

η dynamic viscosity

JA area constraint

J probability current

µm mobility

λ frequency of collisions

tmf mean free time

xmf mean free path

xiv

ACKNOWLEDGMENTS

I am grateful to Professor James A. Glazier who has extended me an extraordinary

amount of leeway and patience. His unstinting faith in me and encouragement

gave me the confidence to finish this research. His uncompromising criticism and

guidance have helped elevate the standard, define and refine the course of this

research. However, I must claim that any mistakes in this thesis are mine.

I am also grateful to Professor Kathie Newman whose countless gentle prods

have time and again directed me towards a fruitful path and illuminated previously

dark avenues. The significance of her suggestions, I have often realized too late. She

poured her heart out for me while I rediscover Murphy’s law at every corner.

To my parents who gave me unconditional support.

Two roads diverged in a wood, and I-

I took the one less traveled by,

And that has made all the difference.

-Robert Frost

Do not go where the path may lead

Go instead where there is no path and leave a trail.

-Ralph Waldo Emerson

xv

CHAPTER 1

INTRODUCTION

What do polymers [99, 113], liquid surfaces [20, 94], the growth of crystal surfaces

[56, 71], the Ising model at low temperatures [1, 42, 115], foams [34, 39, 46, 61] and

cell membranes [30, 88] have in common? All of them involve surface/line phenom-

ena where a line or a surface separates two or more phases. Although a polymer

is not technically a phase-separating surface, we can describe its response under

external forces and heat in much the same way we describe the surface of a liquid.

All these phenomena are thermodynamically equivalent so the same formalism can

therefore describe them. Statistical mechanics often groups these topics under the

heading of cooperative phenomena.

Phase separation requires two competing forces. One tends to restore a given

configuration, the other tends to disrupt it. The restoring force usually causes a sur-

face to assume shapes that minimize the surface’s energy or a polymer to minimize

its length. The disrupting forces usually have the form of thermal energies or pres-

sures, tend to reduce the cooperative interactions between molecules or monomers

and cause the surface or polymer to assume higher-energy configurations. Although

the detailed mechanisms at work may differ in each case, competition of forces and

energy minimization are quite universal and produce surprisingly similar patterns

in totally unrelated situations. Nature abounds with such examples [6, 57, 112].

Lenz first proposed the Ising model as a model for ferromagnetism [15, 62, 73].

1

His student Ising subsequently solved its phase transition exactly. Since the Ising

model’s invention, a rich variety of research fields have applied it in ways well beyond

its original intended purpose. Even today, hundreds of papers appear annually on

the application of the Ising model to various phenomena, including neural-network

function, protein folding, flocking birds, beating heart cells, phase separation in

binary alloys, biological membranes and social behaviors in human society [65].

Because of its derivation, all phenomena the Ising model or its derivatives (e.g. the

Potts model [101, 102]) can describe relate thermodynamically to the properties of

liquid surfaces.

This dissertation does not expound the similarities among the various phenomena

I described above, nor survey how seemingly unrelated processes can generate similar

patterns, but rather attempts to elucidate the behavior of the Ising model and

other models based on the Ising model. Since the Ising model can simulate so

many phenomena, I feel that systematic investigation and characterization of models

and algorithms and determination of model behaviors and limitations in various

circumstances are important. Blindly applying a model is at best wasteful, at worst

misleading.

My review of studies of surface phenomena had led me to propose two methods

to investigate the behavior of models: static and dynamic. I include surface rough-

ness, surface free energy, surface tension, surface entropy, critical temperature and

specific heat among static phenomena. I include the equilibration rate, diffusion

and viscosity among dynamic phenomena.

I developed two simulations to investigate the static and dynamic properties of

my models:

1. Simulating interfaces between two phases at various angles.

2. Simulating the Brownian motion of droplets of various sizes in a medium.

2

In the flat-interface simulations, I investigate the surface tension (a static prop-

erty) as well as the rate at which the interface equilibrates (a dynamic property). In

the Brownian motion simulations, I investigate the diffusion of droplets (dynamic)

and the equilibrium shape of droplets (static). 1

The remainder of this introduction briefly describes the thermodynamics of poly-

mers, soap films and liquid and crystalline surfaces and presents a discretized model

of surfaces which will later guide my modeling. Finally, I present the Ising model

and the algorithms that I use to simulate phase-separation and my rationale for

using them.

1.1 Polymers

A polymer consists of a chain of molecules called monomers. Left to its own devices,

a polymer tends to curl up on itself and form a clump to minimize its free energy.

A tensile force can stretch a polymer to several times its original length. Examples

of polymers include natural rubbers and proteins.

The basis of all surface/line phenomena is the first law of thermodynamics:

dU = d̄Q+d̄W + µdN, (1.1)

where dU is the change in internal energy of the polymer, d̄Q is the differential heat

flow into the polymer, d̄W is the differential work done on the polymer, µ is the

chemical potential and dN is the change in the number of molecules. The notation

d̄X means that changes in X depend on the details/path of the process, and the

differential is inexact. Without a bar, changes only depend on the two end points,

and the differential is exact. For a reversible process, we have from the second law

1All the simulations in this dissertation used two-dimensional lattices, therefore, a line instead
of a surface separates pairs of phases. However, I will use the term “surface tension” since it is
unambiguous.

3

of thermodynamics:

dS =
d̄Q

T
, (1.2)

where T is the temperature and dS is the change in entropy of the polymer. The

integrating factor 1/T converts the inexact differential d̄Q into an exact differential.

Combining both laws (equations 1.1, 1.2), we find:

dU = TdS +d̄W + µdN. (1.3)

The work done on the polymer consists of two parts:

d̄W = −PdV + σdL, (1.4)

where the first term is the familiar pressure-volume term for an ideal gas, σ is the

line tension of the polymer and L is the length of the polymer. Combining equations

1.3 and 1.4, and assuming that dV and dN are negligible as we stretch the polymer

isothermally, we obtain:

dU = TdS + σdL. (1.5)

In general, σ is a function of T . By rearranging the terms in equation 1.5, we obtain:

σ =

(

∂U

∂L

)

T

− T

(

∂S

∂L

)

T

. (1.6)

In equation 1.6, σ consists of two parts: an internal-energy contribution and an

entropic contribution. The entropic contribution to the line tension in a polymer

relates to the number of ways a polymer can fold upon itself. A fully stretched

polymer has only one configuration, as a consequence, its entropy is zero. On the

other hand, folded polymers can fold in many ways that result in a polymer of

the same effective length; as a result, its entropy is non-zero for most lengths. In

contrast, the surface tension of a hard solid comes mostly from its internal energy.

We can illustrate the difference by observing that the atoms in a hard solid have

4

fixed positions; they are not free to move around like the molecules in a polymer.

The entropic contribution to the surface tension in hard solids is therefore minimal.

The surface tension in a hard solid comes mainly from molecular forces instead of

molecular movements.

Equation 1.5 gives the internal energy U as a function of the entropy S and the

length L:

U = U(S, L). (1.7)

Since all of my simulations fix the temperature and length, working with a natural

energy of state of the T -L canonical ensemble is more convenient. The familiar

Helmholtz free energy is such a quantity:

F = U − TS,

= −kT lnZ , (1.8)

where k is Boltzmann’s constant and Z is the partition function of the T -L ensemble.

Differentiating both sides of equation 1.8 and using equation 1.5, I obtain:

dF = dU − TdS − SdT

= σdL− SdT. (1.9)

As expected, F is a function of T and L. The derivatives of F with respect to T

and L yield:

(

∂F

∂L

)

T

= σ, (1.10)

(

∂F

∂T

)

L

= −S. (1.11)

Equation 1.10 shows that the line tension of the polymer is just its free energy per

unit length at constant temperature. Given the definition of F (equation 1.8), equa-

tion 1.10 is consistent with equation 1.6. Because F has to be an exact differential,

5

we also have the following relation:
(

∂σ

∂L

)

T

= −
(

∂S

∂T

)

L

. (1.12)

The above thermodynamic arguments are model independent. In order to pro-

ceed further, I must make some assumptions about the states of molecules in the

polymer chain. Meyer [79] proposed the first kinetic theory of elasticity. The

many current models of molecular chains vary in sophistication; see references

[38, 49, 59, 67, 80, 99].

The simplest approach models a polymer as a chain of N identical monomers.

The length of each monomer is l. Each monomer can either point to the right or

left. If N+ monomers point to the right and N− monomers point to the left, the

total length of the polymer is:

L = (N+ −N−)l . (1.13)

Even though the monomers are identical, we can distinguish them by their fixed

positions in the chain. We can arrange the N = N+ +N− monomers in:

Ω =
N !

N+!N−!
(1.14)

ways. The entropy of the chain is:

S = −k lnΩ. (1.15)

Taking the thermodynamic limit(N →∞) and using Stirling’s approximation:

S = −k(N lnN −N+ lnN+ −N− lnN−). (1.16)

Since the joints can turn freely, the internal energy is independent of L. The tension

arises entirely from the entropic term. Substituting equation 1.16 into equation 1.6,

the tension of the chain is:

σ =
kT

2l
ln

1 + L/N l

1− L/N l
. (1.17)

6

The tension of the chain increases with temperature, in contrast to the behavior of

a steel spring. This linearity in temperature resembles the pressure’s linear depen-

dence on temperature in an ideal gas. In both cases, the proportionality depends

less on internal energies than on the number of available configurations. Figure

1.1 plots the behavior of σ with respect to the extension L. For small extensions

(L¿ N l), σ is linear in L, which agrees with Hooke’s law.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

L/Nl

2σ
 l/

kT

Figure 1.1. Plot of surface tension σ (equation 1.17) as a function of length L for a
simple model of a polymer.

Many polymer models extend the one I have described. Molecules can point in

all directions instead of just 0◦ and 180◦. The model may be three-dimensional.

The direction a molecule points may have an associated energy. I will not discuss

these models here, since the references I have mentioned cover them. The purpose

of this brief discussion is to compare the typical behavior of polymer tension to the

surface tension of liquids.

7

1.2 Soap films

I next consider the surface tension of a soap film. Consider a soap film stretched

inside a rectangular wire frame (figure 1.2), of which one side can move (AB).

�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
����������� A

B

dx

dL
f

Figure 1.2. Soap film stretched inside a rectangular wire frame. I have exaggerated
the magnitude of dx for clarity.

The surface tension of the soap film is normal to the line AB and points left.

Without the external force f pulling AB to the right, the soap film would collapse

to zero area. At equilibrium, the two competing forces are equal:

f = σL . (1.18)

Consider an infinitesimal extension of the soap film as we pull AB to the right.

Assume that the force needed to pull the soap film an infinitesimal distance is

constant. The work done on the soap film is just:

d̄W = fdx = σLdx = σdA. (1.19)

As the soap film stretches, the internal energy spreads over a larger surface area, so

the soap film cools. If the stretching is isothermal, the soap film must absorb heat

energy in order to maintain its temperature. Therefore, stretching in general also

involves heat flow. From the first law of thermodynamics:

dU = σdA+ TdS. (1.20)

8

Dividing both sides of equation 1.20 by dA, we again find that the surface tension

results from the internal energy and entropy (see equation 1.6). Introducing the

Helmholtz free energy (equation 1.8), we obtain:

dF = σdA− SdT. (1.21)

Equation 1.21 is analogous to equation 1.9, except that F is the free energy of the

T -A ensemble. Differentiating F with respect to its independent variables, A and T ,

we obtain the same set of equations as equations 1.10 to 1.12, but with A replacing

L:

(

∂F

∂A

)

T

= σ, (1.22)

(

∂F

∂T

)

A

= −S, (1.23)

(

∂σ

∂T

)

A

= −
(

∂S

∂A

)

T

. (1.24)

Thus the surface tension is simply the Helmholtz free energy per unit area at con-

stant temperature. If we substitute equation 1.24 into equation 1.20, we relate U

to σ:
(

∂U

∂A

)

T

= σ − T

(

∂σ

∂T

)

A

= −T 2 ∂
∂T

(

σ

T

)

, (1.25)

consistent with the familiar thermodynamic relations:

U = kT 2
∂

∂T
lnZ = −T 2 ∂

∂T

(

F

T

)

. (1.26)

We can derive the specific heat capacity Cv of the soap film from U :

Cv =

(

∂U

∂T

)

V

=

(

∂U

∂T

)

A

,

= − ∂

∂T

[

T 2
∂

∂T

(

F

T

)

]

A

. (1.27)

9

Empirically, the surface tension of a liquid in thermodynamic equilibrium with

its vapor has the form:2

σ = σo

(

1− T

Tc

)µ

. (1.28)

At the critical temperature Tc, the surface tension is zero and liquid and vapor phases

are indistinguishable. In other words, the meniscus that separates liquid from vapor

no longer exists. Temperatures above Tc have only one phase: the vapor/gas phase.

The value of µ is roughly 1.28±0.06 and is believed to be a universal constant [119].

����

������
P

T

Liquid(water)

Solid(Ice)

Gas(steam)A

B

Figure 1.3. Phase diagram for water. A is the triple point. B is the critical point.
The critical temperature of water is about 647◦K. The curve AB traces the locus of
boiling points.

The boiling point depends on the pressure. Even at boiling, the liquid phase

and vapor phase remain well separated. The boiling point traces a curve on the

P -T plot, which ends at the critical point. Figure 1.3 sketches the phase diagram

of water [72].

Figure 1.4 shows the surface tension, σ (equation 1.28), the normalized surface

internal energy, U/A (equation 1.25) and the normalized surface specific heat, Cv/A

2Following the convention in the literature I have cited, papers by Mon et al. ([81]-[84]) and
Hasenbusch et al. ([51]-[55]), I denote the critical exponent µ, confusingly, the same as the symbol
for the chemical potential.

10

(equation 1.27) versus temperature for three different values of µ and σ = Tc = 1.

In deriving U/A and Cv/A, I have assumed F = σA.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

µ = 0.5

µ = 1.0

µ = 1.5

T

σ

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

µ = 0.5

µ = 1.0

µ = 1.5

T

U
/A

(b)

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

µ = 0.5

µ = 1.0

µ = 1.5

T

 C
v /A

(c)

Figure 1.4. Liquid-vapor equilibrium based on empirical equation 1.28. (a) Surface
tension (equation 1.28), (b) normalized surface internal energy (equation 1.25) and
(c) normalized surface specific heat (equation 1.27) as a function of temperature for
three different values of µ and σ = Tc = 1.

Typically, the surface tension of liquids decreases with increasing temperature,

as figure 1.4(a) shows. σ = 0 for T > Tc. We call such behavior normal thermocap-

illarity. In contrast, the line tension of polymer increases with temperature (figure

1.1).

The first derivative of F (or σ) with respect to T , U (figure 1.4(b)), is continuous

11

at Tc for µ > 1, but discontinuous for µ 6 1. In both cases, the second derivative

of F with respect to T , Cv (figure 1.4(c)), diverges at Tc. Therefore, for µ > 1,

the critical temperature associates with a second-order phase transition, while for

µ 6 1, the critical temperature associates with a first-order phase transition with a

latent heat [108], similar to what happens when ice melts or water boils.

1.3 Bulk Liquid Surfaces

As a third example, I consider the surface tension between two immiscible liquids

in thermodynamic equilibrium. When we consider bulk liquids, we need to sepa-

rate bulk from surface properties. For each liquid, we have from the first law of

thermodynamics,

dUa = PdVa + TdSa + µdNa,

dUb = PdVb + TdSb + µdNb, (1.29)

where P is the pressure and µ the chemical potential of each liquid. At equilibrium,

the two liquids have the same P , T , and µ. For the liquids including the surface,

the general equation for dU is:

dU = PdV + TdS + µdN + σdA. (1.30)

We define the surface component of any variable to be:

Xs = X −Xa −Xb. (1.31)

Since V = Va + Vb, the surface internal energy is:

dUs = dU − dUa − dUb

= TdSs + µdNs + σdA. (1.32)

12

Using a suitably defined interface (the Gibbs surface3) eliminates the dNs term:

dUs = TdSs + σdA. (1.33)

Thus, the surface and bulk properties separate. Again, as in equations 1.6 and

1.22, the surface tension arises from the surface internal energy and the surface

entropy. We may then proceed as we did in the previous two examples. However,

we may employ an important property of U and its dependent variables: V, S,A and

N . The variables in this set including U are all extensive variables while P, T, σ, µ

are all intensive, i.e. if we double V, S,A or N , we also double U :

U(λV, λS, λA, λN) = λU(V, S,A,N). (1.34)

Applying Euler’s theorem (see Appendix A) to Us, we obtain:

Us = TSs + σA. (1.35)

As usual, we define the surface Helmholtz free energy as:

Fs = Us − TSs = σA. (1.36)

Therefore, the surface tension between two immiscible liquids equals the surface

Helmholtz free energy per unit area. My previous two examples were general, mak-

ing no assumptions about the internal energy. Similarly, the extensivity of U applies

to all the equations I derived previously.

1.4 Discrete Lattices

In the preceding sections, I discussed the general thermodynamics of surfaces and

derived some general relations between the surface tension, Helmholtz free energy,

3Generally, the interface between two liquids is not sharp. The density of one liquid gradually
decreases while the other gradually increases at the interface. Typically, the density profiles of
both liquids are symmetrical and the Gibbs surface lies at the point where the density of each
liquid is half its respective bulk value [20, 23].

13

internal energy, entropy and specific heat. I also compared the behaviors of the

surface tensions of polymers and liquids. As I mentioned at the beginning of this

chapter, the Ising model can simulate many situations. Since the Ising model is

discrete in nature, I will next present a discrete version of surface tension in the

Solid-On-Solid model, or SOS for short [19]. The results of the SOS model will

serve as a basis for analysis of simulation results in chapter 4.

Onsager’s seminal paper [95] was the first and only successful analytic derivation

of the surface tension of the Ising model. Unfortunately, the result applied to a two-

dimensional lattice with nearest-neighbor interactions. All subsequent attempts to

derive the surface tension for higher-order interactions and/or higher dimensions

have relied on approximations (e.g. series expansion) or computational methods

(e.g. Monte-Carlo simulation).

Previous computational determinations of the surface tension [1, 42, 51, 54, 55,

82, 83] calculated the partition functions for two-phase states and one-phase states,

then took the difference between the two (figure 1.5). This method works well for

temperatures well below the critical temperature, Tc. For temperatures near Tc,

other methods extract the interfacial free energy from the probability distribution

of spontaneous magnetization in both the two-phase and one-phase states [9, 11].

We can force a two-phase state by fixing the top and bottom rows of the lattice

to have opposite spins, while we achieve a one-phase state by fixing the top and

bottom rows to have the same spin. The left and right sides of the lattice connect

to impose a periodic boundary condition. The lattice therefore has a cylindrical

shape.

Subtracting bulk fluctuations4 from the lattice amounts to taking the ratio of

the two-phase and one-phase partition functions, where the surface free energy is

4Bulk fluctuations are homogeneous spin domains which a region of differing spin surrounds
and where the boundary between the two opposite spins does not span the entire lattice.

14

(a) two-phases (b) one-phase (c) two-phases - bulk fluctuations

Figure 1.5. Schematic showing the subtraction of bulk fluctuations from the lattice.
In (a), the “white” phase and “grey” phase each occupy approximately 50% of the
lattice, and a boundary line extends across the lattice at mid-figure. Additionally,
small droplets of grey phase penetrate the white, and of white the grey. In (b), the
primary white phase has small droplets of grey phase. In (c), I have suppressed the
bulk fluctuations, leaving just an interface between the two phases.

simply the logarithm of the surface partition function:

Fs = kT lnZs = kT ln
Z2
Z1

. (1.37)

As the temperature increases, we expect bulk fluctuations to increase both in size

and density. When fluctuations typically occur within an interaction range of each

other, they are no longer isolated and they stretch across the entire lattice. At that

point, Z2 becomes indistinguishable from Z1. The free energy and surface tension

go to zero. We expect such behavior for normal thermocapillarity.

My investigation, unlike previous attempts, applies fourth-nearest-neighbor in-

teractions to the SOS model. I also modify the Metropolis algorithm specifically to

inhibit bulk fluctuations. As far as I know, no one has previously investigated the

effects of modified algorithms on surface dynamics. Previous SOS approximations

have modeled the first nearest-neighbor Ising model in a non-zero magnetic field

[86].

At low temperatures, when bulk fluctuations are small, fleeting and sparse, I

expect their effects on the surface tension to be negligible, and my SOS results to

15

agree with previous work on the Ising model (chapter 3). What happens at higher

temperatures? Do the free energy and surface tension approach zero in the absence

of bulk fluctuations? The short answer is that they still go to zero. As it turns

out, the surface itself fluctuates so wildly that the entropic term (TS) dominates

the internal energy (U). In the liquid-vapor equilibrium analogy, we would arrive at

the critical point without boiling the liquid or crossing the curve AB in figure 1.3.

However, I do expect, the critical temperature to be higher than in the absence of

bulk fluctuations.

16

CHAPTER 2

THE ISING MODEL AND MONTE-CARLO SIMULATIONS

Consider a two-dimensional lattice with square elements, figure 2.1:

 σa

 σb

 σc

 σd σe

 σf σg

 σh

 σi

 σj

 σk

 σl

 σm

 σn σo

 σp

 σq

 σr σs

 σt

 σx

Figure 2.1. A 10× 10 square lattice.

As I mentioned earlier, the Ising model is a model on a discrete lattice. Each

lattice point, which I shall call a pixel, associates with a spin.1 In the Ising model,

the value of the spin is either 0 or 1 (or +1 and -1). Each pixel interacts with

its neighbors according to the Ising-model Hamiltonian (equation 2.1, below). The

Ising-model Hamiltonian defines the energies of interaction between spins or pixels.

The form of the Hamiltonian is independent of the dimension and shape of the

lattice. I can equally apply the Hamiltonian to one- or three-dimensional lattices or
1As is customary in the literature, I use a spin terminology borrowed from the Ising model’s

ferromagnetic origin. Spin does not carry the same meaning as in magnetic materials. I use it to
identify different phases or droplets.

17

lattices with triangular or hexagonal elements. I use the square lattice because it is

easy to implement and illustrates all the salient behaviors of the model.

Figure 2.1 shows a square lattice of 10 × 10 pixels. The symbol σ denotes the

spin. Although I use the same symbol to denote the spin and the surface tension,

the meaning of σ should be clear from the context.

Figure 2.1 labels some of the spins. Each spin interacts with its neighbors over

some range. I express the range of interaction as “up to nth-nearest neighbors.”

Spins σa to σt mark the neighbors of pixel σx up to fourth-nearest neighbors. The

coordination number z is the number of neighbors within the interaction range.2

If all interactions are of equal strength, for first-nearest-neighbor interactions,

z = 4; for second-nearest-neighbor interactions, z = 8; for third-nearest-neighbor

interactions, z = 12; for fourth-nearest-neighbor interactions, z = 20. Due to con-

straints on computer power and time, I stop at fourth-nearest-neighbor interactions.

In this work, I only consider interactions of equal strength.

I define my implementation of the the Ising-model Hamiltonian is defined as fol-

lows: If two neighboring pixels (within the interaction range) differ in spin, then the

mismatched link between them contributes to the energy of both pixels. Otherwise,

its contribution is zero. Using figure 2.1 as an example, the energy of pixel x is:

Hx =
z
∑

i=1

Jxi(1− δσx,σi), (2.1)

where i ranges over all the neighbors of x within the range of interaction. When

σx and σi are the same, the link between them does not contribution to Hx. When

they differ, the link between them increases Hx by Jxi. Jxi is the coupling constant

between spin x and i. Positive Jxi describes a ferromagnet, while negative Jxi

describes an anti-ferromagnet.

2Strictly speaking, z = number of neighbors only if all the interactions are of equal strength.
Otherwise, each neighbor contribute to z in proportion to its strength of interaction.

18

The total energy of the lattice is:

H =
1

2

∑

x

Hx. (2.2)

I include the factor of 1/2 because I count each link twice and the coupling constant

is symmetrical: Jij = Jji.

2.1 Lattice States

I define a lattice state as a particular assignment of spins. Suppose the lattice is in

a state µ with energy Hµ. Two states differ if at least one spin in one assignment

differs from the corresponding spin in the other. An L×L Ising lattice hasM = 2L×L

possible states. Multiple states may have the same energy. For example, if I flip all

the spins in an Ising lattice (0 → 1, 1 → 0), its energy remains the same. The set

of lattice states with the same fixed energy forms a microcanonical ensemble. The

set of lattice states allowed when the lattice can exchange energy with a reservoir

at fixed temperature forms a canonical ensemble.

Gibbs [44] showed that for a system in thermal equilibrium with a heat reservoir

at temperature T , the equilibrium probability distribution is:

pµ =
e−Eµ/kT

Z
, (2.3)

where the partition function Z is:

Z =
M
∑

µ

e−Eµ/kT . (2.4)

Equation 2.3 is the familiar Boltzmann distribution. The expectation value for

a quantity Q at thermal equilibrium is:

〈Q〉 =
M
∑

µ

pµQµ =

∑M
µ Qµe

−Eµ/kT

Z
, (2.5)

19

where Qµ is the value of Q when the lattice is in state µ. Q can represent any of

the thermodynamic properties we want to investigate, like the surface tension or the

specific heat.

However, if we simply pick a state µ at random and accept or reject it with

probability pµ (equation 2.3), the number of states is so large that we would end up

rejecting practically all candidate states since the probability of accepting each state

will be of order 1
M
. Instead of generating states at random, we rely on a Markov

process to generate state µ from state ν.

2.2 Markov Processes

A coin-toss experiment consists of a series of independent processes because each

trial is independent of the previous results. A Markov process [31] differs from

the coin-toss experiment because each trial depends on the preceding result. The

probability that a state ν transforms into state µ depends only on the two states

and not on any additional past history.

I define P (ν → µ) to be the transition probability from state ν to state µ per

unit time. I also define ωµ(t) to be the probability that the lattice is in state µ at

time t.

The Master Equation [90] describes how the lattice evolves from state ν to state

µ:

dωµ(t)

dt
=

M
∑

ν

[ων(t)P (ν → µ)− ωµ(t)P (µ→ ν)] . (2.6)

The first term on the right-hand side of equation 2.6 describes all possible transitions

into state µ and the second term describes all transitions out of state µ. The

transition of the state into itself (µ→ µ) cancels from both terms. Since the lattice

must be in some state ν and must transform into some state µ:

M
∑

ν

ων(t) = 1, (2.7)

20

M
∑

µ

P (ν → µ) = 1. (2.8)

At equilibrium, ωµ(t) is constant and
dωµ(t)
dt

vanishes:

lim
t→∞

ωµ(t) = pµ. (2.9)

The Master Equation 2.6 then reduces to:

M
∑

ν

pνP (ν → µ) =
M
∑

ν

pµP (µ→ ν). (2.10)

Using the sum rule from equation 2.8, equation 2.10 further simplifies to:

M
∑

ν

pνP (ν → µ) = pµ. (2.11)

In expanded form, equation 2.11 becomes:

P (1→ 1) P (2→ 1) . . . P (M → 1)

P (1→ 2) P (2→ 2) . . . P (M → 2)

...
...

. . .
...

P (1→M) P (2→M) . . . P (M →M)

p1

p2
...

pM

=

p1

p2
...

pM

, (2.12)

If we further define the transition matrix T with elements Tµν = P (ν → µ) and

column vector p with elements pµ, we can write equation 2.12 as:

T · p = p. (2.13)

Hence the equilibrium probability distribution p is an eigenvector of T with eigen-

value 1.

2.3 Detailed Balance

Although the simple, static equilibrium distribution p solves equation 2.13, periodic

solutions are also possible. In periodic solutions, p is not a constant, but cycles

21

through a periodic loop, a limit cycle. For a limit cycle of length n, p returns to its

initial value after n iterations [90], i.e.:

T n · p = p. (2.14)

In order to prevent limit cycles, I impose the additional condition of detailed

balance on the transition probabilities P (µ→ ν). Detailed balance holds at equilib-

rium. Mathematically, detailed balance requires that:

pµP (µ→ ν) = pνP (ν → µ). (2.15)

Referring to equation 2.10, this condition (equation 2.15) simply states that both

sides of equation 2.10 are equal, term by term. Detailed balance ensures that at

equilibrium, the rate of transition into state µ equals the rate of transition out of

state µ. Hence, at equilibrium, the probability distribution p is conserved.

2.4 Ergodicity

An M ×M matrix S whose elements satisfy the conditions:

1. 0 ≤ Sij ≤ 1, ∀ i, j = 1, 2, . . . ,M ;

2.
∑

i

Sij = 1,

is a stochastic matrix, e.g. the transition matrix, T which I defined in section 2.2,

is a stochastic matrix.

If we can arrange the columns and rows of a stochastic matrix in the form:

S =

A B

0 C

(2.16)

where A, B, C are square matrices and 0 is a zero matrix, the stochastic matrix is

reducible. If B = 0, it is completely reducible [5].

A completely reducible stochastic matrix is undesirable in Monte-Carlo simu-

lation since the states the matrix describes fall into disconnected subsets. If an

22

initial state lies in subset A, all subsequent states will remain within A, which will

obviously not represent the equilibrium distribution accurately. Representing the

equilibrium distribution requires that the transition matrix T be ergodic.

A Markov process is ergodic if it connects any state to any other state in a finite

number of steps. Since we rely on Markov chains to generate an ensemble of states,

ergodicity guarantees that we will eventually reach the equilibrium distribution from

any initial state. In practice, equilibration may take a very long time. Although

some transition probabilities P (µ → ν) may be zero, ergodicity guarantees that

other paths link state µ to state ν.

32

1 4

5 6

(a) Non-ergodic

32

1 4

5 6

(b) Ergodic

Figure 2.2. Examples of (a) non-ergodic and (b) ergodic state diagrams. Circles
denote states, while arrows denote allowed transitions.

Figure 2.2(a) shows a non-ergodic state diagram where states 4, 5, and 6 cannot

access states 1, 2 and 3. Figure 2.2(b) shows an ergodic state diagram. While not

every potential transition exists, any state connects to any other state in a finite

number of steps.

23

One simple way of ensuring that a transition matrix is irreducible and ergodic

is to make sure that it is positive definite. If all elements are positive definite, no

arrangement of the rows and columns forms a square, zero submatrix.

By definition, if S is a stochastic matrix, then Sn is also a stochastic matrix.

For example, the sum of each column of S2 is:

∑

i

∑

k

SikSkj =
∑

k

Skj

∑

i

Sik

=
∑

k

Skj

= 1. (2.17)

By extension, the same result follows for any power of S. I can thus interpret (T n)µν

as the probability of a transition from state ν to state µ within n time steps. Due

to ergodicity, we expect that (T n)µν will be independent of n and ν in the limit

n→∞. Regardless of the initial conditions, the probability of a transition to state

µ after equilibration (if it happens), must equal the probability of finding the system

in state µ:

lim
n→∞

(T n)µν = pµ. (2.18)

Equation 2.18 implies that every element of T n in the same row has the same value:

lim
n→∞

T n =

p1 p1 . . . p1

p2 p2 . . . p2
...

...
. . .

...

pM pM . . . pM

. (2.19)

The sum of each column equals 1, as expected for a stochastic matrix. Clearly, as

n→∞,

lim
n→∞

T nω(0) = p, ∀ ω(0). (2.20)

24

2.5 Spectra and Degeneracy of Stochastic Matrices

An M×M stochastic matrix has M eigenvalues. From equation 2.13, we know that

1 is an eigenvalue of the transition matrix. What is the significance of the other

eigenvalues and eigenvectors? What if the unit eigenvalue is degenerate? Does

degeneracy indicate coexistence of more than one equilibrium eigenstate?

The following theorems relate to present discussion [5, 7]:

1. The largest eigenvalue of a stochastic matrix is 1. The corresponding eigen-
vector is positive, i.e. all of its elements are positive.

2. Other eigenvectors with corresponding eigenvalues |λ| < 1 cannot be proba-
bility distributions (at least one of the elements in pµ has to be negative, see
proof in [5]).

3. A positive-definite stochastic matrix S > 0, has only one real unit eigenvalue.
In other words, it is not degenerate. It has only one equilibrium eigenstate
(Perron, 1907 [100]). The equilibrium distribution pµ is independent of the
initial conditions.

4. If a stochastic matrix contains zero entries, S ≥ 0, but is still irreducible
(ergodic), it always has a real unit eigenvalue. It may have other eigenvalues
of unit modulus (eı̇2nπ/h, n = 1, 2, . . . , h), but the eigenvalue one itself is non-
degenerate. To the largest eigenvalue, one, corresponds a positive eigenvector
(Frobenius, 1912 [40]). Only one physical equilibrium eigenstate exists, p ∈
R, 0 < p ≤ 1.

Since all elements in T are positive definite, ergodicity ensures a unique equilib-

rium probability distribution. The following subsection 2.6 presents an algorithm

for generating a Markov chain that satisfies the condition of detailed balance and

ergodicity.

2.6 Metropolis Algorithm

Many algorithms can generate a Markov chain of Ising states [70, 90]. One of the

simplest and most popular is the Metropolis algorithm [78]. Later, I will consider

some modifications to the Metropolis algorithm and their effects on the conditions

of detailed balance and ergodicity.

25

The Metropolis algorithm generates a new state from the current state by chang-

ing one of the current state’s spins. For this reason, we call the Metropolis algorithm

a single-spin-flip algorithm. Because the initial state and final state only differ by

one spin, the typical energy difference is small.

In a Monte-Carlo simulation, we first randomly select a pixel from the lattice.

Then, we flip the spin of the selected pixel. If its current spin is 1, we flip it to 0, and

vice versa. If ν denotes the state with the flipped pixel, the transition probability

is:

P (µ→ ν) =
1

L2
A(µ→ ν), (2.21)

where A(µ→ ν) is the probability of accepting the new spin. A lattice of size L×L

has L×L states that differ from the current state by one spin flip. Since the choice

of pixel is random, all pixels have equal probability (1/L2) of being chosen. If we do

not accept the new spin, the spin of the selected pixel reverts to its previous spin.

If the state ν differs from state µ by more than one spin flip, then P (µ→ ν) = 0.

However, the algorithm is still ergodic because any state can transform into any other

state in a finite series of spin flips. For example, if we refer to figure 2.2(b), although

state 1 cannot transform into state 4 in a single transition, i.e. P (1→ 4) = 0, it can

still transform into state 4 via states 3 and 5. The Forbenius theorem in section 2.5

then implies that a unique equilibrium distribution of states, pµ exists.

To determine the correct acceptance probabilities, A(µ → ν), I invoke detailed

balance (equation 2.15):

pµ
pν

=
P (ν → µ)

P (µ→ ν)
=
A(ν → µ)

A(µ→ ν)
. (2.22)

The factor 1/L2 cancels since it occurs in both the forward (ν → µ) and back-

ward (µ → ν) transitions. If we want the state distribution to corresponds to the

26

Boltzmann probability distribution (equation 2.3), then the ratio must be:

A(ν → µ)

A(µ→ ν)
= e−(Eµ−Eν)/kT . (2.23)

We are free to choose the values of A(ν → µ) as long as they satisfy equation 2.23.

We can, of course, choose A(ν → µ) = pµ but doing so is the same as generating an

arbitrary state and accepting it with probability pµ. As I mentioned earlier, pµ is

of order 1/(2L×L). Even a modest-sized lattice, say L = 32, will take a time longer

than the age of the universe to reach equilibrium. The problem with this choice (pµ)

of acceptance probability is that it only depends on the final state. The point of the

Metropolis algorithm is to accept the new state with a probability that depends on

the energy difference between the initial and final states.

The Metropolis algorithm uses the acceptance probability:

A(ν → µ) =

e−(Eµ−Eν)/kT , if Eµ − Eν > 0

1, if Eµ − Eν ≤ 0
, (2.24)

if states µ and ν differ by one spin flip. A(ν → µ) = 0 if states µ and ν differ by more

than one spin flip. From here onwards, I will drop the qualifier that A(ν → µ) = 0

if states µ and ν differ by more than one spin flip, since all the algorithms I describe

in this thesis are of the single-spin-flip type.

The Metropolis algorithm accepts all transitions that lower the lattice energy

and accepts transitions that increase the energy with Boltzmann probability (figure

2.3). If the forward transition is Eµ − Eν > 0, then the backward transition must

be Eµ − Eν < 0, and vice versa. Therefore, the ratio between the two acceptance

probabilities in equation 2.24 satisfies detailed balance and the Boltzmann condition

(equation 2.23).

In the zero-temperature limit, the acceptance probability becomes a step func-

tion. The Metropolis algorithm is the most efficient single-spin-flip algorithm. Other

27

multiple-spin-flip algorithms that flip a cluster of spins at a time may be more effi-

cient but I will not discuss them here.

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

∆ E/J
ij

A
(ν

→
µ)

kT = J
ij

kT = 3J
ij

kT = 6J
ij

Figure 2.3. Metropolis acceptance probabilities at three different temperatures (in
units of Jij). The interaction range is up to fourth-nearest neighbor, z = 20.

Because of the definition of the Metropolis acceptance probabilities (equation

2.24), with Jij positive, like spins tend to congregate together in order to minimize

the number of mismatched links. The effect of the algorithm on a domain of uni-

form spin within another spin is thus similar to the effect of surface tension on an

interface between two immiscible liquids. The Metropolis algorithm and the Ising

model together contain the two basic components for simulating liquid interfaces: a

restoring force (of energy scale Jij) and a disrupting force (of energy scale kT).

The full Metropolis algorithm consists of the following steps:

1. Randomly select a pixel.

2. Flip the pixel’s spin (0→ 1, 1→ 0).

3. Calculate the resultant change in energy.

4. Accept the spin flip with probability given by equation 2.24.

5. Repeat steps 1 to 4.

28

Randomness occurs in the Metropolis algorithm in steps 2 and 4. Every time we

perform steps 2 and 4, we use a pseudo-random-number generator to randomly select

a pixel and generate a random number between 0 and 1. If the random number is

smaller than the probability calculated in step 4, we accept the new spin, otherwise,

the pixel reverts to its previous spin. I use a Lagged Fibonacci pseudo-random-

number generator to generate the random numbers for my simulations [64, 103]:

xn = (xn−55 − xn−24) mod m, (2.25)

where m = 230 − 1. Two previous random numbers (xn−55, xn−24) generate each

new random number (xn). The value of xn lies between 0 and m− 1. To produce a

number between 0 and 1, I divide xn by m− 1.

Each iteration of the Metropolis algorithm counts as a spin-flip attempt. The

basic unit of time in Monte-Carlo simulations is the Monte-Carlo step. On a lattice

of size L×L, we say a Monte-Carlo step has elapsed after L×L spin-flip attempts.

I express all simulation times as multiples or fractions of Monte-Carlo steps.

2.7 Generalized Perron and Frobenius Theorems

The elements of a stochastic matrix satisfy the sum rule:

M
∑

µ

P (ν → µ) = 1. (2.26)

The Metropolis transition probabilities, however, do not add up to 1 (Since a lattice

can transform into any one of L× L states in a single spin-flip attempt, M = L2):

L2
∑

µ=1

P (ν → µ) =
1

L2

L2
∑

µ=1

A(ν → µ)

≤ 1

L2

L2
∑

µ=1

1

≤ 1. (2.27)

29

The reason for this discrepancy is that P (ν → µ) is only defined up to a ratio

(equation 2.23). The transition matrix is therefore not a true stochastic matrix.

Fortunately, all is not lost. All the preceding discussions about stochastic matrices

still hold, because the Perron and Frobenius theorems hold for general non-negative

and positive-definite matrices [5]. In general cases, the largest eigenvalue is not 1,

but λm > 0. The theorems in section 2.5 also hold for general non-negative and

positive matrices with the eigenvalue λm replacing the unit eigenvalue.

2.8 Modified Metropolis Algorithms

I have shown that achieving a Boltzmann distribution in Monte-Carlo simulations is

not trivial. The two paramount requirements are detailed balance and ergodicity–

both of which the Metropolis algorithm includes. Thus the Metropolis algorithm

leads to a unique equilibrium distribution of lattice states, pµ.

I use a modified version of the Metropolis algorithm to simulate interfaces and

Brownian motion for two reasons.

For fourth-nearest-neighbor interactions, the coordination number is 20, there-

fore, the possible energy change due to a single spin flip ranges from −20Jij to

+20Jij. The two extreme cases correspond to the vanishing of a lone spin and the

appearance of a lone spin in a domain of another spin. The appearance of a lone

spin is also called nucleation. The two transitions are complimentary: if the forward

transition is nucleation, the backward transition is disappearance, and vice versa.

Nucleations cause bulk fluctuations within regions of homogeneous spins. At low

temperatures, the probability of nucleations is low, but for temperatures near 6Jij,

their probability is not negligible (figure 2.3). At low temperatures, nucleated do-

mains are small, transient and far apart. At high temperatures, nucleated domains

may have significant densities and grow to large sizes (figures 2.4).

30

50 100 150 200 250

50

100

150

200

250

(a) kT = Jij

50 100 150 200 250

50

100

150

200

250

(b) kT = 3Jij

50 100 150 200 250

50

100

150

200

250

(c) kT = 6Jij

Figure 2.4. Bulk fluctuations at three different temperatures. The interaction range
is up to fourth-nearest neighbors.

Nucleations are undesirable because they blur the line between the interface and

the bulk and complicate the calculation of interfacial energy.

Nucleation is also undesirable in simulating Brownian motion because nucleation

may cause the center of mass of a domain to jump a large distance after a single

spin flip. Modifications of the Metropolis algorithm are thus necessary in order

to eliminate nucleation. Are other Monte-Carlo algorithms better suited to this

problem?

The Kawasaki algorithm is a single-spin-exchange algorithm as opposed to the

Metropolis algorithm which is a single-spin-flip algorithm. In the Kawasaki algo-

rithm, two pixels exchange spins. conserving the total spin of the lattice. The

Kawasaki algorithm preserves detailed balance because neither true nucleation nor

disappearance events can occur. If the two pixels that exchange spins are not neigh-

boring (defined as within the interaction range) to each other, then “nucleation”

exists (non-local spin exchange). Exchange of neighboring pixels’ spins cannot cause

nucleation (local spin exchange). In any case, a series of local spin-exchanges could

result in a lone heterogeneous spin in a region of differing spin. Because the total

spin is conserved, the lone spin will persist for much longer time than it would in the

31

Metropolis algorithm. Lone spins will cause errors in calculating the interface width

and the determination of the center-of-mass of droplets. Therefore, the Kawasaki

algorithm is not suitable for the study of surface tension and diffusion constants.

The Swendsen-Wang, Wolff, and Niedermayer algorithms are all cluster-flip al-

gorithms [90]. These algorithms select a region of contiguous and homogeneous

spins and flip the spin of the entire region. These algorithms are unsuitable be-

cause they may dramatically increase or decrease the size of a droplet which my

Brownian-motion simulations must conserve.

I thus have chosen to study three different modifications of the Metropolis algo-

rithm, all of which reduce nucleation. The three modifications suppress nucleation

to varying degrees. I will investigate the effect of the degree of suppression on the

surface tension and diffusion constant. I will also briefly discuss the consequences

of suppressing nucleation on detailed balance and ergodicity.

2.8.1 Algorithm One

My first modification is the simplest. I simply set the acceptance probability of a

nucleation event to zero:

A(∆E = +zJij) = 0. (2.28)

All other transition probabilities remain the same. Otherwise, I follow the Metropo-

lis algorithm. Due to this modification, the nucleation and disappearance transitions

no longer satisfy detailed balance:

A(∆E = +zJij)

A(∆E = −zJij)
=

0

1
6= e−zJij/kT . (2.29)

All other transitions still satisfy detailed balance. Therefore, suppression of nucle-

ation is tantamount to violation of detailed balance in the Metropolis algorithm.

All the transitions within an interaction range of the interface are necessarily not

32

nucleation events.3 At low temperatures, when nucleations are small, transient and

far from the interface, suppressing nucleation while leaving other transitions intact

should not affect the interface. At high temperatures, however, bulk fluctuations

(caused by nucleations) are big and close to the interface. If a bulk fluctuation comes

to within an interaction range of the interface, it becomes part of the interface.

Therefore, at high temperatures, I cannot ignore the effects of bulk fluctuations on

the dynamics of the interface.

Next, I estimate the highest temperature at which I can ignore bulk fluctua-

tions without affecting the equilibrium state of the interface. For a fourth-nearest-

neighbor interaction, z = 20, and, at kT = 6Jij, the probability of nucleation

(when it is unsuppressed) is exp (−20/6) = 0.036. However, the probability of bulk

fluctuations is actually higher, because a nucleus (a lone heterogeneous spin) may

induce its neighboring pixels to switch spin. These transitions are, by definition,

not nucleations, but they contribute to bigger bulk fluctuations. I have calculated

the actual density of heterogeneous spins at kT = 6Jij to be about 0.051 ± 0.001,

so on average, a 10× 10 region of uniform spin has roughly 5 heterogeneous spins.

Assuming uniform distribution of nucleation, there is roughly 1 heterogeneous spin

per 20 uniform spins, and thus the heterogeneous spins are beyond fourth-nearest

neighbors of each other. At higher temperatures, on average, the bulk fluctuations

will be within an interaction range of each other and the interface. Therefore, for

fourth-nearest-neighbor interactions, I can ignore the effects of bulk fluctuations on

the interface up to kT ' 6Jij.

Since an interface can transform into any other interface via a series of spin flips,

all interface states are accessible and the set of all interface states is ergodic. When

I talk about equilibrium, I mean that the interface is at equilibrium. Henceforth, I

3By definition, nucleation means a spin flip with ∆E = zJij . Within an interaction range of
the interface, ∆E is always less than zJij .

33

refer to the interface equilibrium distribution as simply the equilibrium distribution.

2.8.2 Algorithm Two

My second method for suppressing nucleations is to account for the pixel’s sur-

roundings. In Algorithm One, except for nucleation, I allow the pixel to flip its

spin regardless of its surrounding spins. In Algorithm Two, I only allow it to flip

to spins chosen randomly from its neighbors. If the pixel and its surrounding spins

are all the same, it will never flip, preventing nucleation. The transition probability

(equation 2.21) then becomes:

P (ν → µ) =
1

L2
n

z
A(ν → µ), (2.30)

where n is the number of neighboring pixels with different spin and z is the coordi-

nation number. The backward transition probability is therefore:

P (µ→ ν) =
1

L2
z − n

z
A(µ→ ν). (2.31)

The energy change in the forward direction is:

∆E = (z − 2n)Jij. (2.32)

The energy change in the backward direction is−∆E from equation 2.32. By writing

n in terms of z and ∆E, the ratio of the two transition probabilities becomes:

P (ν → µ)

P (µ→ ν)
=
z −∆E

z +∆E

A(ν → µ)

A(µ→ ν)
. (2.33)

Obviously, if I continue to use the Metropolis acceptance ratio of equation 2.23,

equation 2.33 does not satisfy detailed balance (equation 2.22), so I do not reach a

Boltzmann equilibrium distribution of states. In order to restore detailed balance

(minus nucleation), I redefine A(ν → µ) to be:

A(ν → µ) =

z+∆E
z−∆E

e−∆E/kT , if ∆E > 0

1, if ∆E ≤ 0
. (2.34)

34

With this compensation, the ratio in equation 2.33 is again exp(−(Eµ−Eν)/kT).

The case ∆E = zJij never occurs because it corresponds to a nucleation event. Since

I reject nucleation events, the next highest-energy transition is ∆E = 18Jij. Simple

calculation shows that A(∆E = 18) > 1 when kT > 6.11Jij. This temperature is

close to the limit in section 2.8.1 where suppression of nucleations begins to affect

the dynamics of the interface. For temperatures above 6.11Jij , I have to renormalize

all A(ν → µ) so that the highest probability is equal to 1. Since I do not intend

to simulate at temperatures higher than 6Jij, I will use equation 2.34 as it stands.

Figure 2.5 shows the modified acceptance probabilities.

−20 −15 −10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

∆ E/J
ij

A
(ν

→
µ)

kT = J
ij

kT = 3J
ij

kT = 6J
ij

Figure 2.5. Acceptance probability for Algorithm Two (equation 2.34), with z = 20.

With this modification, I expect the equilibrium-interface configurations to be

the same as for Algorithm One. The interface states are also ergodic, since any

interface can transform into any other interface via a series of spin flips.

In summary, for Algorithm Two, we

1. Randomly select a pixel. Call this pixel the candidate pixel.

2. Randomly select a pixel from the candidate pixel’s neighbor list. Call this the
target pixel.4

4Some researchers, for example Glazier [45] use the opposite definitions for the target and

candidate pixels.

35

3. Flip the candidate pixel’s spin to the target pixel’s spin.

4. Calculate the energy change.

5. Accept the spin flip with the probability given by equation 2.34.

6. Repeat steps 1 to 5.

2.8.3 Algorithm Three

The previous two sections showed that we can suppress nucleations in multiple ways.

Different methods violate detailed balance to varying degrees. Algorithms One and

Two violate detailed balance just enough to suppress nucleations. For low temper-

atures, they do not affect the equilibrium distribution of interface configurations.

For comparison, I propose a third modification that violates detailed balance to a

greater degree.

Algorithm Three is exactly the same as Algorithm Two except that I use the

original Metropolis acceptance probability (equation 2.24). As I pointed out in the

previous section, the resultant interface equilibrium is not a Boltzmann equilibrium.

Many investigators have used this algorithm in conjunction with the Potts model

(where the spins can assume more than two possible values) to model cell sorting

[47, 48], foams [46, 63, 74, 117], etc.. However, none investigated the consequences of

ignoring detailed balance. Restoring detailed balance in the Potts model is harder

than in the Ising model, although one researcher has considered this restoration

briefly for the Potts model [121]. Thus I expect my findings on the algorithmic

dependence of the Ising Model to interest those using Potts models to simulate

biological cells, as I discuss in chapter 5.

Figure 2.6 shows snapshots of interfaces for the three modified algorithms and

the Metropolis algorithm for the same temperature and interaction range. Even

without nucleation, some isolated heterogeneous spins are still quite visible near

the interface for Algorithms One and Two. These isolated spins do not result from

36

50 100 150 200 250

50

100

150

200

250

(a) Metropolis algorithm

50 100 150 200 250

50

100

150

200

250

(b) Algorithm One

50 100 150 200 250

50

100

150

200

250

(c) Algorithm Two

50 100 150 200 250

50

100

150

200

250

(d) Algorithm Three

Figure 2.6. A comparison between interface shapes for different algorithms. The
temperature is 6Jij. The interaction range is up to fourth-nearest neighbors.

nucleations, but occurr because all but one spin in an initial region of uniform

spin have switched to a different spin, except for one in the middle. Unlike in the

Kawasaki algorithm, an isolated spin is short lived in the Metropolis algorithm.

37

CHAPTER 3

SOLID-ON-SOLID MODEL

In the first chapter, I discussed the thermodynamics of surfaces. In the second

chapter, I presented a method to simulate those surfaces. In this chapter, I present

a model that I use to fit my simulation results. The model is the Solid-On-Solid

model, or SOS for short. I will derive the interface energy of the SOS model at

different temperatures and angles. The excellent reviews of Leamy et al. [71] and

Burton et al. [18] further discuss the SOS model in the context of solid surfaces and

crystal growth.

Overhangs

Isolated Particles

(a)

i

L

i

Baseline

h

r

(b)

Figure 3.1. (a) An interface with overhangs and isolated particles, and (b) an
interface with no overhangs or isolated particles.

Like the Ising model, the SOS model is a discrete model of surfaces. The SOS

model avoids overhangs and isolated particles on the interface (figure 3.1(a)). The

SOS model can approximate the Ising model at low temperatures [19].

38

The heights of the interface from the baseline at each horizontal position: hi, i =

1, . . . , L fully describe the profile of the interface. The absence of overhangs and

isolated particles makes hi a single-valued function. Each set of {hi} describes a

unique interface profile. Instead of working with heights, however, I choose to work

with step-sizes ri = hi − hi−1, because the interface energy directly relates to ri.

Before I define the energy of an interface, I must define the energy of a step.

3.1 Step Energies

In the Ising model, each pixel has an energy. Here, I extend the definition to

include the energy of a step. Suppose that the coupling constant between first-

nearest neighbors is J1 and between second-nearest neighbors is J2. A pixel lying

next to a horizontal interface has one first-nearest neighbor and two second-nearest

neighbors that differ from it in spin (figure 3.2(a)). Therefore, its energy is J1+2J2.

(a)

1 1 1

1 1 1

ii−1 i+1

2 2

2 2 2

ii−1 i+1

2

(b)

Figure 3.2. (a) First- and second-nearest neighbors (arrows). (b) Energies from
first- (left) and second- (right) nearest-neighbor interactions. The energy of a pixel
corresponds to the number of arrows pointing away from that pixel. I only show
the neigbhbors of some surface pixels, that is why some arrows are single-headed,
while others are double-headed.

Figures 3.2(b) show the energies of surface pixels for three successive positions:

39

i− 1, i and i + 1. The energy of a zero-height step, εr=0, is thus equal to J1 + 2J2

for either side of the interface or 2J1 + 4J2 for both sides of the interface. Next,

consider steps of height one, two or three pixels (figures 3.3):

2

1

2

1

i−1 i

2

1

2

1

i−1 i

1

1

(a)

1

3

3

11

1 2

2

1

1 1 1

1 1

(b)

1

1

1

1

1

1

2

2

1

1

1

2

1

2

3

3

1

1

(c)

Figure 3.3. Diagrams depicting the energies of steps of height (a) one pixel (ri = 1),
(b) two pixels (ri = 2) and (c) three pixels (ri = 3). Left diagrams: energies from
first-nearest-neighbor interactions. Right diagrams: energies from second-nearest-
neighbor interactions. By definition, ri−1 = 0. Only neighbors of surface pixels
nearest to the step are shown, that is why some arrows are single-headed and some
are double-headed.

From here on, I will always give the energies from both sides of interface. The

40

steps depicted in figures 3.3 have energies:

εr=0 + εr=1 = 6J1 + 8J2,

εr=0 + εr=2 = 8J1 + 12J2,

εr=0 + εr=3 = 10J1 + 16J2. (3.1)

Reflecting the interface along a normal, r → −r, the energies do not change, so

ε+r = ε−r. By using εr=0 = 2J1 + 4J2, the diligent reader may prove to herself that

the energies of the six smallest steps are those in table 3.1.

TABLE 3.1

STEP ENERGIES FOR DIFFERENT STEP SIZES FOR UP TO

SECOND-NEAREST-NEIGHBOR INTERACTIONS.

r εr
0 2J1 + 4J2
±1 4J1 + 4J2
±2 6J1 + 8J2
±3 8J1 + 12J2
±4 10J1 + 16J2
±5 12J1 + 20J2
±6 14J1 + 24J2

All εr 6=0 obey the same equation:

εr 6=0 = (2 + 2|r|)J1 + 4|r|J2. (3.2)

By defining:

Cr =

1, if r = 0

0, if r 6= 0
, (3.3)

the equation for step energy of any size becomes:

εr = (2 + 2|r|)J1 + 4(|r|+ Cr)J2. (3.4)

At this point, we may be tempted to extend the definition of step energies

to longer-range interactions. Unfortunately, for third-nearest-neighbor interactions

41

or longer, the step energy depends not only on the height of a step but also on

the height of neighboring steps. For example, if we consider up to third-nearest-

neighbor interactions, a step sequence of r = {0, 0, 3, 2, 0} gives a different energy

from r = {0, 0, 3,−2, 0}. In the first case, we obtain εtotal = 20J1 + 32J2 + 40J3, in

the second case, εtotal = 20J1+32J2+32J3. Long-range interactions depend on the

local slope, i.e. neighboring steps. The first sequence has a greater slope than the

second sequence. The greater the local slope, the greater the energy from long-range

interactions.

Another way of looking at this problem is to consider interfaces r = {1, 1, 1, 1, . . .}

and r = {1,−1, 1,−1, . . .}. The mean slope of the former interface is 45◦, of the lat-

ter 0◦, but equation 3.4, which does not include third-nearest-neighbor interactions

gives the same energy for both. I shall explain later how I adapt equation 3.4 to

include longer-range interactions and to include the dependence on average slope.

3.2 Partition Function of the SOS Model

We can now calculate the partition function of an interface in the SOS model.

Suppose:

nr = number of steps of height r pixels, (3.5)

where r = 0,±1,±2, Since the horizontal length of the lattice is L, the values

of nr range from 0 to L. If nr = 0, then no steps have height r pixels. If nr = L, all

steps are r pixels high. The sum of all nr must equal the lattice width:

∞
∑

r=−∞

nr = L. (3.6)

The total energy of the interface is:

E =
∞
∑

r=−∞

εrnr, (3.7)

42

where equation 3.4 gives εr. The number of ways to arrange L steps, n0 of which

are flat, n1 of which are of plus one pixel, n−1 of which are of minus one pixel, . . .,

is:

CL
{nr} =

L!

n0!n1!n−1!n2!n−2! . . .
. (3.8)

Therefore, the partition function is:

Z =
L
∑

{nr}=0

CL
{nr}e

−E({nr})/kT , (3.9)

where,
L
∑

{nr}=0

≡
L
∑

n0=0

L
∑

n1=0

L
∑

n−1=0

L
∑

n2=0

L
∑

n−2=0

. . . , (3.10)

and equation 3.7 gives E({nr}). The partition function consists of a configuration

term CL
{nr}

(similar to the one I discussed in section 1.1) and an internal energy

term E. Therefore, the surface tension has an entropic contribution and an internal-

energy contribution. If we further define:

ζr ≡ e−εr/kT , (3.11)

we may write the partition function as:

Z =
L
∑

{nr}=0

(

CL
{nr}

∞
∏

r=−∞

ζnrr

)

. (3.12)

In view of the constraint on nr (equation 3.6), equation 3.12 is just the multinomial

expansion of ζr. Therefore,

Z = (ζ0 + ζ1 + ζ−1 + ζ2 + ζ−2 + . . .)L

= ΞL,

Ξ ≡
∞
∑

r=−∞

ζr, (3.13)

where Ξ is the partition function per unit horizontal length of the interface, i.e. the

partition function of each step. The probability for a step r pixels high is:

Pr =
ζr
Ξ
. (3.14)

43

Because ε+r = ε−r, P+r = P−r (figure 3.4(a)). Figure 3.4(b) shows the probabil-

ities P0, P1, P−1 as a function of temperature. At zero temperature, the interface is

in its ground state, i.e. horizontal. As the temperature increases, the interface be-

gins to fluctuate, but because of the Pr symmetry, the interface remains horizontal

on average.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Step size r (pixels)

Pr
ob

ab
ili

ty
 o

f a
 s

te
p,

 P
r

kT = 1J
kT = 3J
kT = 6J

(a)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

kT/J

Pr
ob

ab
ili

ty
 o

f a
 s

te
p,

 P
r

P
1
, P

−1

P
0

P
0
 + P

1
 + P

−1

(b)

Figure 3.4. (a) Probability of an r-pixel-height step. (b) Probabilities of the three
smallest steps as a function of temperature, for J1 = J2 = J . Equation 3.17 gives
Ξ, the partition function.

An interface with r45 = {1, 1, 1, 1, . . .} has the same energy as one with r0 =

{1,−1, 1 − 1, . . .}. However, only one combination of steps gives a 45◦ interface,

while L!
2(L/2)!

combinations of steps can produce a 0◦ interface. Therefore, the density

of states (equation 3.8) peaks sharply at zero angle.

Substituting equations 3.4 and 3.11 into equation 3.13 and noting that ε+r = ε−r,

we find:

Ξ = e−(2J1+4J2)/kT + 2
∞
∑

r=1

e−[(2+2r)J1+4rJ2]/kT . (3.15)

If we define:

γ1 ≡ e−J1/kT ,

γ2 ≡ e−J2/kT , (3.16)

44

then Ξ simplifies to:

Ξ = γ21γ
4
2 + 2γ21

∞
∑

r=1

(

γ21γ
4
2

)r

= γ21γ
4
2 + 2γ21

(

1

1− γ21γ
4
2

− 1

)

=
γ21γ

4
2(1− γ21γ

4
2 + 2γ21)

1− γ21γ
4
2

. (3.17)

Equation 3.17 is the partition function for a single step in the SOS model on a

square lattice with interactions up to second-nearest neighbors.

The free energy, surface tension, entropy, internal energy and the specific-heat

capacity of the horizontal interface are:

F = −kT lnZ = −LkT ln Ξ,

σ = F/L = −kT ln Ξ

= 2J1 + 4J2 − kT ln

(

1− γ21γ
4
2 + 2γ21

1− γ21γ
4
2

)

,

U = −T 2∂(F/T)
∂T

= kT 2
∂

∂T
lnZ = 〈E〉

= L

[

2J1 + 4J2 +
4J1γ

2
1 + 8J2γ

4
1γ
4
2

(1− γ21γ
4
2)(1− γ21γ

4
2 + 2γ21)

]

,

S = −∂F
∂T

= k

(

lnZ + T
∂

∂T
lnZ

)

=
U − F

T
,

Cv =
∂U

∂T

= k
∂

∂T

(

T 2
∂

∂T
lnZ

)

=
1

kT 2
(〈E2〉 − 〈E〉2). (3.18)

Since the energy of a step depends only on its size and not on the neighboring

steps, the steps do not interact with each other. Just like ideal gas molecules in a

closed container in thermal contact with a heat reservoir, the steps reach equilibrium

with the heat reservoir independently. The ensemble of steps thus behaves like an

ideal gas. However, unlike ideal gas molecules, the fixed horizontal position of steps

45

makes them distinguishable. Therefore, the partition function of the entire interface

is just the product of the partition functions for each step (equation 3.13).

Because each bond or link connects a spin-up pixel to a spin-down pixel, the

total energy of both sides of the interface is exactly twice the energy of either

side. Therefore, the partition function for both spins is equal to the product of the

partition functions for up spins and down spins:

Zup+down = Zup × Zdown = Z2up = Z2down. (3.19)

3.3 Special Cases of the SOS Model

Comparing the SOS model with known results for the Ising model is instructive.

For nearest-neighbor interactions, J1 = J, J2 = 0. Onsager and most investigators

untill this day consider only this case. If we define K ≡ J
kT

, equations 3.18 then

simplify to:

Ξ = γ21 cothK,

σ = 2J + kT ln(tanhK),

S/L = k [2Kcsch 2K − ln(tanhK)],

U/L = 2J(1 + csch 2K),

Cv/L = kK2csch 2K coth 2K. (3.20)

Figure 3.5 shows the dependencies of these quantities on temperature.

The results agree with the treatment in [75] which obtained the partition function

by summing over ri instead of nr. A few lines of calculation show that σ = 0

at kTc = 2.269J . Amazingly, the surface tension in equation 3.20 coincides with

Onsager’s exact result for T 6 Tc, supporting my earlier observation that at low

temperatures, bulk fluctuations have negligible effect on the interface equilibrium

46

0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

kT/J

σ
/J

(a)

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

kT/J

S
/L

(k
)

(b)

0 0.5 1 1.5 2 2.5
2

2.5

3

3.5

4

4.5

kT/J

(U
 /L

) /
J

(c)

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

kT/J

C
v /L

(k
)

(d)

Figure 3.5. Temperature dependence of thermodynamic variables for the first-
nearest neighbor SOS model. (a) Surface tension σ, (b) entropy per unit length
S/L, (c) energy per unit length U/L and (d) heat capacity per unit length Cv/L for
a horizontal interface. Division by the energy parameter J normalizes all energies
to be dimensionless by. Dashed lines indicate the critical temperature kTc.

(section 2.8.1). However, the similarity between the SOS model and the Ising model

ends here.

In the Ising model, the surface tension is zero above the critical point kTc =

2.269J , but from figure 3.5(a), the surface tension for the SOS model is negative

for kT > kTc, which is unphysical. The entropy per unit length, S/L, in figure

3.5(d), does not show any particular problem for kT > kTc, but the energy per

47

unit length, U/L does, since in the Ising model, it can never exceed 4J (when all

the first-nearest neighbors are of a different spin). In the SOS model, the step size

has no limit, consequently, the energy per step does not have a maximum value

and U/L > 4J for kT > kTc. Finally, the specific-heat capacity for the Ising

model diverges at kTc, indicating a second-order phase transition. The specific-heat

capacity for the SOS model remains finite and analytic at kTc, and does not even

show a peak at kTc. The SOS model shows no signature of a phase transition.

The similarity of the surface tensions in the two models (up to kTc) contrasts

with the differences in their other thermodynamic quantities. If we examine equa-

tions 3.18, surface tension is a function of the surface free energy and the length

of the interface. All other quantities depend only on the surface free energy. The

differences therefore lie in the definition of the length of the interface. The SOS

model assumes that the interface length is equal to the lattice length. In the Ising

model, the length increases with temperatures. The ratio between the free energy

and the interface length for the SOS model fortuitously coincides with the derivative

of the free energy with respect to the interface length for the Ising model.

The behavior of σSOS differs qualitatively from that for a liquid. If we compare

figure 3.5(a) with figure 1.4(a), the surface tension for the SOS model (figure 3.5(a))

is a convex function, but the surface tension of liquids (figure 1.4(a), with the

exponent µ ' 1.28) is a concave function. µ is the exponent in equation 1.28.

The internal energy per step (figure 3.5(c)), is similar in form to the internal

energy of a chain of harmonic oscillators, which is not surprising, since the step

energy εr (equation 3.4) is similar in form to the energy of the simple harmonic

oscillator, εn = (n + 1
2
)~ω, when J2 = 0. In this respect, the SOS model is similar

to a chain of harmonic oscillators.

We may argue a heuristically concerning the effect of nucleations on surface

48

dynamics at low temperatures. In first-nearest-neighbor interactions, a nucleation

event increases the energy by 4J , and at kT = 2.269J , the probability of nucleation

is 0.17, which is about 1 heterogeneous spin per 6 pixels. For first-nearest-neighbor

interactions, each pixel has only 4 neighbors, therefore, on average, nucleation events

are beyond an interaction range of each other and they do not interact. The SOS

model ignores both nucleations and overhangs. Previously, Hartmann and Zittartz

[86] observed that they could obtain the bulk free energy by taking into account

only a subset of interface configurations (those without overhangs). The reason the

results coincide is unknown [19]. I will show later (section 3.6) for non-zero-angle

interfaces, that the surface tension differs from the one predicted from the Ising

model.

Another interesting special case that of the second-nearest-neighbor interactions

with equal coupling constants for all neighbors (J1 = J2 = J). Figure 3.6 shows

the corresponding plots for the surface tension σ, entropy per unit length S/L,

energy per unit length U/L and heat capacity per unit length Cv/L. Solving σ = 0

numerically, gives kTc = 5.379J .

The behaviors of the SOS model for nearest-neighbor (figures 3.5) and the

second-nearest-neighbor (figures 3.6) interactions share some common character-

istics. In both cases, σ → 0 as T → Tc (Tc is higher for second-nearest-neighbor

interactions) and the specific heat of the interface does not diverge at Tc. The

only notable difference between the two cases is the low-temperature peak in the

specific heat at kT ' 0.8J (figure 3.6(d)). Exploring whether this peak exists for

longer-range interactions or other types of lattice would be interesting.

49

0 1 2 3 4 5 6
−2

0

2

4

6

8

kT/J

σ
/J

(a)

0 1 2 3 4 5 6
0

0.4

0.8

1.2

1.6

2

kT/J

S
/L

(k
)

(b)

0 1 2 3 4 5 6
5

6

7

8

9

10

kT/J

(U
 /L

) /
J

(c)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

kT/J

C
v /L

(k
)

(d)

Figure 3.6. Temperature dependence of thermodynamic variables for the second-
nearest neighbor SOS model (J1 = J2 = J). (a) Surface tension σ, (b) entropy
per unit length S/L, (c) energy per unit length U/L and (d) heat capacity per
unit length Cv/L for the horizontal interface. Division by the energy parameter
J normalizes all energies to be dimensionless. Dashed lines indicate the critical
temperature kTc.

3.4 Dependence of Tc on the Ratio J2/J1

The only exact solution I can compare my results to is Onsager’s. The last section

(3.3) showed not only that the critical temperature of the SOS model is the same as

the Curie temperature of Ising model (for first-nearest-neighbor interactions), but

50

also that the surface tension of the SOS model for a horizontal interface coincides

with that of the Ising model for all temperatures up to Tc. For J2 6= 0, we cannot

solve the Ising model exactly. Although most investigations of the Ising model have

focused on nearest-neighbor interactions, a number have attempted to illuminate its

critical behavior and phase diagram for longer-range interactions.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

J
2
 /J

1

kT
c /J

1

SOS
Fan & Wu (closed−form)
Gibberd (closed−form)
Dalton & Wood (series expansion)
Oitmaa (series expansion)
Nauenberg & Nienhuis (MCRG)

Figure 3.7. The dependence of kTc on the relative strength of first- and second-
neighbor interactions for the SOS model and various approximations. I obtained
the SOS Tc by numerically solving for σ = 0 (equation 3.18) and setting J1 = 1.
The references are Fan & Wu [37], Gibberd [43], Dalton & Wood [25], Oitmaa [93]
and Nauenberg & Nienhuis [87].

While I have not found any investigations of the surface tension of the Ising

model as a function of both the temperature and the ratio J2/J1, there there were

a number calculated approximately the critical temperature of the Ising model as a

function of the ratio J2/J1. Figure 3.7 shows the variation of kTc as a function of

51

the ratio J2/J1 for a number of approximations, including the SOS model.

Approximation methods include the closed-form approximation [37, 43], the

Bethe-Peierls-Weiss (BPW) approximation [24], series expansions [25, 93], Monte-

Carlo renormalization-group method (MCRG) [87, 110], standard numerical Monte-

Carlo methods [12] and the SOS approximation [16]. Burkhardt’s SOS results only

considered the diagonal (45◦) interface and used transfer matrices. His [16] results

are agree with Dalton & Wood’s.

Qualitatively, my results agree with all other approximations. Quantitatively,

my results seem to suggest an upper limit for the critical temperature. All other

methods seem to produce critical temperatures equal to or smaller than mine. In

particular, my results coincide with Fan & Wu’s for 0 6 J2/J1 6 1.

The SOS model correctly predicts the location of the cusp which occurs for

J2/J1 = −0.5. For temperatures below Tc, the cusp marks the transition from

either the antiferromagnetic ground state (AF, J1 < 1) or ferromagnetic ground

state (F, J1 > 1) to the super-antiferromagnetic ground state (SAF) (figure 3.8).

Above Tc, the lattice becomes paramagnetic.

J
1

J
2

J
2

J
1

= − /2|| J
2

J
1

= − /2||

+ + + + +
+ + + + +
+ + + + +
+ + + + +

+ + + + +
− − − − −
+ + + + +
− − − − −

+ − + − +
− + − + −
+ − + − +
− + − + −

SAF

AF F

Figure 3.8. The phase diagram of the Ising model below Tc, for interactions up to
second-nearest neighbors in zero magnetic field.

52

The ratio J2/J1 relates to the the coordination number z. The coordination

number is the weighted number of neighbors within the range of interaction. If

the interaction strengths of all neighbors are the same, then z equals the total

number of neighbors within the interaction range. If the interaction weakens with

increasing range, then z is smaller than the total number of neighbors within the

range. Therefore, z measures of the effective range of interaction. For interactions

up to second-nearest neighbors with J1 and J2 the first- and second-nearest-neighbor

coupling constants, the coordination number is:

z = z1 + z2

(

J2
J1

)

, (3.21)

where z1 and z2 are the number of first- and second-nearest neighbors respectively.

For a two-dimensional square lattice, z1 = 4, z2 = 4 (figure 2.1).

Since the 1930s, a number of approximations have calculated the dependence of

the critical temperature kTc on the coordination number, starting with the mean-

field theory of Bragg and Williams [14]. The Bragg-Williams theory is similar to

the Weiss theory of ferromagnetism. The original Bragg-Williams paper dealt with

the order-disorder transition in metallic alloys. Chang [21] cast these results as:

kTc =
2zVB

4
, (3.22)

where VB is equal to my 2J1. Using the definition Kc = J1/kTc, we obtain:

kTc = zJ1,

zKc = 1. (3.23)

This result simply states that in the Bragg-Williams approximation, the critical tem-

perature is the coordination number. The longer the effective range of interaction,

the higher the critical temperature.

53

An approximation attributed to Bethe [10] only accounts for first-nearest-neighbor

interactions:

e−2J/kTc = 1− 2

z
. (3.24)

Taking the log of both sides of equation 3.24:

zKc = −
z

2
ln
(

1− 2

z

)

. (3.25)

For large z, we expand the logarithm and keeping only the first two terms of the

series expansion to obtain:

zKc = 1 +
1

z
. (3.26)

The Bethe approximation (equation 3.26), approaches the Bragg-Williams approx-

imation (equation 3.23), when z À 1.

Domb and Potts [28] extended Bethe’s approximation to include second-nearest-

neighbor interactions:1
[

1

2

(

1 + e−2J/kTc
)

]z/2

=
1

2
, (3.27)

which I rewrite as:

zKc = −
z

2
ln[2(1−2/z) − 1]. (3.28)

Hiley and Joyce [58] related a previously unpublished result of Dalton:

zKc = 1 +
4.3

z
, (3.29)

while Domb and Dalton [27] found that in two dimensions,

zKc = 1 +
A

zγ
(0 < γ < 1), (3.30)

but gave no values for A and γ.

Figures 3.9 plots the Bragg-Williams [14] (equation 3.23), Bethe [10] (equation

3.24), Domb-Potts [28] (equation 3.27) and Hiley-Joyce [58] (equation 3.29) results
1In Domb & Potts’ original paper [28], the r.h.s. of equation 3.27 is 4 instead of 1/2, which is

inconsistent with an earlier equation in their paper and also with figure 9 in their paper.

54

together with my results for the second-nearest-neighbor SOS model. All approx-

imations approach the mean-field Bragg-Williams approximation as z → ∞. This

convergence is not surprising since, by definition, the mean-field method assumes

infinite-range interaction. The results of Domb and Potts come closest to the SOS

model.

2 3 4 5 6 7 8
0.5

1

2

3

4

5

5.5

z

zK
c

SOS
Bragg−Williams
Bethe
Domb−Potts
Hiley−Joyce

Figure 3.9. zKc vs. number of neighbors z for the SOS model and various approx-
imations to the Ising model. The references are Bragg-Williams [14], Bethe [10],
Domb-Potts [28] and Hiley-Joyce [58]. The dimensionless quantity Kc is given by
Kc = J1/kTc.

3.5 The Interface Width and the Roughness Exponent

Apart from thermodynamic properties, we can also investigate the geometrical prop-

erties of the interface, particularly, its width and roughness exponent.

In a two-dimensional lattice, I define the width w of the interface to be the root-

mean-squared of the height difference between two points separated by a horizontal

55

distance of d pixels, i.e. the standard deviation of ri:

w2 = 〈(h(k + d)− h(k))2〉. (3.31)

Since the baseline is arbitrary, I choose h(1) = 0, therefore,

h(k) =
k
∑

i=1

ri,

(h(k + d)− h(k))2 =

(

k+d
∑

i=k

ri

)2

=
k+d
∑

i,j=k

rirj

=
k+d
∑

i=k

r2i +
k+d
∑′

i,j=k
i6=j

rirj, (3.32)

where
∑′

denotes a sum over terms with i 6= j. For distances much greater than

the interaction range, we expect ri to be independent of ri+d and the autocorrelation

function 〈riri+d〉 to be zero. Since all ris are independent and equal:

〈(h(k + d)− h(k))2〉 = d〈r2〉. (3.33)

Comparing equations 3.31 and 3.33, we obtain:

w = d1/2
√

〈r2〉. (3.34)

The width scales with the distance between the two points. The exponent of

d, often denoted α, is the roughness exponent [8, 109]. The value α = 0.5 is a

well-known result for the two-dimensional Ising model [11] and the above derivation

shows that it is a direct consequence of the assumption that the ris are independent

of each other. An alternative derivation using Fourier decomposition and equiparti-

tion of energy arrives at essentially the same conclusion [75]. If we take d to be the

time separation between two points, random walks and Brownian motion have the

same roughness exponent [8].

56

The interface width diverges as d→∞, so the interface is rough. The interface

is smooth only when kT = 0. The transition from a smooth to a rough surface is

a roughening transition, occurring at a transition temperature Tr [81]. In the two-

dimensional Ising model, Tr = 0. That the interface is rough for 0 < T < Tc shows

that surface tension does not automatically produce a smooth interface [2].

In three dimensions, 0 < Tr < Tc. For the Ising model, the roughening temper-

ature is Tr ' 0.54Tc [17, 52, 53, 84, 85, 118]. For the SOS model, the roughening

transition occurs at Tr ' 0.75Tc [35]. At temperatures below Tr, the interface

width remains finite, even when d→∞. Above Tr, the interface width diverges as

w2 ∼ ln d [88].

The interface width w not only depends on d, it also depends on the temperature.

The higher the temperature, the larger the width. We can readily calculate the root-

mean-squared of r for the SOS model:

〈r2〉 =
∞
∑

r=−∞

r2Pr

= 2
∞
∑

r=1

r2Pr

=
2

Ξ

∞
∑

r=1

r2e−[(2+2r)J1+4rJ2]/kT

=
2γ21
Ξ

∞
∑

r=1

r2(γ21γ
4
2)

r, (3.35)

where I have used the definitions in equation 3.16. If we define:

y ≡
∞
∑

r=1

(γ21γ
4
2)

r =
∞
∑

r=1

e−ε0r/kT , (3.36)

then:

∞
∑

r=1

r2(γ21γ
4
2)

r =
1

ε20

∂2y

∂(1/kT)2

=
1

ε20

∂2

∂(1/kT)2

(

1

eε0/kT − 1

)

=
cosh(ε0/2kT)

4 sinh3(ε0/2kT)
. (3.37)

57

Substituting equation 3.37 into equation 3.35 and using the Ξ for the SOS model

(equation 3.17):

〈r2〉 = γ1
γ22(1− γ21γ

4
2 + 2γ21)

cosh(ε0/2kT)

sinh2(ε0/2kT)
. (3.38)

For the case J1 = J , J2 = 0, equation 3.38 reduces to:

〈r2〉 = 1

2 sinh2(J/kT)
. (3.39)

If J1 = J2 = J , equation 3.38 reduces to:

〈r2〉 = 1

γ(1− γ6 + 2γ2)

cosh(3J/kT)

sinh2(3J/kT)
. (3.40)

In contrast, the interface width of a two-dimensional Ising model with nearest-

neighbor interactions is [3, 4]:

〈r2〉 = 1

sinh[2(K −K∗)]
, (3.41)

where K = J/kT and:

K∗ ≡ −1

2
ln(tanhK). (3.42)

kT/J

Figure 3.10. Interface width
√

〈r2〉 of the Ising model and the SOS model in two

special cases: (a) J1 = J , J2 = 0, (b) J1 = J2 = J . The arrows indicate kTc/J for
each case. Compare the result for the Ising model with (a).

58

Figure 3.10 plots all three cases. Although the SOS model predicts that the

surface tension vanishes at Tc, the interface width remains finite. The comparison

shows the remarkable breakdown of the SOS model as T → Tc. In the Ising model,

the interface width and the specific-heat capacity diverge at Tc while they remain

finite in the SOS model. The calculation of the interface width from the SOS model

agrees with that from the Ising model only up to T ' 1.25J .

3.6 Angular Dependence of Surface Tension

The one-dimensional Ising model is naturally paramagnetic. It cannot sponta-

neously magnetize for any temperature greater than zero [97]. To force it to have

non-zero magnetization, requires an external magnetic field Hm to the Ising Hamil-

tonian:

H =
∑

i,j

Jij(1− δσi,σj) +Hm

∑

i

σi, (3.43)

where i is a sum over the entire lattice and j is a sum over the neighbors of i.

By the same analogy, the interface (for the Ising or SOS model) in a square

lattice is naturally horizontal or vertical. In order to bias the interface to have a

non-zero average slope, I introduce an external torque field τ [71]:

H =
∑

i,j

Jij(1− δσi,σj) + τh, (3.44)

where h is the mean slope of the interface, defined to be:

h = tan θ =
r=∞
∑

r=−∞

rPr =
r=∞
∑

r=1

r(Pr − P−r). (3.45)

With the added term, the Helmholtz free energy is a function of T , L and h:

dU = TdS + σdL+ τdh,

dF = dU − TdS − SdT

= −SdT + σdL+ τdh. (3.46)

59

L

θ

spin up

spin down
hL

Figure 3.11. An interface at an angle θ relative to the horizontal.

Here, the external field τ is the independent variable and h is a function of τ .

Defining a new free energy that is a function of τ instead of h is more convenient.

I define a new free energy G, in line with the Gibbs free energy, where the pressure

acts as the external field and the volume is the dependent variable:

G ≡ F − τh = −kT lnZτ ,

dG = dF − τdh− hdτ

= −SdT + σdL− hdτ. (3.47)

G is the natural free energy of the new (T ,L,τ) ensemble and Zτ its partition

function. The Helmholtz free energy becomes:

F = −kT lnZτ + τh = −kTL ln Ξτ + τh. (3.48)

For zero field, F recovers the form of equation 3.18. The surface tension σ again

equals the Helmholtz free energy per unit length:

σ =
F√

h2L2 + L2
=

F

L
√
tan2 θ + 1

=
F cos θ

L
. (3.49)

The external field modifies the step energies (equation 3.4) to:

εr = (2 + 2|r|)J1 + 4|r|J2 − τr, r 6= 0. (3.50)

τ > 0, biases the interface to have positive slope (energies for positive r decrease).

We derive the partition function for a non-zero-slope interface in the same way as

60

for a horizontal interface. With the added field, the partition function per unit

horizontal length, Ξ (equation 3.15) becomes:

Ξτ = e−(2J1+4J2)/kT +
∞
∑

r=1

(e−[(2+2r)J1+4rJ2+τr]/kT + e−[(2+2r)J1+4rJ2−τr]/kT). (3.51)

Using the definitions of equation 3.16 and further defining,

η ≡ eτ/kT , (3.52)

equation 3.51 simplifies to:

Ξτ = γ21γ
4
2 + γ21

∞
∑

r=1

[

(γ21γ
4
2η)

r + (γ21γ
4
2η
−1)r

]

. (3.53)

η is analogous to the thermodynamic definition of fugacity: eµ/kT (where µ is the

chemical potential) [60], hence I call η the fugacity. A few lines of algebra show

that:

Ξτ = γ21γ
4
2

[

1 + γ21(1− γ42)(η + η−1) + γ41γ
4
2(γ

4
2 − 2)

1− γ21γ
4
2(η + η−1) + γ41γ

8
2

]

. (3.54)

For h = 0, τ = 0, η = 1, Ξτ reduces to Ξ in equation 3.17. For J2 = 0:

Ξτ = γ21

[

1− γ41
1− γ21(η + η−1) + γ41

]

. (3.55)

For J1 = J2 = J :

Ξτ = γ6
[

1 + γ2(1− γ4)(η + η−1) + γ8(γ4 − 1)

1− γ6(η + η−1) + γ12

]

. (3.56)

The slope h is a function of τ and kT . From equation 3.45:

h =

∑∞
−∞ rζr
Ξτ

= kT
∂

∂τ
ln Ξτ

= η
∂

∂η
ln Ξτ

...

=
ag−

b+ cg+ − dg2+
, (3.57)

61

where,

g± ≡ η ± η−1,

a ≡ γ21(1− γ41γ
8
2),

b ≡ (1 + γ41γ
8
2)(1 + γ41γ

8
2 − 2γ41γ

4
2),

c ≡ γ21 [1− 2γ42(1 + γ41γ
8
2) + 3γ41γ

8
2],

d ≡ γ41γ
4
2(1− γ42). (3.58)

We could obtain τ (or η) as a function of h and kT by inverting equation 3.57,

which involves solving a quartic equation and is extremely cumbersome. Instead,

I will solve for τ numerically. Appendix B gives the Mathematica program that

generates the polar plot in figure 3.13(b).

Again, comparing the SOS model with known results for the Ising model is

instructive. I chose to compare the surface tensions of interfaces at various angles.

I mentioned earlier (section 3.3) that the SOS model agrees with the Ising model

only when J2 = 0 and θ = 0◦. For angles greater than zero, the SOS model differs

slightly from the Ising model, as in figure 3.12.

Equations 3.48, 3.49 and 3.55 give the surface tension of the SOS model. Because

τ depends on both h and kT , I first numerically calculate it from equation 3.57 and

then substitute its value into equations 3.48 and 3.55.

The surface tension of the nearest-neighbor Ising model for an arbitrary-angle

interface is [106]:

σIsing(θ, kT) = kT
[

| cos θ| sinh−1(p| cos θ|) + | sin θ| sinh−1(p| sin θ|)
]

,

p =
2

q

[

1− q2

1 + (sin2 2θ + q2 cos2 2θ)1/2

]1/2

,

q =
2 sinh(2J/kT)

cosh2(2J/kT)
. (3.59)

Equation 3.59 reduces to equation 3.20 when θ = 0.

62

0 0.5 1 1.5 2 2.5
−1

0

1

2

3

kT/J

σ

θ = 0°

θ = 9°

θ = 27°

θ = 45°

(a) SOS

 1

 2

 3

30

210

60

240

90

270

120

300

150

330

180 0
kT = 1.5J

kT = 1.0J

kT = 0.5J

kT = 0.1J

(b) SOS

0 0.5 1 1.5 2 2.5
−1

0

1

2

3

kT/J

σ

θ = 0°

θ = 9°

θ = 27°

θ = 45°

(c) Ising

 1

 2

 3

30

210

60

240

90

270

120

300

150

330

180 0
kT = 1.5J

kT = 1.0J

kT = 0.5J

kT = 0.1J

(d) Ising

Figure 3.12. (a) and (c): Surface tension σ as a function of normalized temperature
kT/J at various angles for the SOS and Ising models respectively. (b) and (d):
Polar plots of surface tension at various temperatures for the SOS and Ising models
respectively. Here, J2 = 0 and all energies are in units of J .

Figure 3.12 plots the surface tension of the Ising and SOS models as a function of

temperature (for fixed angle) and as a function of angle (for fixed temperature). The

Ising model becomes more isotropic as the temperature increases (the polar plot of

σ becomes rounder). The SOS model is most isotropic for kT ' 1.25J . Anisotropy

increases for kT & 1.25 (figures 3.12(a) and 3.14(a)), close to the temperature where

63

the interface widths of the SOS model and the Ising model start to diverge (figure

3.10). At the beginning of this chapter, I mentioned that the SOS model is a low-

temperature approximation of the Ising model. The surface tension of the SOS

model agrees well with that of the Ising model for kT . 1.25J and ∀ θ.2

The SOS model agrees with the Ising model exactly for θ = 0,∀ kT 6 kTc and

for kT = 0,∀ θ. The critical temperature (where σ = 0) for the Ising model is

independent of the orientation of the interface, while the critical temperature of the

SOS model increases with the interface angle (figure 3.12(a) and table 3.2).

Finally, I consider the equivalent-neighbor interactions, J1 = J2 = J . I calculate

the τ field numerically by solving equation 3.57, then substituting the results into

equations 3.48 and 3.56. Figure 3.13 shows the corresponding plots.

0 1 2 3 4 5 6
−2

0

2

4

6

8

kT/J

σ

θ = 0°

θ = 27°

θ = 36°

θ = 45°

(a)

 2

 4

 6

 8

30

210

60

240

90

270

120

300

150

330

180 0
kT = 3.5J

kT = 2.5J

kT = 1.5J

kT = 0.1J

(b)

Figure 3.13. Surface tension σ of the SOS model up to second-nearest-neighbor
interactions (a) as a function of normalized temperature kT/J at various angles,
(b) as a function of angle at various temperatures.

2I define the anisotropy to be:

φ(kT) ≡ max{σ(kT)polar} −min{σ(kT)polar}
max{σ(kT)polar}+min{σ(kT)polar}

.

σ(kT)polar is the polar plot of σ at temperature kT . φ = 0 corresponds to the isotropic case. φ = 1
corresponds to the most anisotropic case.

64

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

kT/J

φ

SOS model

Ising model

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

kT/kT
c

φ

SOS nn1
SOS nn2

(b)

Figure 3.14. Comparison of the anisotropy φ between (a) nearest-neighbor SOS and
Ising models, (b) nearest- and second-nearest-neighbor (J1 = J2) SOS models as a
function of temperature.

The second-nearest-neighbor SOS model is most isotropic at about kT ' 2.7J .

Its critical temperature also increases with interface angle (figure 3.13 and table

3.2). Comparing the results for nearest-neighbor and second-nearest-neighbor inter-

actions, shows that anisotropy due to lattice discretization decreases as the inter-

action range increases (figure 3.14(b)). In both cases (nearest- and second-nearest

SOS model), the lattice is most isotropic (φ is smallest) at kT ' 0.5kTc.

TABLE 3.2

CRITICAL TEMPERATURES IN THE SOS MODEL. NN1: NEAREST; NN2:

UP TO SECOND-NEAREST-NEIGHBOR INTERACTIONS.

kTc/J(±0.0005)
Angle nn1 nn2

0◦ 2.269 5.379
9◦ 2.276 5.398

18◦ 2.297 5.460
27◦ 2.334 5.573
36◦ 2.393 5.755
45◦ 2.485 6.041

65

CHAPTER 4

SIMULATION RESULTS FOR PHASE SEPARATION

In this chapter, I present Monte-Carlo-dynamics simulations of phase separation

in the Ising model (equation 2.1) with J1 = J2 = J3 = J4 = J using the three

algorithms I defined in section 2.8. I calculate the surface tension, internal energy,

entropy and specific heat of interfaces as a function of algorithm, temperature,

interface angle and interaction range. I also analyze the interface width for zero-

angle interfaces as a function of temperature and algorithm.

Since I wish to compare my Monte-Carlo simulations to theoretically derived

functional forms, in this chapter, I also develop a consistent set of empirical formulae

for thermodynamic quantities which are based on my understanding of the SOS

model. For example, since my simulations allow for overhangs, I consider this effect

by assuming the step energies are degenerate. Also, in an Ising model with third-

neighbor or longer interactions adjacent steps interact; I include this effect by adding

“virtual” steps between the physical steps. These types of assumptions allow me to

derive a set of functional forms for the thermodynamic quantities my simulations

calculate. The functional forms depend on five fitting parameters, three of which are

energies and two of which are dimensionless. I call the resultant model the modified

SOS model.

This model has the advantage of allowing me to extract consistent information

about quantities like the critical temperature kTe where the energy and the heat

66

capacity of the interface diverge. It is a purely empirical model.

4.1 Rate of Equilibration

In order to ensure that I gather Monte-Carlo simulation results after the interface

has equilibrated, I need to find the rate of equilibration.

I begin with a horizontal interface and equilibrate it using either Algorithm

One, Two or Three at different temperatures. I calculate the energy per unit lateral

length (step energy in the SOS model) after each Monte-Carlo step, where one

Monte-Carlo step equals L × L spin-flip attempts (whether successful or not). I

sometimes gather data after multiple or fractional Monte-Carlo steps. For example,

a half Monte-Carlo steps equals � L× L spin-flip attempts.

Figure 4.1 shows the average step energies as a function of time at various temper-

atures. The interaction range is up to fourth-nearest neighbors and all interactions

are of equal strength. I show the simulation results for Algorithms One and Two

together to highlight their similarities and differences. The higher the temperature,

the higher the average energy per step. The equilibrium average energies of both al-

gorithms are the same, but Algorithm One equilibrates faster than Algorithm Two.

Algorithm Three resembles Algorithms One and Two but, with lower equilibrium

energies (figure 4.2).

I analyze of the dependence of equilibrium step energies on temperatures in the

next section. Here, I focus on the time dependence of the step energy. I fit the

average step energy, 〈ε〉, to the empirical equation that I discovered through trial

and error:

R ≡ 〈ε〉 − 22

〈ε〉eq − 22
= 1− 1

(1 + t/tr)β
, (4.1)

where 〈ε〉eq is the equilibrium step energy (when t → ∞) and t is the time in

units of Monte-Carlo steps (MCS). The fitting parameters are the characteristic

67

10−1 100 101 102 103 104
20

25

30

35

40

45

50

MCS

In
te

rf
ac

e
en

er
gy

 p
er

 u
ni

t l
en

gt
h

(J
)

kT = 6 J

kT = 5 J

kT = 4 J

kT = 3 J

kT = 2 J

kT = 1 J

Figure 4.1. The average energy per unit lateral length (average step energy for the
SOS model) of a horizontal interface as a function of time (MCS). ×: Algorithm
One, #: Algorithm Two. Each data point is a result of averaging 100 simulations.
Solid lines are best fits to equation 4.1. The interaction range is up to fourth-nearest
neighbors. All interactions are of equal strength, J1 = J2 = J3 = J4 = J .

68

0 1 2 3 4 5 6
20

25

30

35

40

45

50

kT/J

E
qu

ili
br

iu
m

 s
te

p
en

er
gi

es
/J

Algorithm One

Algorithm Two

Algorithm Three

Figure 4.2. The equilibrium step energies in the SOS model (energies per unit lateral
length) as a function of algorithm and temperature. Error bars are smaller than the
data points. Solid lines are best fits to equation 4.11.

time constant tr and the growth exponent β. I subtract 22J from 〈ε〉 because

at t = 0, the interface is perfectly horizontal. For interactions up to fourth-nearest

neighbors, the energy per unit length of a flat horizontal interface is 22J . Therefore,

the normalized average step energy, R, ranges from 0 to 1 as t goes from 0 to ∞.

Table 4.1 and figure 4.3 show the results for the fitting parameters.

From figure 4.3(a), tr’s dependence on temperature is similar for all three algo-

rithms. The time tr first decreases with temperature, and then increases again after

reaching a minimum. For Algorithms One and Two, tr is minimal for kT ' 3.0J

while for Algorithm Three, tr is minimal for kT ' 4.5J . The tr of Algorithm Two is

always greater than that of Algorithm One. If we look at figure 4.2, the equilibrium

step energy for Algorithms One and Two for kT ' 3J is roughly the same as that

for Algorithm Three for kT ' 4.5J . The location of the minimal tr should be a

function of the surface roughness (equilibrium step energy), and should not depend

on the algorithm. Although the interface is not rough at low temperatures, due to

69

TABLE 4.1

THE CHARACTERISTIC TIME CONSTANTS, tr, AND GROWTH

EXPONENTS, β, OF THE EQUILIBRIUM STEP ENERGY FOR

ALGORITHMS ONE, TWO AND THREE AS A FUNCTION OF

TEMPERATURE FOR FOURTH-NEAREST-NEIGHBOR INTERACTIONS

(J1 = J2 = J3 = J4 = J).

tr ± 0.05MCS β ± 0.01
kT/J Algorithm Algorithm

One Two Three One Two Three
1.0 2.24 3.92 5.30 0.80 0.83 0.78
1.5 1.65 2.86 2.48 1.39 1.43 1.03
2.0 1.47 2.70 3.21 1.70 1.84 1.83
2.5 1.16 2.40 2.20 1.52 1.83 1.56
3.0 1.15 1.72 2.42 1.47 1.45 1.83
3.5 1.20 1.94 1.74 1.45 1.53 1.46
4.0 1.54 2.53 2.02 1.63 1.79 1.66
4.5 1.64 2.89 1.66 1.54 1.86 1.41
5.0 2.17 3.30 2.17 1.69 1.88 1.74
5.5 2.53 3.37 1.95 1.65 1.64 1.56
6.0 2.86 3.97 2.32 1.49 1.57 1.82

1 2 3 4 5 6
1

2

3

4

5

6

kT/J

t r (M
C

S)

(a)

1 2 3 4 5 6
0.6

0.8

1

1.2

1.4

1.6

1.8

2

kT/J

β

(b)

Figure 4.3. (a) Variation of the time constant tr with temperature kT . (b) Variation
of growth exponent β with temperature kT . ×: Algorithm One. #: Algorithm Two.
¤: Algorithm Three.

70

weak thermal agitations, the surface still takes a long time to equilibrate. At high

temperatures, the interface is very rough, and it takes a correspondingly longer time

to reach its final roughness. Between these two regimes the surface is smooth enough

and the temperature high enough for the surface to reach the final roughness in a

relatively short time.

Figure 4.3(b) shows that the temperature dependence of the growth exponents,

β is similar for all three algorithms. For temperatures kT 6 2J , β is roughly pro-

portional to temperature. For temperatures kT > 2J , β remain roughly constant,

fluctuating around β = 1.6. Table 4.2 shows the average values of the growth

exponent, β, for each algorithm and for temperatures kT > 2J .

TABLE 4.2

AVERAGE GROWTH EXPONENT β FOR 2J 6 kT 6 6J .

Algorithm 〈β〉
One 1.57± 0.03
Two 1.71± 0.06
Three 1.65± 0.05

At t = 0, 〈ε〉 = 22J and R = 0. As t increases, 〈ε〉 → 〈ε〉eq and R → 1.

Therefore, 1 − R measures the closeness of the step energy 〈ε〉 to the equilibrium

value 〈ε〉eq. The smaller the value of 1−R, the closer 〈ε〉 to 〈ε〉eq. Figure 4.4 shows

1 − R as a function of time. The solid line (best fit) shows that 1 − R decreases

towards zero as time increases, but the simulated values of 〈ε〉 fluctuate in a range of

about ±1% (|1−R| = 10−2) around their equilibrium value. When the step energy

lies within 1% of its equilibrium value, I consider the interface fully equilibrated.

The smaller the value of β, the slower the equilibration. Equilibration is slower at

low temperatures. At higher temperatures (kT > 2J), β is roughly constant (' 1.6).

The rate of equilibration depends only on tr to which it is inversely proportional.

Table 4.3 shows that for β = 1.6 the average step energy lies within 1% of its

71

10−1 100 101 102 103

10−4

10−3

10−2

10−1

100

t(MCS)

1
−

 R

Figure 4.4. 1− R vs. t for Algorithm One, at kT = 3J , where R is the normalized
average step energy. The solid line is the best fit to equation 4.1. At t = 100MCS,
1 − R 6 10−2, therefore, R is within 1% of its equilibrium value. Regardless of
temperature, fluctuation amplitudes remain mostly in the range between 10−2 and
10−3.

TABLE 4.3

NORMALIZED AVERAGE STEP ENERGY, R AS A FUNCTION OF TIME

FOR FOUR DIFFERENT VALUES OF β.

R
t/tr β = 1.6 β = 1.0 β = 0.8 β = 0.5

1 0.65 0.50 0.43 0.29
2 0.81 0.67 0.58 0.42
3 0.88 0.75 0.67 0.50
4 0.91 0.80 0.72 0.55
5 0.93 0.83 0.76 0.59

10 0.97 0.90 0.85 0.70
20 0.99 0.95 0.91 0.78
50 1.00 0.98 0.95 0.86

100 1.00 0.99 0.98 0.90

72

equilibrium value after about 20tr. For tr ' 3MCS, this time is about 60MCS.

For J 6 kT < 2J (0.8 < β < 1.6), equilibration takes about 100tr, anywhere

between 200MCS and 500MCS. For kT < J (β < 0.8), equilibration may take

more than 1000MCS. My simulations are not long enough (tmax = 2000MCS) to

determine the exact values of tr and β for kT < J .

To analyze 〈ε〉eq (figure 4.2) as a function of temperature, I need to explain the

fitting equations I use, which I base on the SOS model in chapter 3.

4.2 Modified SOS model

I wish to compare my Monte-Carlo simulation results to those for the SOS model.

I modified the second-nearest-neighbor SOS model from chapter 3. Through trial

and error, I found that an optimal fit requires five parameters. I describe here my

logic for using these five parameters.

The step energy of the SOS model with up to second-nearest-neighbor interac-

tions and equal coupling constants (J1 = J2) is:

εr = (2 + 6|r|+ 4Cr)J, (4.2)

where Cr comes from equation 3.3. For arbitrary-range interactions, I propose a

general equation:

εr = (εa + εb|r|+ εcCr)J, (4.3)

where εa, εb and εc are fitting parameters. In order to allow for overhangs, I add

a degeneracy term (δ) to the partition function per step. In the SOS model, the

interface is single-valued with no overhangs. Overhangs cause the interface to be

multi-valued, increasing the degeneracy of the step energy. Therefore, I fit to a

modified partition function per step:

Ξ =
∞
∑

r=−∞

δ|r|ζr, (4.4)

73

where:

ζr = e−εr/kT . (4.5)

The previous chapter showed that for third-nearest-neighbor or longer interac-

tions, adjacent steps interact, with the energy of a step depending not only on its

height r, but also on the height of its neighbors. The situation is analogous to a

one-dimensional Ising model where each spin interacts with its nearest neighbors.

The method of transfer matrices [111, 120] easily solves the partition function of

the one-dimensional Ising model. Because the spin values are either +1 or -1, the

dimension of the transfer matrix is only 2 × 2. Unfortunately, in the SOS model,

the height r ranges from −∞ to∞. Therefore, the corresponding transfer matrix is

∞×∞. I derived this matrix by finding a consistent way of defining the interaction

energy between neighboring steps for third-nearest-neighbor interactions, but will

leave the daunting task of solving it to future investigations.1 Here I account for

the interactions between neighboring steps by adding a fifth fitting parameter. I

propose that a step’s free energy:

F = −kT ln ΞA, (4.6)

instead of:

F = −kT ln Ξ. (4.7)

The interactions between steps are akin to adding “virtual” steps between the

physical steps. The parameter A therefore accounts for the interactions between

steps by including more steps than the physical width of the lattice. With these

assumptions, the five fitting parameters are εa, εb, εc, δ and A.
1Kramers and Wannier [66] showed that the partition function of the two-dimensional Ising

model is equal to the largest eigenvalue of an infinite matrix of simple structure. Domb [26]
showed that a number of problems in statistical mechanics of cooperative phenomena reduce to
determining the largest eigenvalue of an infinite matrix of characteristic bi-diagonal structure.

74

If we substitute equation 4.2 into equation 4.4 and follow the same procedures

as those after equation 3.15, we obtain:

Ξ = γa

(

γc +
2δγb

1− δγb

)

, (4.8)

where:

γa ≡ e−εa/kT ,

γb ≡ e−εb/kT ,

γc ≡ e−εc/kT . (4.9)

The Helmholtz free energy is:

F = A
[

εa − kT ln

(

γc +
2δγb

1− δγb

)]

. (4.10)

The internal energy is:

〈ε〉eq = U = −(kT)2 ∂

∂(kT)

(

F

kT

)

= A
{

εa +
2εbδγb + εcγc(1− δγb)

2

(1− δγb)[2δγb + (1− δγb)γc]

}

= A
[

εa +
2εbγaδγb

Ξ(1− δγb)2
+
εcγaγc
Ξ

]

= A(εa + εb〈|r|〉+ εc〈Cr〉). (4.11)

The third and fourth lines of equation 4.11 are equal term-by-term. The entropy

and specific-heat capacity come from the usual thermodynamic relations:

S =
U − F

T

= −∂F
∂T

,

Cv =
∂U

∂T
. (4.12)

I do not write out the explicit and cumbersome form of S and Cv.

75

4.3 Temperature Dependence of 〈ε〉eq for a Zero-Angle Interface

I simulated phase separation of a horizontal interface using the Ising-model Hamilto-

nian (equation 2.1) and the modified Metropolis Algorithms (One, Two and Three)

from section 2.8. Figure 2.6 shows snapshots of the typical interface for each of the

algorithms. The range of interactions is up to fourth-nearest neighbors with equal

coupling constants (J1 = J2 = J3 = J4 = J). I calculate the interface energy E and

divided the energy by the length of the lattice (L) to obtain the average energy per

unit lateral length (〈ε〉 = E/L), which I compare to the step energy of my modified

SOS model. I use a model similar to the second-nearest neighbor SOS model in

chapter 3.

Note that equations 4.10 to 4.12 relate the free energy, internal energy, entropy

and heat capacity to one set of five parameters: εa, εb, εc, δ and A. The model

these equations represent is empirical, but has the advantage that one set of five

parameters provides all thermodynamic quantities.

I use equation 4.11 to fit the simulation results for the average energy per unit

lateral length, using the nlinfit function in Matlab 7 (appendix C). The nlinfit

function uses the Levenberg-Marquardt method [103] to find the optimal values of

the fitting parameters and determine their 95% confidence intervals. Table 4.4 shows

the curve-fitting results, figure 4.2 the corresponding plots.

The optimal parameter values need not be unique and I found many sets of fitting

parameters that fit the simulation results well. To weed out unphysical results, I

use the following acceptance criteria:

1. At kT = 0, the interface is perfectly flat; therefore the energy per unit length
must equal 22J , i.e. A(εa + εc) = 22J .

2. For interactions up to fourth-nearest neighbors, the energy of a step of size
one (r = 1) is 30J , therefore A(εa + εb) ' 30J .

3. Since step energy increases with step size, εb must be positive.

76

4. The best fit should reproduce the characteristic peak of Cv at low temperatures
(Figure 3.5(d)).

5. The order of magnitude of εa, εb and εc should be smaller than simulation re-
sults for 〈ε〉, otherwise accounting for the values of 〈ε〉 if εa,b,c À 〈ε〉 (equation
4.3) would be difficult.

TABLE 4.4

RESULTS OF FITTING AVERAGE STEP ENERGIES TO EQUATION 4.11

FOR A ZERO-ANGLE INTERFACE WITH J1 = J2 = J3 = J4 = J . THE

PARAMETERS δ AND A ARE DIMENSIONLESS.

Algorithm εa/J εb/J εc/J δ A
One 14.78±1.47 5.78±0.91 3.36±0.72 2.05±0.22 1.21±0.05
Two 14.78±1.40 5.81±0.86 3.38±0.68 2.06±0.21 1.21±0.05
Three 7.01±0.98 7.52±0.86 4.93±0.72 0.89±0.04 1.84±0.08

Figure 4.2 shows the internal energies simulated using the three algorithms as a

function of temperature. Figure 4.5 shows the surface tension, entropy and specific-

heat for the three algorithms. In all cases, Algorithm One coincides with Algorithm

Two over the entire range of temperatures.

Solving σ = 0 numerically gives the critical temperatures, kTc, for each algorithm

(table 4.5). kTc is largest for Algorithm Three. From equation 4.11, U diverges

when δγb = 1. From this observation, we can derive another critical temperature

kTe where both U and Cv diverge (table 4.5). For all algorithms, kTe > kTc. The

kTe of Algorithm Three is infinite, as in the SOS model, while the behavior of kTe

for Algorithms One and Two is closer to the behavior in the Ising model.

4.4 Interface Width

Section 4.3 compared the thermodynamic properties of an interface for the three

algorithms. This section analyzes the interfacial geometry, specifically the interface

width. Following the steps in section 3.5, I derive the root-mean-squared width of

77

0 1 2 3 4 5 6 7
−5

0

5

10

15

20

25

kT/J
σ

/J

Algorithm One

Algorithm Two

Algorithm Three

(a) σ

0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

kT/J

S
/k

Algorithm One
Algorithm Two
Algorithm Three

(b) S

0 1 2 3 4 5 6 7
0

4

8

12

16

20

24

kT/J

C
v /k

Algorithm One
Algorithm Two
Algorithm Three

(c) Cv

Figure 4.5. (a) Surface tension σ, (b) entropy S per step and (c) specific-heat
capacity Cv per step. Results for J1 = J2 = J3 = J4 = J , a zero-angle interface and
simulations for kT up to 6.0J . In all cases, Algorithm One is indistinguishable from
Algorithm Two.

TABLE 4.5

CRITICAL TEMPERATURES IN THE SOS MODEL FOR A HORIZONTAL

INTERFACE FOR DIFFERENT ALGORITHMS USING AN EQUIVALENT

NEIGHBOR MODEL (J1 = J2 = J3 = J4 = J).

Algorithm kTc/J kTe/J
One 6.37±0.38 8.04±0.10
Two 6.37±0.36 8.05±0.09
Three 9.90±1.02 ∞

78

the interface in the modified SOS model:

〈r2〉 = 2
∞
∑

r=1

r2Pr

=
2

Ξ

∞
∑

r=1

r2δre−εr/kT

=
2

Ξ

∞
∑

r=1

r2δre−(εa+εbr)/kT

=
2

Ξ
γa
∞
∑

r=1

r2(δγb)
r. (4.13)

If we define:

y ≡
∞
∑

r=1

(δγb)
r =

1

(δγb)−1 − 1
, (4.14)

then:

∞
∑

r=1

r2(δγb)
r =

1

ε2b

∂2y

∂(1/kT)2

=
cosh(εb/kT−ln δ

2
)

4 sinh3(εb/kT−ln δ
2

)
. (4.15)

Substituting equation 4.15 into equation 4.13 and using Ξ from equation 4.8:

〈r2〉 = (δγb)
1/2

2δγb + (1− δγb)γc

cosh(εb/kT−ln δ
2

)

sinh2(εb/kT−ln δ
2

)
. (4.16)

Substituting the parameter values from table 4.4 into equation 4.16 gives rrms ≡
√
r2 as a function of temperature which I plot in figure 4.6. The interface width

diverges when εb/kT = ln δ, giving the same kTe value as in the previous section

(section 4.3). The interface width rrms diverges at the same temperature as the

interface’s internal energy U and specific heat Cv.

In the Ising model, the specific heat capacity and interface width diverge at kTc

while the interface width in the SOS model does not diverge at a finite temperature.

Equation 4.16 shows that when we include an overhang term (δ), the interface

width of the modified SOS model diverges at a finite temperature kTe. Although

the temperature kTe at which the internal energy, specific heat and interface width

79

0 1 2 3 4 5 6
0

1

2

3

4

5

6

kT/J

r rm
s(p

ix
el

s)

Algorithm One

Algorithm Two

Algorithm Three

Figure 4.6. rrms (equation 4.16) vs. kT . Algorithm One is indistinguishable from
Algorithm Two.

diverge differs from the critical temperature kTc, kTe is still finite, and of the same

order of magnitude as kTc. I speculate that the exclusion of overhangs in the SOS

model destroys the second-order phase transition which occurs at kTc in the Ising

model. Including overhangs in an empirical fashion restores the phase transition,

albeit at a slightly higher temperature.

The exclusion of overhangs not only affects the existence of phase transitions, it

also changes the interface morphology. Requiring the interface to be single valued,

i.e. prohibiting overhangs, changes the interface from self similar to self affine [22].

A self-similar function obeys the scaling rule:

f(x) ∼ 1

b
f(bx), (4.17)

while a self-affine function obeys the scaling rule:

f(x) ∼ 1

bα
f(bx). (4.18)

Self-similar functions look the same when we rescale both the x and y-axes by the

same factor b. A self-affine function looks the same if we rescale the x- and y-axes

80

by different amounts, i.e. b and bα where α is the Holder exponent or self-affine

exponent [8].

Equation 3.34 shows that w is a self-affine function of d with α = 0.5. Here, the

self-affine exponent is the roughness exponent. In Brownian motion, the self-affine

exponent is also called the Hurst exponent [36, 98].

Previous investigations [91, 92] of interfaces driven by external forces (random-

field Ising model) have shown that at large length scales the interface is self-affine

with α = 0.5.

For distances d of the order of interface width, the self-affine exponent relates to

the fractal dimension of the interface [8, 76, 114]:

Df = 2− α. (4.19)

For α = 0.5, the corresponding fractal dimension is Df = 1.5. For distances much

larger than a few interface widths, the interface looks smooth and one-dimensional,

and the corresponding fractal dimension at these length scales isDf = 1. The fractal

dimensions of some rough surfaces is close to 1.5. For example, the fractal dimension

of the external perimeter of gravity-invasion percolation is Df ' 1.36± 0.3 [13]. A

previous Monte-Carlo simulation of the SOS model found Df = 1.58 ± 0.06 [81].

The fractal dimension of diffusion fronts is Df ' 1.75 [107].

Experimentally, we can define and measure the interface width in many ways,

e.g. by calculating the standard deviation of the interface height over horizontal

intervals of length d:

w1(d) =
√

〈(h− 〈h〉d)2〉d =
√

〈h2〉d − 〈h〉2d , (4.20)

where the subscript d indicates that the average is over an interval of length d. The

widths w1(d) of several intervals with the same horizontal length d can provide an

average value of w1(d). Alternatively, we can define the width as the average height

81

difference between two points separated by a horizontal distance d:

w2(d) = 〈|h(x+ d)− h(x)|〉, (4.21)

or equivalently:

w3(d) =
√

〈(h(x+ d)− h(x))2〉 . (4.22)

All three definitions (4.20, 4.21, 4.22) should give the same roughness exponent

when we fit w1, w2, w3 to:

w1,2,3(d) = wod
α. (4.23)

In the presence of overhangs, the height of the interface h(x) is multi-valued and

I include all heights at a given x in the average. For large values of d (À interface

width), a single-valued function hsv(x), defined as the highest point for each x can

approximate the interface. My simulations show that widths calculated with h(x)

and hsv(x) are within error of each other.

0 32 64 96 128
0

0.2

0.4

0.6

0.8

1

y

m
(y

)

(a)

0 32 64 96 128
0

0.01

0.02

0.03

0.04

0.05

y

p(
y)

(b)

Figure 4.7. (a) Schematic of a typical magnetization profile across an interface. (b)
The first derivative (slope) of the magnetization profile.

An alternative definition of width equates the interface width to the width of

the first derivative of the magnetization profile across the interface (figure 4.7) [84].

82

The magnetization is 0 for spin 0 and 1 for spin 1. I take the interface location to

be m(y) ' 0.5.

The slope of the magnetization profile is:

p(y) =
m(y +∆y)−m(y)

∆y
, (4.24)

and the interface width is:

Wm =
√

〈y2〉 − 〈y〉2,

〈y〉 =
∫

yp(y)dy,

〈y2〉 =
∫

y2p(y)dy. (4.25)

I simulate the phase separation of a horizontal interface over 10, 000MCS. At

t = 0MCS, the interface is perfectly horizontal and its width is zero. As t increases,

the interface roughness and width increase. I calculate w(d) at regular time intervals.

Figure 4.8(a) shows a typical log-log plot of w vs. d at the beginning and the end

of a simulation. The slope gives the roughness exponent α of the interface. The

intercept of the plot gives wo. However, I use the first data point to approximate

wo since the result is considerably less noisy. The difference between the first data

points and the actual intercept is the multiplicative factor 2α.

The final slope α (between d = 2 and d = 64) is the same regardless of tem-

perature and algorithm (figures 4.8(b) and 4.8(c)). The intercept wo increases with

temperature and depends on the algorithm (figures 4.8(b) and 4.8(d)). I calcu-

lated the equilibrium value of α by averaging the slope between t = 2000MCS and

10000MCS. Similarly, wo averages the first data point for t between 2000MCS

and 10000MCS.

Figure 4.9 shows my analysis of the interface width using w3. The results for

w1 and w2 (not shown) are similar to w3 both qualitatively and quantitatively. The

83

100 101 102
0.6

1

2

3

4

5
6
7

d(pixels)

w
3(p

ix
el

s)
t = 100 MCS

t = 104 MCS

(a)

100 101 102

0.4

0.6

0.8
1

2

3

4
5
6
7
8
9

d(pixels)

w
3(p

ix
el

s)

kT = 1J
kT = 2J
kT = 3J
kT = 4J
kT = 5J
kT = 6J

(b)

100 101 102 103 104
10−3

10−2

10−1

100

t(MCS)

α

Algorithm One
Algorithm Two
Algorithm Three

(c)

100 101 102 103 104
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

t(MCS)

w
o(p

ix
el

s)

Algorithm One
Algorithm Two
Algorithm Three

(d)

Figure 4.8. (a) Log-log plot of w3 vs. d at the beginning and the end of simulations
of phase separation using Algorithm One at fixed kT = 3.0J . The lateral length of
the interface is 512 pixels. Each data point averages 20 independent simulations. (b)
Log-log plot of w3 vs. d at t = 10, 000MCS at various temperatures. (c) Variation
of the slope α in time for fixed kT = 3.0J for different algorithms. (d) Variation of
wo with time at fixed kT = 3.0J for different algorithms.

84

0 1 2 3 4 5 6 7
0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

kT/J

α

Algorithm One
Algorithm Two
Algorithm Three

(a)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

kT/J

w
o (p

ix
el

s)

Algorithm One
Algorithm Two
Algorithm Three

(b)

Figure 4.9. (a) Average α and (b) average wo of w3 (equation 4.23) as a function
of temperature for phase-separation simulations using Algorithms One, Two and
Three. Error bars in (b) are as thin as the lines.

TABLE 4.6

THE AVERAGE VALUE OF THE ROUGHNESS EXPONENT α OF THE

INTERFACE FOR ALGORITHMS ONE, TWO AND THREE. THE RANGES

OF TEMPERATURES OVER WHICH I AVERAGE α ARE: FOR w1, FROM

1.5J TO 6.0J ; FOR w2, FROM 2.0J TO 6.0J ; FOR w3, FROM 1.0J TO 6.0J .

〈α〉
Algorithm w1 w2 w3

One 0.435± 0.004 0.496± 0.004 0.467± 0.003
Two 0.426± 0.004 0.487± 0.003 0.461± 0.003
Three 0.429± 0.005 0.498± 0.004 0.456± 0.002

results for wm are noisy, but generally agree with figure 4.9(b). I did not calculate

wm as a function of the distance d. In figure 4.9(a), excluding the data point at

kT = 0.5J , the average value of α for all three algorithms is about 0.46. Table 4.6

gives the average values of α for w1, w2 and w3. The overall average α = 0.46±0.01.

Using equation 4.19, the fractal dimension Df of the interface is 1.54±0.01, in good

agreement with Mon’s result, Df = 1.58± 0.06 [81].

85

4.5 Non-zero-angle Interfaces

All my simulations begin with a flat interface, either horizontal, or at an angle.

In section 3.2, the interface may fluctuate, but on average, the interface is either

horizontal or vertical (θ = 0◦, 90◦). Because of the symmetry of the square lattice,

a horizontal interface is energetically the same as a vertical interface. For any initial

angle, the equilibrated interface using any algorithm is either horizontal or vertical.

In order to simulate an interface at an angle, I have to skew the lattice so that the

ground state of the interface is at an angle relative to the horizontal axis.

First, I draw a straight line at the desired angle (line AB in figure 4.10), dividing

the lattice into two phases: spin-0 and spin-1. Pixels that lie in the path of the

straight line are partly in the both spin-0 and spin-1 regions. I adopt the simple

rule that if more than half of the pixel lies in the spin-0 region, then it has spin 0,

otherwise, it has spin 1. The result is a staircase-like interface (figure 4.10).

A

B
Riser

Tread

Figure 4.10. The figure illustrates how I skew the lattice to simulate interfaces at
an angle.

I want this staircase-like interface instead of the horizontal interface to be the

ground-state configuration, i.e. have the lowest energy. For temperatures greater

than zero, the interface should fluctuate around this tilted interface instead of the

horizontal interface. This method is similar to applying a torque field to the SOS

model in section 3.6.

86

Borrowing terminologies used in carpentry, the horizontal parts of the steps are

treads and the vertical parts risers. Figure 4.10 shows how I redefine the nearest

neighbor of a pixel facing a riser (black arrows). The second, third and fourth

neighbors change similarly. In other words, all neighbors that lie to the right of a

riser shift up by one pixel and all neighbors that lie to the left of a riser shift down

by the same amount. If a neighbor is neither to the right nor left of a riser, then

I use the regular, unbiased neighbor list. All pixels in the same column (including

the bulk pixels) have similar new neighbor lists.

The periodic boundary condition joins points A and B and all other edge pixels

which are in the same relative position to each other as A and B, making the lattice

look like the thread of a screw. I fix the spin of the top row pixels to be 0 and the

bottom row to be 1. Any neighbors above the top row have spin 0 and below the

bottom row spin 1. For example, the bottom-right pixel has neighbors that lie below

the bottom row; by default, those neighbors have spin 1. Similarly, the upper-right

pixel’s neighbor is above the top row, its neighbor’s spin is therefore 0. For interfaces

with angles close to 45◦, I simulate the interface on a lattice with height > length

(figure 4.11(a)). For the 45◦ interface, first- and second-nearest neighbors shift (up

or down) by 1 pixel, while third- and fourth-nearest neighbors shift (up or down)

by 2 pixels.

For these new neighbor lists, the tilted interface is the lowest-energy configura-

tion. The energy of the tilted interface calculated using the skewed neighbor list is

the same as the energy of the horizontal interface calculated using regular, unbiased

neighbor list:

E(θ 6= 0, skewed neighbor list for angle θ) = E(θ = 0, regular neighbor list).

(4.26)

I simulate the interface using the new neighbor lists. At zero temperature,

87

Third−nearest

First−nearest
neighbors

neighbors

(a) 45◦ neighbor list

Third

First Second

Fourth

(b) 0◦ neighbor list

Figure 4.11. (a) A lattice with a 45◦ interface. I show only first- and third-neighbor
lists. (b) Regular (0◦) neighbor lists (arrows and shaded pixels).

the interface is a staircase similar to figure 4.11(a). For non-zero temperatures,

the interface fluctuates around its tilted minimum-energy configuration. Since the

energy of the tilted interface (using the skewed neighbor list) is the same as that of

the zero-angle interface (using the regular neighbor list), if we calculate the energy of

the tilted interface at any angle using the skewed neighbor list, the result is the same

as that for the zero-angle interface I discussed in section 4.3. In order to distinguish

among interfaces of different angles, during the gathering of Monte-Carlo data, I

calculate the energy of the tilted interface using the regular, unbiased neighbor

lists. For this set of simulations, I averaged only twenty simulations instead of one

hundred as for the zero-angle case. The range of interaction is up to fourth-nearest

neighbors with equal interactions for all neighbors.

I divide the interface energy U (calculated using the regular, unbiased neighbor

list) by the length of the interface L/cosθ, where L is the horizontal length of the

88

lattice and θ is the angle of the interface with respect to the horizontal (figure 3.6).

The result is the energy per unit interface length U cos θ/L. At zero temperature,

the internal energy U equals the Helmholtz free energy F , therefore, the surface

tension σ (equation 1.36) also equals U cos θ/L. Figure 4.12 plots the surface tension

vs. angle at kT = 0. The longer-range interaction reduces anisotropy compared to

figures 3.12(b) and 3.13(b). At kT = 0, the anisotropy φ for the equivalent fourth-

nearest-neighbor interaction is 0.018 compared to 0.050 for second-nearest neighbor

(figure 3.14(b)) and 0.154 for nearest-neighbor interaction (figure 3.14(a)).

 5

 10

 15

 20

 25

30

210

60

240

90

270

120

300

150

330

180 0
σ /J = 22

Figure 4.12. Surface tension σ for up to fourth-nearest-neighbor interactions at
kT = 0 for the Ising model with J1 = J2 = J3 = J4 = J . The dashed circle is at
σ/J = 22.

To find the fitting parameters for an interface at an angle, we could add a torque

field τ and use the same Mathematica program I used previously (section 3.6).

However, τ itself depends on the fitting parameters, so we face a chicken and egg

situation. we could guess a value of τ , find the best values of the fitting parameters,

then recalculate τ and iterate until the values converge.2 This method is very

laborious and the final values may depend on the initial guess. We might even fall

2Not only does τ depend on the fitting parameters, it also depends on the interface angle and
temperature. Therefore, we need to calculate a new value of τ for each angle and temperature.

89

into a limit cycle. Instead, I absorb τ into the fitting parameters and use equation

4.11 directly. I fit the simulation results using the same method I used in section

4.3. Table 4.7 presents the results. Figure 4.13 shows a few of the corresponding

plots.

0 1 2 3 4 5 6
20

25

30

35

40

45

50

55

kT/J

(U
/L

)(
J/

pi
xe

l)

Algorithm One
Algorithm Two

h = 8/256
h = 72/256

h = 136/256

h = 200/256

(a)

0 1 2 3 4 5 6

25

30

kT/J
(U

/L
)(

J/
pi

xe
l)

Algorithm Three

h = 8/256
h = 72/256

h = 136/256

h = 200/256

(b)

0 1 2 3 4 5 6 7 8
−5

0

5

10

15

20

25

kT/J

σ
/(

J/
pi

xe
l)

h = 8/256
h = 72/256
h = 136/256
h = 200/256

(c) Algorithm One

0 2 4 6 8 10 12 14 16
−5

0

5

10

15

20

25

kT/J

σ
/(

J/
pi

xe
l)

h = 8/256
h = 72/256
h = 136/256
h = 200/256

(d) Algorithm Three

Figure 4.13. (a) and (b) Plots of U/L vs. kT . Solid lines are best fits. The statistical
error for each point is no bigger than the symbols. (c) and (d) Surface tensions
σ = F cos θ/L vs. kT for Algorithms One and Three respectively.

The results of Algorithm One agree with Algorithm Two. Owing to better

statistics, Algorithm One agrees best with Algorithm Two for the zero-angle case.

90

TABLE 4.7

RESULTS OF FITTING SIMULATED VALUES OF ENERGY PER UNIT LENGTH U/L TO EQUATION 4.11 OF THE

MODIFIED SOS MODEL FOR INTERFACES AT VARIOUS ANGLES h = tan θ.

h = tan θ Algorithm εa/J εb/J εc/J δ A kTc/J kTe/J
One 14.60±5.20 6.01±3.12 3.57±2.52 2.11±0.79 1.22±0.18 6.38±1.39 8.05±0.54

8
256

Two 16.95±3.74 5.89±2.57 3.03±1.90 2.10±0.67 1.11±0.10 6.60±0.76 7.92±0.39
Three 6.94±2.77 7.61±2.48 4.94±2.10 0.86±0.09 1.86±0.20 10.15±3.19 ∞
One 18.40±6.78 4.73±4.74 2.42±3.18 1.82±1.06 1.10±0.19 6.59±0.82 7.92±1.05

40
256

Two 16.22±5.17 5.88±3.12 3.41±2.46 2.09±0.79 1.16±0.16 6.54±1.17 7.98±0.53
Three 6.94±3.41 7.92±3.21 5.32±2.71 0.88±0.15 1.87±0.29 10.25±3.86 ∞
One 17.90±6.27 5.73±3.79 3.24±2.91 2.06±0.95 1.12±0.18 6.70±1.14 7.95±0.70

72
256

Two 13.25±4.73 6.51±2.31 4.44±2.10 2.19±0.57 1.33±0.20 6.39±1.34 8.33±0.39
Three 7.31±2.90 7.83±2.68 5.17±2.27 0.84±0.11 1.90±0.22 10.77±3.38 ∞
One 17.96±2.22 7.17±1.28 4.15±1.05 2.47±0.39 1.11±0.06 6.85±0.35 7.92±0.12

104
256

Two 16.86±1.84 6.55±0.99 4.00±0.83 2.26±0.27 1.17±0.06 6.74±0.36 8.05±0.10
Three 7.86±3.26 7.41±2.72 4.91±2.31 0.81±0.09 1.91±0.25 10.98±3.78 ∞
One 18.43±5.81 6.88±2.97 4.32±2.55 2.38±0.86 1.12±0.16 6.87±0.91 7.91±0.45

136
256

Two 18.79±2.13 6.98±1.10 4.29±0.94 2.41±0.32 1.10±0.06 6.92±0.33 7.93±0.11
Three 8.94±2.91 8.82±2.83 6.18±2.40 0.96±0.20 1.68±0.27 11.41±2.41 ∞
One 25.69±6.04 5.57±3.35 3.12±2.48 2.07±0.88 0.94±0.12 7.14±0.12 7.67±0.58

168
256

Two 21.66±5.93 6.45±2.78 4.12±2.36 2.26±0.76 1.05±0.15 7.10±0.70 7.91±0.44
Three 14.20±3.53 8.40±2.71 5.72±2.26 1.04±0.19 1.37±0.20 12.85±2.17 197±145
One 28.75±7.26 4.51±3.29 2.91±2.46 1.79±0.74 0.91±0.14 7.25±0.21 7.71±0.67

200
256

Two 22.52±6.90 6.38±2.69 4.72±2.43 2.22±0.70 1.06±0.17 7.21±0.90 7.99±0.47
Three 21.94±5.01 5.89±2.04 3.46±1.63 0.95±0.05 1.14±0.16 14.98±3.56 ∞
One 30.15±7.14 5.22±2.75 3.91±2.27 1.97±0.68 0.90±0.13 7.32±0.09 7.67±0.49

232
256

Two 22.63±8.90 7.09±3.17 5.84±2.93 2.42±0.88 1.07±0.23 7.29±1.15 8.01±0.57
Three 32.11±6.26 6.34±2.33 3.67±1.84 1.09±0.09 0.86±0.11 16.85±3.26 74±22

91

The predicted errors for the fitting parameters are very large, in one case (Al-

gorithm One, tan θ = 40/256), the errors are even bigger than the predicted values.

However, the 95% confidence fits differ little from the best fits. In other words,

big changes in the values of the fitting parameters translate to small changes in the

values of the fitting equation, indicating that the empirical equation 4.11 does not

have the optimal functional form. That is, the simulated results contain physics

beyond what I have considered in my modified SOS model, which is not surprising,

given the heuristic nature of my model.

We cannot draw any quantitative conclusion beyond that Algorithms One and

Two agree qualitatively. Even taking the errors into account, Algorithm Three

definitely differs from Algorithms One and Two.

Figure 4.13 plots the variation of the surface tension σ = F cos θ/L with temper-

ature kT . We can deduce the anisotropy of the lattice by drawing a vertical line at a

temperature kT on figures 4.13(c) and 4.13(d). If the σs for different angles at that

temperature are the same, then the lattice is isotropic. If the values differ, then

the lattice is anisotropic. The greater the spread of values, the more anisotropic

the lattice. Since the spread of values increases with increasing temperature, the

anisotropy increases with temperature, showing that the lattice is most isotropic for

kT = 0, unlike the SOS models with first- and second-nearest-neighbor interactions

which are most isotropic for kT 6= 0 (figures 3.12(a) and 3.13(a)). Algorithms One

and Two are similar while Algorithm Three is more anisotropic.

I do not show the entropy and specific heat capacity vs. kT as they are similar

to figures 4.5(b) and 4.5(c).

92

4.6 Dependence of kTc on the Range of Interaction

In the last chapter (chapter 3), I analyzed the critical temperatures in the second-

nearest-neighbor SOS model as a function of the coordination number z by changing

the ratio of the first- and second-neighbor coupling constants J2/J1. I found that

the SOS model agrees with Domb and Potts’s Ising model results (figure 3.9). Here,

I keep the ratios J4/J1, J3/J1, J2/J1 equal to one and increase the coordination

number z by increasing the interaction range. Because all coupling constants are

equal, the coordination number equals the number of neighbors within the interac-

tion range.

I simulated a horizontal interface using Algorithms One and Three, but did not

use Algorithm Two. As in section 4.5, I calculate the energy of interface after it has

equilibrated and divide the energy by the length of the lattice L. Figures 4.14 show

the normalized energy (divided by εr=0, table 4.8) per unit length as a function of

temperature for four interaction ranges.

TABLE 4.8

COORDINATION NUMBERS AND ENERGIES OF STEPS OF HEIGHT ZERO

AND ONE AS A FUNCTION OF THE INTERACTION RANGE FOR EQUAL

JS ON A SQUARE LATTICE.

Up to nth neighbors z εr=0 εr=1
1st 4 2J 4J
2nd 8 6J 8J
3rd 12 10J 18J
4th 20 22J 30J

I then fit the energy per unit length to equation 4.11 using the same Matlab

program as before (appendix C). I found different sets of parameter values that fit

the simulation results well, but only one that satisfied all the criteria I discussed in

section 4.3. Table 4.9 shows the results of this curve fitting. I also solve for kTc by

93

solving σ = 0 numerically. kTe equals to εb/ ln δ. Table 4.10 presents the results.

Finally, figure 4.15 plots zKc(= z/kTc) vs. z for Algorithms One and Three and the

results of Domb and Potts (equation 3.28).

0 1 2 3 4 5 6
1

1.5

2

2.5

3

3.5

4

kT

N
or

m
al

is
ed

 U
/L

1st
2nd
3rd
4th

(a) Algorithm One

0 1 2 3 4 5 6
1

1.1

1.2

1.3

1.4

1.5

1.6

kT
N

or
m

al
is

ed
 U

/L

1st
2nd
3rd
4th

(b) Algorithm Three

Figure 4.14. Normalized energy per unit length for four different interaction ranges.
Error bars are smaller than the size of the symbols. Solid lines are best fits.

TABLE 4.9

RESULTS OF FITTING EQUATION 4.11 TO SIMULATION RESULTS IN

FIGURE 4.14. THE TOP FOUR ROWS ARE RESULTS FOR ALGORITHM

ONE, THE BOTTOM FOUR ROWS ARE FOR ALGORITHM THREE.

Range εa εb εc δ A
1st 0.44±0.23 2.67±0.38 1.25±0.25 3.81±0.79 1.19±0.05
2nd 5.05±1.88 3.26±1.78 1.74±1.30 2.53±1.27 0.90±0.08
3rd 5.94±1.05 6.15±1.25 2.69±0.84 3.30±0.81 1.16±0.04
4th 14.78±1.47 5.78±0.91 3.36±0.72 2.05±0.22 1.21±0.05
1st 0.18±0.88 1.74±0.72 0.66±0.66 0.55±0.11 2.40±0.68
2nd -0.45±0.16 4.04±0.19 3.02±0.16 0.64±0.01 2.33±0.06
3rd -0.91±1.01 8.52±1.72 5.48±1.51 0.79±0.19 2.18±0.34
4th 7.01±0.98 7.52±0.86 4.93±0.72 0.89±0.04 1.84±0.08

In figure 4.15, the simulation results display similar trends to theoretical pre-

dictions for the Ising model, but the critical temperatures from simulations are

94

2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

z

zK
c

Domb−Potts
Algorithm One
Algorithm Three

Figure 4.15. Comparison of zKc vs. z for Algorithms One and Three (table 4.10)
and the Ising model as predicted by Domb and Potts (equation 3.28).

TABLE 4.10

CRITICAL TEMPERATURES OF VARIOUS INTERACTION RANGES FOR

THE SOS MODEL WITH EQUAL JS. TOP FOUR ROWS ARE FOR

ALGORITHM ONE, BOTTOM FOUR FOR ALGORITHM THREE.

Range z kTc kTe z/kTc z/kTe

1st 4 1.13±0.14 1.99±0.00 3.52±0.43 2.01±0.00
2nd 8 2.68±0.52 3.51±0.27 2.98±0.58 2.28±0.17
3rd 12 3.87±0.32 5.15±0.09 3.10±0.26 2.33±0.04
4th 20 6.37±0.38 8.04±0.10 3.14±0.19 2.49±0.03
1st 4 1.59±1.32 ∞ 2.51±2.09 0
2nd 8 3.33±0.29 ∞ 2.40±0.21 0
3rd 12 5.92±1.89 ∞ 2.03±0.65 0
4th 20 9.90±1.02 ∞ 2.02±0.21 0

consistently lower than those the theory predicts.3 This discrepancy could happen

if I consistently overestimated the energy per unit length by systematically under-

estimating the length of the interface. I set the interface length to the lattice length

L regardless of the simulation temperature and interface roughness. I present two

3Higher values of Kc mean lower values of kTc, because Kc = J/kTc.

95

possible methods to improve my estimate of the interface length.

The first method simply calculates the contribution to the total energy from

first-neighbor interactions. The energy from first-neighbor interactions divided by

two is the interface length, lsegment, because I double count links.

The second method counts the number of surface pixels, lsurface pixel, defined as

pixels with at least one mismatched nearest neighbor. Again, I divide the total

number of surface pixels by two because of double counting.

When the interface is flat (either 0◦ or 90◦), both methods give the same length,

equal to L. Obviously, at higher temperatures, the first yields a longer interface

length than the second because a surface pixel may have more than one mismatched

link. Therefore,

`segment > `surface pixel > L, (4.27)

which implies:

〈ε〉segment 6 〈ε〉surface pixel 6 〈ε〉L. (4.28)

As the length of the interface is no longer constant as the SOS model assumes, but

increases with temperature, we must express the surface tension as the derivative of

the surface free energy with respect to the interface length (equation 1.10), instead

of the ratio of the free energy to the interface length:

σ =

(

∂F

∂`

)

T

= −
(

∂F

∂T

)

`

/

(

∂`

∂T

)

F

. (4.29)

However, one problem remains. As ` = `(T) and F (`, T) = F (`(T), T), the total

derivative of F with respect to T is:

dF

dT
=

(

∂F

∂T

)

`

+

(

∂F

∂`

)

T

d`

dT

=

(

∂F

∂T

)

`

+ σ
d`

dT
. (4.30)

96

I have dF
dT

and d`
dT

from simulation results, but not
(

∂F
∂T

)

`
. In order to proceed, one

must first separate the ` dependence of F from the explicit T dependence of F . I

leave this problem to future research.

4.7 Discussion

I have successfully used three different modifications of the Metropolis algorithm

in my phase-separation simulations. Two of the algorithms, One and Two, which

violate detailed balance minimally, produce interfaces that agree with each other

thermodynamically and morphologically. Dynamically, Algorithms One and Two

are not exactly the same. Algorithm One equilibrates faster than Algorithm Two.

Algorithm Three, which violates detailed balance to a greater degree, gives interfaces

decidedly different from the first two, in both morphology, dynamics and thermo-

dynamics.

Most current simulations [46, 47, 48, 63, 117] use Algorithm Three. I strongly

recommend that simulators modify their acceptance algorithm using equation 2.34

to convert Algorithm Three to Algorithm Two. The minimal increase in complexity

will greatly increase the accuracy of their results. Algorithm Two also converges

significantly faster than Algorithm Three.

This chapter has also introduced an empirical, modified SOS model. The in-

terface in the modified SOS model has two critical temperatures. The first, kTc

is the temperature at which the surface tension vanishes. The second, kTe is the

temperature at which the internal energy, entropy, specific heat and interface width

diverge. kTe is always greater than kTc. kTe relates to the existence of overhangs.

In calculations of phase separation using the full Ising model, we expect these tem-

peratures to be the same, kTc = kTe. Since the modified SOS model predicts a finite

value for the temperature kTe, the modified SOS model represents an improvement

97

over the standard SOS model.

Results from all three algorithms lie somewhere between those of the Ising model

and the SOS model. Algorithms One and Two behave more like the Ising model

where the interface width diverges at a finite temperature, while Algorithm Three

behaves more like the SOS model where the interface width does not diverge at a

finite temperature.

Although at zero temperature the square lattice is more isotropic as the range

of interaction increases, it becomes more anisotropic as the temperature increases.

This result is unexpected.

I suggest a number of interesting extensions:

1. Extend the simulation to three dimensions. In three dimensions, the roughen-
ing transition temperature, kTr, is finite, as opposed to zero in two dimensions.

2. Perform simulations in triangular and hexagonal lattices to see if the specific-
heat capacity peaks at low temperatures and if the lattices become less isotropic
as the interaction range increases at non-zero temperatures. Investigate the
dependence of critical temperature on the type of lattice and dimensionality.

3. Simulate with nonequal coupling constants in the x and y directions.

4. Simulate with nonequal coupling constants for different interaction ranges and
to improve isotropy.

5. Simulate more accurately in the kT < J and θ > 0 regions.

6. Solve the third-nearest-neighbor interaction problem analytically using the
transition matrix method.

7. Calculate wm (equation 4.25) as a function of distance d.

8. I assumed that the interface height has no autocorrelation. Checking this
assumption would be interesting. If it fails, what is the correlation length?
Does it depend on the size of the lattice? At zero temperature, the interface
is perfectly ordered, so the correlation length is infinite. Does the correlation
length go to zero for all non-zero temperatures or at kTc?

98

CHAPTER 5

SIMULATIONS OF BROWNIAN MOTION

In this chapter I simulate the Brownian motion of droplets using the algorithms from

chapter 2 to investigate the effects of temperature and droplet size on the droplet’s

diffusion constant and the medium’s viscosity and compare them to theory. I also

investigate the equilibrium droplet shape and energy.

Jan Ingenhousz first observed Brownian motion in 1785 [32, 96]. Botanist Robert

Brown subsequently rediscovered it in 1827 when he observed under a microscope

that pollen suspended in water moved erratically. Einstein (1905), in one of the early

confirmations of the atomic theory, first explained Brownian motion as the result of

the random bombardment of molecules obeying the Maxwell velocity distribution

[33]. Although the most celebrated, Einstein’s paper was not the final word on

Brownian motion. Norbert Wiener [29] devised a purely mathematical model of

stochastic processes to explain Brownian motion. The Wiener process is a form of

Markov process where the position of a particle depends only on its immediately

preceding position. Asymptotically, Brownian motion approaches a Weiner process

at large times [41]. Langevin, Smoluchowski, Uhlenbeck, Orstein and many others

refined and developed the theory. For a brief historical account and the theory of

Brownian motion, please refer to [68, 77, 89, 120] or any statistical thermodynamics

textbook. For a selection of early papers, please see [116].

Consider a macroscopic (compared to the molecules of a fluid) particle or droplet

99

of massm and radius a that is suspended in a fluid medium. Because of the constant

bombardment of molecules, the particle or droplet moves erratically. Analysis of

Brownian motion aims to derive the displacement (or rather, the mean-squared

displacement) of the droplet as a function of time and other fundamental parameters

like temperature, viscosity and droplet size. I will only state the governing equation

of Brownian motion and its assumptions. I encourage the reader to refer to one of

the references for further details.

The usual starting point for modeling Brownian Motion is the Langevin equa-

tion:1

m
∂v

∂t
= −Ωv + Fr(t), (5.1)

where Ω is the friction coefficient and Fr(t) is the random force due to collisions

with molecules. Deriving v(t) and ultimately r(t), where r is the displacement from

an initial position, requires a few assumptions:

1. The friction force obeys Stoke’s law [69],

Ωv = 6πηav, (5.2)

where η is the dynamic viscosity of the fluid.

2. F (t) is independent of v(t).

3. Because Fr(t) is completely random, the ensemble average 〈Fr(t)〉 is zero.
4. Fr(t) is an extremely fast-varying function of t. A time interval ∆t exists such

that Fr(t) varies many times and v(t) is essentially constant within the interval.
The correlation function 〈Fr(t

′)Fr(t
′′)〉 is a rapidly decreasing function of |t′−

t′′|. For |t′ − t′′| ' ∆t, 〈Fr(t
′)Fr(t

′′)〉 = 0.

Using the equipartition theorem, the solution of the Langevin equation is:

〈x2〉 = 2mkT

Ω2
(
Ω

m
t− 1 + e−

Ω
m

t). (5.3)

Figure 5.1 plots log〈x2〉 vs log(t). For small t, the slope is 2 (dotted line). For large

t, the slope is 1. Ω/m = 1 in this example.

1An alternative approach uses the Fokker-Planck Equation.

100

10−1 100 101 102 103
10−3

10−2

10−1

100

101

102

103

log(t)
 lo

g(
<

x2 >
)

Figure 5.1. Log-log plot of the solution of the Langevin equation 5.3. In this plot,
I have set Ω/m = 1 and 2kT/Ω = 1.

Over very short times, Ω
m
t ¿ 1 (dotted line in figure 5.1), equation 5.3 reduces

to:

lim
t¿m/Ω

〈x2〉 = kT

m
t2. (5.4)

For very long times, Ω
m
tÀ 1, equation 5.3 reduces to Einstein’s result:

lim
tÀm/Ω

〈x2〉 = 2kT

Ω
t =

kT

3πηa
t. (5.5)

If we define the diffusion constant to be:

D =
2kT

Ω
=

kT

3πηa
, (5.6)

then for long times,

lim
tÀm/Ω

〈x2〉 = Dt, (5.7)

and, since we expect all dimensions to be equivalent,

lim
tÀm/Ω

〈r2〉2D = 2〈x2〉 = 2Dt,

lim
tÀm/Ω

〈r2〉3D = 3〈x2〉 = 3Dt. (5.8)

A plot of 〈r2〉 vs t at large times should yield a straight line with a slope proportional

to D.

101

5.1 The Digitized Droplet

Figure 5.2. A digitized droplet of radius 8 pixels. Pixels within the droplet are gray
(spin 1). A medium (white pixels) having spin 0 surrounds the droplet.

To simulate Brownian motion on a discrete lattice, I first represent a droplet

of radius a on the lattice, as I did interfaces with non-zero slopes. I draw a circle

of radius a on the lattice. If a pixel lies more that half within the circle, then it

receives spin 1, otherwise, it receives spin 0. The Mathematica program in appendix

D automates the digitization of droplets. Figure 5.2 shows a digitized droplet of

radius 8 pixels.

Table 5.1 and figure 5.3(a) show how the area AT of the digitized droplet varies

with its radius a. Table 5.1 and figure 5.3(b) show how the energy of a droplet varies

with its radius for various interaction ranges. The energy of the medium equals to

the energy of the droplet, so the energy of the entire lattice is twice that of the

droplet.

The area AT of the droplet is near πa2 for large radii. The difference between

AT and πa2 is less than 5% for a > 4 pixels. I fit the droplet energy to:

E = pa+ q. (5.9)

102

TABLE 5.1

AREAS (NUMBER OF PIXELS) OF DIGITIZED DROPLETS AS A

FUNCTION OF RADIUS. NN4 MEANS UP TO

FOURTH-NEAREST-NEIGHBOR INTERACTIONS. ALL INTERACTIONS

ARE OF EQUAL STRENGTH.

radius area Droplet energy(Jij)
a AT nn1 nn2 nn3 nn4

3 32 24 60 108 220
4 52 32 76 140 284
5 80 40 100 180 356
6 112 48 116 212 420
7 156 56 132 244 500
8 208 64 156 284 572

12 448 96 228 420 852
16 812 128 308 564 1140
20 1264 160 388 708 1428
24 1804 192 460 844 1708
28 2472 224 540 988 1996
32 3228 256 620 1132 2284
36 4060 288 692 1268 2548
40 5024 320 772 1412 2836
44 6092 352 852 1556 3124
48 7232 384 924 1692 3404
52 8492 416 1004 1836 3692
56 9856 448 1084 1980 3980

Table 5.2 gives the results of linear regression fits to equation 5.9. Within error, we

may assume q = 0, so the droplet energy is proportional to its radius.

5.2 Modifying the Ising Model and the Metropolis Algorithm

If we use the Ising-model Hamiltonian in equation 2.1 in conjunction with any

of the modified Metropolis Algorithms in section 2.8, the Brownian droplet would

disappear within a fewMCS. The reason is that the lowest energy of a lattice is zero,

i.e. when all the pixels are of the same spin. As the dynamics tries to minimize the

energy of the lattice, the droplet pixels will flip into spins of the surrounding medium.

103

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

10000

12000

14000

Radius(pixels)

A
re

a(
pi

xe
ls

)

(a)

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Radius(pixels)

D
ro

pl
et

 e
ne

rg
y

(J
ij)

nn1
nn2
nn3
nn4

(b)

Figure 5.3. Properties of digitized droplets. (a) Area vs. radius. Solid line is πa2.
(b) Energy vs. radius. Solid lines are best fits.

TABLE 5.2

FITS OF THE ENERGY OF A DIGITIZED CIRCULAR DROPLET TO

EQUATION 5.9. p/2π IS THE ENERGY PER UNIT PERIMETER LENGTH.

THE TOTAL ENERGY OF THE LATTICE IS TWICE THE ENERGY OF THE

DROPLET. THE ENERGY PER UNIT LENGTH OF A CIRCULAR DROPLET

IS CONSISTENTLY HIGHER THAN THAT OF A FLAT INTERFACE (SEE

TABLE 4.8).

nn p(J/pixel) p/2π(J/pixel) q(J)
1 8 1.273±0.000 0
2 19.31±0.02 3.073±0.003 -0.3±0.8
3 35.31±0.02 5.620±0.003 -0.3±0.8
4 71.02±0.06 11.303±0.010 -0.6±1.9

The problem does not occur in my simulations of phase separation because neither

set of spins completely encircles the other. Whenever a different spin encircles a

region of uniform spin, the enclosed region will eventually vanish. Nothing in the

original Hamiltonian (equation 2.1) prevents the droplet from vanishing or energy

from continuously dissipating in the lattice. In other words, the model has no latent

heat. In real life, we need energy to vaporize liquid. The Ising model incurs no such

104

penalty.

In order to prevent the Brownian droplet from vanishing, we need to add a term

to the Hamiltonian that penalizes the droplet if it strays from its target area. This

area constraint balances the surface tension and keeps the size of the Brownian

droplet close to its target area. I propose the following modification to the Ising

model to simulate Brownian motion, it is the same constraint as in reference [48]:

Hdroplet =
∑

i∈droplet

z
∑

j=1

Jij(1− δσi,σj) + JA(A(t)− AT)
2, (5.10)

where i ranges over all the pixels within the droplet and j ranges over the neighbors

of i. Jij is the coupling constant between pixel i and pixel j. If all couplings are

equal, Jij = J . JA is the strength of the area constraint. Its units are energy per

unit area squared. JA is equivalent to the latent heat of vaporization. A(t) and AT

are the area at time t and the target area of the droplet. Henceforth, I will drop

the subscript “droplet” as I am only concerned with the droplet energy.

How does the area constraint affect detailed balance? Algorithms One and Three

will remain the same and use the Metropolis acceptance probability in equation 2.24.

We need to modify the acceptance probability of Algorithm Two (equation 2.34)

so that it normalizes properly and the ratio of forward and backward probabilities

satisfies the Boltzmann ratio.

I divide the droplet energy into two parts: EJ and EA, the spin-spin-interaction

energy and the area-constraint energy respectively:

E = EJ + EA,

EJ =
∑

i,j

Jij(1− δσi,σj),

EA = JA(A(t)− AT)
2. (5.11)

Since all the algorithms only flip single spins at each attempt, the change in droplet

area is always ±1 pixel. Denoting the initial area Aµ and the final area Aν , the

105

change in area is ∆A = Aν − Aµ. If the forward direction is ∆A = +1, then the

backward direction is ∆A = −1, and vice versa. The change in EA is thus:

∆EA = JA[(Aν − AT)
2 − (Aµ − AT)

2]

= JA∆A[∆A+ 2(Aµ − AT)]. (5.12)

From equation 5.12, one can easily show:

∆EA(µ→ ν) = −∆EA(ν → µ), (5.13)

and since from section 2.6,

∆EJ(µ→ ν) = −∆EJ(ν → µ), (5.14)

therefore,

∆E(µ→ ν) = −∆E(ν → µ). (5.15)

Because of equation 5.15, the Metropolis Algorithm satisfies the condition of

detailed balance for all transitions. For Algorithm One, all transitions except nu-

cleation satisfy detailed balance. As before, Algorithm Three still violates detailed

balance for all the transitions. However, the modified acceptance probability in

Algorithm Two:

A(µ→ ν) =

z+∆EJ

z−∆EJ
e−∆E/kT , if ∆E > 0

1, if ∆E ≤ 0
, (5.16)

no longer satisfies detailed balance, since the prefactor involves the spin-spin inter-

action while the exponent involves the total energy. The problem with equation 5.16

is that ∆EA is independent of ∆EJ . We cannot normalize the probability when we

combine ∆EA and ∆EJ together and consider them as a whole (as in ∆E). To cir-

cumvent this problem, we must consider four cases separately: ∆EJ > 0,∆EA > 0;

106

∆EJ > 0,∆EA 6 0; ∆EJ 6 0,∆EA > 0; ∆EJ 6 0,∆EA 6 0; and modify the

acceptance probability to:

A(µ→ ν) =

z+∆EJ

z−∆EJ
e−(∆EJ+∆EA)/kT , if ∆EJ > 0,∆EA > 0

z+∆EJ

z−∆EJ
e−∆EJ/kT , if ∆EJ > 0,∆EA 6 0

e−∆EA/kT , if ∆EJ 6 0,∆EA > 0

1, if ∆EJ 6 0,∆EA 6 0

. (5.17)

The reader can substitute equation 5.17 into equation 2.33 to prove to herself

that the correct Boltzmann ratio results. I call this Algorithm Two-A. Algorithm

Two-A follows the same procedures as Algorithm Two, using equation 5.17 instead

of equation 5.16 as the acceptance probability.

To bridge the gap between Algorithm Two-A and Three, I define Algorithm

Two-B which follows Algorithm Three but modifies its acceptance probability to:

A(µ→ ν) =

e−(∆EJ+∆EA)/kT , if ∆EJ > 0,∆EA > 0

e−∆EJ/kT , if ∆EJ > 0,∆EA 6 0

e−∆EA/kT , if ∆EJ 6 0,∆EA > 0

1, if ∆EJ 6 0,∆EA 6 0

. (5.18)

Droplet simulations begin by creating a circular digitized droplet of area AT

at the center of the lattice, then employ Algorithms Two-A, Two-B and Three.

Although no molecules bombard the droplet, each spin-flip attempt is analogous to

a collision between the droplet and a molecule. I track the center of mass of the

droplet at regular intervals up to 10,000 Monte-Carlo steps. To obtain the mean-

squared displacement, I average the squared displacements of one hundred droplets.

I simulated droplets of radii 3, 4, 5, 6, 7, 8, 12 and 16 pixels, corresponding to

target areas of 32, 52, 80, 112, 156, 208, 448 and 812 pixels. For each droplet

size, I also varied the temperature from kT = 0.5J to 6.0J . All simulations used

fourth-nearest-neighbor interactions with J1 = J2 = J3 = J4 = J ≡ JA.

107

5.3 Brownian Motion Simulation Results

0 2000 4000 6000 8000 10000 12000
0

200

400

600

800

1000

1200

1400

t (MCS)

<
r2 >

kT = 6J

kT = 5J
kT = 4J

kT = 3J

kT = 2J

kT = J

100 101 102 103 104
10−2

100

102

104

log(t)

lo
g(

<r
2 >)

kT = 2J

kT = 5J

kT = 4J

kT = 3J

kT = J

kT = 6J

Figure 5.4. (a) The mean-squared displacement vs. time for droplets of radius 3
pixels (AT = 32 pixels) using Algorithm Two-A. The unit of mean-squared dis-
placement is pixels squared. The slope is proportional to the diffusion constant D.
(b) log-log plot of (a). The intercept is proportional to D. The slope is close to 1,
which we expect because the mean-squared displacement is linear in t.

0 2000 4000 6000 8000 10000 12000
0

200

400

600

800

1000

1200

1400

a = 3

a = 4

a = 5
a = 6

t (MCS)

<
r2 >

a = 7
a = 8
a = 12

a = 16

Figure 5.5. The mean-squared displacement vs. time for droplets of different radii
for kT = 6.0J using Algorithm Two-A. The unit of radius is pixels. The smaller
the droplet, the higher the rate of diffusion, as equation 5.6 predicts.

Figure 5.4(a) shows that the mean-squared displacement of droplets is indeed

proportional to time. Also, the higher the temperature, the greater the rate of

diffusion, as equation 5.6 predicts. Figure 5.4(b) shows a log-log plot of figure

5.4(a) to emphasize the linearity at small times.

Because the Hamiltonian has no inertia (equation 5.10), the motion is infinitely

overdamped and the droplet moves for a distance much smaller than its radius.

108

If we set m = 0, then equation 5.3 reduces to equation 5.5 for all t. The time-

constant m/Ω that marks the transition from short-time behavior (∼ t2) to long-

time behavior (∼ t) is zero. For temperatures higher than J , the slope of the log-log

plot reaches one as early as 0.01MCS (not shown in figure 5.4(b)).

For temperatures kT = J and lower, the slope of the log-log plot at small times

is less than one because the droplet takes a finite time to equilibrate. As I found in

section 4.1, the lower the temperature, the longer the interface takes to equilibrate.

Figure 5.5 plots the mean-squared displacement vs. time for droplets of different

sizes at the same temperature. The bigger the droplet, the slower the diffusion. The

corresponding figures for Algorithms Two-B and Three are similar to figures 5.4 and

5.5 but with different slopes.

Since the theory of Brownian motion predicts that the mean-squared displace-

ment 〈r2〉 is proportional to (kT/a)t (equation 5.5), plotting 〈r2〉 vs. the rescaled

time (kT/a)t should collapse all the lines into a single line with slope 2/(3πη). Thus

the slope of the graph directly determines the viscosity η of the simulations. Figures

5.6 superimpose the different plots of mean-squared displacement vs. (kT/a)t for all

droplet sizes and temperatures kT > 2J .

Table 5.3 gives the average slope for each droplet size and temperature for each

algorithm.

TABLE 5.3

AVERAGE SLOPE OF 〈r2〉 VS. (kT · t)/a.

Algorithm Slope(= 2
3πη

) η(J ·MCS
pixel3

)

Two-A 0.0554±0.0006 3.83±0.04
Two-B 0.0482±0.0004 4.40±0.04
Three 0.0414±0.0006 5.13±0.07

The simulation temperatures ranged from 0.5J to 6.0J , but I only used tempera-

tures at or above 2.0J in calculating the viscosity because the lines for temperatures

109

0 0.4 0.8 1.2 1.6 2 2.4

x 104

0

200

400

600

800

1000

1200

1400

(kT/J)⋅ t/a (MCS/pixel)

<r
2 >

(p
ix

el
2)

Algorithm Two−a

101 102 103 104 105
100

101

102

103

104

log(kT⋅ t/a)

lo
g(

<r
2 >)

Algorithm Two−a

0 0.4 0.8 1.2 1.6 2 2.4

x 104

0

200

400

600

800

1000

1200

(kT/J)⋅ t/a (MCS/pixel)

<r
2 >

(p
ix

el
2)

Algorithm Two−b

101 102 103 104 105
100

101

102

103

log(kT⋅ t/a)

lo
g(

<r
2 >)

Algorithm Two−b

0 0.4 0.8 1.2 1.6 2 2.4

x 104

0

200

400

600

800

1000

(kT/J)⋅ t/a (MCS/pixel)

<r
2 >

(p
ix

el
2)

Algorithm Three

101 102 103 104 105
100

101

102

103

log(kT⋅ t/a)

lo
g(

<r
2 >)

Algorithm Three

Figure 5.6. Mean-squared displacement vs. rescaled time (kT/a)t for Algo-
rithms Two-A, Two-B and Three. Droplet radii included in the plots are 3,
4, 5, 6, 7, 8, 12 and 16 pixels. For each droplet size, I include temperatures
2.0J, 2.5J, 3.0J, 3.5J, 4.0J, 4.5J, 5.0J, 5.5J and 6.0J . The straight lines are
results from linear regressions. On the right are the corresponding log-log plots for
each algorithm.

110

below kT = 2J do not collapse onto the same straight lines in figure 5.6.

Figure 5.7 shows the low-temperature and high-temperature plots together. The

slopes in the two regimes clearly differ.

In figure 5.7, the viscosity depends both on the temperature and droplet size.

For a fixed droplet size (left column), the lower the temperature, the smaller the

slope and the greater the viscosity. However, the slope does not increase monotoni-

cally with temperature. Above a critical temperature, the slope and viscosity stay

constant. The bigger the droplet, the higher the critical temperature. For Algo-

rithm Two-A, the critical temperatures range from 1.0J to 1.5J . For Algorithms

Two-B and Three, the critical temperatures range from 1.5J to 2.0J .

At fixed temperatures (right column) below the critical temperature, the bigger

the droplet, the smaller the slope and the greater the viscosity. As the temperature

approaches the critical temperature, the viscosities of smaller droplets approach their

final values faster than that of those bigger droplets. Above the critical temperature

all droplets diffuse at the same rate. In short, at low temperatures, the viscosity

depends on droplet size; at high temperatures, the viscosity is independent of droplet

size.

The viscosity of a liquid, which is a property of the liquid itself, should be inde-

pendent of the size of the droplet. Although I will continue to use the word viscosity,

I need to reexamine the detailed mechanism that gives rise to diffusion in Monte-

Carlo simulations. The droplet does not behave like a solid sphere but its surface

fluctuates like an amoeba. The surface fluctuation is a function of temperature. As

the previous chapter 4 showed, the higher the temperature, the greater the surface

fluctuations.

When the droplet experiences an external force, it does not respond in the same

manner as a solid sphere. The droplet is a viscoelastic material. It has both elastic

111

0 0.5 1 1.5 2

x 104

0

200

400

600

800

1000

(kT/J)⋅ t/a

<r
2 >

a = 3 pixels

 kT = J

 kT >1.5 J

0 500 1000 1500 2000
0

10

20

30

40

50

(kT/J)⋅ t/a

<r
2 >

kT= 0.5 J

 a = 4 pixels

 a = 3 pixels

 a > 4 pixels

0 2000 4000 6000 8000
0

50

100

150

200

250

300

(kT/J)⋅ t/a

<r
2 >

a = 8 pixels

 kT = J

 kT >1.5 J

 kT = 1.5J

0 1000 2000 3000 4000
0

20

40

60

80

100

(kT/J)⋅ t/a

<r
2 >

kT= J

 a = 4 pixels

 a = 3 pixels

 a =5 pixels

 a =6 pixels
 a =7 pixels

0 1000 2000 3000 4000
0

20

40

60

80

100

120

140

(kT/J)⋅ t/a

<r
2 >

a = 16 pixels

 kT = J

 kT >1.5 J

 kT = 1.5J

0 2000 4000 6000 8000
0

50

100

150

200

250

300

(kT/J)⋅ t/a

<r
2 >

kT= 2.0J

Figure 5.7. Results of 〈r2〉 (pixels2) vs. rescaled time (kT/a)t for Algorithm Three.
Left column: superposition of plots for all temperatures for three different droplet
sizes (a = 3, 8, 16 pixels). Right column: superposition of plots for all radii at three
different temperatures (kT = 0.5J, 1.0J, 2.0J). I omit error bars for clarity.

112

properties like a spring and viscous properties like a liquid. A spring responds to

external force by deforming while liquids respond to external force by flowing. At

low temperatures, when the frequency of collisions is low and each collision is weak,

the droplet changes shape rather than moving in the direction of the force. The

droplet has time to recover to its initial shape before the next collision occurs. 2

If two collisions occur before the droplet has time to recover or if the force of

a collision is beyond what the surface deformation can absorb, the droplet will not

be able to respond by changing shape, but will move in the direction of the force.

Since collisions are more frequent at high temperatures, the droplet behaves like a

solid sphere. Since bigger droplets have more surface area to deform than smaller

droplets, the critical temperature is higher for bigger droplets.

x0

V(x)

Ea

1 pixel

kT

(a)

Remove ∆Α ∆ΑAdd

2x

(b)

Figure 5.8. (a) An imaginary potential that exists on a continuum extension of a
regular lattice. The black dot representing the center of mass is initially in one of the
potential’s minima. The black arrow indicates the magnitude of the temperature.
(b) Moving a droplet entails moving its surface layer.

In order to cast the viscoelastic properties of the discretized droplet into concrete

mathematical form, we may think of the droplet as a particle that wades through

2The center of mass of a drop can move in units less than one pixel. The smallest move is one
pixel/droplet area. The point is that the lowest possible energy of any droplet configuration with
center of mass not aligned with a pixel is larger than the lowest possible energy of a droplet whose
center of mass is so aligned and that this energy increases monotonically as the center moves to
being half way between two pixels.

113

a continuum periodic potential with regular maxima and minima. Because the

underlying space (the lattice) is discrete, the particle can only occupy certain discrete

positions. We imagine that the potential energy is zero at allowed positions of the

particle, and positive at forbidden positions (figure 5.8(a)). The “wave length” of

the potential is one pixel, reflecting the underlying square lattice. The droplet has

lowest energy when its center of mass is at one of the minima.

Any droplet configuration with center of mass not centered on a pixel is less

symmetrical than one that is, thus has longer perimeter and larger surface energy.

If the droplet could lose energy by shortening its boundary and losing or gaining a

pixel of volume, the energy might not increase monotonically as the droplet moves

towards a half-pixel offset, however, the symmetrical configuration with aligned

center of mass should still have lowest energy.

At zero temperature, the droplet remains at the bottom of one of the potential

wells. As the temperature increases, the droplet starts to vibrate inside the well. In

order to move to the next potential well, the droplet needs to overcome the potential

barrier Ea.

Ea is a function of the droplet radius. The bigger the droplet, the higher the

barrier. We may approximate how Ea depends on a. In order to move the center

of mass of the droplet by one pixel, only a layer of the surface pixels need to move

from one side of the droplet to the other (Figures 5.8(b)). Naturally, the bigger the

droplet, the more surface pixels need to move. If the radius of the droplet is a, then

the center of mass of the ∆A sliver is roughly a away from the center of the droplet.

Removing the ∆A portion, the center of mass of the droplet moves by x pixels:

x =
(∆A)a

A−∆A
. (5.19)

If the ∆A portion moves from one side of the droplet to the other side, then the

center of mass of the droplet moves a total distance of 2x. If we further make the

114

approximation AÀ ∆A and A ∼ a2, then equation 5.19 reduces to:

x ' ∆A

a
. (5.20)

If x ' 1 pixel, then ∆A ' a. Therefore, in order to move the center of mass by 1

pixel, we have to move a layer of pixels which is proportional to the radius of the

droplet. Since I expect Ea to be proportional to ∆A, Ea is also proportional to a.

The probability of the droplet jumping to the next well is proportional to the

Boltzmann distribution:

P ∝ e−Ea/kT . (5.21)

The higher the temperature, the higher the probability of crossing the barrier.

When the temperature is higher than Ea, the potential no longer inhibits motion

of the droplet, which can freely diffuse. This analogy explains why below a certain

critical temperature, the droplet diffuses slower than the classical Langevin equation

predicts and the diffusivity (viscosity) depends on the size of the droplet. Above the

critical temperature, the normal Brownian motion the Langevin equation (equation

5.1) predicts applies. The additional potential modifies the Langevin equation to:

mẍ = −Ωẋ− ∂V (x)

∂x
+ Fr(t), (5.22)

where a dot above a symbol denotes a time derivative. The negative sign in front

of the potential indicates that the force due to the potential always points towards

the bottom of the potential well.

As my simulations found, the motion of the droplet is overdamped (m/Ω¿ 1).

So, we may ignore the fast-changing term in the Langevin equation, i.e. ẍ. Such

adiabatic elimination [50] simplifies the Langevin equation to:

Ωẋ = Fv(x) + Fr(t), (5.23)

115

where:

Fv(x) ≡ −∂V (x)

∂x
,

〈Fr(t)Fr(t
′)〉 = 2ΩkTδ(t− t′). (5.24)

The corresponding Fokker-Planck equation for overdamped motion (the high-friction

limit) is the Smoluchowski equation [105]:

∂P (x, t)

∂t
=

1

Ω

[

− ∂

∂x
Fv(x) + kT

∂2

∂x2

]

P (x, t), (5.25)

where P (x, t)dx is the probability of finding the droplet between x and x+dx at time

t. When V (x) = constant ∀x, the Fokker-Planck equation reduces to the familiar

diffusion equation. The first term on the right-hand side of equation 5.25 is the drift

term, the second term on the right-hand side is the diffusion term.

Brownian motion in a periodic potential and the Smoluchowski equation arise in

various fields, e.g. solid-state physics, chemical physics, communications theory, laser

mode-locking, Josephson tunneling and superionic conductors. Both the stationary

and time-dependent probability densities P (x, t) have known solutions. Reference

[105] gives a list of related references.

I follow closely the derivation in [105]. Consider a particle moving in a periodic

potential with period 2π. Apply a constant force Fc representing a gravitational

force, chemical attractants/repellents or other forces independent of position. For

Fc 6= 0, the net drift velocity should be non-zero. I will later set Fc to zero. The

Smoluchowski equation thus becomes:

∂P

∂t
=

1

Ω

∂

∂x

[

−(Fc + Fv(x)) + kT
∂

∂x

]

P = −∂J
∂x

. (5.26)

In the last equality of equation 5.26, J is the probability current, which satisfies:

∂P

∂x
− Fc + Fv(x)

kT
P = −ΩJ (x)

kT
. (5.27)

116

For this choice of the probability current (equation 5.27), the Smoluchowski equation

transforms into a continuity equation:

∂P

∂t
+∇ · (~vP) = 0. (5.28)

The probability current J relates to the mean drift velocity 〈~v〉.

I want the stationary solution for the probability distribution density P (x, t) in

the long-time limit, i.e. at equilibrium. Then, P is independent of time and J is a

constant and equation 5.27 is just a first-order ordinary differential equation. Multi-

plying all the terms by an integrating factor exp((V (x)−Fcx)/kT) and integrating

the resultant equation gives the solution:

P (x) = e−V
′(x)/kT

(

N − ΩJ
kT

∫ x

0
eV

′(x′)/kTdx′
)

, (5.29)

where I have defined V ′(x) ≡ V (x) − Fcx and N is the integration constant. De-

termining the constants J and N requires two equations. One equation is the nor-

malization condition of P (x), the other is the requirement that P (x) be bounded

for large x. Consider the integral in equation 5.29:

∫ 2πn+x

0
eV

′(x′)/kTdx′ =
∫ 2π

0
eV

′(x′)/kTdx′ +
∫ 4π

2π
eV

′(x′)/kTdx′ + . . .

+
∫ 2πn

2π(n−1)
eV

′(x′)/kTdx′ +
∫ 2πn+x

2πn
eV

′(x′)/kTdx′. (5.30)

In equation 5.30, n is an integer and x takes values between 0 and 2π. Because of

the periodicity in V (x):

V ′(2πm+ x) = V (2πm+ x)− Fc × (2πm+ x)

= V (x)− Fcx− 2πmFc

= V ′(x)− 2πmFc. (5.31)

Ssubstitution of equation 5.31 into equation 5.30 gives the same factor I+(2π) for

117

all but the last of the terms in equation 5.30:

∫ 2πn+x

0
eV

′(x′)/kTdx′ = I+(2π)
n−1
∑

m=0

φm + I+(x)φ
n

= I+(2π)

(

1− φn

1− φ

)

+ I+(x)φ
n, (5.32)

where:

I±(x) ≡
∫ x

0
e±V

′(x′)/kTdx′,

φ ≡ e−2πFc/kT . (5.33)

Substituting equations 5.31 and 5.32 back into equation 5.29 and collecting all the

terms that depend on n, gives:

P (2πn+ x) = e−V
′(x)/kT

{[

N − ΩJ
kT

I+(2π)

(1− φ)

]

φ−n +
ΩJ
kT

[

I+(2π)

1− φ
− I+(x)

]}

.

(5.34)

The term that depends on n grows exponentially with n. Therefore, for P (x) to be

bounded requires that:

N =
ΩJ
kT

I+(2π)

(1− φ)
. (5.35)

Putting equation 5.35 back into equation 5.34, gives:

P (2πn+ x) = e−V
′(x)/kT

(

N − ΩJ
kT

I+(x)
)

= P (x). (5.36)

Therefore, P (x) is also periodic with period 2π. Since P (x) is periodic, I normalize

P (x) over the interval 0 to 2π:

N I−(2π)−
ΩJ
kT

∫ 2π

0
e−V

′(x)/kT I+(x)dx = 1. (5.37)

Eliminating N from equations 5.35 and 5.37 yields an expression for J :

J =
kT (1− φ)

Ω
[

I+(2π)I−(2π)− (1− φ)
∫ 2π
0 e−V ′(x)/kT I+(x)dx

] . (5.38)

118

As I mentioned earlier, the mean drift velocity relates to the probability current:

〈v〉 = 〈ẋ〉 =
1

Ω
〈Fc + Fv(x) + Fr(x)〉

=
1

Ω
〈Fc + Fv(x)〉

=
1

Ω

∫ 2π

0
(Fc + Fv(x))P (x)dx

=
1

Ω

∫ 2π

0

(

kT
∂P

∂x
+ ΩJ

)

dx

= 2πJ . (5.39)

If Fc = 0, φ = 1, then J = 〈v〉 = 0, as we would expect. Although the mean drift

velocity is zero in the absence of a constant applied force, the mobility µm which is

the ratio between the drift velocity and the applied field is finite in the limit Fc → 0:

lim
Fc→0

µm ≡ lim
Fc→0

〈v〉
Fc/m

= lim
Fc→0

m2πJ
Fc

=
4π2m

ΩI+(2π)I−(2π)
, (5.40)

with V ′(x) = V (x). From Einstein’s relation, the diffusion constant relates to the

mobility by [104]:3

D = 2
kT

m
µm, (5.41)

in accordance with equation 5.6’s definition of the diffusion constant. Therefore,

without a constant external force, the diffusion constant in a periodic potential is:

DFc=0 =
8π2kT

ΩI+(2π)I−(2π)
. (5.42)

If the potential is zero, I±(2π) = 2π, and equation 5.42 reduces to equation 5.6.

In order to proceed further, I need to choose a form for the periodic potential.

I expect that the qualitative behavior of DFc=0 is the same regardless of the exact

3The particle mass m in the present discussion replaces the electronic charge e in Einstein’s
relation.

119

form of the potential. Since I do not know exactly how V (x) depends on the droplet

size, I apply equation 5.42 to three typical potentials:

square-wave: V (x) =

Ea, 2nπ 6x6 (2n+ 1)π

0, (2n+ 1)π 6x6 (2n+ 2)π
,

saw-tooth: V (x) =

Ea[−x/π + (2n+ 1)], 2nπ 6x6 (2n+ 1)π

Ea[x/π − (2n+ 1)], (2n+ 1)π 6x6 (2n+ 2)π
,

cosine: V (x) =
Ea

2
(cos(x) + 1), (5.43)

with n = 0, 1, 2, In each case, V (x) ranges from 0 to Ea.

Substituting the various forms of V (x) into equation 5.42 and integrating is

simple. For the piece-wise-linear potentials, we can solve the diffusion constant

analytically. For the cosine potential, using the identities:

∫ 2π

0
ez cosxdx = 2

∫ π

0
ez cosxdx, (5.44)

and:
∫ 2π

0
e−z cosxdx =

∫ 2π

0
ez cosxdx, (5.45)

the diffusion constant is a function of the zeroth-order Modified Bessel Function of

the first kind:

Jo(z) =
1

π

∫ π

0
ez cosxdx. (5.46)

The solutions for each case are:

square-wave: DFc=0 =
2kT

Ωcosh2(R)
,

saw-tooth: DFc=0 =
2kTR2

Ω sinh2(R)
,

cosine: DFc=0 =
2kT

Ω[Jo(R)]2
, (5.47)

where the ratio R ≡ Ea/(2kT). In comparison, the diffusion constant for the

Langevin equation in the long-time regime is D = 2kT/Ω (equation 5.6). In each

case, DFc=0 reduces to 2kT/Ω for kT À Ea i.e. R→ 0.

120

Figure 5.9 plots DFc=0 (in units of 2kT/Ω) as a function of the temperature

(in units of Ea). The diffusivities of all three potentials follow the same trend.

The diffusion constant is zero at zero temperature and reaches a maximal value

of 2kT/Ω as kT À Ea, with no transition at kT = Ea. The diffusivity (inverse

viscosity) increases smoothly with the temperature and saturates.

Since I expect Ea to be proportional to the droplet radius, bigger droplets reach

maximal mobility at higher temperatures and diffuse slower than the Langevin equa-

tion predicts at low temperatures.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

kT/E
a

D
F

c =
 0

 in
 u

ni
ts

 o
f 2

kT
/Ω

Square wave
Saw−tooth
Cosine

Figure 5.9. The diffusion constant DFc=0 as a function of kT/Ea for three different
potentials.

5.4 Frequency of Collisions

A concept which relates to Brownian motion is the mean free time, the average time

between two consecutive collisions. For a random process like radioactive decay

or molecular collision, where every event is uncorrelated to every other event, the

121

number of events n that occur within a time interval t follows a Poisson probability

distribution:

Pn(t) =
(λt)ne−λt

n!
, (5.48)

where λ is the average rate or frequency of events (the number of events per unit

time). The probability that a molecule passes a time t without collisions is:

P0(t) = e−λt. (5.49)

Therefore the average time between two consecutive collisions (the mean free time)

is:

tmf =

∫∞
0 tP0(t)dt
∫∞
0 P0(t)dt

=
1

λ
. (5.50)

Equation 5.50 agrees with my identification of λ with the rate of collisions. The

mean free path, or the average distance a molecule travels between two consecutive

collisions is:

xmf = υtmf = υ/λ, (5.51)

where υ is the average speed of a molecule.4 For a concentration ρ (number of

molecules per unit volume) of hard sphere molecules of radius a, the mean free path

is:

xmf =
1

ρσc

, (5.52)

where σc is the collision cross-section, which is πa2 for hard spheres or 2a for hard

circles.5 Combining equations 5.51 and 5.52 and using the equipartition theorem:

λ = ρσcυ ∼ ρa
√
kT . (5.53)

4More accurately, υ is the average relative speed between molecules and the Brownian particle.
Since the molecules are usually much lighter than the Brownian particle, the speed of the Brownian
particle is negligible compared to the molecular speeds. Therefore, to first approximation, the
relative speed equals the average molecular speed.

5Because the Brownian particle is usually much bigger than the molecules, the size of the
Brownian particle dominates the collision cross-section. Therefore, a is the radius of the Brownian
particle.

122

I counted the number of spin flips (analogous to collisions) per Monte-Carlo step

as a function of droplet radius and temperature and fit the counts to the empirical

equation:

λ = ca(kT − kTa)
d, (5.54)

where c is a proportionality constant. kTa measures the minimum energy needed to

add or subtract one pixel from a droplet. Figure 5.10 and table 5.4 give the results

of the fits.

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

Algorithm Two−A

kT/J

λ
(1

/M
C

S)

a = 3
a = 4
a = 5
a = 6
a = 7
a = 8

a = 12

a = 16

(a)

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

kT/J

λ
/a

 (1
/M

C
S×

 p
ix

el
s)

Algorithm Two−A

(b)

Figure 5.10. (a) Number of spin flips per Monte-Carlo step, λ, vs. temperature for
various droplet radii for the Ising model using Algorithm Two-A. (b) Normalized
number of spin flips per Monte-Carlo step, λ/a, vs. kT . Solid lines are best fits to
equation 5.54. Plots for Algorithms Two-B and Three are similar.

TABLE 5.4

RESULTS OF FITTING NUMBER OF SPIN FLIPS PER MONTE-CARLO

STEP TO EQUATION 5.54.

Algorithm c(1/(MCS · pixel · J)) d
Two-A 0.77±0.01 0.82±0.01
Two-B 0.61±0.02 0.87±0.02
Three 0.51±0.01 0.88±0.02

For all three algorithms, kTa (. 0.5J) is a slowly increasing function of a, sug-

123

gesting that adding or subtracting a pixel takes less energy on a curved interface

than a flat interface. The bigger the droplet, the flatter the surface and the harder

adding or subtracting a pixel from the droplet surface becomes. The exponent d

is bigger than 0.5 because the droplet surface become rougher as the temperature

increases, thus creating more surface area on which spin flips can take place.

5.5 Energy-Area Distribution of Droplets

Figures 5.11, 5.12 and 5.13 show the energy-area distributions of droplets at different

temperatures. The peaks and averages of the distributions always center around an

A < AT , with two or even three peaks at low temperatures. As the temperature

increases, the distribution broadens. In general, the bigger the area, the higher the

droplet energy. Multiple peaks in the distribution always occur at different droplet

areas. Each droplet size has a unique, minimum-energy droplet shape.

At zero temperature, a droplet’s energy is proportional to its radius or the square

root of its area (figure 5.3(b)). As temperature increases, we expect the energies

of droplets at fixed areas should increase. I fit the droplet’s average energy as a

function of its average area with the equation:

EJ = p′Aq′ . (5.55)

At kT = 0, A = πa2, I expect q′ ' 0.5 and p′
√
π ' p (from table 5.2 with nn = 4).

Either p′ or q′ or both may be a function of temperature.

Figure 5.14 shows the average droplet energy vs. the average droplet area for

different fixed temperatures using Algorithm Two-A. Table 5.5 shows the results of

fitting the average droplet energy to the average droplet area using equation 5.55

for all three algorithms.

With EJ from equation 5.55 and EA from equation 5.11, the total energy E =

EJ + EA is an asymmetrical function with minimum close to AT (figure 5.15(a)).

124

Droplet area (pixels)

D
ro

pl
et

 e
ne

rg
y

/J

kT = 2J

25 30 35

180

200

220

240

260

280

Droplet area (pixels)

D
ro

pl
et

 e
ne

rg
y

/J

kT = 4J

25 30 35

200

250

300

350

400

Droplet area (pixels)

D
ro

pl
et

 e
ne

rg
y

/J

kT = 6J

25 30 35

200

300

400

500

600

(a) a = 3, AT = 32.

Droplet area (pixels)

D
ro

pl
et

 e
ne

rg
y

/J

kT = 2J

806 808 810 812 814 816

1150

1200

1250

kT = 4J

Droplet area (pixels)

D
ro

pl
et

 e
ne

rg
y

/J

805 810 815 820
1200

1250

1300

1350

1400

1450

1500

D
ro

pl
et

 e
ne

rg
y

/J

Droplet area (pixels)

kT = 6J

805 810 815 820

1300

1400

1500

1600

1700

1800

1900

(b) a = 16, AT = 812.

Figure 5.11. Energy-area distribution of droplet simulations for the Ising model and
with Algorithm Two-A. (a) Left column: a = 3 pixels. (b) Right column: a = 16
pixels. Probability is in descending order from red to blue.

125

Droplet area (pixels)

D
ro

pl
et

 e
ne

rg
y

/J

kT = 2J

24 26 28 30 32
160

180

200

220

240

D
ro

pl
et

 e
ne

rg
y

/J

Droplet area (pixels)

kT = 4J

20 25 30 35

150

200

250

300

Droplet area (pixels)

D
ro

pl
et

 e
ne

rg
y

/J

kT = 6J

20 25 30 35

150

200

250

300

350

(a) a = 3, AT = 32.

Droplet area (pixels)

D
ro

pl
et

 e
ne

rg
y

/J

kT = 2J

806 808 810 812 814 816
1140

1160

1180

1200

1220

1240

Droplet area (pixels)

D
ro

pl
et

 e
ne

rg
y

/J

kT = 4J

805 810 815

1200

1250

1300

1350

1400

Droplet area (pixels)

D
ro

pl
et

 e
ne

rg
y

/J

kT = 6J

805 810 815 820
1200

1300

1400

1500

(b) a = 16, AT = 812.

Figure 5.12. Energy-area distribution of droplet simulations for the Ising model and
with Algorithm Two-B. (a) Left column: a = 3 pixels. (b) Right column: a = 16
pixels. Probability is in descending order from red to blue.

126

Droplet area (pixels)

D
ro

pl
et

 e
ne

rg
y

/J

kT = 2J

24 26 28 30 32
160

180

200

220

240

Droplet area (pixels)

D
ro

pl
et

 e
ne

rg
y

/J

kT = 4J

20 25 30

160

180

200

220

240

260

280

Droplet area (pixels)

D
ro

pl
et

 e
ne

rg
y

/J

kT = 6J

20 25 30 35

150

200

250

300

350

(a) a = 3, AT = 32.

D
ro

pl
et

 e
ne

rg
y

/J

Droplet area (pixels)

kT = 2J

806 808 810 812 814 816

1140

1160

1180

1200

1220

Droplet area (pixels)

D
ro

pl
et

 e
ne

rg
y

/J

kT = 4J

805 810 815

1200

1250

1300

1350

Droplet area (pixels)

D
ro

pl
et

 e
ne

rg
y

/J

kT = 6J

805 810 815
1200

1300

1400

1500

(b) a = 16, AT = 812.

Figure 5.13. Energy-area distribution of droplet simulations for the Ising model and
with Algorithm Three. (a) Left column: a = 3 pixels. (b) Right column: a = 16
pixels. Probability is in descending order from red to blue.

127

0 100 200 300 400 500 600 700 800 900
0

200

400

600

800

1000

1200

1400

1600

Average droplet area (pixel2)

A
ve

ra
ge

 d
ro

pl
et

 e
ne

rg
y

/J
Increasing temperatures
 from J to 6J

Figure 5.14. Average droplet energy vs. average droplet area at different tempera-
tures. Solid lines are best fits to equation 5.55. Simulations used Algorithm Two-A.
Results from Algorithms Two-B and Three are similar.

TABLE 5.5

RESULTS OF FITTING AVERAGE DROPLET ENERGY AS A FUNCTION

OF AVERAGE DROPLET AREA USING EQUATION 5.55.

kT p′(±0.5J) q′ ± 0.002
(J) Two-A Two-B Three Two-A Two-B Three
0.5 38.7 37.7 37.7 0.504 0.508 0.508
1.0 39.4 37.7 37.8 0.504 0.510 0.509
1.5 40.1 37.9 37.9 0.504 0.511 0.510
2.0 41.1 38.3 38.2 0.503 0.512 0.511
2.5 42.1 38.8 38.6 0.503 0.512 0.511
3.0 43.2 39.3 39.0 0.502 0.513 0.512
3.5 44.3 39.8 39.4 0.502 0.513 0.512
4.0 45.5 40.4 39.8 0.502 0.513 0.513
4.5 46.7 40.8 40.3 0.502 0.513 0.513
5.0 48.1 41.5 40.7 0.503 0.514 0.514
5.5 49.6 42.0 41.2 0.503 0.514 0.514
6.0 51.2 42.5 41.6 0.504 0.515 0.515

128

Because EJ is a monotonically increasing function of A, the minimum of E always

occurs at A < AT . Therefore, the average area of droplets is always smaller than

AT . Physically, because the surface tension tries to reduce the surface energy and

hence area, the resultant area is always slightly less than the target area. The ratio

of A/AT will increase with area constraint, JA. Since the slope of EJ decreases with

increasing A, the asymmetry in E decreases with increasing A; hence the average

area A is closer to AT for bigger droplets (Figure 5.15(b)). The fitting equation 5.55

is a good approximation for bigger droplets when the underlying discreteness of the

lattice is small compared to the size of the droplets.

10 15 20 25 30 35 40 45 50
250

300

350

400

450

500

550

600

650

700

Area (pixel2)

E
J +

 E
A
 (J

)

kT = 6 J
A

T
 = 32 pixels

Algorithm Two−A

(a)

0 100 200 300 400 500 600 700 800 900
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Target area A
T
 (pixel2)

<
A

>
 /A

T

kT = 6 J
Algorithm Two−A

(b)

Figure 5.15. (a) Total droplet energy E = EJ + EA vs. area A. The target area is
32 pixel2. The minimum of E occurs at A < AT . (b) The ratio of average area to
target area as a function of the target area. The solid line is the locus of minima of
E for different target areas AT .

5.6 Discussion and Conclusion

I have implemented three algorithms to simulate Brownian motion in the Ising

model. I found similarities and dissimilarities to classical Brownian motion. The

droplet behaves like a viscoelastic material with a freely fluctuating surface and

129

slightly fluctuating area. The droplet has an associated bulk modulus. At low

temperatures, the droplet diffuses much slower than a Brownian particle. At high

temperatures, elasticity gives way to viscosity and the droplet diffuses as the theory

predicts. The “transition temperature” from elasticity to viscosity depends on the

size of the droplet. The bigger the droplet, the higher the “transition temperature.”

Future simulations need to ascertain the exact “transition temperature” and its

dependence on droplet radius.

Although the area constraint ensures that droplet stay close to their target areas,

the surface energy alone is insufficient to hold droplets together when kT À J . As

a result, droplets become more diffuse and their effective surface increases with

temperature.

The diffusion of Brownian droplets depends only quantitatively and not qual-

itatively on the choice of algorithm dynamics. Enforcing detailed balance makes

droplets diffuse faster. Considering four spin-flip cases (Algorithm Two-B) instead

of two (Algorithm Three) increases the diffusion rate. Therefore, D2A > D2B > D3.

The surface energies of a droplet are almost equal in Algorithms Two-B and Three.

The surface energy in Algorithm Two-A (the only one that satisfies detailed bal-

ance) is much higher. Algorithms Two-B and Three only differ in the number of

spin-flip cases in their corresponding acceptance probabilities (equations 5.18 and

2.24); both violate detailed balance. Their diffusion rates differ but their droplet

surface energies are similar. Thus, detailed balance affects both the droplet energy

and diffusion rate, while considering the spin-flip cases in finer detail (four cases in

Algorithm Two-B vs. two cases in Algorithm Three) only affects the diffusion rate.

Time scale in Monte-Carlo simulations is an important and interesting question.

A problem that researchers often face when doing Monte-Carlo simulations of the

type I have discussed is the question of simultaneity. In Monte-Carlo simulations,

130

spin flips occur sequentially. Therefore, at fine time-scales (in the order of a few spin

flip attempts), events do not happen concurrently. At coarse time-scales, however,

events do appear to happen concurrently. In real life, causally unconnected can

happen simultaneously. Therefore, simulations are most realistic at coarse time-

scales. My Brownian motion simulations indicate that the motion is overdamped

with a time constant is smaller than one Monte-Carlo step. Simulations that last

thousands of Monte-Carlo steps, they are safely in the coarse-time-scale regime.

Possible extensions of this work include:

1. Simulating Brownian motion in three dimensions to compare the ratio of dif-
fusion constants in three and two dimensions to the theoretical prediction of
3/2.

2. Simulating Brownian motion with different interaction ranges to determine if
the range affects the diffusion rate, i.e. the viscosity.

3. More detailed simulations at low temperatures to determine the exact tem-
perature where the viscosity ceases to depend on the temperature.

4. Determine the relation between the magnitude of the imaginary potential, Ea,
and the droplet radius a.

5. Changing the value of the area constraint JA to determine its effect on the
viscosity and the point where the area dependence of viscosity ceases.

6. Adding a perimeter constraint to prevent the droplet surface from breaking
apart to determine the effects of breakup on viscosity and the frequency of
spin flips.

7. Adding a constant force (e.g. a gravitational force) and measuring the drift
velocity. The implementation of gravity is similar to the area constraint.
We add another term (the gravitational potential energy) to the Ising model
Hamiltonian:

Hdroplet =
∑

i∈droplet

z
∑

j=1

Jij(1− δσi,σj) + JA(A(t)− AT)
2 +mg(hcm(t)), (5.56)

where g is the “gravitational acceleration” and hcm(t) is the height of the
droplet’s center-of-mass at time t. The resultant simulation is equivalent to
Stokes flow. Because the droplet falls at a constant velocity, the net force
acting on the droplet is zero, therefore:

mg = 6πηa〈v〉, (5.57)

where 〈v〉 is the mean drift velocity of the droplet. Since the simulator sets
the value of mg and 〈v〉 is a measured value, such simulations provide another
method to determine the viscosity η.

131

5.7 Lessons for Future Research

The most important consequence of this work is likely to be in biological simula-

tions. I have presented a systematic way of analyzing three different Monte-Carlo

algorithms. The three algorithms give similar results for dynamical simulations.

They produce different rate of diffusion and hence different effective time-scales.

In biological simulations, the driving force is often not gravitational, but chemical

attraction or repulsion, chemotaxis. Usually, the driving force is proportional to

the local gradient of chemical concentration. However, the speed of the simulated

droplet/cell may not be strictly proportional to the strength of the external force,

especially when the speed approaches the maximum speed achievable in Monte-

Carlo simulations (the “speed of sound”), which equals one pixels per Monte-Carlo

step.6 When the speed of the droplet is close to the maximum speed, increasing

the external force will not proportionally increase the speed. Such simulations may

resemble reality qualitatively, but not quantitatively. This thesis has explored and

presented a systematic way to determine the regimes in which particular Monte-

Carlo models apply.

6On average, each pixel attempts to flip once every Monte-Carlo step, therefore, the maximum
speed of a boundary is one pixel per Monte-Carlo step.

132

APPENDIX A

Euler’s Theorem

Let f(x1, . . . , xN) be a homogeneous function of degree n:

f(λx1, . . . , λxN) = λnf(x1, . . . , xN). (A.1)

Differentiate both sides of equation A.1 with respect to λ:

d

dλ
f(λ~x) =

d

dλ
λnf(~x)

N
∑

i

∂λxi

∂λ

∂f(λ~x)

∂λxi

= nλn−1f(~x)

N
∑

i

xi
∂f(λ~x)

∂λxi

= nλn−1f(~x). (A.2)

Setting λ = 1, we obtain Euler’s theorem:

~x · ∇f(~x) = nf(~x). (A.3)

133

APPENDIX B

Generating the Surface Tension Polar Plot of the SOS model

The following Mathematica progam generates the surface tension polar plot (figure

3.13(b)) of the SOS model for temperatures kT = 0.1J, 0.5J, 1.5J, 2.5J, 3.5J, 4.5J .

The default coupling constants are J1 = J2 = J = 1. Equation 3.54 gives the

partition function, Ξ. Depending on the computing power, it takes about one minute

to finish calculations. For nearest-neighbor interactions, set J2 = 0. For nearest-

neighbor interactions, the maximum temperature must be less than 2.269J .

134

Clear@J1, J2, x, Τ, ΘD;
J1 = 1;
J2 = 1;
g1@x_D := Exp@-J1�xD;
g2@x_D := Exp@-J2�xD;
g12@x_D := g1@xD^2;
g14@x_D := g1@xD^4;
g24@x_D := g2@xD^4;
g28@x_D := g2@xD^8;
Η@x_, Τ_D := Exp@Τ �xD;
gp@x_, Τ_D := 2 Cosh@Τ �xD;
X@x_, Τ_D :=

g12@xD g24@xD H1 + g12@xD H1 - g24@xDL gp@x, ΤD + g14@xD g24@xD Hg24@xD - 2LL
��

1 - g12@xD g24@xD gp@x, ΤD + g14@xD g28@xD ;

F@x_, Τ_, Θ_D := Τ *Tan@ΘD - x*Log@X@x, ΤDD;
Α@x_, Τ_, Θ_D := F@x, Τ, ΘD Cos@ΘD;H* note that there are no colons in the following definitions *L
h@x_, Τ_D = x*D@Log@X@x, ΤDD, ΤD;
U@x_, Τ_D = x^2*D@Log@X, ΤD, xD;

<< Graphics‘Graphics‘
nmax = 6;
myplot = Table@8<, 8n, 1, nmax<D;
kT = 80.1, 0.5, 1.5, 2.5, 3.5, 4.5<;
dash = 880.0, 0.0<, 80.05, 0.05<, 80.025, 0.025<,80.01, 0.01<, 80.01, 0.01, 0.03, 0.03<, 80.005, 0.03<, 80.05, 0.01<<;
For@n = 1, n £ nmax, n++,
Clear@Θ, Τ, tau, tau2, Αlist45, Αlist90, Αlist180, Αlist360D;
Θ = Table@i, 8i, Π �200, 49 Π �200, Π �200<D;
tau = Map@NSolve@Simplify@h@kT@@nDD, ΤDD � Tan@#D, ΤD &, ΘD;
tau2 = Τ �. tau;
tau = Select@Flatten@tau2D, TrueQ@Im@#D � 0 && ! H# < 0LD &D;
tau = Join@80<, tauD;
Θ = Join@80<, ΘD;
Αlist45 = MapThread@Α@kT@@nDD, #1, #2D &, 8tau, Θ<D;
Αlist90 = Join@Αlist45, Reverse@Αlist45DD;
Αlist180 = Join@Αlist90, Reverse@Αlist90DD;
Αlist360 = Join@Αlist180, Reverse@Αlist180DD;
myplot@@nDD =
PolarListPlot@Αlist360, PlotJoined ® True, PlotStyle ® Dashing@dash@@nDDD, DisplayFunction ® IdentityD;D

allplots = Take@myplot, nmaxD;
Show@allplots, DisplayFunction ® $DisplayFunctionD;

135

APPENDIX C

Using the Matlab nlinfit Function for Curve-fitting

The fitting equation is 4.11. The inputs of the sosfit function are:

1. An initial set of values for the fitting parameters (εa, εb, εc, δ,A).
2. A column of values of the independent variable, x.

3. A column of values of the dependent variable, y.

4. An initial guess of the value of kTc.

The outputs of the sosfit function are:

1. A plot of x vs. y, best-fit (solid blue line) and 95% confidence interval of the
best fit (dashed red line).

2. Best-fit values of the fitting parameters, kTc and kTe, including their 95%
confidence intervals.

136

sosfit.m

% Nonlinear curve-fitting using matlab nlinfit() function.
% y = efit(p, x) is the fitting function (equaation 4.11).
% To use this program, save this file, sosfit.m in a directory.
% Run matlab 7 in the same directory as sosfit.m.
% In the command window, type sosfit(p, x, y, guesskTc) where
% p a column containing initial values of the fitting parameters:
% p(1) = ea, p(2) = eb, p(3) = ec, p(4) = delta, p(5) = A.
% x is an n x 1 column of temperatures.
% y is an n x 1 column of energies at the corresponding values of x.
% guesskTc is an initial guess of kTc.

function output = sosfit(p, x, y, guesskTc)

 % define anonymous functions of variable x and parameters p:
 ga = @(p, x) exp(-p(1)./x);
 gb = @(p, x) p(4)*exp(-p(2)./x);
 gc = @(p, x) exp(-p(3)./x);
 zeta = @(p, x) ga(p, x).*(gc(p, x) + 2*gb(p, x)./(1 - gb(p, x)));
 fun1 = @(p, x) 2*p(2)*ga(p, x).*gb(p, x)./(zeta(p, x).*(1 - gb(p, x)).^2);
 fun2 = @(p, x) p(3)*ga(p, x).*gc(p, x)./zeta(p, x);
 efit = @(p, x) p(5)*(p(1) + fun1(p, x) + fun2(p, x));

 % using nlinfit() function to curve-fit efit() to (x,y) data.
 [pfinal, resid, J] = nlinfit(x, y, efit, p);

 % compute 95% confidence interval for the fitting parameters.
 pci = nlparci(pfinal, resid, J);

 % compute predicted y and predicted 95% confidence interval of y.
 [yfinal, ysigma] = nlpredci(efit, x, pfinal, resid, J);

 % plot experimental results with best fit + error.
 plot(x,y,’x’, x,yfinal,’b’, x,yfinal-ysigma,’--r’, x,yfinal+ysigma,’--r’);

 % find the temperature at which the Helmhotz free energy is zero (kTc).
 pf = pfinal;
 Helm = @(x) -pf(5)*x.*log(zeta(pf, x));
 kTc = fzero(Helm, guesskTc);
 pf = pci(:,1);
 Helm = @(x) -pf(5)*x.*log(zeta(pf, x));
 kTcci = fzero(Helm, guesskTc);
 sigmakTc = abs(kTc - kTcci);

 % find the temperature at which efit diverges (kTe).
 kTe = NaN;
 sigmakTe = NaN;
 if pfinal(4) > 1.0
 kTe = pfinal(2)/log(pfinal(4));
 end
 if pci(4,2) > 1.0
 kTeci = pci(2,2)/log(pci(4,2));
 sigmakTe = abs(kTe - kTeci);
 end

 % output results:
 % ea +/- sigma(ea)
 % eb +/- sigma(eb)
 % ec +/- sigma(ec)
 % delta +/- sigma(delta)
 % A +/- sigma(A)
 % kTc +/- sigma(kTc)
 % kTe +/- sigma(kTe)
 pdelta = (pci(:,2) - pci(:,1))/2;
 output = [pfinal’ pdelta; kTc sigmakTc; kTe sigmakTe];

137

APPENDIX D

Digitising a Droplet

The following Mathematica program produces digitized two-dimensional circular

droplets and calculates their energies. To use the program, first press the [shift] and

[return] keys together to activate the Mathematica kernel. To digitize a circle of

radius r = 8, for example, type:

MyCircle[8] followed by [shift]+[return].

to create a vector M whose elements are the number of pixels in each column of the

digitised droplet. Because of the symmetry along the x and y-axes, M only stores

the number of pixels for the first quadrant of the droplet. To see the vector M,

type:

M followed by [shift]+[return].

For example, for an r = 8 droplet, M = {8, 8, 8, 7, 7, 6, 5, 3} (refer to figure 5.2).

To obtain the area of the droplet, type:

Area followed by [shift]+[return].

To obtain the number of boundary pixels up to nth-nearest neighbors, type:

Perimeter[n] followed by [shift]+[return].

To obtain the energy of the droplet up to nth-nearest neighbors, type:

PerimeterEnergy[n,n] followed by [shift]+[return].

The values of n are 1, 2, 3 or 4.

138

FF@r_, x_D := IfAr2 - x2 £ 0, 0,
�!!!!!!!!!!!!!!!!!!
r2 - x2 E;

GG@r_, x_, y_D := If@FF@r, xD ³ y, y, FF@r, xDD;
HH@r_, x1_, x2_, y1_, y2_D := NIntegrate@GG@r, x, y2D, 8x, x1, x2<D - NIntegrate@GG@r, x, y1D, 8x, x1, x2<D;
II@r_, x_, y_D := HH@r, x - 1, x, y - 1, yD;
JJ@r_, x_, y_D := If@II@r, x, yD ³ 0.5, y, y - 1D;
KK@r_, x_, top_D := FixedPoint@JJ@r, x, #1D &, topD;
LL@r_D := Module@8top = r<,

Do@top = MPxT = KK@r, x, topD;
If@x ³ top, Break@DD,8x, 1, r<DD;

MyCircle@r_D := Module@8hh = 0, top, A<,
M = Table@0, 8r<D;
LL@rD;
A = Reverse@Union@MDD;
Do@top = APyT;

If@MPtopT =!= 0, Break@DD;
hh += Count@M, APyTD;
MPtopT = hh,8y, 1, Length@AD<D;

Export@"circle" <> ToString@rD <> ".dat", M, "List"D;D;
NN1 = 881, 0<, 8-1, 0<, 80, 1<, 80, -1<<;
NN2 = 881, 1<, 8-1, 1<, 81, -1<, 8-1, -1<<;
NN3 = 882, 0<, 8-2, 0<, 80, 2<, 80, -2<<;
NN4 = 882, 1<, 8-2, 1<, 81, 2<, 8-1, 2<, 82, -1<, 8-2, -1<, 81, -2<, 8-1, -2<<;
NN1to4 = Join@8NN1<, 8NN2<, 8NN3<, 8NN4<D;
IsBoundaryPixel@r_, x_, xn_, yn_D :=

If@xn > r, 1, xn2 = If@xn £ 0, Abs@xnD + 1, xnD;
hh = M@@xDD + yn;
hh = If@hh £ 0, Abs@hhD + 1, hhD;
If@xn2 > r, 1, If@hh > M@@xn2DD, 1, 0DDD

BoundaryPixelList@n_D :=
Module@8xn, yn, r = Length@MD, BPL<,

BPL = Table@0, 8r<D;
Do@Do@Catch@Do@xn = x + NN1to4@@n, i, 1DD;

yn = -y + NN1to4@@n, i, 2DD;
If@IsBoundaryPixel@r, x, xn, ynD � 1, Throw@BPL@@xDD++DD,8i, 1, Length@NN1to4@@nDDD<D;
Break@DD,8y, 0, M@@xDD - 1<D,8x, 1, r<D;

Return@BPLDD;
ConstantJij = 81, 1, 1, 1<;
AttenuatedJij = 81, 1�Sqrt@2D, 1�2, 1�Sqrt@5D<;
PixelEnergy@r_, x_, y_, e_D := Module@8xn, yn, energy = 0<,

For@j = 1, j £ e, j++,
For@i = 1, i £ Length@NN1to4@@jDDD, i++,

xn = x + NN1to4@@j, i, 1DD;
yn = -y + NN1to4@@j, i, 2DD;
energy += ConstantJij@@jDD *

IsBoundaryPixel@r, x, xn, ynDDD;
Return@energyDD;

BoundaryEnergyList@n_, e_D := Module@8r = Length@MD, BPL, BEL<,
BPL = BoundaryPixelList@nD;
BEL = Table@0, 8r<D;
Do@Do@BEL@@xDD += PixelEnergy@r, x, y, eD,8y, 0, BPL@@xDD - 1<D,8x, 1, r<D;
Return@BELDD;

Perimeter@n_D := 4* Apply@Plus, BoundaryPixelList@nDD;
PerimeterEnergy@n_, e_D := 4* Apply@Plus, BoundaryEnergyList@n, eDD;
Area := 4* Apply@Plus, MD;

139

APPENDIX E

A C++ Object-Oriented Program for Brownian Motion Simulation

The basic object in this object-oriented program is the simple-lattice-point, which is

equivalent to pixels in the text. The simple-lattice-point object holds a single piece

of information, a pointer to the droplet/bubble/cell it belongs to. The object has a

number of functions which allow it to compare different simple-lattice-points, update

the spin of a simple-lattice-point, print-out the spin of a simple-lattice-point, etc.

The next level up is the bubble object. The bubble object is a generic object

which represents a bubble, a biological cell, or a droplet. It holds information

about the bubble’s spin, type, area, target area and center-of-mass of bubble. The

object has a number of functions that assign and update the values of the various

parameters it holds.

The header file brownian2d.h contains the highest-level object is the lattice

itself. The brownian2d object contains the entire lattice, which consists of a two-

dimensional array of simple-lattice-point objects. The dimensions of the lattice areX

and Y . The default size is 256× 256 which the user changed in the brownian2d.cc

source code, subject to the constraint that X×Y must be a power of 2. The brown-

ian2d object reads variables from the text file variables.txt and the vectorsM the

Mathematica program generates in appendix D. Files named circle<r>.dat, where

<r> is the radius of the digitised circle store the vectors M. All the circle<r>.dat

files live in a subdirectory called Circle file.

140

The brownian2d object then initializes the lattice, creates the droplets, simulates

Brownian motion using one of the three algorithms (2a, 2b, 3) and finally writes its

output to files in the directory data. The user specifies the algorithm to simulate

at run-time.

The brownian2d object uses a Matlab engine to generate images of the lattice

during simulations. The brownian2d object first stores the spins of the entire lattice

in a file and then calls the Matlab program named visualize1 to convert the file to an

image and display it on the user’s screen. This process slows down the simulation

significantly, but is very useful for debugging. The user must include the proper

Matlab library during compilation. Different operating systems place the library in

different directories. For example, in Sun Solaris, compile the code by typing:

g++ -L/usr/local/src/matlab6.5/extern/lib/sol2 -leng -lmx -lm

-I/usr/local/src/matlab6.5/extern/include

lattice point.h bubble.h ij.h ran3 long.h ran3 float.h brownian2d.h

brownian2d.cc -o brownian2d

Consult the local documentation for proper library paths. To execute the object

code, type:

brownian2d 2a or brownian2d 2b or brownian2d 3

Three objects: simple-lattice-point, bubble and brownian2d live in their respective

header files. The source code which connects the user to the objects is in the file

brownian2d.cc.

The pseudo-random number generators are ran3 float.h and ran3 long.h.

The first returns a value between 0 and 1 and determines the transition probabili-

ties. The second returns an integer between 0 and 230 − 1 and for random selecting

of candidate and target pixels.

Finally, the ij object holds two values: i and j. Themap container then associates

141

an ij object to a value aij. For example, i and j may represent the area and energy of

droplets respectively, and aij may represent the number of occurences of a particular

set of ij values. The indices of a matrix or a two-dimensional array always begin

with 0. Therefore, an array is cumbersome and wasteful if we do not know its size

beforehand.

142

lattice_point.h Tue Jan 20 22:32:13 2004 1
#ifndef LATTICE_POINT_CLASS_H
#define LATTICE_POINT_CLASS_H
#include <iostream>
#include "bubble.h"

//enum where {interior, surface, edge, vertex};

class simple_lattice_point {
 protected:
 bubble* bub; // The bubble it belongs to

 public:
 simple_lattice_point(bubble* bb = 0) : bub(bb) {}
 ˜simple_lattice_point() {}

 // setting spin of lattice point, used during initialization
 void set_spin(bubble* bb) { bub = bb; }
 void set_spin(simple_lattice_point p) { bub = p.bub; }
 void update_sum_xy(int x, int y) { bub->update_sum_xy(x, y); }

 // overloaded assignment operator, used during coarsening
 simple_lattice_point operator=(const simple_lattice_point &p) {
 bub = p.bub;
 return *this; }

 // overloaded << operator
 friend std::ostream& operator<<(std::ostream &strm,
 const simple_lattice_point &lp) {
 strm.width(2);
 strm << lp.get_spin();
 return strm;
 }

 // getting spins. simple_lattice_point is declared as a friend of bubble,
 // so it can directly access bubble’s spin
 const int get_spin() const { return bub->spin; }
 bubble* get_bubble_pointer() const { return bub; }
 const int get_type() const { return bub->type; }
 const int get_area() const { return bub->area; }
 const int get_target_area() const { return bub->target_area; }
 const double get_bubble_energy() const { return bub->energy; }

 // comparing spins between two lattice points
 bool operator==(simple_lattice_point& p) {return bub->spin == (p.bub)->spin;}
 bool operator!=(simple_lattice_point& p) {return bub->spin != (p.bub)->spin;}

 // increase and decrease bubbble’s volume
 void increase_bubble_area() { bub->increase_area(); }
 void decrease_bubble_area() { bub->decrease_area(); }
 void increment_bubble_energy(int de) { bub->increment_energy(de); }
};

// compound_lattice_point inherits from simple_lattice_point.
// compound_lattice_point also stores the neighbouring lattice points.
// The reason for not combining the two into a single class is to
// avoid infinite recursion when initializing lattice points :
// initializing a lattice point leads to initializing its neighbours,
// which then leads to initializing neighbours’ neighbours, ad infinitum.
class compound_lattice_point : public simple_lattice_point {
 private:
 simple_lattice_point** neighbour; // The neighbouring lattice points

 public:
 compound_lattice_point() { neighbour = new simple_lattice_point* [33]; }
 ˜compound_lattice_point() { delete [] neighbour; }

 void set_neighbour(int n, simple_lattice_point* p) { *(neighbour + n) = p; }
 simple_lattice_point** list_of_neighbours() { return neighbour; }

};

#endif

143

bubble.h Tue Feb 10 17:54:18 2004 1
#ifndef BUBBLE_H
#define BUBBLE_H
#include <iostream>

class bubble {
 private:
 int spin;
 int type; // 0 = medium(background) 1 = bubble
 int area;
 int target_area;
 int sum_x, sum_y; // ctr_x = sum_x/area, ctr_y = sum_y/area
 int energy;
 float initial_ctr_x, initial_ctr_y;
 friend class simple_lattice_point;

 public:
 bubble(int sp = 0, int ty = 0, int ta = 0) :
 spin(sp), type(ty), target_area(ta), area(0), energy(0) {}
 ˜bubble() {}

 void set_spin(int sp) { spin = sp; }
 void set_type(int ty) { type = ty; }
 void set_area(int a) { area = a; }
 void increase_area(const int& a=1) { area += a; }
 void decrease_area(const int& a=1) { area -= a; }
 void set_target_area(int ta) { target_area = ta; }
 void set_sum_xy(int x, int y) { sum_x = x; sum_y = y; }
 void update_sum_xy(const int& x, const int& y) { sum_x += x; sum_y += y; }
 void set_initial_ctr() { initial_ctr_x = float(sum_x)/area;
 initial_ctr_y = float(sum_y)/area; }
 void set_energy(int e) { energy = e; }
 void increment_energy(int de) { energy += de; }

 int get_spin() const { return spin; }
 int get_type() const { return type; }
 int get_area() const { return area; }
 int get_target_area() const { return target_area; }
 int get_energy() const { return energy; }
 float get_ctr_x() const { return float(sum_x)/area; }
 float get_ctr_y() const { return float(sum_y)/area; }
 float get_initial_ctr_x() const { return initial_ctr_x; }
 float get_initial_ctr_y() const { return initial_ctr_y; }
 float get_rsquare() const {
 float x = get_ctr_x();
 float y = get_ctr_y();
 return ((x - initial_ctr_x)*(x - initial_ctr_x) +
 (y - initial_ctr_y)*(y - initial_ctr_y));
 }
};

#endif

144

brownian2d.h Thu Nov 18 14:07:17 2004 1
#ifndef BROWNIAN2D_H
#define BROWNIAN2D_H
#include <iostream>
#include <vector> // for vector<>
#include <cmath> // for exp(), sqrt()
#include <iomanip> // for setw(), setfill()
#include <cstdlib> // for exit(), system(), srand(), rand()
#include <fstream>
#include <strstream>
#include <ctime> // for time(NULL)
#include <cstdio> // for sprintf()
#include <string>
#include <map> // associate ij object with entries
#include "bubble.h"
#include "lattice_point.h"
#include "ij.h" // an object that holds indices of a table.
#include "ran3_long.h"
#include "ran3_float.h"
#include "mat.h"
#include "engine.h" // Matlab engine for visualization
#define MOD(X, Y) (X & (Y-1))
#define DS 256 // default square lattice dimension
#define NB 4 // # of droplets to be created
#define NRUN 1 // # of simulation runs
#define NMCS 100 // # of mcs each run
#define NEminus1 0.01 // data collected every 0.01 mcs
#define NE0 0.1 // data collected every 0.1 mcs
#define NE1 1 // data collected every 1 mcs
#define NE2 10 // data collected every 10 mcs
#define NE3 100 // data collected every 100 mcs
#define NE4 1000 // data collected every 1000 mcs
#define NTsmall 19 // number of times data is collected t<1
#define NT 56 // total number of times data is collected
#define NN1 4 // up to 1st nearest neighbours
#define NN2 8 // up to 2nd nearest neighbours
#define NN3 12 // up to 3rd nearest neighbours
#define NN4 20 // up to 4th nearest neighbours
#define NNn NN4
using namespace std;

/**/
/* Started on 27/2/2002 */
/* Helical boundary condition */
/* Dry foam */
/* Default size is 128*128; */
/* Use only powers of 2 for lattice dimensions */
/* Coupling between bubble and medium is 0 */
/* Note: in order for MOD() to work, XY must be a power of 2. */
/* */
/* This is version 2 (21/3/2003) */
/* It includes codes to calculate displacement of droplets */
/* as well as the energy and area of droplets. */
/* */
/* This is version 3 (14/1/2004) */
/* Incorporates algorithm 2 and 3 by way of virtual function. */
/* Default size is DS x DS. */
/* Uses the result from previous Mathematica program */
/* to produce an initial circular droplet. */
/* */
/* (8/9/2004) */
/* Gather data at smaller t (0.1 mcs, 0.01 mcs) */
/* */
/* (12/10/2004) */
/* Count the number of spin-flips in each Monte-Carlo steps. */
/**/

class brownian2d {
 protected:

 int X, Y, XY;
 int disp[NN4+1];
 float SpinFlipsCount[12][NMCS+1];
 float countspinflips;
 double kT;
 float Ja; // area constraint
 float Jp; // perimeter constraint
 float Jij[2][2]; // coupling constants
 float RR[NT][NRUN*NB];
 float meanRR[NT][3];
 long ran_seed1, ran_seed2, ran_seed3;
 std::vector<simple_lattice_point> element;
 bubble* bub_array[NB+1]; // An array of pointers to droplets
 map<ij, int> ae_count; // tabulates the area-energy distribution

 void initialize();
 void set_disp();
 void read_variables();
 void reset_spin_count();
 void generate_random_seeds();
 void create_droplets(int);
 void create_droplet_at(int, int, int, int);
 void show_all_lattice_points() const;
 void save_img(const char*, int) const;
 void save_data(const char*, int) const;
 void save_spin_counts(const char*, int) const;
 void commence_droplet_tracking();
 void reset();
 void gather_data_smallt(int&, float, int);
 void gather_data(int&, int, int, Engine* ep1);
 void calc_meanRR();
 virtual bool flip_spin(const float);
 bool flip_routine(simple_lattice_point&, simple_lattice_point&, int&, int);

 public:
 brownian2d(int x = DS) : X(x), Y(x), XY(x*x) { initialize(); }
 brownian2d(int x, int y) : X(x), Y(y), XY(x*y) { initialize(); }
 ˜brownian2d() { for(int i=0; i<NB; i++) delete bub_array[i]; };

 int get_X() const { return X; }
 int get_Y() const { return Y; }
 int get_XY() const { return XY; }
 void show_spins_of_all_lattice_points() const;
 void show_droplets_info() const;
 void minimize(const char*);
};

// derived class (algorithm 2a is in brownian2d class).
// everything in algorithm3 is the same as brownian2d except for the
// flip_spin() function.
class algorithm3 : public brownian2d {
 protected:
 virtual bool flip_spin(const float);
 public:
 algorithm3(int x = DS) : brownian2d(x) { initialize(); }
 algorithm3(int x, int y) : brownian2d(x, y) { initialize(); }
 ˜algorithm3() { for(int i=0; i<NB; i++) delete bub_array[i]; };
};

class algorithm2b : public brownian2d {
 protected:
 virtual bool flip_spin(const float);
 public:
 algorithm2b(int x = DS) : brownian2d(x) { initialize(); }
 algorithm2b(int x, int y) : brownian2d(x, y) { initialize(); }
 ˜algorithm2b() { for(int i=0; i<NB; i++) delete bub_array[i]; };
};

145

brownian2d.h Wed Oct 13 11:11:30 2004 2
void brownian2d::initialize() {
 set_disp();
 read_variables();
 element.reserve(XY);
 generate_random_seeds();

 bub_array[0] = new bubble(0, 0); // spin 0, type 0 (medium)
 bub_array[0]->set_area(0);
 for(int i=1; i<=NB; i++)
 bub_array[i] = new bubble(i, 1); // spin i, type 1 (droplet)
}

void brownian2d::set_disp() {

 disp[0] = 0;

 // 1st nearest // 2nd nearest
 disp[1] = 1; disp[5] = 1 + X;
 disp[2] = -1; disp[6] = 1 - X;
 disp[3] = X; disp[7] = -1 + X;
 disp[4] = -X; disp[8] = -1 - X;

 // 3rd nearest // 4th nearest
 disp[9] = 2; disp[13] = 2 + X;
 disp[10] = -2; disp[14] = 2 - X;
 disp[11] = 2*X; disp[15] = 1 + 2*X;
 disp[12] = -2*X; disp[16] = 1 - 2*X;
 disp[17] = -2 + X;
 disp[18] = -2 - X;
 disp[19] = -1 + 2*X;
 disp[20] = -1 - 2*X;
}

void brownian2d::read_variables() {

 char comment[100];

 fstream datafile("variables.txt", ios::in);
 if(!datafile) {
 cerr << "Fail to open variables.txt file.\n";
 exit(EXIT_FAILURE);
 }

 datafile >> Ja; datafile.getline(comment, 100); // use ’\n’
 datafile >> Jp; datafile.getline(comment, 100); // as delimiter
 datafile >> Jij[0][0]; datafile.getline(comment, 100);
 datafile >> Jij[0][1]; datafile.getline(comment, 100);
 datafile >> Jij[1][0]; datafile.getline(comment, 100);
 datafile >> Jij[1][1]; datafile.getline(comment, 100);

 datafile.close();
}

void brownian2d::reset_spin_count() {

 for(int i=0; i<12; i++)
 for(int t=0; t<=NMCS; t++)
 SpinFlipsCount[i][t] = 0;
}

void brownian2d::generate_random_seeds() {

 srand(time(NULL));

 ran_seed1 = -rand();
 ran_seed2 = -rand();
 ran_seed3 = -rand();
}

void brownian2d::create_droplets(int radius) {

 // location of droplets
 int xc[NB + 1] = {X/2, X/4, X/4, 3*X/4, 3*X/4};
 int yc[NB + 1] = {Y/2, Y/4, 3*Y/4, Y/4, 3*Y/4};

 // declare the droplets including the medium
 for(int i=0; i<=NB; i++) {
 bub_array[i]->set_area(0);
 bub_array[i]->set_sum_xy(0, 0);
 bub_array[i]->set_energy(0);
 }
 // initialize all lattice points to point to medium
 for(int coord=0; coord<XY; coord++) {
 element[coord].set_spin(bub_array[0]);
 element[coord].increase_bubble_area();
 }
 // create droplet i
 for(int i=1; i<=NB; i++)
 create_droplet_at(radius, i, xc[i], yc[i]);

 // calculate initial droplet energy
 for(int coord=0; coord<XY; coord++)
 for(int n=1; n<=NNn; n++)
 if(element[coord] != element[MOD(coord + disp[n], XY)])
 element[coord].increment_bubble_energy(1);

}

void brownian2d::create_droplet_at(int radius, int i, int xc, int yc) {

 char* filename = new char[80];
 sprintf(filename, "./Circle_file/circle%d.dat", radius);
 fstream circlefile(filename, ios::in);
 if(!circlefile) {
 cerr << "Fail to open file " << filename << endl;
 exit(EXIT_FAILURE);
 }
 // Create the droplet at (xc, yc)
 int pix;
 int x0, y0;
 int x1, y1;
 int target_area = 0;
 for(int x=0; x<radius; x++) {
 circlefile >> pix;
 for(int y=0; y<pix; y++) {
 x0 = x + xc; x1 = -x -1 + xc;
 y0 = y + yc; y1 = -y -1 + yc;
 element[y0*X + x0].set_spin(bub_array[i]);
 element[y0*X + x1].set_spin(bub_array[i]);
 element[y1*X + x0].set_spin(bub_array[i]);
 element[y1*X + x1].set_spin(bub_array[i]);
 target_area += 4;
 bub_array[i]->increase_area(4);
 bub_array[0]->decrease_area(4);
 bub_array[i]->update_sum_xy(x0,y0);
 bub_array[i]->update_sum_xy(x0,y1);
 bub_array[i]->update_sum_xy(x1,y0);
 bub_array[i]->update_sum_xy(x1,y1);
 }
 }
 bub_array[0]->set_target_area(XY - target_area);
 bub_array[i]->set_target_area(target_area);
 circlefile.close();

}

146

brownian2d.h Wed Oct 13 11:11:30 2004 3
void brownian2d::show_all_lattice_points() const {

 for(int j=0; j<Y; j++) {
 cout << endl;
 for(int i=0; i<X; i++)
 cout << element[j*X + i] << " ";
 cout << endl;
 }

}

void brownian2d::show_droplets_info() const {
 for(int i=1; i<=NB; i++) {
 cout << "spin = " << bub_array[i]->get_spin() << "\t";
 cout << "type = " << bub_array[i]->get_type() << "\t";
 cout << "target area = " << setw(4)
 << bub_array[i]->get_target_area() << "\t";
 cout << "actual area = " << bub_array[i]->get_area() << "\t";
 cout << "energy = " << bub_array[i]->get_energy() << endl;
 }
}

void brownian2d::save_img(const char* argv, int mcs) const {
 char* name = new char[32];

 ostrstream filename(name, 32);
 if(!filename) {
 cerr << "Fail to create filename " << argv << endl;
 exit(EXIT_FAILURE);
 }
 filename.seekp(0);
 filename << "./movies/" << argv;
 filename << ".dat" << ends;
 fstream frame_file(name, ios::out);
 if(!frame_file) {
 cerr << "Fail to open file " << name << endl;
 exit(EXIT_FAILURE);
 }

 for(int i=0; i<XY; i++)
 frame_file << element[i];

 frame_file.close();
 delete name;
}

void brownian2d::save_data(const char* algo, int radius) const{

 char* name = new char[32];

 ostrstream filename(name, 32);
 if(!filename) {
 cerr << "Fail to create filename " << endl;
 exit(EXIT_FAILURE);
 }
 filename.seekp(0); // diffusion data
 filename << "./data/difusn" << algo << "_" << radius << "_";
 filename << setfill(’0’) << setw(2) << 10*kT << ".dat" << ends;
 fstream ctr_m_file(name, ios::out);
 if(!ctr_m_file) {
 cerr << "Fail to open file " << name << endl;
 exit(EXIT_FAILURE);
 }
 filename.seekp(0); // area-energy distribution
 filename << "./data/ae_dist" << algo << "_" << radius << "_";
 filename << setfill(’0’) << setw(2) << 10*kT << ".dat" << ends;
 fstream ae_file(name, ios::out);
 if(!ae_file) {

 cerr << "Fail to open file " << name << endl;
 exit(EXIT_FAILURE);
 }

 filename.seekp(0); // spin-flips count
 filename << "./data/sp_count" << algo << "_" << radius << ".dat" << ends;
 fstream sp_file(name, ios::out);
 if(!sp_file) {
 cerr << "Fail to open file " << name << endl;
 exit(EXIT_FAILURE);
 }
 for(int t=0; t<NTsmall; t++)
 ctr_m_file << meanRR[t][0] << "\t"
 << setw(10) << meanRR[t][1] << " "
 << setw(10) << meanRR[t][2] << endl;

 // Normal iterator can be used to modify the contents of maps.
 // Since save_data() is a constant function (doesn’t allow
 // modification of data), the compiler will complain if
 // we use normal iterator. Solution: use const_iterator.

 map<ij, int>::const_iterator it;
 for(it=ae_count.begin(); it!=ae_count.end(); it++)
 ae_file << (*it).first.getI() << "\t" << (*it).first.getJ() << "\t"
 << (*it).second << endl;

 ctr_m_file.close();
 ae_file.close();

 delete name;
}

void brownian2d::save_spin_counts(const char* algo, int radius) const {
 char* name = new char[32];

 ostrstream filename(name, 32);
 if(!filename) {
 cerr << "Fail to create filename " << endl;
 exit(EXIT_FAILURE);
 }
 filename.seekp(0); // spin-flips count
 filename << "./data/sp_count" << algo << "_" << radius << ".dat" << ends;
 fstream sp_file(name, ios::out);
 if(!sp_file) {
 cerr << "Fail to open file " << name << endl;
 exit(EXIT_FAILURE);
 }
 for(int i=0; i<12; i++) {
 for(int t=0; t<=NMCS; t++)
 sp_file << SpinFlipsCount[i][t] << " ";
 sp_file << endl;
 }
 delete name;
}

void brownian2d::commence_droplet_tracking() {

 for(int i=0; i<=NB; i++)
 bub_array[i]->set_initial_ctr();

}

void brownian2d::reset() {

 for(int t=0; t<NT; t++) {
 meanRR[t][0] = meanRR[t][1] = meanRR[t][2] = 0;
 for(int r=0; r<NRUN*NB; r++)
 RR[t][r] = 0;

147

brownian2d.h Wed Oct 13 11:11:30 2004 4
 }
}

void brownian2d::minimize(const char* algo) {

 string data_directory = "mkdir data";
 string movie_directory = "mkdir movies";
 system(data_directory.c_str());
 system(movie_directory.c_str());

 /*Engine *ep1;
 if(!(ep1 = engOpen("\0"))) {
 cerr << "Can’t start MATLAB engine1\n";
 exit(EXIT_FAILURE);
 }
 */
 int rad[8] = {3,4,5,6,7,8,12,16};
 int radius;
 for(int r=0; r<8; r++) {
 radius = rad[r];
 cout << "radius = " << radius << endl;

 reset_spin_count();
 for(kT=0.5; kT<=6.0; kT+=0.5) {
 cout << "\t temp = " << kT << endl;
 reset();
 SpinFlipsCount[int(kT/0.5-1)][0] = kT;

 for(int run=1; run<=NRUN; run++) {
 generate_random_seeds();
 create_droplets(radius);

 for(int wm=1; wm<=200; wm++) // warm-up
 flip_spin(1.0);

 commence_droplet_tracking();
 int t = 0;
 bool flag = false;

 /*for(float mcs=NEminus1; mcs<=NE0; mcs+=NEminus1){
 flip_spin(NEminus1);
 gather_data_smallt(t, mcs, run);
 }
 for(float mcs=NE0+NE0; mcs<NE1; mcs+=NE0){
 flip_spin(NE0);
 gather_data_smallt(t, mcs, run);
 }
 */
 for(int mcs=NE1; mcs<=NMCS; mcs+=NE1) {
 countspinflips = 0;
 if(flip_spin(NE1)) {
 flag = true; // droplet vanished or touching the edge of lattice
 cout << "run " << run << "\tmcs " << mcs << endl;
 break;
 }
 //gather_data(t, mcs, run, ep1);
 SpinFlipsCount[int(kT/0.5-1)][mcs] = countspinflips/NB;
 }

 if(flag) { // Repeat this run if flag is true
 generate_random_seeds();
 run--;
 continue;
 }
 }
 //calc_meanRR();
 //save_data(algo, radius);
 //ae_count.clear(); // clear the area-energy distribution table

 }
 save_spin_counts(algo, radius);
 }
 //engClose(ep1);
}

void brownian2d::gather_data_smallt(int& t, float mcs, int run) {

 meanRR[t][0] = mcs;
 for(int i=1; i<=NB; i++) {
 meanRR[t][1] += bub_array[i]->get_rsquare();
 RR[t][NB*(run-1) + i - 1] = bub_array[i]->get_rsquare();
 }
 t++;
}

void brownian2d::gather_data(int& t, int mcs, int run, Engine* ep1) {

 char* action = new char[80];
 // gather area-energy distribution data (allow 100 mcs warmup)
 if(mcs >= 100) {
 ij area_energy;
 for(int i=1; i<=NB; i++) {
 area_energy.setIJ(bub_array[i]->get_area(), bub_array[i]->get_energy());
 ae_count[area_energy]++;
 }
 }

 // gather diffusion data
 if((mcs <= 10 && mcs%NE1 == 0) ||
 (mcs <= 100 && mcs%NE2 == 0) ||
 (mcs <= 1000 && mcs%NE3 == 0) ||
 (mcs <= 10000 && mcs%NE4 == 0)) {
 meanRR[t][0] = mcs;
 for(int i=1; i<=NB; i++) {
 meanRR[t][1] += bub_array[i]->get_rsquare();
 RR[t][NB*(run-1) + i - 1] = bub_array[i]->get_rsquare();
 }
 cout << t << "\t" << mcs << endl;
 t++;
 //show_droplets_info();
 /*save_img("frame", mcs);
 sprintf(action, "visualize1 ./movies/frame.dat %d %d %d", mcs, X, Y);
 engEvalString(ep1, action);
 */
 }
 delete action;
}

void brownian2d::calc_meanRR() {

 double errRR;
 for(int t=0; t<NT; t++) {
 meanRR[t][1] /= (NRUN*NB);
 errRR = 0;

 for(int r=0; r<NRUN*NB; r++)
 errRR += pow(RR[t][r] - meanRR[t][1], 2);

 meanRR[t][2] = sqrt(errRR/(NRUN*NB*(NRUN*NB - 1)));
 }
}

bool brownian2d::flip_spin(const float ne) {

 int coord1, coord2, coordj;
 int type1, type2, typej;
 int index2;

148

brownian2d.h Wed Oct 13 11:11:30 2004 5
 int dN;
 double J_ij = Jij[1][1];
 double fac[NNn];
 double dEJ, dEA;

 for(int dn=0; dn<NNn; dn++)
 fac[dn] = (double(NNn + dn)/double(NNn - dn));

 for(int i=0; i<int(ne*XY); i++) {
 dEJ = dEA = 0;
 dN = NNn;
 coord1 = MOD(ran3l(&ran_seed1), XY);
 index2 = ran3l(&ran_seed2)%NN2 + 1;
 coord2 = MOD(coord1 + disp[index2], XY);

 if(element[coord1] != element[coord2]) {
 type1 = element[coord1].get_type();
 type2 = element[coord2].get_type();

 if(type1 == type2) {
 cout << "droplets are touching each other!\t";
 return true;
 }
 // delta_E due to interaction (spin 1 -> spin 2)
 for(int i=1; i<=NNn; i++) {
 coordj = MOD(coord1 + disp[i], XY);
 if(element[coordj] != element[coord1])
 dN -= 2;
 }
 dEJ = dN*J_ij;

 // delta_E due to area constraint.
 // Bubble1 - 1 pixel, bubble2 + 1 pixel.
 // There is no area constraint on medium.
 // This is ensured by the value of "type".
 dEA = (Ja*type1*(2*(element[coord1].get_target_area() -
 element[coord1].get_area()) + 1) +
 Ja*type2*(-2*(element[coord2].get_target_area() -
 element[coord2].get_area()) + 1));

 // flip spins
 if(dEJ<=0 && dEA<=0){
 if(flip_routine(element[coord1], element[coord2], coord1, (int)dEJ))
 return true;
 }
 else if((dEJ<=0 && dEA>0) && ran3f(&ran_seed3) < exp(-dEA/kT)) {
 if(flip_routine(element[coord1], element[coord2], coord1, (int)dEJ))
 return true;
 }
 else if((dEJ>0 && dEA<=0) && ran3f(&ran_seed3) < fac[dN]*exp(-dEJ/kT)) {
 if(flip_routine(element[coord1], element[coord2], coord1, (int)dEJ))
 return true;
 }
 else if(ran3f(&ran_seed3) < fac[dN]*exp(-(dEJ + dEA)/kT)) {
 if(flip_routine(element[coord1], element[coord2], coord1, (int)dEJ))
 return true;
 }
 }
 }
 return false;
}

bool brownian2d::flip_routine(simple_lattice_point& spin1,
 simple_lattice_point& spin2, int& coord1, int dEJ) {
 spin1.decrease_bubble_area();
 spin2.increase_bubble_area();
 spin1.increment_bubble_energy(dEJ);
 spin2.increment_bubble_energy(dEJ);

 if(spin1.get_area() == 0) {
 cout << "droplet vanished!\t";
 return true;
 }
 int x = coord1%X;
 int y = coord1/X;
 if(x == 0 || x == X-1 || y == 0 || y == Y-1) {
 cout << "droplet at lattice edge!\t";
 return true;
 }
 spin1.update_sum_xy(-x, -y);
 spin2.update_sum_xy(x, y);
 spin1 = spin2;
 countspinflips++;
 return false;

}

bool algorithm3::flip_spin(const float ne) {

 int coord1, coord2, coordj;
 int type1, type2, typej;
 int index2;
 int dN;
 double J_ij = Jij[1][1];
 double dE, dEJ;

 for(int i=0; i<int(ne*XY); i++) {
 dE = 0;
 dN = NNn;
 coord1 = MOD(ran3l(&ran_seed1), XY);
 index2 = ran3l(&ran_seed2)%NN2 + 1;
 coord2 = MOD(coord1 + disp[index2], XY);

 if(element[coord1] != element[coord2]) {
 type1 = element[coord1].get_type();
 type2 = element[coord2].get_type();

 if(type1 == type2) {
 cout << "droplets are touching each other!\t";
 return true;
 }
 // delta_E due to interaction
 for(int i=1; i<=NNn; i++) {
 coordj = MOD(coord1 + disp[i], XY);
 if(element[coordj] != element[coord1])
 dN -= 2;
 }
 dE = dN*J_ij;
 dEJ = dE;

 // delta_E due to area constraint.
 // droplet1 - 1 pixel, droplet2 + 1 pixel.
 // There is no area constraint on medium.
 // This is ensured by the value of "type".
 dE += (Ja*type1*(2*(element[coord1].get_target_area() -
 element[coord1].get_area()) + 1) +
 Ja*type2*(-2*(element[coord2].get_target_area() -
 element[coord2].get_area()) + 1));

 // flip spins
 if(dE <= 0) {
 if(flip_routine(element[coord1], element[coord2], coord1, (int)dEJ))
 return true;
 }
 else if(kT > 0 && ran3f(&ran_seed3) < exp(-dE/kT))
 if(flip_routine(element[coord1], element[coord2], coord1, (int)dEJ))
 return true;

149

brownian2d.h Wed Oct 13 11:11:30 2004 6
 }
 }
 return false;
}

bool algorithm2b::flip_spin(const float ne) {

 int coord1, coord2, coordj;
 int type1, type2, typej;
 int index2;
 int dN;
 double J_ij = Jij[1][1];
 double dEJ, dEA;

 for(int i=0; i<int(ne*XY); i++) {
 dEJ = dEA = 0;
 dN = NNn;
 coord1 = MOD(ran3l(&ran_seed1), XY);
 index2 = ran3l(&ran_seed2)%NN2 + 1;
 coord2 = MOD(coord1 + disp[index2], XY);

 if(element[coord1] != element[coord2]) {
 type1 = element[coord1].get_type();
 type2 = element[coord2].get_type();

 if(type1 == type2) {
 cout << "droplets are touching each other!\t";
 return true;
 }
 // delta_E due to interaction
 for(int i=1; i<=NNn; i++) {
 coordj = MOD(coord1 + disp[i], XY);
 if(element[coordj] != element[coord1])
 dN -= 2;
 }
 dEJ = dN*J_ij;

 // delta_E due to area constraint.
 // droplet1 - 1 pixel, droplet2 + 1 pixel.
 // There is no area constraint on medium.
 // This is ensured by the value of "type".
 dEA = (Ja*type1*(2*(element[coord1].get_target_area() -
 element[coord1].get_area()) + 1) +
 Ja*type2*(-2*(element[coord2].get_target_area() -
 element[coord2].get_area()) + 1));

 // flip spins
 if(dEJ<=0 && dEA<=0){
 if(flip_routine(element[coord1], element[coord2], coord1, (int)dEJ))
 return true;
 }
 else if((dEJ<=0 && dEA>0) && ran3f(&ran_seed3) < exp(-dEA/kT)) {
 if(flip_routine(element[coord1], element[coord2], coord1, (int)dEJ))
 return true;
 }
 else if((dEJ>0 && dEA<=0) && ran3f(&ran_seed3) < exp(-dEJ/kT)) {
 if(flip_routine(element[coord1], element[coord2], coord1, (int)dEJ))
 return true;
 }
 else if(ran3f(&ran_seed3) < exp(-(dEJ + dEA)/kT)) {
 if(flip_routine(element[coord1], element[coord2], coord1, (int)dEJ))
 return true;
 }
 }
 }
 return false;
}
#endif

150

brownian2d.cc Wed Sep 08 13:35:28 2004 1
#include <iostream>
#include "brownian2d.h"
using namespace std;

int main(int argc, char* argv[]) {

 system("date");

 if(argc == 1) {
 cout << "Please enter the version of algorithm to use: 2a or 2b or 3\n";
 exit(EXIT_FAILURE);
 }

 string algo = argv[1];

 if(algo == "2a") {
 cout << "Algorithm 2a: randomly select a neighbour’s spin.\n"
 << "4-cases modified Metropolis acceptance ratios.\n";
 brownian2d simulation;
 simulation.minimize(argv[1]);
 }
 else if(algo == "2b") {
 cout << "Algorithm 2b: randomly select a neighbour’s spin.\n"
 << "4-cases Metropolis acceptance ratios.\n";
 algorithm2b simulation;
 simulation.minimize(argv[1]);
 }
 else if(algo == "3") {
 cout << "Algorithm 3: randomly select a neighbour’s spin.\n"
 << "2-cases Metropolis acceptance ratios.\n";
 algorithm3 simulation;
 simulation.minimize(argv[1]);
 }
 else {
 cout << "Please enter a valid version of algorithm: 2a or 2b or 3\n";
 exit(EXIT_FAILURE);
 }
 system("date");

}

151

ran3_float.h Tue Jan 13 14:36:11 2004 1
#ifndef RAN3_FLOAT_H
#define RAN3_FLOAT_H

/**/
/* */
/* Lagged Fibonacci random number generator */
/* -- */
/* */
/* X_n = (X_(n-55) - X_(n-24)) mod m */
/* */
/* Documentation */
/* ------------- */
/* */
/* 30/8/2001 MBIG = 1000000000 */
/* 17/9/2001 MBIG = (1L<<30) */
/* 17/9/2001 #define mod_diff(x,y) (((x)-(y))&(MBIG-1)) */
/* ran3f() returns a number in the range [0, 1] */
/* */
/* Usage */
/* ----- */
/* */
/* Call with negative seed idum */
/* */
/**/

#include <cstdlib>
#define MBIG (1L<<30) // modulus
#define MSEED 161803398
#define MZ 0
#define FAC (1.0/MBIG)
#define SLAG 24 // short lag
#define LLAG 55 // long lag
#define mod_diff(x,y) (((x)-(y))&(MBIG-1)) // (x-y)mod MBIG

float ran3f(long *idum)
{
 int i,ii,k;
 static int iff=0;
 static int inext,inextp;
 static long ma[LLAG+1];
 long mj,mk;

 if (*idum < 0 || iff == 0) {
 iff=1;
 mj=MSEED-(*idum < 0 ? -*idum : *idum);
 mj %= MBIG;
 ma[LLAG]=mj;
 mk=1;
 for (i=1;i<=(LLAG-1);i++) {
 ii=(21*i) % LLAG;
 ma[ii]=mk;
 mk=mj-mk;
 if (mk < MZ) mk += MBIG;
 mj=ma[ii];
 }
 for (k=1;k<=4;k++)
 for (i=1;i<=LLAG;i++) {
 ma[i] -= ma[1+(i+30) % LLAG];
 if (ma[i] < MZ) ma[i] += MBIG;
 }
 inext=0;
 inextp= (LLAG - SLAG);
 *idum=1;
 }
 if (++inext == (LLAG+1)) inext=1;
 if (++inextp == (LLAG+1)) inextp=1;
 mj = mod_diff(ma[inext], ma[inextp]);
 ma[inext]=mj;

 return mj*FAC;
}

#undef MBIG
#undef MSEED
#undef MZ
#undef FAC
#undef SLAG
#undef LLAG
#undef mod_diff

#endif
/* (C) Copr. 1986-92 Numerical Recipes Software W$5&+1*?$. */

152

ran3_long.h Tue Jan 13 14:36:11 2004 1
#ifndef RAN3_LONG_H
#define RAN3_LONG_H

/**/
/* */
/* Lagged Fibonacci random number generator */
/* -- */
/* */
/* X_n = (X_(n-55) - X_(n-24)) mod m */
/* */
/* Documentation */
/* ------------- */
/* */
/* 30/08/2001 MBIG = 1000000000 */
/* 17/09/2001 MBIG = (1L<<30) */
/* 17/09/2001 #define mod_diff(x,y) (((x)-(y))&(MBIG-1)) */
/* 21/09/2001 change ran3l() so that it returns an integer */
/* between 0 and MBIG-1 (1073741823) */
/* */
/* Usage */
/* ----- */
/* */
/* Call with either positive or negative seed idum */
/* */
/**/

#define MBIG (1L<<30) // modulus
#define MSEED 161803398
#define MZ 0
#define SLAG 24 // short lag
#define LLAG 55 // long lag
#define mod_diff(x,y) (((x)-(y))&(MBIG-1)) // (x-y)mod MBIG

long ran3l(long *idum)
{
 int i, ii, k;
 static int initialize = 1;
 static int inext,inextp;
 static long ma[LLAG+1];
 long mj,mk;

 if (*idum < 0 || initialize) {
 initialize = 0;
 mj=MSEED-(*idum < 0 ? -*idum : *idum);
 mj %= MBIG;
 ma[LLAG]=mj;
 mk=1;
 for (i=1;i<=(LLAG-1);i++) {
 ii=(21*i) % LLAG;
 ma[ii]=mk;
 mk=mj-mk;
 if (mk < MZ) mk += MBIG;
 mj=ma[ii];
 }
 for (k=1;k<=4;k++)
 for (i=1;i<=LLAG;i++) {
 ma[i] -= ma[1+(i+30) % LLAG];
 if (ma[i] < MZ) ma[i] += MBIG;
 }
 inext = 0;
 inextp = (LLAG - SLAG);
 *idum = 1;
 }
 if (++inext == (LLAG+1)) inext=1;
 if (++inextp == (LLAG+1)) inextp=1;
 mj = mod_diff(ma[inext], ma[inextp]);
 ma[inext]=mj;
 return mj;

}

#undef MBIG
#undef MSEED
#undef MZ
#undef SLAG
#undef LLAG
#undef mod_diff

#endif
/* (C) Copr. 1986-92 Numerical Recipes Software W$5&+1*?$. */

153

ij.h Thu Jan 15 03:31:22 2004 1
#ifndef IJ_H
#define IJ_H

class ij {
 private:
 int vi;
 int vj;

 public:
 ij(const int& i=0, const int& j=0) : vi(i), vj(j) {}
 ij(const ij& p) { vi = p.vi; vj = p.vj; }
 ˜ij() {}
 void setI(const int& i) { vi = i;}
 void setJ(const int& j) { vj = j;}
 void setIJ(const int& i, const int& j) { vi = i; vj = j;}
 int getI() const { return vi;}
 int getJ() const { return vj;}
 bool operator==(const ij& p) const { return (vi==p.vi)&&(vj==p.vj); }
 bool operator!=(const ij& p) const { return (vi!=p.vi)||(vj!=p.vj); }
 bool operator>(const ij& p) const {
 return (vi>p.vi)||((vi==p.vi)&&(vj>p.vj));
 }
 bool operator<(const ij& p) const {
 return (vi<p.vi)||((vi==p.vi)&&(vj<p.vj));
 }
};

#endif154

variables.txt Wed Jan 14 23:09:59 2004 1
1.0 // Ja = area constraint
0.1 // Jp = perimeter constraint
0.0 // J00 = medium - medium
1.0 // J01 = medium - bubble
1.0 // J10 = bubble - medium
2.0 // J11 = bubble - bubble (between different bubbles)

155

visualize1.m Sat Jan 17 20:10:05 2004 1
% pic.dat constains a 1-d array of integers
% The first element of pic.dat i.e. pic(1), is the monte carlo step
% reshape(pic, dim, dim) reshapes the 1-d array to a dim x dim array
% matlab starts index at 1, the colormap converts 1 to RGB[1 1 1], white;
% 2 to RGB[1 0 0], red; 3 to RGB[0 1 0], green; and 4 to RGB[0 0 1] blue
% Since pic contains 0 and it won’t be rendered by the colormap,
% add 1 to every element

%clear all

function output = visualize1(filename, mcs, x_dim, y_dim)
fid = fopen(filename, ’r’);
frame = fscanf(fid, ’%d’);
frame = frame + 1;
mcs = strread(mcs); % Converting string to integer
x_dim = strread(x_dim);
y_dim = strread(y_dim);
A = reshape(frame, x_dim, y_dim);
cmap = [1 1 1; 1 0 0; 0 1 0; 0 0 1; 1 .8 0; 0 0 0];
output = image(A);
colormap(cmap);
axis image;
title(mcs);
%filename = sprintf(’./movies/frame%d.tiff’, mcs);
%imwrite(A, cmap, filename, ’tiff’);
%I = imread(filename, ’tiff’);
%imshow(I);156

BIBLIOGRAPHY

[1] D. Abraham, G. Gallavotti and A. Martin-Lof, Surface Tension in the Ising
Model. Lettere Al Nuovo Cimento, 2: 143–146 (1971).

[2] D. B. Abraham and P. Reed, Phase Separation in the Two-Dimensional Ising
Ferromagnet. Phys. Rev. Lett., 33: 377–379 (1974).

[3] D. B. Abraham and P. Reed, Interface Profile of the Ising Ferromagnet in
Two Dimensions. Commun. Math. Phys., 49: 35–46 (1976).

[4] Y. Akutsu and N. Akutsu, Intrinsic Structure of the Phase-Separation Line
in the Two-Dimensional Ising Model. J. Phys. A: Math. Gen., 20: 5981–5990
(1987).

[5] R. Aldrovandi, Special Matrices of Mathematical Physics: Stochastic, Circu-
lant and Bell Matrices , p. 25–53. World Scientific, Singapore (2001).

[6] P. Ball, The Self-Made Tapestry: Pattern Formation in Nature. Oxford Uni-
versity Press, Oxford (1999).

[7] R. B. Bapat and T. E. S. Raghavan, Nonnegative Matrices and Applications ,
p. 1–24. Cambridge University Press, Cambridge (1997).

[8] A.-L. Barabasi and E. H. Stanley, Fractal Concepts in Surface Growth, p.
1–37. Cambridge University Press, New York (1995).

[9] B. A. Berg, U. Hansmann and T. Neuhaus, Properties of Interfaces in the Two
and Three Dimensional Ising Model. Z. Phys. B , 90: 229–239 (1993).

[10] H. A. Bethe, Statistical Theory of Superlattices. Proc. Roy. Soc. A, 150: 552–
575 (1935).

[11] K. Binder, Monte Carlo Calculation of the Surface Tension for Two- and
Three-dimensional Lattice-gas Models. Phys. Rev. A, 25: 1699–1709 (1982).

[12] K. Binder and D. P. Landau, Phase Diagrams and Critical Behavior in
Ising Square Lattices with Nearest- and Next-Nearest-Neighbor Interactions.
Phys. Rev. B , 21: 1941–1961 (1980).

[13] A. Birovljev, L. Furuberg, J. Feder, T. Jossang, K. J. Maloy and A. Aharony,
Gravity Invasion Percolation in Two Dimensions: Experiment and Simulation.
Phys. Rev. Lett., 67: 584–587 (1991).

157

[14] W. L. Bragg and E. J. Williams, The Effect of Thermal Agitation on Atomic
Arrangement in Alloys. Proc. Roy. Soc. A, 145: 699–730 (1934).

[15] S. G. Brush, History of the Lenz-Ising Model. Rev. Mod. Phys., 39: 883–893
(1967).

[16] T. W. Burkhardt, Interface Free Energy and Critical Line for the Ising Model
with Nearest and Next-Nearest-Neighbor Interactions. Z. Physik B , 29: 129–
132 (1978).

[17] E. Burkner and D. Stauffer, Monte Carlo Study of Surface Roughening in the
Three-Dimensional Ising Model. Z. Phys. B , 53: 241–243 (1983).

[18] W. K. Burton, N. Cabrera and F. C. Frank, The Growth of Crystals and
the Equilibrium Structure of their Surfaces. Philos. Trans. Roy. Soc., 243:
299–358 (1951).

[19] F. Calheiros, S. Johannesen and D. Merlini, Surface Tension and SOS Limit
in the 2D Ising Model. J. Phys. A: Math. Gen., 20: 5991–6000 (1987).

[20] D. Chandler, Introduction to Modern Statistical Mechanics , p. 44–49. Oxford
University Press, New York (1986).

[21] T. S. Chang, An Extension of Bethe’s Theory of Order-Disorder Transitions
in Metallic Alloys. Proc. Roy. Soc. A, 161: 546–563 (1937).

[22] M. Cieplak, A. Maritan and J. R. Banavar, Interfacial Geometry and Over-
hanging Configurations. J. Phys. A: Math. Gen., 27: L765–L769 (1994).

[23] C. A. Croxton, Statistical Mechanics of the Liquid Surface, p. 1–20. John
Wiley & Sons, Chichester (1980).

[24] N. W. Dalton, Distant-neighbour Interactions in Ferromagnetic Systems
(BPW approximation). Proc. Phys. Soc., 89: 845–857 (1966).

[25] N. W. Dalton and D. W. Wood, Critical Point Behavior of the Ising Model
with Higher-Neighbor Interactions Present. J. Math. Phys., 10: 1271–1302
(1969).

[26] C. Domb, Order-Disorder Statistics. I. Proc. Roy. Soc. (London), 196: 36–50
(1949).

[27] C. Domb and N. W. Dalton, Crystal Statistics with Long-Range Forces I. The
Equivalent Neighbour Model. Proc. Roy. Soc. A, 89: 859–871 (1966).

[28] C. Domb and R. B. Potts, Order-Disorder Statistics. IV. A Two-Dimensional
Model with First and Second Interactions. Proc. Roy. Soc. A, 210: 125–141
(1951).

[29] J. L. Doob, Wiener’s Work in Probability Theory. Bulletin American
Math. Soc., 72(number 1, part 2): 69–72 (1966).

158

[30] K. J. Dormer, Fundamental Tissue Geometry for Biologists . Cambridge Uni-
versity Press, Cambridge (1980).

[31] A. W. Drake, Fundamentals of Applied Probability Theory , p. 163–193.
McGraw-Hill, New York (1967).

[32] W. Ebeling and F. Schweitzer, Self-Organization, Active Brownian Dynamics
and Biological Applications. Nova Acta Leopoldina NF , 88: 169–188 (2003).

[33] A. Einstein, On the Motion of Small Particles Suspended in Liquids at Rest
Required by the Molecular Kinetic Theory of Heat. Ann. der Physik , 19: 371–
381 (1906).

[34] D. R. Ekserova, D. Exerowa and P. M. Kruglyakov, Foam and Foam Films:
Theory, Experiment, Application. Studies in Interface Science, Elsevier, Am-
sterdam (1998).

[35] H. G. Evertz, M. Hasenbusch, M. Marcu and K. Pinn, The Solid-on-Solid
Surface Width around the Roughening Transition. Physica A, 199: 31–39
(1993).

[36] F. Family and T. Vicsek, Dynamics Scaling of Growing Surfaces. In F. Fam-
ily and T. Vicsek, editors, Dynamics of Fractals Surfaces , p. 73–77, World
Scientific, Singapore (1991).

[37] C. Fan and F. Y. Wu, Ising Model with Second-Neighbor Interaction. I. Some
Exact Results and an Approximate Solution. Phys. Rev., 179: 560–570 (1969).

[38] P. J. Flory, Statistical Mechanics of Chain Molecules . Interscience, New York
(1969).

[39] H. Flyvbjerg and C. Jeppesen, A Solvable Model for Corsening Soap Froths
and Other Domain Boundary Networks in Two Dimensions. Physica Scripta,
T38: 49–54 (1991).

[40] G. F. Fröbenius, Über Matrizen aus nichtnegativen Elementen, p. 456–477.
S.-B. Preuss. Akad. Wiss., Berlin (1912).

[41] G. Gallavotti, Statistical Mechanics: A Short Treatise, p. 233–251. Springer,
Berlin (1999).

[42] G. Gallavotti and A. Martin-Lof, Surface Tension in the Ising Model. Com-
mun. Math. Phys., 25: 87–126 (1972).

[43] R. W. Gibberd, Next-Nearest-Neighbor Ising Model. J. Math. Phys., 10: 1026–
1029 (1969).

[44] J. W. Gibbs, Elementary Principles in Statistical Mechanics . Ox Bow Press,
Woodridge (1902, reprinted 1981).

[45] J. A. Glazier, Dynamics of Cellular Patterns . Ph.D. thesis, University of
Chicago (1989).

159

[46] J. A. Glazier, M. P. Anderson and G. S. Grest, Coarsening in the Two Di-
mensional Soap Froth and the Large-Q Potts Model: A Detailed Comparison.
Phil. Mag. B , 62: 615–645 (1990).

[47] J. A. Glazier and F. Graner, Simulation of the Differential Adhesion Driven
Rearrangement of Biological Cells. Phys. Rev. E , 47: 2128–2154 (1993).

[48] F. Graner and J. A. Glazier, Simulation of Biological Cell Sorting Using a
Two-Dimensional Extended Potts Model. Phys. Rev. Lett., 69: 2013–2016
(1992).

[49] D. t. Haar, Elements of Statistical Mechanics , p. 251–295. Rinehart, New York
(1954).

[50] H. Haken, Synergetics. An Introduction. Nonequilibrium Phase Transitions
and Self-Organization in Physics, Chemistry and Biology., p. 158–179.
Springer-Verlag, Berlin (1983).

[51] M. Hasenbusch, Direct Monte Carlo Measurement of the Surface Tension in
Ising Models. J. Phys. I. (France), 3: 753–765 (1993).

[52] M. Hasenbusch and S. Meyer, Cluster-Update Acceleration of Interface Rough-
ening in the 3D Ising Model. Phys. Rev. Lett., 66: 530–533 (1991).

[53] M. Hasenbusch, S. Meyer and M. Putz, The Roughening Transition of the 3D
Ising Interface: A Monte Carlo Study. J. Stat. Phys., 85: 383–401 (1996).

[54] M. Hasenbusch and K. Pinn, Surface Tension, Surface Stiffness, and Surface
Width of the 3-dimensional Ising Model on a Cubic Lattice. Physica A, 192:
342–374 (1993).

[55] M. Hasenbusch and K. Pinn, The Interface Tension of the 3-Dimensional Ising
Model in the Scaling Region. Physica A, 245: 366–378 (1997).

[56] C. Herring, The Use of Classical Macroscopic Concepts in Surface-Energy
Problems. In R. Gomer and C. S. Smith, editors, Structure and Properties of
Solid Surfaces , p. 5–30, University of Chicago, Chicago (1952).

[57] S. Hildebrandt and A. Tromba, The Parsimonious Universe: Shape and Form
in The Natural World . Copernicus, New York (1996).

[58] B. J. Hiley and G. S. Joyce, The Ising Model with Long Range Interactions.
Proc. Phys. Soc., 85: 493–507 (1965).

[59] T. Hill, An Introduction to Statistical Thermodynamics , p. 214–231. Addision-
Wesley, Reading, Massachusetts (1960).

[60] K. Huang, Introduction to Statistical Physics , p. 260–270. Taylor and Francis,
London (2001).

[61] C. Isenberg, The Science of Soap Films and Soap Bubbles , p. 1–24. Dover,
New York (1992).

160

[62] E. Ising, The Theory of Ferromagnetism. Z. Physik , 31: 253–258 (1925).

[63] Y. Jiang, P. J. Swart, A. Saxena, M. Asipauskas and J. A. Glazier, Hys-
teresis and Avalanches in Two-Dimensional Foam Rheology Simulations.
Phys. Rev. E , 59: 5819–5832 (1999).

[64] D. E. Knuth, The Art of Computer Programming, Volume 2 , p. 1–179.
Addison-Wesley, Reading, Massachusetts. (1997).

[65] S. Kobe, Ernst Ising - Physicist and Teacher. J. Stat. Phys., 88: 991–995
(1997).

[66] H. A. Kramers and G. H. Wannier, Statistics of the Two-Dimensional Ferro-
magnet. Part I. Phys. Rev., 60: 252–262 (1941).

[67] R. Kubo, H. Ichimura, T. Usui and N. Hashitsume, Statistical Mechanics , p.
77–78. North-Holland, Amsterdam (1965).

[68] R. Kubo, M. Toda and N. Hashitsume, Statistical Physics II. Nonequilibrium
Statistical Mechanics , volume 31 of Springer Series on Solid-State Science.
Springer-Verlag, Berlin (1991).

[69] P. K. Kundu, Fluid Mechanics . Academic Press, San Diego (1990).

[70] D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statis-
tical Physics . Cambridge University Press, Cambridge (2000).

[71] H. J. Leamy, G. H. Gilmer and K. A. Jackson, Statistical Thermodynamics of
Clean Surfaces. In J. M. Blakely, editor, Surface Physics of Materials: Volume
1 , p. 121–188, Academic Press, New York (1975).

[72] J. C. Lee, Thermal Physics: Entropy and Free Energies , p. 56–67. World
Scientific, River Edge, New Jersey (2002).

[73] W. Lenz, Note on the Explanation of Magnetic Phenomena in Solid Bodies.
Z. Physik , 21: 613–615 (1920).

[74] S. Ling, M. P. Anderson, G. S. Grest and J. A. Glazier, Comparison of Soap
Froth and Simulation of Large-Q Potts Model. Materials Science Forum, 94-
96: 39–51 (1992).

[75] S.-K. Ma, Statistical Mechanics , p. 485–487. World Scientific, Philadelphia
(1985).

[76] B. B. Mandelbrot, Self-Affine Fractals and Fractal Dimension. In F. Family
and T. Vicsek, editors, Dynamics of Fractals Surfaces , p. 11–20, World Sci-
entific, Singapore (1991).

[77] D. A. McQuarrie, Statistical Mechanics . Harper & Row, New York (1975).

[78] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and
E. Teller, Equation of State Calculations by Fast Computing Machines.
J. Chem. Phys., 21: 1087–1092 (1953).

161

[79] K. H. Meyer and C. Ferri, Sur l’élasticité du caoutchouc. Helv. Chim. Acta.,
18: 570–589 (1935).

[80] F. Mohling, Statistical Mechanics: Methods and Applications , p. 545–550.
John Wiley & Sons, New York (1982).

[81] K. K. Mon, Self-Similarity and Fractal Dimension of a Roughening Interface
by Monte Carlo Simulations. Phys. Rev. Lett., 57: 866–868 (1986).

[82] K. K. Mon and D. Jasnow, Monte Carlo Evaluations of Interfacial Ten-
sion and Universal Amplitude Ratios of the Three-Dimensional Ising Model.
Phys. Rev. A, 31: 4008–4011 (1985).

[83] K. K. Mon and D. Jasnow, Surface Tension and Universality in the Three-
Dimensional Ising Model. J. Stat. Phys., 41: 273–280 (1985).

[84] K. K. Mon, D. P. Landau and D. Stauffer, Interface Roughening in the Three-
Dimensional Ising Model. Phys. Rev. B , 42: 545–547 (1990).

[85] K. K. Mon, S. Wansleben, D. P. Landau and K. Binder, Anisotropic Sur-
face Tension, Step Free Energy, and Interfacial Roughening in the Three-
Dimensional Ising Model. Phys. Rev. Lett., 60: 708–711 (1988).

[86] E. Muller-Hartmann and J. Zittartz, Interface Free Energy and Transition
Temperature of the Square-Lattice Ising Antiferromagnet at Finite Magnetic
Field. Z. Physik B , 27: 261–266 (1977).

[87] M. Nauenberg and B. Nienhuis, Critical Surface for Square Ising Spin Lattice.
Phys. Rev. Lett., 33: 944–946 (1974).

[88] D. Nelson, T. Piran and S. Weinberg, Statistical Mechanics of Membranes and
Surfaces , p. 1–4. World Scientific, Singapore (1989).

[89] E. Nelson, Dynamical Theories of Brownian Motion. Princeton University
Press, New Jersey (1967).

[90] M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical
Physics . Clarendon Press, Oxford (1999).

[91] C. S. Nolle, B. Koiller, N. Martys and M. O. Robbins, Morphology and Dy-
namics of Interfaces in Random Two-Dimensional Media. Phys. Rev. Lett., 71:
2074–2077 (1993).

[92] C. S. Nolle, B. Koiller, N. Martys and M. O. Robbins, Effect of Quenched
Disorder on Moving Interfaces in Two Dimensions. Physica A, 205: 342–354
(1994).

[93] J. Oitmaa, The Square-Lattice Ising Model with First and Second Neighbour
Interactions. J. Phys. A: Math. Gen., 14: 1159–1168 (1981).

[94] S. Ono and S. Kondo, Molecular Theory of Surface Tension in Liquids. In
S. Flugge, editor, Encyclopedia of Physics: Structure of Liquids , volume 10,
p. 134–280, Springer-Verlag, Berlin (1960).

162

[95] L. Onsager, Crystal Statistics. I. A Two-Dimensional Model with an Order-
Disorder Transition. Phys. Rev., 65: 117–149 (1944).

[96] J. M. R. Parrondo, Brownian Motion and Gambling: From Ratchets to Para-
doxical Games. Contemporary Physics , 45: 147–157 (2004).

[97] P. A. Pearce, Principles of Statistical Mechanics. In V. V. Bazhanov and
C. J. Burden, editors, Statistical Mechanics and Field Theory , p. 1–25, World
Scientific, Singapore (1995).

[98] H.-O. Peitgen, H. Jurgens and D. Saupe, Chaos and Fractals: New Frontiers
of Science, p. 487–496. Springer-Verlag, New York (1992).

[99] H. Pelzer, Kinetic Theory of the Elasticity of Rubber. Reports on Progress in
Physics , 6: 330–334 (1939).

[100] O. Perron, Theorie der Über Matrizen. Math. Ann., 64: 248–263 (1907).

[101] R. B. Potts. Ph.D. thesis, Oxford University (1951).

[102] R. B. Potts, Some Generalized Order-Disorder Transformations.
Proc. Camb. Phil. Soc., 48: 106–109 (1952).

[103] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical
Recipes in C, 2nd ed., p. 274–283. Cambridge University Press, Cambridge
(1999).

[104] F. Reif, Fundamentals of Statistical and Thermal Physics , p. 560–582.
McGraw-Hill, New York (1965).

[105] H. Risken, The Fokker-Planck Equation. Methods of Solution and Applica-
tions , p. 276–300. Springer-Verlag, Berlin (1989).

[106] C. Rottman and M. Wortis, Exact Equilibrium Crystal Shapes at Nonzero
Temperature in Two Dimensions. Phys. Rev. B , 24: 6274–6277 (1981).

[107] B. Sapoval, M. Rosso and J. F. Gouyet, The Fractal Nature of a Diffusion
Front and the Relation to Percolation. J. Physique Lett., 46: L149–L156
(1985).

[108] E. H. Stanley, Introduction to Phase Transitions and Critical Phenomena, p.
1–38. Oxford University Press, New York (1971).

[109] H. E. Stanley, E. F. Taylor and P. A. Trunfio, Fractals in Science. An Intro-
ductory Course, p. 191–202. Springer-Verlag, Berlin (1994).

[110] R. H. Swendsen and S. Krinsky, Monte Carlo Renormalization Group and
Ising Models with n > 2. Phys. Rev. Lett., 43: 177–180 (1979).

[111] C. J. Thompson, One-Dimensional Models–Short Range Forces. In C. Domb
and M. S. Green, editors, Phase Transitions and Critical Phenomena, vol-
ume 1, p. 192–193, Academic Press, London (1972).

163

[112] D. W. Thompson, On Growth and Form. MacMillan, New York (1945).

[113] L. R. G. Treloar, The Physics of Rubber Elasticity , p. 19–55. Clarendon Press,
Oxford (1949).

[114] R. F. Voss, Random Fractals: Characterization and Measurement. In F. Fam-
ily and T. Vicsek, editors, Dynamics of Fractals Surfaces , p. 40–50, World
Scientific, Singapore (1991).

[115] G. H. Wannier, The Statistical Problem in Cooperative Phenomena.
Rev. Mod. Phys., 17: 50–60 (1945).

[116] N. Wax, Selected Papers on Noise and Stochastic Processes . Dover, New York
(1954).

[117] D. Weaire and J. A. Glazier, Modelling Grain Growth and Soap Froth Coars-
ening: Past, Present and Future. Materials Science Forum, 27: 94–96 (1992).

[118] J. D. Weeks, G. H. Gilmer and H. J. Leamy, Structural Transition in the
Ising-Model Interface. Phys. Rev. Lett., 31: 549–551 (1973).

[119] B. Widom, Surface Tension of Fluids. In C. Domb and M. S. Green, editors,
Phase Transitions and Critical Phenomena, volume 2, p. 79–88, Academic
Press, London (1972).

[120] S. Wilde, Richard E. and Singh, Statistical Mechanics: Fundamentals and
Modern Applications , p. 87–98. Wiley-Interscience, New York (1997).

[121] M. Zajac, Modeling Convergent Extension by Way of Anisotropic Differential
Adhesion. Ph.D. thesis, University of Notre Dame (2002).

164

