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This disssertation studies the dynamics of ensembles of coupled, dynamical el-

ements with discrete and continuous time dynamics. Speci�c problems include the

appearance of synchronous behavior in an ensemble of dynamical elements.

We show that the dynamics of coupled map lattices with connectivity that scales

with inter-site distance exhibit a transition from spatial disorder to spatially uni-

form temporal chaos as the scaling is varied. We investigate the eigenvalue spec-

trum of the stochastic matrix characterizing 
uctuations from the uniform state

numerically and show that the spectrum is bounded,real and the largest eigenvalue

(corresponding to the uniform solution) has a gap separating it from the remaining

N-1 eigenvalues which correspond to non- uniform solutions. The width of this gap

depends on the scaling exponent. We relate the stability of the uniform state with

this gap and show that the state is globally stable even in a strongly chaotic region

of the uncoupled map.

Bursting is a prototypical pattern of voltage oscillations of membrane potentials

of biological cells, where the membrane potential alternates between fast oscillations

and a slow drift. These complex oscillations arise as a result of interactions between

the kinetics of fast and slow ion channels. While bursting in isolated cells is well

understood, the study of populations of interacting bursters is less developed. We
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study a one-dimensional continuum model of bursting and show that synchronous

bursting is extinguished by a spatial wave of bursting separating active and quiescent

cells when the coupling is weak. This result places bounds on the measured values

of coupling strength between secretory cells in the pancreas.

Rhythmic behavior in animals, such as locomotion, digestion and respiration is

controlled by the interactions of cellular and synaptic mechanisms acting on several

time scales. We explore a simple rhythmic circuit model with two cells reciprocally

inhibiting each other with fast and slow time scale inhibition. The interaction

between the fast oscillations of the cells and the slow inhibition results in a complex

pattern of bursting. This form of bursting originates from a network interaction, as

isolated cells can only oscillate but not burst. This result is useful in understanding

the design of central pattern generators in invertebrates where multiple time scale

inhibition is common.
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CHAPTER 1

INTRODUCTION

The subject of coupled dynamical elements has a rich and impressive history, im-

pinging upon diverse �elds as physics, chemistry, neurobiology and engineering.

Christian Huygens [4] made the �rst recorded observation of two interacting oscilla-

tors, who noted that the pendula of two nearby clocks tended to synchronize in an

antiphase, locked state, and returned to the locked state even after one pendulum

was slightly perturbed. The clocks gradually drifted apart when moved to opposite

sides of the room. Huygens concluded that the clocks must be coupled through small

vibrations in the wall, and that the weak coupling allowed the clocks to frequency

lock. However, we must distinguish between frequency locking, in which oscillators

of di�erent frequency establish an exact rational frequency ratio, but the relative

phase can drift, and phase locking of identical oscillators, in which they oscillate in

a �xed phase relation to each other.

Examples of oscillatory behavior abound in biology, from unicellular to multicel-

lular organisms, with periods ranging from fractions of a second (neural rhythms) to

years (oscillations in the populations of predators and prey) [5]. Oscillations can be

simple, periodic or quasiperiodic. Oscillators in chemistry and biology have complex

bursting patterns, with successive alternations between high frequency oscillations

and quiescence. Finally, oscillations can be aperiodic or chaotic, with extreme sen-

sitivity to initial conditions. Neurons and other biological oscillators communicate
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with other oscillators through a variety of means. Thus, an understanding of coupled

oscillators is vital to understand the dynamics of biological processes. The theory

of nonlinear dynamical systems has helped provide a bridge between extremely de-

tailed, mechanistic models that take into much of the known facts and data, and

high level, canonical models, that although simpler, capture some essential features

of the more comprehensive models, and in some cases, can be rigorously derived

from the former, and allow analytic exploration of the dynamics.

We begin with a simple, interacting nonlinear dynamical system, the coupled

logistic map. Most studies hitherto have focused on the characterization of dy-

namics in locally, (k-nearest neighbor connected) models or a mean �eld version

of local models, the globally coupled model. The interactions in biological exam-

ples of coupled dynamical elements, such as the nervous systems of organisms or

even the synchronous 
ashing of �re
ies, have much randomness in their coupling

topologies. Randomness notwithstanding, the coupling in naturally occurring pop-

ulations is constrained by geometry and structural considerations. The coupling is

sparse, with most elements connected to only a small fraction of the total number.

Moreover, the network is spatially structured, constraining the majority of interac-

tions to some local neighborhood. We introduce a sparse coupling scheme where the

probability of connection decays with distance between the elements to study the

e�ects of structured randomness on the collective behavior of dynamical elements

in Chapter 2. The locally connected model and the mean �eld model are recovered

as limiting cases of our coupling scheme.

The rhythmic output of secretory cells is critical for release of hormones that

maintain the biochemical makeup of the body within a safe operating range. The

�-cells in the pancreas, for example, release insulin in response to blood glucose.

The electrical activity of the �-cells is a prototypical bursting pattern. Islets in
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the pancreas are made up of large assemblies of coupled bursters. What are the

dynamics of coupled bursters? We turn to this question in Chapter 3 and apply

singular perturbation methods to answer this question and extend insights gained

from networks of two coupled bursters to a large, spatially extended �eld of bursters.

We use simple, canonical models, rather than speci�c biophysical ones to illustrate

generic features of the dynamics.

How does a small insect like a centipede move its legs in a coordinated manner?

How does a locust 
y? What maintains the rhythm of our heartbeat? All these

questions are di�erent versions of the same underlying question: What controls

the highly coordinated, rhythmic activity of animals? While the implementations

di�er in detail, some basic principles of control of rhythmic behavior have emerged.

In vertebrates, rhythmic motor activity is controlled by large numbers of neurons

making it hard to analyze in detail. Extensive experiments on invertebrate neural

networks [6] have revealed simpler, smaller (10s of neurons) networks called Central

Pattern Generators that are at the heart of motor pattern generation.

Neurobiologists have made enormous progress in identifying the intrinsic and

network properties of CPGs and their component neurons. Further, they have

related the cellular processes to their behavioral correlates. Nonlinear dynamics can

help answer the question: how does the network generate a particular rhythm, given

its component circuitry? Neurons are out-of-equilibrium systems with many degrees

of freedom, and coupled neurons are even more complicated. Thus, for the sake of

tractability, researchers often make several simplifying assumptions for their models.

We study a network of two coupled, biophysically modeled neurons and show the

existence of a striking, temporal pattern, which would be missed in a simpli�ed

model.
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CHAPTER 2

COUPLED LOGISTIC MAPS

2.1 Introduction

The study of the collective behavior of large numbers of interacting elements has

a rich history and such arrays occur in a variety of contexts in nature. The el-

ements may be identical or have slightly di�erent dynamics (due to a statistical

spread of parameter values). A common theme is that the interactions among the

elements cause the ensemble to self-organize into well-de�ned collective behaviors.

Phase transitions in statistical mechanics are familiar examples of self-organization,

where a macroscopic quantity, called the order parameter, assumes non-zero val-

ues continuously or discontinuously, under a smooth shift of parameters. A well

de�ned free energy functional characterizes thermodynamic models and their col-

lective states minimize the free energy. In essence, the dynamics determine how

they approach these equilibrium free energy states. In contrast, we consider models

which break the time translation invariance characteristic of equilibrium models.

Such nonequilibrium models are dissipative and require sustained energy input to

maintain nontrivial dynamics.

An extreme form of collective behavior is synchrony, where a large fraction of

the elements behave identically. We can best obtain theoretical understanding of

collective rhythmicity by studying the conditions of its onset. In the language of

statistical mechanics, we can consider the onset of synchrony as a phase transition
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from a disordered to an ordered state. We will consider the dynamics of popula-

tions of identical dynamical elements and study the e�ect of connectivity on the

appearance of synchrony and of other, loosely de�ned, macroscopic order.

2.2 The Iterated Logistic Map

May [7] introduced the iterated logistic map as a simple model for the dynamics

of predator-prey populations. It has become the canonical example of a nonlinear

dynamical system that exhibits chaos. Just as the Ising model is a simpli�ed model

that has had enormous impact on the study of phase transitions, the logistic map

has provided fundamental insight into aspects of the mathematical theory and the

numerical methods relevant to deterministic chaos. In fact, a large proportion of

chaotic phenomena in high dimensional models is already observable in the logistic

map. The properties of the map are universal. Any C1 unimodal map of the

interval has the identical sequence of bifurcations and scaling of the parameter a for

successive period doublings.

The most familiar version of the map is given by the following di�erence equation:

xn+1 = f(xn) = 1� ax2n; (2.1)

where the index n represents the time step, and a is a parameter. Starting from

a value xn 2 I = (�1; 1), the nonlinear function f(:) generates a number in I,

i.e. it maps the interval into itself. A plot of the limiting behavior of the xn for

various values of a is usually referred to as a bifurcation diagram (Fig. 2.1). As the

parameter a increases, the long-time behavior of the logistic map iterates become

chaotic after successive period doublings. The period doubling route to chaos is one

of several generic mechanisms by which the time evolution of a deterministic system

becomes chaotic.
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Figure 2.1. Bifurcation diagram of the logistic map showing the period doubling
route to chaos
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While the dynamics of 2.1 is interesting in its own right, it may be puzzling as

to how the properties of one variable maps are relevant to continuous time, ordinary

di�erential equations such as:

dx

dt
= F (x; �); (2.2)

where � is a set of parameters, F (:; :) is a smooth, di�erentiable nonlinear function

(i.e. it is continuous and several times di�erentiable for all values of its arguments),

and x(t) is a vector in Rd . As � varies, Eqn. 2.2 may undergo a series of abrupt

changes in its long time behavior, called bifurcations. If F (:; :) is strongly nonlinear,

analytic solutions are hard to �nd, and we must resort to numerical techniques to

classify the behavior of Eq. 2.2. A powerful technique is the concept of a Poincar�e

section, which is a stroboscopic projection of the time evolution of x(t). We con-

struct a Poincar�e section by recording as a time series, the values x(t) at time in-

stants when x(t) crosses a (hyper)plane where a coordinate x has some �xed value.

This method of observation reduces the continuous 
ow to a discrete time trace in

a d� 1 dimensional space, thereby reducing the dimension of the problem by one.

We can now implicitly de�ne a d� 1 dimensional map f , (the �rst return map) of

the d � 1 dimensional hyperplane onto itself as xi+1 = f(xi). The dynamics and

bifurcations on this d � 1 dimensional subspace are strictly equivalent to the dy-

namics in the full d dimensional space (for almost all choices of the Poincar�e section

plane). Notice that the original continuous time equations now reduce to discrete

time equations. So, for example, a periodic orbit of the full N dimensional equations

reduces to a single point and doubly periodic motion with commensurate frequencies

reduces to a �nite set of points. Quasiperiodic motion becomes a dense curve and

chaotic trajectories transform to a cloud of points by an appropriate choice of the

sectioning hyperplane.
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The choice of the sectioning plane depends on the dynamics. Hamiltonian sys-

tems have at least one conserved quantity, the energy, which restricts the motion

to a 2N � 1 dimensional surface. The Poincar�e section can be chosen so as to �x a

value for the kinetic or potential energy. Additional conserved quantities result in

further reduction of the full equations. The resulting map is often called a symplec-

tic map when the equations are written in terms of action-angle variables [8]. This

reduction technique is very useful in the study of Hamiltonian chaos. Dissipative

dynamical systems do not conserve energy, and therefore the choice of the section

plane depends on the details of the dynamics.

The Poincar�e section technique allows us to relate the discrete time nature of

the map to the continuous time evolution of the ODEs. An early example of this

procedure can be seen in Guckenheimer's study of the Lorenz equations [9], where

he reduced the 3 dimensional 
ow of the Lorenz equations to a one dimensional

quadratic return map1. The Lorenz map correctly captures the sensitivity to initial

conditions of the Lorenz equations, although, being a projection of a 2 dimensional

Poincar�e section, it misses important features of the ODEs. Several excellent books

review iterated maps [10, 11].

Most physical systems of interest, however, also have spatial degrees of free-

dom, and are more appropriately described by partial di�erential equations (PDEs)

which are continuous time, continuous space equations that in principle, are in�nite

dimensional. The Navier-Stokes equation for 
uid motion is a familiar example.

Fluid motion in experiments such as Rayleigh-B�enard convection (a very simpli�ed

model for atmospheric turbulence) is usually described by an appropriate reduction

of the Navier-Stokes equation. Experiments on a 
uid layer in a closed conducting

box heated from below, show the following: initially, a small temperature di�erence

1Strictly speaking, the Lorenz map is only a 1-dimensional projection of the 2 dimensional

Poincare map obtained from the original equations
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between the top and bottom plates establishes a linear gradient of temperature (con-

ducting state) as the thermal di�usion in the motionless 
uid balances the buoyancy

of the heated 
uid. As we increase the temperature di�erence between the plates,

an instability sets in at a threshold value, Tc, and the 
uid begins to move, breaking

the continuous translation invariance of the temperature �eld, forming rolls with an

approximate wavelength selection.

Close to the onset of an instability which breaks a continuous symmetry such as

translation invariance, the behavior of macroscopic quantities such as the tempera-

ture or velocity �elds can be reduced to so-called amplitude equations by perturba-

tive techniques [12]. These amplitude equations are a coarse grained description of

the space-time evolution of macroscopic quantities, and the analysis of these equa-

tions has become a veritable industry in the last 30 years. The nonlinearity of these

equations often makes their analysis rather complicated, underscoring the need for

simpler models that have the same qualitative behavior as the amplitude equations.

Substantial progress can be made if the in�nite dimensions of the PDE can be ap-

proximated by ODEs or maps in some small �nite number of dimensions. Can we

construct a Poincar�e map for the partial di�erential equations of 
uid dynamics?

Although no systematic procedure for doing so exists, Kaneko [13] proposed a phe-

nomenological model combining the discrete time nature of the Poincar�e map with

discrete spatial degrees of freedom. The Coupled Map Lattice (CML) is a simple

example of a discrete, spatially extended dynamical system, which captures the es-

sential features of more complicated continuum models. The CML models spatially

extended dynamics according to the following steps:

� Choose a set of macroscopic �eld variables on a lattice (e.g. the velocity

or temperature �eld in a 
uid or the chemical concentration in a chemical

reaction). Choose the dimension and topology of the lattice to correspond to

9



the actual physical situation.

� Decompose the processes governing the dynamics of the �eld variables into

independent components (di�usion, reaction, convection, etc.). The dynamics

now consist of a local, nonlinear transformation in time (corresponding to

reaction terms) of the �eld variables with coupling terms from among suitably

chosen neighbors (corresponding to di�usion).

� Update the dynamics in parallel over the lattice.

The simplest realization of the above procedure is local nonlinear dynamics along

with spatial di�usion. The equation for the CML in 1 dimension is:

xn+1(i) = (1� �)f(xn(i)) +
�

2
[f(xn(i + 1)) + f(xn(i� 1))� 2f(xn(i))] ; (2.3)

with f(:) given by Eq. 2.1. Thus, by construction, the CML provides a systematic

way to increase the number of degrees of freedom and systematically approach the

thermodynamic limit of an in�nite system. Implicit in this de�nition of di�usion

are the discrete time steps of the logistic map. The CML can be seen as an approxi-

mation of a set of continuously coupled ODEs, where the coupling terms only act at

iT, for integer i, where T denotes some basic period of the underlying ODEs. Hence

the choice of coupling terms in CMLs has the form shown in Eqn. 2.3 instead of

f(xn(i+1)+xn(i� 1)� 2xn(i)), which is the �nite di�erence approximation to r2.

The dynamical equations for the N lattice sites resemble a discrete version of the

familiar amplitude equations for 
uid instabilities such as the Complex Ginzburg-

Landau equation:

@tA(x; t) = �A(x; t) + (1 + ic1)r2A(x; t)� (1 + ic2)jA(x; t)j2A(x; t); (2.4)

where A(x; t) is a complex amplitude which describes the temperature �eld in a

convection experiment, near the onset of an instability of the uniform state. The
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parameter � controls the onset of the instability and c1 and c2 represent the strengths

of di�usive and nonlinear interactions respectively. The Ginzburg-Landau equation

is a partial di�erential equation with space, time and the complex amplitude taking

on continuous values. In contrast, the CML discretizes both space and time, while

the �eld variable x takes on continuous values in a speci�ed interval.

Since the logistic map is a discrete time, discrete space map, the CML can

be viewed as a Poincar�e mapping of a partial di�erential equation. The discrete

nature of the CML makes it more amenable than the CGL equation to numerical

simulations and analysis. With di�usive interactions between the maps, the lattice

captures many qualitative features of amplitude equations for disordered behavior

in 
uids and chemical reactions, such as wavelength selection, intermittency and

spatiotemporal chaos, even though the parameters of the CML do not directly relate

to the parameters of the experiments.

Since some combination of elementary local dynamics and di�usive interactions

describes diverse dynamical behavior in spatially extended models, the formalism

of CMLs can model many physical phenomena. Kapral has modeled pattern for-

mation in chemical reactos using time-discretized models of chemical reactions such

as Brusselator kinetics [14] to study front propagation and spiral wave formation.

Oono and Puri [15] have proposed CMLs for spinodal decomposition, which is tra-

ditionally studied using the kinetic Ising model. Miller and Huse have studied a

nonequilibrium phase transition between two chaotic states [16] in a CML. Sev-

eral groups have studied open 
ow models using a unidirectionally coupled CML

(reviewed in [17]). Below, we brie
y discuss the dynamics and patterns for CMLs

with the quadratic (one hump) logistic map coupled locally, globally or randomly

according to a distance dependent probability. These results should apply to any

C1, unimodal CML.
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2.2.1 Locally Coupled Logistic Maps: Dynamics

The local CML is a discrete time, discrete space version of an amplitude equation.

Each site communicates with nearest neighbors and the logistic map describes the

local dynamics. In contrast to amplitude equations, where the local dynamics is

periodic, and spatiotemporal chaos arises from the interaction of several spatial

modes, the local dynamics of the uncoupled sites is chaotic, and the overall behavior

arises as a competition between the smoothing induced by di�usion and the local

chaos of the map. We brie
y list some of the characteristic dynamics of local CMLs

in one dimension. A more complete review is given in [13].

The relevant parameters are the nonlinearity, a, and the di�usion strength, �. In

the period-doubling regime of the local map, most initial conditions lead to a domain

state, where each domain corresponds to a di�erent phase of the same periodic orbit.

The domain boundaries do not move with time. As the local map period-doubles,

the domain sizes grow smaller and their oscillations period-double in time i.e. a

structure with smaller wavelength is selected. Past the accumulation point, a1,

(where an orbit of in�nite period for the single map becomes stable), motion in large

domains becomes chaotic, while smaller domains still remain periodic with period

2n, n small. This state is called the frozen random phase. For further increase in

a, wavelength selection splits large, chaotic domains. The resulting structure is less

chaotic than the frozen random phase, i.e. a less chaotic pattern is selected.

As a increases further, a zig-zag pattern with wavelength 2 becomes stable, with

adjacent lattice sites oscillating in di�erent phases. Random initial conditions can

result in small defects in the zig-zag pattern. The temporal evolution within the

defects is chaotic, while the rest of the lattice evolves periodically. These defects

move di�usively but remain localized in space. Further increase in a results in an

increase in the number of defects until the whole lattice becomes turbulent.
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Values of a in a periodic window result in a curious spatiotemporal state. The

temporal evolution of any single site alternates irregularly between laminar, or peri-

odic and turbulent or chaotic regimes, with large patches of turbulent sites in a sea

of laminar sites. This phase is known as spatiotemporal intermittency. Intermit-

tent behavior has been observed in many physical experiments on 
uid convection,

electric convection of liquid crystals, Faraday instability of a liquid surface, and

lasers and is thought to be an important route to chaos in spatially extended sys-

tems [12]. Spatial correlation functions decay algebraically in the spatiotemporally

intermittent regimes.

As a approaches 2, the lattice becomes spatiotemporally chaotic. However, unlike

the single logistic map, where the chaos is structurally unstable because of the

presence of many periodic windows. Small changes of parameters in the chaotic

regime [a1; 2] result in periodic behavior, i.e., if for a given value of a, the orbit

is chaotic in time, the orbit is periodic in any " neighborhood of a, no matter

how small " may be. For example the logistic map has a period 3 window in the

chaotic region which can be seen in Fig. 2.1. The chaos in the CML is sustained in

parameter space. We might expect that spatiotemporal chaos is transient and that

eventually the lattice must fall into a time periodic, spatially homogeneous state,

corresponding to the periodic windows of the logistic map. Numerical experiments

show that the length of transients exponentially increases with the lattice size, and

in fact, even for moderately sized lattices (N � 10), the dynamics never approach

the homogeneous phase, indicating that chaos might indeed be sustained in time

and might never approach the periodic attractor.
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2.2.2 Globally Coupled Logistic Maps

A di�erent limiting case for the CML takes the interaction range to be in�nite, the

limit of global coupling. Globally coupled models arise naturally in several physical

situations. Global feedback in Josephson junction arrays [18], charge density waves

in solids under a constant current [19], mode coupling in lasers through an energy

source [20], and rapid gas di�usion in surface reactions [21] are some examples where

long ranged (global) coupling controls the dynamics. These examples are not the

mean �eld limit for some suitably long-ranged coupling, but are globally coupled

due to physical constraints. Given their practical applications, the study of globally

coupled models is of extreme importance. The globally coupled CML is given by

the equation:

xn+1(i) = (1� �)f(xn(i)) +
�

N

NX
j=1

f(xn(j)); (2.5)

where the terms are as before. This model has two tendencies: the mean �eld

action tends to synchronize and local chaos tends to desynchronize the elements.

If the former wins, the elements order in a coherent state, while if the latter wins,

the elements behave incoherently. We make this idea more precise as follows: The

simplest attractor is a synchronous state, where x(i) = x(j); 8 i; j. The single

logistic map xn+1 = f(xn) governs the motion at each site. We calculate the stability

of this state by following the evolution of in�nitesimal perturbations ei(n) from the

synchronous state:

en+1(i) = f 0(xn)
�
(1� �)en(i) +

�

N

NX
j=1

en(j)
�
: (2.6)

The eigenvalues of the matrix Jn = f 0(xn)[(1 � �)I + (�=N)D], where I is the

identity matrix and D is a constant matrix whose elements are 1, determine the
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linear stability of Eqn. 2.6. Since the matrix is highly symmetric, we obtain the

following eigenvalues �1 = �n
i=0jf 0(xn)j = �0, and �j = �0(1 � �); j = 2 � � �N

(N � 1-fold degeneracy). The perturbations, en(j) grow if the eigenvalue �j > 1.

The eigenvector corresponding to �1 is (1; 1; � � � ; 1)T , and any perturbations along

this eigenvector do not destroy the coherent state. Thus the stability condition for

the uniform state is j�0(1� �)j < 1.

Kaneko [22] �rst studied this model, and showed that clustering is a generic

feature of its dynamics. In a clustered phase, the elements x(i) tend to evolve

synchronously within a cluster, and di�erent clusters are independent. As the non-

linearity, a, or the coupling strength, �, varies, the lattice can undergo successive

transitions from a 1-cluster (synchronous) state to an ordered phase with a few large

clusters, a partially ordered states with a few large clusters and several small clusters

to an incoherent, turbulent phase with O(N) clusters. Cluster states are attracting

and highly degenerate. Once the lattice falls into a cluster state, it remains there

for all time. As an illustration, consider the case of a two cluster state. The fraction

of elements in the two clusters are N1 and N2 such that N1

N
+ N2

N
= 1. Clearly, any

choice of N1 and N2 is allowed, but only a few, perhaps one, are stable. Thus, the

two cluster state is degenerate, with more than one stable partitioning of the lattice.

In the ordered phase, the GCM has a large mulitiplicity of cluster states, and a small

amount of noise applied even at a single site can switch the macroscopic state of the

lattice, indicating the multistability of the clusters. Kaneko has suggested [23] that

the large multiplicity of attracting cluster states and the possibility of switching

between them may allow the GCML to model memory.

The GCML possesses several symmetries. The global coupling introduces a

permutation symmetry (symmetry group Sn) in the dynamics, i.e. the dynamics are

invariant under a permutation of the indices of the elements. Any limiting solution
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of the GCML must satisfy these symmetries. One such solution is the turbulent

phase with exactly N clusters of size 1 and the single cluster (synchronous) state

is another. The permutation symmetry implies the existence of such solutions, but

says nothing about their stability. When this symmetry breaks, solutions of lower

symmetry bifurcate from the maximally symmetric solutions [24]. In this case,

cluster states still obey limited permutation symmetry over the number of elements

in the given cluster.

An analysis similar to that for the synchronous state determines the linear sta-

bility of cluster states, but now the analysis must include two types of perturbations:

those that destroy coherence within a cluster, and those that destroy the k cluster

states. Group theoretic methods that use the permutation symmetery of the equa-

tions can determine the stability of various states, but we are not aware of the use

of these methods to analyze discrete time systems such as the GCML.

In summary: the GCML is a model system with local chaos and global feed-

back. Suggestive analogies with neurobiology have inspired substantial interest in

the cluster states of the GCML. Experiments on cats and monkeys [25, 26] have

shown that in the primary visual cortex (the �rst area in the mammalian brain

which processes visual stimuli as pixel images) the membrane potentials of the neu-

rons tend to oscillate at an approximate 40 Hz frequency. Assemblies of phase locked

neurons oscillating at this basic 40 Hz rhythm represent features of an object in a

scene. Ensembles of neurons which maintain �xed phase di�erences with each other

encode di�erent objects in a scene. The phase locked groups change dynamically

with the scene. The dynamic clustering of neurons into di�erent phase locked groups

representing various objects in the visual �eld has been proposed as a mechanism for

feature binding througout the cortex [26]. Clustering in the GCML or any globally

coupled dynamical system has been proposed as models for \clustering "of phase
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locked neural assemblies in the brain. However, these analogies have to be taken

with caution. Clustering, and many other properties of the GCML, result from its

various symmetries, which are in general not present in a network of neurons. In

fact, at the level of connectivity, a randomly connected model is more representative

of neural connectivity. We explore the dynamics of a model of randomly coupled

logistic maps in the next section.

2.3 Fractal CML

Mammalian brains are complex networks of elements (neurons) that can perform

a broad variety of information processing tasks. It is clear that the population

activity of large assemblies of cells in the vertebrate brain is responsible for sensory

processing, motor response and cognition. Several features such as the anatomy and

physiology of the neurons, the types of connections between the neurons (excitatory

or inhibitory) or the architecture of the network could determine the dynamics of

the cell assemblies.

Recent studies have furthered our insights into the macroscopic organization of

the cortex. Felleman and van Essen [27] review the overall pattern of connectivity

of various modules of the visual cortex. On a microscopic level, extensive studies of

interconnectivity in the cortex show that the cerebral cortex is best represented by

a sparsely connected, spatially structured network [28].

The volume of the brain imposes physical constraints on the connectivity. The

volume of wiring should not be a substantial fraction of the total available volume.

In fact, it is possible that the specialization of cortical regions into functional mod-

ules in larger brains is a direct result of minimizing the wiring volume [29]. The

total number of neurons in the human cortex is about 109, and each neuron re-

ceives about 104 connections. Thus, a sparse random network might best represent
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cortical connectivity. However, this picture is obviously incomplete. A sparse ran-

dom graph has no metric structure, while a brain certainly does. Nearby neurons

or modules connect with higher probability than distant ones [30]. Several studies

have shown that neuronal branching is fractal [31, 32, 33] (scale invariant) over

some range. Since fractal, branching structures are rather wispy, the dendritic and

axonal branching of N neurons in a volume can interpenetrate freely. This imme-

diately leads us to a scale invariant model of cortical connectivity. The neurons are

distributed in a d dimensional volume. The connectivity C(r) scales as r��(r). The

�nite size of neuronal arborization determines the functional dependence of �. If

the �(r) is such that for small r, connectivity is O(N2), implying tight connectivity,

while for large r, it is of O(N), indicating sparse connectivity, we can naturally

build up a network that is modular, even though the modules themselves are not

prewired. Scale invariant connectivity implies that the crossover between tight and

loose coupling is gradual, with no preset length scale. The simplest scenario would

take �(r) to be constant. Obviously, substantial experimental work is required to

verify this picture in a real cortex. Typical values for � are in the range of 1.2-1.8.

We can however, ask the following question: how does the scale invariant connec-

tivity of a network of dynamical elements a�ect its time evolution? Chaotic maps

like the logistic map capture some essential features of neuronal dynamics such as

�xed point, oscillatory, or chaotic behavior [34], depending upon the applied stim-

ulus, and thus are a simple model to study network dynamics with scale invariant

connectivity.

We consider a CML with local dynamics at a lattice site on a one dimensional

chain described by Eqn. 2.1. Each pair of sites, i, and, j, connect according to the

probability distribution:

�(Cij) = p(ij)Æ(Cij � 1) + (1� p(ij))Æ(Cij); (2.7)
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where p(ij) is given by a simple scaling assumption for the connection neighborhood:

p(ij) = Cjri � rjj��; j = �1;�2 � � � ; (2.8)

where ri and rj are the coordinates of the i
th and jth sites respectively, and C is a

normalization constant. This form of connectivity di�ers from random connectivity

models with a �xed value of p(ij). The probability that two sites are connected

depends on the inter-site distance. The number of connections in a d-dimensional

sphere of radius R will scale as Rd�� (for large enough lattices), which we de�ne as

fractal connectivity. The coupled lattice is thus given by:

xn+1(i) =
1

Ai + 1

�
f(xn(i)) +

X
j�conn

f(xn(j))
�
; (2.9)

where Ai is the number of connections at the i
th site, and the sum over j runs over

all the sites connected to site i. We have three parameters at our disposal: a, the

nonlinearity parameter; �, which de�nes the connection neighborhood, and A which

sets the strength of the interaction between sites.

We impose periodic boundary conditions on the lattice, i.e. x(1) = x(N + 1).

The form of the probability distribution for site-site coupling allows us to smoothly

vary the interaction neighborhood of a site. Thus, � ! 1 is the nearest-neighbor

coupling limit, and �! 0 is the global coupling limit (see sections 1.2.1 and 1.2.2).

The � = 0 limit is actually singular, because the permutation symmetry of the

dynamical equations of the GCML is only valid at the limit, whereas for any small

value of �, the lattice is not symmetric to an interchange of indices. We are mainly

concerned with the study of the lattice dynamics for � values of O(1). For these �
values, the coupling between sites is no longer strictly short range or in�nite range.

This kind of scaling of the connectivity occurs in animal brains and the particular

range of values of � results in rather dilute connectivity which is biologically realistic

[30].
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We show the temporal evolution of the lattice in Figure 2.2, for a lattice of size

100 with the value of the map parameter, a, set to the band periodic region of the

logistic map (a=1.44). We see that the lattice splits into almost periodic domains for

large � (local limit) (panel a) which select some characteristic stable wavelength.

The domain boundaries do not move with time. This state is equivalent to the

domain phase of the local CML. As � decreases, the number of domains decreases

and the motion within each domain becomes more chaotic (panel b, equivalent to

the frozen random phase of the LCML). As � decreases further, the trajectories at

each site are almost band-periodic with little spatial order within domains. Below a

critical value of �, the lattice becomes spatially uniform. The uniform state is stable

for all parameter (a) values of the uncoupled logistic map (�xed point, periodic,

semi-periodic and chaotic) though the critical value of � shifts slightly depending

upon a.

To locate the value of � at which the uniform state becomes stable, we sweep �,

while holding a steady, and record the size of the coherent domain. The size of the

coherent domain is de�ned as the number of sites such that jxi � xi+1j < Æ, with Æ

taken to be 10�11. We average over 500 di�erent initial conditions for each � and

100 time steps for each initial condition after discarding transients. We show the

average coherent domain size for lattice sizes from 26�210 for two parameter values

(a = 1.44 and a = 1.9) of the logistic map in Figure 2.3.

For di�erent values of a, the value for � at which the size of the coherent domain

diverges, shifts depending on whether the single logistic map is band-periodic or

chaotic. The transition from an initial uncorrelated state to a spatially uniform

one becomes sharper as the lattice size increases. This behavior resembles a phase

transition, where continuous variation in a parameter, �, results in a discontinuous

jump in an order parameter, here, the size of the coherent domain.
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Figure 2.2. Space-time diagram for fractal CML with a =1.44 and a) � = 15, b)
�=2.0, c) �=1.3, and d) �=1.1 for random initial conditions.
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Figure 2.3. Fraction of coherent sites. Results are plotted on a log scale, averaged
over 500 random initial conditions after discarding 10000 transient steps. Top panel:
a=1.44 (band-periodic region of logistic map), Bottom panel: a=1.90 (chaotic region
of logistic map).
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The emergence of coherent structures in CMLs has been studied by stability

analysis and statistical mechanics [13]. While, in general, temporally chaotic states

in lattices with short range interactions lead to a loss of spatial coherence with

exponentially decaying correlations in space [35], in models with asymmetric cou-

pling and/or open boundary conditions, a stable uniform state can occur [36]. We

show below that chaotic temporal states of lattices with probabilistic, long range

interactions can exhibit long range spatial order with temporal chaos. We illustrate

explicitly how we can separate the mode leading to spatial homogeneity from the

other modes by means of a linear stability analysis.

2.3.1 Linear Stability Analysis

We examine the stability of the uniform state by means of a linear stability analysis

about the uniform solution. To linear order in the deviations, en(i) = xn(i) � xn,

we have:

en+1(i) =
f 0(x(n))
Ai + 1

�
en(i) +

X
j�conn

en(j)
�
; (2.10)

where the connection neighborhood is chosen according to Eqn 2.8.

The trivial solution for Eqn. 2.10 is en(x) = 0, which implies that if the lattice

starts from a uniform state x0(j) = x0; 8 j, the sites stay uniform. We are interested

in the long term behavior of a lattice perturbed in�nitesimally from the uniform

state.

We can rewrite Eqn. 2.10 as a matrix equation:

en+1 = f 0(xn) M en: (2.11)

If M is diagonalizable, jenj / (�0�)
n
max, where �max is the largest eigenvalue of

M and log(�0) is the Lyapunov exponent of the map, where �0 is de�ned as:

�0 = lim
n!1

�Y
l

jf 0(xl)j
� 1

n

: (2.12)
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M is an asymmetric matrix with entries picked randomly according to the proba-

bility distribution of Eqn. 2.8. The conditions imposed on M are:

� a) the entries in every row sum to 1 because the lattice dynamics has to map

the interval onto itself

� b) Mi;i, Mi;i+1 and Mi;i�1 are positive, since the connection neighborhood al-

ways includes the nearest neighbors

� c) Mij � 0; 8 i; j.

The matrix M belongs to the general class of matrices known as stochastic

matrices. The fractional number of entries in a row approaches a constant value asN

increases and the 
uctuations are proportional to 1p
N
. The nature of the eigenvalue

spectrum of the matrixM can be established using the following theorems (We state

these theorems without proof):

Let a(k)ij denote the (i; j)th entry of the matrix Ak, the kth power of A. A is

nonnegative if the entries of the matrix aij � 0 and positive if aij > 0.

De�nition 1. If a nonnegative matrix A can be written as:

P
�1
AP =

0
B@B C

0 D

1
CA ; (2.13)

for some permutation matrix P, and B; C; D are square submatrices, then A is

reducible. Otherwise, A is irreducible.

Theorem 1. [37] A nonnegative square matrix A = (aij) is irreducible if and only

if 8 (i; j) 9 an integer k 2 Z such that a(k)ij > 0.

Theorem 2. [37]. If A is a nonnegative matrix with a maximal eigenvalue r and

row sums r1; r2; � � � ; rn, then

� � r � R; (2.14)
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where � = minfrig and R = maxfrig. If A is irreducible, then the equality holds if

and only if all the row sums are equal.

Theorem 3. [37] Let A be an irreducible matrix with maximal eigenvalue r with

multiplicity h. Let �1; �2; � � � ; �h be the eigenvalues of A with modulus r, where the

modulus is (
p
Re(�)2 + Im(�)2). Then �1; �2; � � � ; �h are the h distinct roots of rh.

De�nition 2. A nonnegative matrix A is primitive if h is 1.

Theorem 4.. [37] A necessary and suÆcient condition for a nonnegative matrix A

to be primitive is that Am is positive for some positive integer.

The eigenvector corresponding to the maximal eigenvalue is positive. We can

use the above theorems to derive the bounds on the eigenvalues of M. Condition

b ensures that an integer k exists such that Mk is strictly positive. A tridiagonal,

square, nonnegative N � N matrix with all nonzero entries equal, is positive for

the integer k = N� 3. Since M is tridiagonal, with additional nonnegative entries,

k < N� 3, in general. Thus M is irreducible and primitive and it has a non-

degenerate, real positive eigenvalue, �max, such that:

�max > j�ij; i = 1 � � �N � 1; (2.15)

where �i is any oher eigenvalue of M. Condition a ensures that �max = 1 [37] and

that the corresponding eigenvector is uniform.

In the case, � ! 1, each site connects only to its nearest neighbors and the

matrix becomes symmetric and tridiagonal, with additional entries in the upper

right and lower left hand corners due to the periodic boundary conditions. In this

case the eigenvalue spectrum of the matrix is:

�(i) =
1

3

�
1 + 2 cos(

2i�

N
)

�
; i = 0; 1; � � � : (2.16)
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For the eigenvalue spectrum of Eqn. 2.16, the eigenvector corresponding to the

largest eigenvalue represents the state of spatially uniform 
uctuations which is

unstable if �0 > 1. Since the eigenvalue spectrum is continuous in the limitN !1,

a band of unstable non-uniform modes exists which destroys the spatial coherence

of the lattice.

2.3.2 Origin of Eigenvalue Gap

The theorems on stochastic matrices only show that the eigenvalues of M are

bounded from above by 1 and below by �1, but do not give the distribution of

the eigenvalues. For cases where � is O(1), we calculate the eigenvalues of the sta-
bility matrix M numerically for a large number of matrices for �xed values of �, in

order to make general statements about the nature of the uniform state. We �nd

that the matrices have all real eigenvalues and the largest eigenvalue is 1 correspond-

ing to the uniform solution, as expected. The eigenvalue spectrum has a gap which

separates the largest eigenvalue from a continuous band of N � 1 eigenvalues cor-

responding to non-uniform solutions (Figure 2.4), which is a surprising result. The

value of � determines the size of the gap. In the N !1 limit, for � > 2, the gap

goes smoothly to zero and the eigenvalue spectrum approaches that of Eqn. 2.16 as

� increases. For � < 1 the gap is large and bounded below. Intermediate values of

� result in gaps which depend upon the lattice size. In the thermodynamic limit of

an in�nite lattice, we expect the gap to appear discontinuously for � < �crit, which

causes the divergence of the coherent domain size. While the lattice size a�ects the

size of the gap, the existence of the gap depends only on the particular form of the

coupling. The value of �crit varies for each realization of the lattice as well as the

value of a, and is hard to determine in general.

We now discuss the origin of the gap, �rst in a qualitative manner and then
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in more detail using Fourier matrices. We take the connectivity of each site to

be �xed at k to simplify the analysis and relax the assumption of symmetric con-

nectivity. We have shown that the connectivity matrix M has a right eigenvector

e1 = [1; 1; � � � ; 1]T corresponding to the largest eigenvalue. Let the next eigenvec-

tor orthogonal to e1 be e2 = [u1; u2; � � � ; uN ]. Orthogonality with e1 implies that

PN
i=1 ui = 0. Since e2 is an eigenvector with eigenvalue �2, i.e. Me2 = �2e2, the

sum of the nonzero elements scales as �2 itself. By the law of large numbers, the

sum of k random numbers (with zero mean and �nite variance) would be
p
k. This

relation is exact for a completely random connectivity matrix in the limit of in�nite

size. Even though M has additional entries along the upper and lower diagonals,

which cause deviations from this behavior, as we see in Figure 2.5, the second largest

eigenvalue for the FCML scales nearly as
p
k=(k + 1), the prefactor coming from

the normalization for the FCML. Obviously, a completely random matrix, even for

a small connectivity k, has a gap in the eigenvalue spectrum. However, the fractal

connectivity matrix, in the limit of large �, has upper and lower diagonal terms

which imply that the gap smoothly vanishes. As we shall see below, these o� diag-

onal terms lead to interesting consequences for the eigenvalue spectrum in the case

of asymmetric connectivity.

We can operate on M by a similarity transformation to separate its component

along the eigenvector e1 from an N � 1 dimensional matrix orthogonal to e1. Such

a similarity transformation can be carried out by a Fourier matrix of order N given

by FN (i; j) = !(i�1)(j�1) and its inverse, F�1N , is F�1N (i; j) = !�(i�1)(j�1), where

! = e2�i=N is the Nth root of unity and i =
p�1. For example, the Fourier matrix

of order 6 is:

27



0 200 400 600

-0.5

0

0.5

1

i

λ

a

b

c

Figure 2.4. Eigenvalue spectrum of the connectivity matrix M of size 512�512; a)
�=1.5, b) �=1.0, c) �=0.75. Bars show the gap in the eigenvalue spectrum.
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Figure 2.5. Second largest eigenvalue (�2) of the connectivity matrixM as a function
of the mean connectivity. The solid line is the curve 1p

<conn>+1
. �2 follows the �t

closely. Note that �2 approaches 1 as the connectivity decreases. The deviations
from the �t are due to the 
uctuations in the mean connectivity
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F6 =
1p
N

0
BBBBBBBBBBBBBB@

1 1 1 1 1 1

1 ! !2 !3 !4 !5

1 !2 !4 !6 !8 !10

1 !3 !6 !9 !12 !15

1 !4 !8 !12 !16 !20

1 !5 !10 !15 !20 !25

1
CCCCCCCCCCCCCCA

(2.17)

and F
�1
6 = F

y
6. We can now apply a similarity transformation to M to get K =

F
�1
MF. This transformation results in a matrix of the following form:

K =
1

N

0
BBBBBBB@

kN N(I1:f2; � � � ; IN :f2):f�11 : : : N(I1:f2; � � � ; IN :f2):f�11

0 N(I1:f2; � � � ; IN :f2):f�12 : : : N(I1:fN ; � � � ; IN :fN):f�12

...
. . .

...

0 N(I1:f2; � � � ; IN :f2):f�1N : : : N(I1:fN ; � � � ; IN :fN):f�1N

1
CCCCCCCA

(2.18)

where k is the connectivity of each site, fi = (1=
p
N)(1; !(i�1); � � � ; !(N�1)(i�1)) is the

ith row (or column) of F and f�1i is the ith row (column) of F�1. For illustration, we

consider a lattice of connectivity, k=3. If the connectivity is random, any element

of each row (except the diagonal) can be occupied with equal probability. Fractal

connectivity implies that the upper and lower diagonals are populated, and the

remaining 3 elements in each row can be 1 with uniform probability. Thus, a random

connectivity matrix might be:
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M =

0
BBBBBBBBBBBBBB@

0 1 1 0 1 0

1 0 0 1 0 1

0 1 0 1 1 0

1 1 0 0 1 0

0 1 1 0 0 1

1 0 1 1 0 0

1
CCCCCCCCCCCCCCA

; (2.19)

while a fractal connectivity matrix would be:

M =

0
BBBBBBBBBBBBBB@

0 1 1 0 0 1

1 0 1 1 0 0

1 1 0 1 0 0

1 0 1 0 1 0

0 0 1 1 0 1

1 1 0 0 1 0

1
CCCCCCCCCCCCCCA

: (2.20)

The CML corresponding to this choice of connectivity is:

xn+1(i) =
1

k + 1

�
f(xn(i)) +

X
j 6=i

Mijf(xn(j))
�
; (2.21)

where we have explicitly separated the connectivity matrix and the self interaction

terms. The elements of the matrix K are given by:

K(i; j) =
1

N

NX
m=1

(
kX
l=1

!(j�1)(c(m;l)�1))!�(m�1)(i�1)); (2.22)

where c(i; j); i = 1 � � �N; j = 1 � � �k are the sites to which i connects (modulo N).

For example c(1; 1) = 2 for the random connectivity matrix. Clearly, K(i; 1) is 0 for

i 6= 1, since the sum of the m, nth roots of unity is zero except for unity itself. The

eigenvalues of K are the eigenvalue k and the eigenvalues of the �rst minor of K,

i.e. the N � 1 dimensional matrix in the subspace orthogonal to e1, which we call
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C. The elements of C are sums of the Nk roots of unity, which in the case of the

random matrix are randomly chosen. In case of the fractal connectivity matrix, the

upper and lower diagonal elements result in 2N roots of unity that sum to 0, and

each element of C is a sum of N(k � 2) complex numbers.

This summation restricts the construction of a fractally connected lattice. Clearly,

since 2 of the connections for each site are already �xed to be the nearest neighbors,

only k � 2 connections need to be chosen (if we �x the connectivity to k). The

remaining connections can be chosen by generating numbers using a pseudorandom

number generator and accepting the connection if it is less than the probability dis-

tribution p(i; j) (Eqn. 2.8). However, a simple sequential sweep through the lattice

results in a bias toward short range connections, introducing correlations in the ele-

ments of the matrix S. A better method is to generate a random permutation of the

integers 1 to N and choose k� 2 connections, as earlier. Since the permutations are

random, we avoid the correlations which a�ect the sequential connection process.

Of course, if we do not �x the mean connectivity for the lattice, we can use either

method, as all the entries of M are independently 0 or 1.

Let us �rst consider the case of a random asymmetric connectivity matrix and

writeC as S=N =
q

k
N

1p
Nk
S
0, where S; and S0 are matrices with the same dimension

as C. The elements of S0 are (Nk)�1=2
PNk

l=1 exp(�l), where the �l are randomly

chosen. Thus the variance of the modulus of any element of S0 is:

hjS0(i; j)j2i = (h[
NkX
l=1

cos(�l)]=
p
Nki+ h[

NkX
l=1

sin(�l)]=
p
Nki); (2.23)

where the average is over the probability distribution.

The law of large numbers implies that the expectation value of jS0(i; j)j2 is 1 and
by the Central Limit Theorem, the distribution of the elements is Gaussian. The

elements are independent of each other since the connections are chosen randomly
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and independently. S0 is a complex asymmetric matrix with independent, identically

distributed elements drawn from a Gaussian distribution with 0 mean and unit

variance. The eigenvalues of S0 lie in a unit circle in the complex plane [38] and

thus the eigenvalues of S lie in a circle of radius
p
k.

We show the eigenvalue spectrum for the random k-regular connectivity matrix

in Figure 2.6, without normalizing by the total connectivity k. Since the matrix is

not symmetric, the eigenvalues are complex. The eigenvalues lie in a circle of radius
p
6 in the complex plane with a single real eigenvalue of 6, as shown above using

the Fourier decomposition of the matrix.
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Figure 2.6. Eigenvalue spectrum of the completely random connectivity matrix for
N=512 and k = 6 for 10 di�erent realizations. N � 1 eigenvalues lie in a circle of
radius

p
6.

We now apply a similar Fourier decomposition to a fractal connectivity matrix2.

2In order to generate a fractal connectivity matrix which is regular with connectivity k, we
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Figure 2.7 shows the eigenvalue distribution for a fractal connectivity matrix. We

clearly see that the eigenvalues do not lie in a circle unlike the distribution for the

random connectivity matrix. Once again, we obtain a matrix C as the �rst minor of

the matrix = F
�1
MF. The elements of C, however, are not the sum of k randomly

chosen roots of unity. The similarity transformation diagonalizes a nearest neighbor

connectivity matrix, and the eigenvalues are 2 cos(2�j=N); j = 1; � � � ; N � 1. Since

the fractal connectivity matrix retains all nearest neighbor connections, the matrix

C is now e�ectively C0 = C� 2(cos(2�j=N)I. Thus the terms in C0 are the sums of

N(k�2) distinct random roots of unity, and the largest eigenvalue is 2 cos(2�=N)+�1

where �1 is the (complex) largest eigenvalue of C0, which lies in a circle of radius
p
k � 2. We have checked that the eigenvalue distribution of the fractal connectivity

matrix with the upper and lower diagonal terms removed does indeed lie in a circle

of radius k�2, except for O(1) number of real eigenvalues, which we cannot account
for in this analysis (Figure 2.8).

We can carry out a similar analysis for the symmetric connectivity case as well.

The matrixK, is now unitary and a generalized Wigner's semicircle law gives the rel-

evant eigenvalue statistics [38]. The deviations from completely random connectivity

due to the nearest neighbor connections again enter in the same way as for asym-

metric connectivity. We can show that the eigenvalue distributions are unchanged

even if we have non-uniform mean connectivity, as in the numerical simulations.

Thus, we can relate the appearance of the spatially uniform but temporally

chaotic states to the connectivity exponent �. If we consider a gap of width g,

then for states such that �0 > 1 and �0(1 � g) < 1, the uniform mode is spatially

stable (in the sense that any small initial non-uniformity will lie in the gap and

will die out) and temporally chaotic. The remaining N � 1 nonuniform modes die

randomly choose k� 2 connections for each site according to the probability distribution given by

Eq. 2.7.
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Figure 2.7. Eigenvalue spectrum of the asymmetric fractal connectivity matrix for
N=512 and k = 6 and � = 0:9 for 10 di�erent realizations.
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Figure 2.8. Eigenvalue spectrum of the fractal connectivity matrix for N=512 and
k = 6 for 10 di�erent realizations with the nearest neighbor connections removed.
Most eigenvalues, except of an O(1) number lie in a circle of radius 2 (

p
k � 2)
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out since their eigenvalues are less than 1. The instability to uniform 
uctuations

remains, but does not destroy the spatial coherence. A similar gap in the eigenvalue

spectrum was responsible for a uniform state in [36] for a nearest neighbor coupling

CML with open boundary conditions, and a randomly coupled CML [39]. For

temporally periodic states (�0 < 1) , the uniform solution is always stable for all

values of �, and any in�nitesimal perturbation from an initial uniform state dies out,

as we observe numerically. However, for random initial conditions, the temporally

periodic, spatially uniform state does not appear for � > �crit, implying a lack of

global stability above �crit, which a local, linear stability analysis would not indicate.

We can also interpret the dynamic behavior of the fractal CML in light of the re-

lationship between the structure and function of a network, in particular, the e�ect

of network connectivity on stability [40]. The stability of a dynamical system with

a given Jacobian matrix with randomly chosen elements is usually addressed in the

framework of the Wigner-May theorem [41, 42] which states that for a random con-

nection matrix of zero mean, the state is almost surely unstable if the connectivity

exceeds a threshold. However, the fractal CML with all nonnegative elements in the

Jacobian matrix is unstable for low values of connectivity (and therefore interaction

strength) but is stable for connectivity larger than some critical value.

2.4 Collective Behavior

Physical measurements on large, interacting ensembles of oscillators or spatially

extended systems are often only possible for well de�ned macroscopic quantities,

resulting in a coarse grained description of the dynamics. In analogy with statisti-

cal mechanics, macroscopic quantities are called order parameters. Changes in the

dynamical state with parameter variation show up as transitions in the asymptotic

states of these order parameters. Often, we can write down simpli�ed, low dimen-
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sional models for the dynamics of these order parameters, though the models may

be approximate. The extent to which statistical mechanical analogies are valid for

nonequilibrium models is an open question [43, 16]. Simple, equilibrium minded,

intuition leads to the belief that in spatially extended, chaotic systems, macroscopic

quantities do not evolve in time, apart from statistical 
uctuations that vanish

in the thermodynamic limit, while microscopic quantities can have nontrivial dy-

namics. How does this simple picture �t in with CML models? CMLs with local

interactions display collective behavior and macroscopic order as long as the dimen-

sionalilty of the system is high enough (d > 2) [44]. However, similar understanding

for globally or randomly coupled models is lacking. Some indications of nontrivial

collective behavior (NTCB) have come from the observations of ergidicity breaking

in GCML but these models can display a richer spectrum of collective behavior. A

continuous time model of coupled oscillators shows collective chaos [45, 46]. Models

with local interactions can at most show quasiperiodic collective behavior. Ran-

domly connected models have been studied even less, their importance to biology

notwithstanding

The microscopic quantities in the CMLs are clearly the values of the local activity

xn(i). In order to study their collective behavior, we need to de�ne some suitable

macroscopic order parameters. One such observable is the mean �eld:

h(n) =
1

N

NX
j=1

xj(n): (2.24)

A simple model for studying the macroscopic dynamics of Eq. 2.24 is the in�nite

dimensional GCML. As mentioned earlier, the GCML has two opposing tendencies,

namely the synchronization due to the mean �eld and the desynchronization due

to the chaotic local dynamics. Suitable parameter regimes lead to an incoherent

state, where each site seems to evolve independent of the others. If in fact, the
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elements are independent, quasirandom numbers, the mean �eld must converge to

a stationary value, uncoupling the lattice sites, in the N ! 1 limit. For �nite

N , the 
uctuations of the mean �eld should decrease as 1
N
. Kaneko [47] studied

the macroscopic dynamics of the GCML and concluded that the 
uctuations of the

mean �eld behave anomolously, i.e. the mean square deviation < h2 > � < h >2,

decays as N��, with � < 1 rather than as 1
N
as would be expected from the law of

large numbers. Kaneko [47] has conjectured that a strong low dimensional collective

motion of the lattice causes violation of the law of large numbers. How generic is

the collective coherence of the GCML? Does a fundamental reason underly the

violation of the law of large numbers? Pikovsky and Kurths [48] have provided a

partial answer to this question. They assumed that the e�ect of the 
uctuations in

the mean �eld is modify the bare nonlinearity parameter a to aeff = 1� �hn. Since

the mean �eld 
uctuates in time, the e�ective nonlinearity becomes time dependent.

Thus the original GCML now becomes a set of uncoupled maps with a distribution

of a which the mean �eld self-consistently generates. A study of these maps shows

that the states of the lattice get trapped in a �nite region of phase space, (a chaotic

or quasiperiodic macroscopic attractor) i.e. the lattice is no longer ergodic (does not

visit all parts of phase space with equal probability). Thus, time averages are not

equivalent to ensemble averages. Since statistical characterization of the mean-�eld

distributions implicitly assumed ergodicity, violations of the law of large numbers

occur.

An alternate characterization of the phase space of the lattice is to look at the

motion of a single site. If the 
uctuations of the mean �eld decayed regularly with

N , the xn(i) would be independent of each other, and the ergodic nature of the

dynamics would mean that each single site eventually visits all parts of phase space.

Thus, a long time trace of a single site is enough to characterize the whole motion.
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This property is known as self averaging, i.e. an average over time of a single site

is equivalent to the ensemble average. A lack of ergodicity generically implies the

lack of self-averaging. Mean �eld models of spin glasses show a striking violation

of self-averaging [49]. Crisanti et al. [50] have shown that the GCML has a glassy

phase with a large multiplicity of attractors, which violates self averaging. They

study the probability distribution of the time average of the variable xi,

hxiiT =
1

T

TX
n=1

xi(n); (2.25)

with i chosen at random from a large lattice. The assumption of self averaging

implies that the probability distribution, �(hxiiT) collapses to a delta function.

However, in the glassy phase, �(hxiiT) is nontrivial, and does not change with the

averaging time T, indicating the presence of ordered collective motion. Crisanti

et al. argued that this violation of ergodicity and self-averaging results from the

partition degeneracy of the GCML. By partition degeneracy, we mean that the

equations are invariant under a partition of any integer N into m smaller integers

Ni = [N1; N2; � � � ; Nmj
Pm

i=1Ni = N ]. So the indices of the individual elements xi

can be reassigned by permutation so long as the overall Ni are preserved, leading to

a multiplicity of microscopic states that correspond to a single macroscopic state.

This high degree of multiplicity of attractors resembles the attractor crowding in

mean �eld models of spin glasses, hence the name. The lattice does not self average

in the glassy phase, while it does so in a macroscopic chaotic phase (a > 1.8) with

very few attractors.

We studied the long time histograms of Eqn. 2.25 for the FCML for various

values of a and connectivity exponent �. For very large values of � (the local

coupling limit), we �nd that the lattice self averages. Figure. 2.9 clearly shows this

self-averaging, where the distribution tends to a delta function as the averaging time

increases.
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Figure 2.9. Probability distribution of hxi at various observation time T . Top
panel: local coupling limit, � = 10 and a=1.8, Bottom panel: �=1.225, a=1.75.
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For �=1.25, histograms of xn(i) converge to a nontrivial distribution that does

not change with the averaging time, indicating a lack of self-averaging. This property

is generic for the FCML for most values of a and �, as long as the lattice does not

synchronize or the connectivity is not too localized (i.e. most sites are only locally

connected to their nearest neighbors). The lack of special symmetries and stable

cluster states for the FCML implies that glassy behavior with multiple degenerate

attractors, is not a necessary condition for ergodicity breaking. Instead, we argue

that a suÆcient condition for non-ergodicity is the appearance of low dimensional

collective behavior. We have already seen that the GCML is non-ergodic due to

collective coherent motion. Nonlocal connections in the FCML allow each site to

sample k di�erent sites. Random sampling results in an estimate for the median

of the sample with an accuracy that depends on the sample size rather than the

size of the population [51]. In a uniform distribution, in the limit of in�nite N , an

estimate for the mean and median are identical and any oscillator sees the mean

�eld more and more accurately as k increases. In fact, values of k of O(1) suÆce
to approximate the mean �eld. Thus, in this limit, the FCML resembles a globally

coupled model and the appearance of collective behavior coincides with ergodicity

breaking. We have checked that the FCML does have nontrivial, low dimensional

collective behavior, where the mean �eld settles into a quasiperiodic state.

We brie
y digress from the subject of collective behavior in coupled maps to dis-

cuss another important network dynamical system. Cellular automata on lattices

exhibit suggestive parallels with spatially extended continuous dynamical systems.

Studies of cellular automata in 2 and 3 dimensions [52, 53, 54, 55] show that nontriv-

ial collective dynamics is only possible in 3 or more dimensions. 1 and 2 dimensional

lattices settle into a macroscopic 2m periodic state, with low m. Mousseau [56] has

shown that randomly connected cellular automata also order into a macroscopic
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quasiperiodic state for a narrow range of connectivity. Recent studies on 2 state cel-

lular automata on random graphs show that the appearance of collective quasiperi-

odic dynamics depends sensitively on the characteristics of the chosen graphs [57].

Ordered graphs such as a Cayley trees with closed edges settle into a macroscopic

stationary state (the mean �eld goes to a �xed point), while in random graphs, the

mean �eld becomes quasiperiodic, indicating that graph theoretic measures such as

path lengths or distribution of loop sizes are important for characterizing nontrivial

collective states. Preliminary studies of cellular automata on fractally connected

substrates also show nontrivial collective states, such as quasiperiodicity or inter-

mittency, and further research will evaluate the intimate relationship between the

structure and dynamics of networks.
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CHAPTER 3

DIFFUSIVELY COUPLED BURSTERS

3.1 Introduction

Electrical activity in cells arises from the presence of cellular and subcellular pro-

cesses that operate on a hierarchy of time scales. These processes interact nonlin-

early to produce complex temporal activity that is critical for physiological function.

Fast ion channels in cell membranes switch at millisecond time scales, producing the

familiar action potentials (sharp voltage spikes), which in the nervous system, pro-

vide the fundamental mechanism for information transmission, and in electrically

excitable media, such as heart tissue, drive muscle contraction. Calcium channels

have slower (�100 ms) time scales leading to characteristic burst patterns in the

electrical activity (a repetitive pattern of several action potentials in succession fol-

lowed by a period of silence). Transmission of action potentials between di�erent

neurons, or between neurons and muscles occur across localized patches in the mem-

brane called synapses, which release chemicals in response to voltage changes caused

by action potentials. The time scales of chemical release at synapses are distributed

in a range of 1-500 milliseconds, and even longer (up to 1s in some invertebrate neu-

rons). Modi�cations of the synaptic strengths (the amount of chemical released in

response to an action potential), which are crucial for learning in the nervous system,

occur at time scales on the order of seconds or minutes because they require an up

or down regulation of gene expression, an inherently slow process. Learned patterns
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or memories decay over time scales of minutes to hours or days. Finally, the time

scales for chemical modulations of various spike patterns are also distributed over

a range of time scales ranging from milliseconds to hours. All these processes com-

bine to produce complex patterns necessary for life, such as locomotion, digestion,

breathing, memory, and perhaps, awareness. Shepherd [58], Kandel and Schwartz

[59] review the biology of electrical activity of neurons and Goldbeter [5] gives an

excellent pedagogical account of the mathematics of biochemical oscillations.

One example of activity on multiple time scales in neurophysiology is the re-


exive swim activity of the marine mollusc, Tritonia, which responds to a large

amplitude tactile stimulus by initiating a swim pattern to escape from predators.

The swim pattern is a series of 2-20 alternate dorsal and ventral (left and right)

movements lasting about 10-50s. A network of 14 central pattern generating (CPG)

neurons divided into 3 classes [60] produces the characteristic swim pattern. The

time scales of the intrinsic conductances and the synaptic activity set the basic

rhythm. Chemical modulation of the swim pattern period and duration also occurs

over 10s of seconds.

In this chapter, we study a nonlinear oscillator that has two di�erent time scales

and trace some of its characteristic patterns in parameter space. The principal moti-

vation for this model comes from a typical pattern of voltage oscillations of neuronal

membrane potential called bursting. Dynamical systems theory can systematically

characterize bursting in single cells, but our understanding of the dynamics of cou-

pled bursters is incomplete.
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3.2 Bursting

3.2.1 Electrical Activity of Biological Cells

All living cells are enclosed by a thin membrane (75 �A in thickness), made up of

phospholipids with embedded proteins. The lipids provide the basic structure of

the membrane. The proteins embedded in the membrane carry out several physio-

logical functions, such as receiving and transmitting external signals and catalyzing

reactions. One class of proteins forms pore-like ion channels and pumps which act

as gates controlling the 
ow of ions into and out of the cells, maintaining the os-

motic balance by active transport of ions. Speci�c channels are selective for di�erent

ionic species, for example the sodium (Na+) channel or the potassium (K+) chan-

nels regulate the 
ow of sodium and potassium ions. These channels are not open

constantly, but act as switches, opening only under certain conditions.

The phospholipid molecules are polar, with a hydrophobic tail and hydrophilic

head. The basic membrane forms spontaneously in a bilayer with the heads facing

the outside and the inside of the cells. The hydrophobic tails create a membrane

that is impermeable to various ions in aqueous solution, while being permeable to

water. The impermeability of the membrane to ions in aqueous solution results

in an imbalance of ion concentration across the membrane. For example, sodium

concentration is low inside the cell and high outside, and vice versa for potassium

concentration, resulting in a potential di�erence across the cell membrane, called

the membrane potential. The electric potential di�erence from a concentration

di�erence for any ionic species on the two sides of the membrane is given by the

Nernst equation:

Vion =
RT

FZ

[Co]

[Ci]
; (3.1)

where R is the universal gas constant, F is Faraday's constant, T is the temperature
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and Z is the valence of the ions. [Co] and [Ci] are the ion concentrations outside and

inside the cell. Thus, the membrane potential, Vion, is the potential di�erence due

to the concentration di�erence. The resulting electric �eld would cause an ion 
ux

across the membrane through passive di�usion till an equilibrium is established.

However ion pumps actively maintain the concentration di�erence, establishing a

constant potential Vm of �65mV.

An action potential, or a voltage spike occurs when sodium channels open tran-

siently in response to an increase in the membrane potential, allowing Na+ ions to


ow into the cell. This in
ow raises the membrane potential to VNa (the Nernst

potential for sodium ions) in the up-stroke of the action potential. The sodium

channels close at high membrane potentials, and the potassium channels open af-

ter a short delay, extruding K+ ions, repolarizing the membrane towards VK. The

potassium channels close as the voltage returns to the resting potential. The active

ion pumps now restore the ionic balance, restoring the membrane potential to its

resting value.

Hodgkin and Huxley [61], in their seminal work, extensively studied and modeled

the complex kinetics of the ion channels. Their approach still forms the basis of most

cell level modeling in neuroscience. They modeled the membrane as a circuit with

capacitance, resistance and non-linear current sources (the ion channels). Thus the

membrane current, im, is:

im = Cm
dV

dt
+
X

Iion; (3.2)

where Cm is the membrane capacitance and Iion are the ionic currents due to the

channels. At rest, im is zero, just a restatement of Kircho�'s law. The driving force

for each ion, the Iion term, is proportional to the di�erence between the membrane

potential and the Nernst potential for the ion, i.e. it has the form (v � vion).

The proportionality constant is the e�ective conductance gion, the reciprocal of
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the resistance, which is assumed to be a nonlinear function of the voltage and

perhaps other ionic concentrations. This dependence re
ects the voltage dependent

kinetics of ion channels and the modi�cation of these kinetics by the modulating

e�ects exerted by some ions such as calcium and other chemicals. The nonlinear

conductances are at the heart of action potential generation.

Thus, a model of the membrane potential is a set of �rst order di�erential equa-

tions for the voltage and the membrane kinetics. Hodgkin and Huxley's major

achievement was to derive a phenomenological form for the Iion current from a se-

ries of experiments on the channel kinetics for the Na+ and K+ ions in a squid

neuron. The conductance of a single channel is of the order of picoSiemens and the

phenomenological equations for the ionic currents describe the kinetics of a large

population of channels. The resulting equations are highly nonlinear, allowing for

a rich repertoire of temporal patterns. The electrical behavior of electrically active

cells (secretory cells and neurons) di�er markedly depending on the concentrations

of di�erent types of channels. A study of their kinetics is key to understanding the

cells' physiological functions.

Because of the importance of the Hodgkin-Huxley (HH) formalism and to illus-

trate the nature of the equations governing the electrical activity of cells, we give

the HH equations below and discuss some of their features. The HH equations for

the electrical potential of the squid giant axon are a set of 4 ODEs:

Cm
dV

dt
= �gNam

3h(V � VNa)� gKn
4(V � VK)� gleak(V � vleak) + Iapp;(3.3)

dm

dt
=

(m1(V )�m)

�m(V )
; (3.4)

dh

dt
=

(h1(V )� h)

�h(V )
; (3.5)

dn

dt
=

(n1(V )� n)

�n(V )
: (3.6)

The variables are V , the membrane potential [mV], fm; hg, the phenomenolog-
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ical variables related to the probability of the opening and closing of the sodium

channel respectively and n, a phenomenological variable related to the opening

probability of the potassium channel. Cm is the membrane capacitance. Iapp is

an externally applied current, either from other cells or through an electrode in a

controlled experiment, and gNa; gK, and gleak are the maximum conductance [�S] of

the sodium channels, potassium channels and the spontaneous leak across the mem-

brane. The functions x1(V ); �x(V ); x = m; h; n are the rate functions for channel

opening and closing, and depend on the membrane voltage (and temperature). The

functional form of the rate dependence can be determined experimentally and then

�t to sigmoidal forms. The �rst two terms in the voltage equation are the ionic

currents, and the functional forms vary for di�erent types of cells, even for the same

type of channels. We give the rate functions in Appendix A.

Eqns. 3.3-3.6 are actually the \space-clamped" versions of the original equations,

and describe action potential generation over an isopotential membrane. Hodgkin

and Huxley added a di�usion term to the voltage equation to describe conduction

of action potentials down the nerve cylinder. In the following, we will consider

the di�usion term to be very fast, resulting in an isopotential cell, reducing the

PDEs to ODEs (Eqns. 3.3-3.6). The HH equations with di�usion have been studied

extensively (actually a planar approximation of the HH equations, the Fitzhugh-

Nagumo equations) as a model of extended excitable media. The interaction of

di�usion and local dynamics results in spatiotemporal patterns such as traveling

waves, spiral waves, trains of pulses and chaos.

Experimental preparations usually study the electrical activity of cells by ap-

plying an external current. This experiment is analogous to studying the dynamics

of Eqns. 3.3-3.6 by increasing the applied current. With no applied current, the

membrane is at the resting potential, given by the steady states of Eqn. 3.3-3.6,
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obtained by setting the derivative terms to zero. Brief current pulses increase the

membrane voltage as the membrane capacitance charges up, and then decays expo-

nentially after the removal of the current pulse. If the current pulse is large enough,

the membrane voltage increases suÆciently to open Na channels, which feedback

positively, to open more Na channels and eventually cause a spike. The potassium

channels now open causing the downstroke of the spike and an undershoot below the

resting level. The membrane then returns to its resting level. Prolonged application

of a supercritical current pulse results in repetitive spiking.

We show the numerically constructed bifurcation diagram for Eqns. 3.3-3.6 in

Figure 3.1. For low values of Iapp, the cell is at rest, with a membrane potential of

� �62 mV. As the current increases, the rest state destabilizes at I � 10 �A=cm2

via a Hopf bifurcation (i.e. a pair of complex conjugate eigenvalues of the linearized

Jacobian matrix crosses the imaginary axis). This bifurcation results in repetitive

activity and the cell spikes periodically with a period which increases with increasing

current.

3.2.2 Analysis of Bursting

Bursting is common in biological oscillators and chemical reactions such as the

Belousov-Zhabotinsky reaction, notably in the electrical activity of neurons and

pancreatic � cells [2]. During bursting, the oscillators typically alternate between

silent and active phases. In the active phase, the variables rapidly oscillate, while

in the silent phase they change slowly. Transitions between the active and silent

phases are rapid compared to the time scale of the oscillations themselves and the

successive transitions are periodic in time.

Di�erent burst patterns depend on the complex mechanisms that interact with

each other. These burst signatures have evocative names attached to them describ-
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Figure 3.1. Bifurcation diagram for the HH model constructed using the auto-
mated bifurcation analysis software AUTO [1]. Solid lines indicate stable �xed
points and broken lines indicate unstable �xed points. Heavy lines denote stable
periodic orbits and open circles denote unstable periodic orbit. A subcritical Hopf
bifurcation occurs at Iapp = �10 �A=cm2 and another Hopf bifurcation occurs at
Iapp = � 160�A=cm2.
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ing some of their salient features. We show some characteristic burst patterns in

Figure 3.2. The burst variable is the transmembrane electrical potential. An im-

portant ingredient for bursting electrical activity is the presence of processes that

modify the membrane potential at multiple, widely separated time scales.

The origin of multiple time scales in the HH models of action potentials is imme-

diately obvious. The �x(V ) give the characteristic times associated with the channel

variables. If some �x(V ) are large, and hence, the associated channel variables, x,

vary slowly in V , while others are smaller by orders of magnitude, we have a separa-

tion of time scales. Large enough separations result in a set of singularly perturbed

equations with slow and fast variables. The interaction of these time scales results

in the characteristic burst patterns in Figure 3.2. Most of the burst patterns can be

reproduced by minimal models (which can be more or less rigorously constructed

from full models with several HH type equations) with 2 fast variables and 1 or 2

slow variables. Some burst patterns such as the bursts in hippocampal and corti-

cal pyramidal cells (panels I & J in Figure 3.2) require several slow variables for a

complete description.

As an illustration, consider the 3 variable modi�ed Sherman-Rinzel-Keizer (SRK)

[62, 63] model for the bursting behavior of pancreatic �-cells, which secrete insulin

in the presence of glucose:

�
dV

dt
= �gCam1(V )(V � VCa)� gKn(V � VK)� gSS(V � VK); (3.7)

dn

dt
=

n1(V )� n

�n
; (3.8)

dS

dt
= �

S1 � S

�S
: (3.9)

The relevant ionic currents are the Calcium current (with a Ca++ conductance

gCa), a potassium conductance as before and a phenomenological variable S, which

could be a slow calcium channel or re
ect the concentration of some other metabo-
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Square-wave Bursting

Parabolic Bursting

Elliptic Bursting

Complex Bursting

Figure 3.2. Examples of rhythmic bursting, showing the time courses of the mem-
brane potential. A. Square wave bursting in a pancreatic �-cell. B. Square wave
bursting in a dopamine containing neuron in the rat brain. C. Elliptic bursting in
a Sepia giant axon. D. Complex dendritic mediated bursting in the mouse cortex.
From [2].
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lite. We give the explicit forms of the rate functions and other parameters in Ap-

pendix A. The time scales for the V , n and S equations are now constants, rather

than functions of the membrane potential. � and �n are 20 ms while �S is 35 s (!!).

Thus, S is the slow variable and V; n are the fast variables (the calcium channels

are taken to activate (open) and inactivate (close) instantaneously). The SRK equa-

tions are a set of singularly perturbed di�erential equations in R2+1 , where we have

separated the two dimensional fast subspace and the one dimensional slow subspace.

We show the integration of Eqns. 3.7-3.9 in Fig. 3.3.
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Figure 3.3. Time integration of the Sherman-Rinzel-Keizer equations showing the
membrane voltage

We see clearly a periodic burst pattern with alternating active (oscillatory) and

silent (rest) phases. The transition between the rest and spiking states is rapid, and

the spike frequency decreases continuously. Note that the last spike is higly delayed

relative to the previous ones. Any model must account for the rapid transitions
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between the active and silent phases as well as the dynamics of the active phase

spikes. We exploit the 3 orders of magnitude di�erence between the time scales

to obtain a qualitative understanding of the dynamics of the SRK model. The

small parameter 1=�S justi�es a perturbation theory approach to the dynamics.

However, the expansion di�ers from standard perturbation theory in physics, where

the solution is known for an unperturbed system, and a perturbation expansion in

powers of the small parameter approximates the full solution. The nonlinearity of

the equations precludes analytic solutions even in the unperturbed case. Thus our

approach will necessarily be geometric and qualitative.

Let us take the singular limit, where �S ! 1. Now, S is frozen in time, and

enters in the V and n equations as a parameter. The dynamics of V and n are on a

fast time scale, parametrized by t. The slow variable S evolves on a slow time scale

T = "t; " = 1
�S
. Thus for the fast subsystem, the perturbation parameter " induces

a slow variation of the parameter S, resulting in a slowly varying set of equations.

On the slow time scale, V and n remain near their steady states (either resting, or

oscillating). Bifurcations of the fast subsystem result in transitions between steady

states from the neighborhood of one attractor to another. The times for these jumps

from silence to quiescence and vice versa occur with a characteristic time ". The

evolution of the SRK model on the slow time scale is (in the " = 0 limit) a di�erential

algebraic equation. The complete solution of the (2,1) dimensional ODEs can be

constructed by piecing together the fast jumps and the drift on the slow manifolds.

To make this approach more clear, we consider a geometric singular perturbation

method originally due to Rinzel [2]. The �rst step in a bifurcation analysis is to

determine the steady states of the fast subsystem. Setting n = n1(V ) in Eqn. 3.7,

have the steady state current:

ISS(V ;S) = gCam1(V )(V � VCa) + gKn1(V � VK) + gSS(V � VK) = 0; (3.10)
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as a function of V , with S as a parameter. For low values of S, ISS = 0 has one

solution at high V . For high values of S, ISS = 0 again has one solution at low

V . Intermediate values of S result in 3 solutions for the steady state current. The

stability of the steady states can only be determined numerically.

We show the bifurcation diagram of the V; n equations with S considered as

a bifurcation parameter in Fig. 3.4. S, the fraction of open channels, varies from

0 to 1. The solutions of Eqn. 3.10 form a Z shaped curve. For small S, the fast

subsystem has a single, high voltage steady state. As S increases, a Hopf bifurcation

(HB) creates a stable periodic orbit surrounding the now unstable steady state. For

larger values of S, a saddle node (SN) bifurcation creates an additional pair of steady

states. The lower branch in Fig. 3.4 contains stable steady states (the rest states)

and the middle branch is a set of saddle points with one dimensional stable and

one dimensional unstable manifolds. The fast subsystem has two stable solutions

for a range of S, namely a �xed point and a periodic orbit. For larger S, the

periodic orbit disappears in an in�nite period orbit (called a homoclinic or saddle

loop bifurcation [9]) as the amplitude of the periodic orbit grows till it contacts the

stable and unstable manifolds of the saddle point.

Beyond this value of S, only a single rest state is stable, while the other two

states are unstable. Finally, another saddle node bifurcation leaves the low voltage

rest state as the only �xed point. Thus the steady states of V (and hence n) lie on

a Z shaped curve, with the knees of the Z being the saddle node bifurcation points.

What about the slow evolution of S? The steady states of S as a function of V

lie on a curve obtained by setting the left hand side of the S equation to 0, which

intersects the Z curve on the middle branch. Below this line, S decreases, and above

it, S increases. We call this line the S-nullcline. The intersection of the two curves

gives the steady state of Eqns. 3.7-3.9. If the intersection is on the middle branch
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Figure 3.4. Bifurcation diagram for the Sherman-Rinzel-Keizer model constructed
using the automated bifurcation analysis software AUTO. Solid lines indicate stable
�xed points and dashed lines indicate unstable �xed points. Heavy lines denote
periodic orbits. The bifurcation points, saddle node (SN), Hopf (HB) and homoclinic
(HC) are indicated on the curve.
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of the Z curve, the steady state is unstable, leading to a bursting solution and if

the intersection is on the lower branch, the steady state is stable, with no bursting.

Depending on the choice of parameters in the slow S equation, the S-nullcline can

intersect the Z curve more than once. We will not consider this case here.

We now start Eqns. 3.7-3.9 close to the low voltage rest state. Since the rest state

is stable, it attracts trajectories, and V tracks the lower branch of Z as S decreases

(Figure 3.5). When S reaches the knee (SN), the only stable state is the periodic

orbit, and V \jumps" up on a fast time scale. Now V is above the S nullcline, and

thus S increases. V now tracks the periodic orbit, until it disappears in the in�nite

period orbit (HC). Since the rest state is the only stable state left, V \jumps" down

to it. Thus, to �rst order in ", the jump up and jump down points are the saddle

node point and the homoclinic point.
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Figure 3.5. Phase portrait of the SRK equation superimposed on the bifurcation
diagram. The dashed-dotted line is the S nullcline ( _S = 0). See explanation in text.
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3.3 Singularly Perturbed Dynamical Systems

Bursting is but one of many dynamical modes of a singularly perturbed (SP) model

and many di�erent types of dynamics are possible depending on the parameters. In

order to get a qualitative description of these dynamics, we restrict our attention

to a set of singularly perturbed di�erential equations in (2,1), i.e. a planar fast

subsystem with 1 slow variable. Thus we have the following di�erential equation in

R(2+1) (1 slow variable):

_X = f(X; Y ) (3.11)

_Y = "g(X; Y ) (3.12)

or

"X 0 = f(X; Y ) (3.13)

Y 0 = g(X; Y ); (3.14)

where 0 denotes di�erentiation with respect to T = "t (the slow time). Eqns. 3.11-

3.14 show our two points of view of analysis of the SP equations, namely in the

fast and the slow time scales. Since the bifurcation structure of two dimensional

vector �elds is relatively well understood [9, 64], restricting the fast subsystem to 2

variables allows the analysis of generic features of the SP. However, (an important

technical point) the " = 0 limit is singular, and the limiting equations with " = 0

do not really describe the situation " > 0. For " = 0, the parameters do not vary

in time. Careful analysis must establish that the invariant manifolds and attractors

that exist for the singular limit also exist for " > 0. The trajectories of the SP0

equations (we use the subscript to denote the value of ") contain segments that
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evolve on the invariant subspaces (subspaces of the phase space that are invariant

under the 
ow, for example, �xed points, limit cycles or trajectories that connect

�xed points) on the slow time scale (segments S) and segments that connect di�erent

invariant subspaces on the fast time scale (F). The transitions S-F or F-S occur at

the bifurcations of the fast subsystem, with the slow variables treated as parameters.

An analysis of the bifurcations of planar vector �elds allows classi�cation of

di�erent types of transitions. We have already seen examples of transitions in the

SRK model at the bifurcation points of the fast subsystem (the saddle-node point

and the homoclinic point). A major challenge in the theory of dynamical systems

is the identi�cation of the bifurcation structure of a planar vector �eld. In fact,

the number of periodic orbits of an arbitrary polynomial planar vector �eld (2 �rst

order ODEs), �rst posed by Hilbert as problem 16 of his famous list, is an unsolved

problem. Even partial answers for particular cases requires rather sophisticated

mathematical machinery. Given the wealth of parameters in neural models, can

we hope to uncover the general structure of even planar models? We give a small

laundry list of known bifurcations (one and two parameter cases) for general planar

ODEs which can be found in neural models. A detailed discussion of the asymptotics

and structure of these bifurcations can be found in any book on dynamical systems

such as [9, 64].

3.3.1 Generic Bifurcations

The bifurcation point of a vector �eld is a degenerate structure: the situation is

very di�erent on either \side" of the critical parameter values at the bifurcation.

The nature of the bifurcation depends on the number of parameters required to

\unfold" the bifurcation. The parameters form a manifold of n dimensions equal to

the number of parameters required to break the degeneracy, called the codimension
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of the bifurcation. More simply, the codimension of a bifurcation is the number

of zero conditions required to specify a bifurcation. E.g., the Hopf bifurcation is

speci�ed by a zero trace and non-zero determinant, so that it is of co-dimension

one.

3.3.2 Codimension-One

Saddle-Node Bifurcation: If the linearization of the vector �eld has a single zero

eigenvalue, with the remaining eigenvalues having nonzero real parts, then the tra-

jectories near the bifurcation are determined by:

_x = f(x; �) = �� x2: (3.15)

The steady states are a parabola in the � � x plane, with no �xed points for

� <0, and 2 �xed points, one stable and one unstable for � >0.

Hopf Bifurcation: When the linearization of the vector �eld has a pair of complex

conjugate eigenvalues which cross the imaginary axis, a periodic orbit is born from

a �xed point. Depending on the structure of the vector �eld, the periodic orbit may

be stable or unstable, and the bifurcation is supercritical or subcritical respectively.

Near the Hopf bifurcation the trajectories are governed by:

_x1 = !x1 � x2 + (x21 + x22)x1 (3.16)

_x2 = x1 + !x2 + (x21 + x22)x2; (3.17)

where ! is the frequency of the oscillations.

Saddle Connections: The saddle points created at saddle-node bifurcations are

characterized by a one dimensional stable and a one dimensional unstable subspace.

In general, these subspaces do not intersect. However, at special points the two

subspaces cross each other transversally (not tangentially). These transveral inter-

section points are points of in�nite period orbits or saddle loops. We have already
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seen a saddle loop (or homoclinic) orbit in the SRK model, which led to a transition

from the active to the silent phase. These bifurcations have not been extensively

studied for SP systems, except for di�erent models of �-cell bursters by Pernarowski

[65, 66], using a combination of analytical and numerical methods. These �-cell

models fortuitously are perturbations of Hamiltonian systems, for which a rigorous

theory for �nding points of homoclinic orbits exists. The most familiar homoclinic

orbit is the separatrix for a simple pendulum. Other models, in general, will not be

close to Hamiltonian, and techniques for locating homoclinic orbits in dissipative

systems need to be applied and developed [67].

Connections between saddle points and sinks (or sources) are called heteroclinic

orbits, but we are not aware of any models of bursting where these play a role.

SNIC (Saddle-Node-Loop): This situation occurs whenever the unstable mani-

fold of a saddle point coincides with the stable manifold of a sink, forming a large

loop that takes in�nite time to traverse. Thus the name saddle node on invariant

circle (SNIC). As the parameters are varied, the saddle and node collide, leaving

a periodic orbit. This bifurcation is very important for most neural models which

oscillate. The oscillation frequency at the onset of the SNIC bifurcation is small,

and increases as a square-root of the bifurcation parameter, which is observed in

experiments on neurons (the parameter is the applied current). The frequency of os-

cillations at the bifurcation point is in�nite, and decreases as the parameters applied

current increases, in contrast to the HH case, where the frequency is discontinuous

at the bifurcation point and approximately constant.

Saddle Node of Periodics: In this situation, the linearization of the Poincar�e

map of the periodic orbit has an eigenvalue 1. This situation is analogous to the

saddle node bifurcation encountered above, but now it denotes the coalescence and

disappearance of stable and unstable periodic orbits.
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3.3.3 Codimension-Two

The list of codimension-2 bifurcations is not complete, and their analysis requires

a careful asymptotic analysis on a case-by-case basis. Some commonly encountered

bifurcations are listed below.

Cusp: Consider a one dimensional dynamical system of the form:

_x = f(x; �); x 2 R; � 2 R
n ; n > 1; (3.18)

at an equilibrium point xc for some �c, such that f(xb; �b) = 0. The equilibrium is

a cusp, if the following conditions are satis�ed:

@2f

@x2

����
xb;�b

= 0 but
@3f

@x3

����
xb;�b

6= 0; (3.19)

along with the appropriate transversality conditions. The cusp bifurcation point is

an intersection of two curves of saddle-node bifurcation points.

Degenerate Hopf: The periodic orbits born at a Hopf point can be sub- or su-

percritical. The degenerate Hopf points form a curve in parameter space separating

the subcritical and supercritical Hopf bifurcations.

Takens-Bogdanov (Double Zero): The linearization of the planar vector �eld for

the fast subsystem can be written as a 2�2 matrix. This matrix can have zero

trace and determinant at discrete points in a two-dimensional parameter space,

implying a zero eigenvalue of multiplicity 2. Such points are called Takens-Bogdanov

bifurcation points, after the two authors that �rst studied them [9]. An unfolding

of these singularities shows small periodic and homoclinic orbits nearby.

Other bifurcations include heteroclinic cycles, with trajectories connecting dif-

ferent �xed points forming a closed orbit. We do not discuss these as they do play

a role in most physiological examples of bursting.

As an epilogue to this section, we mention that the " = 0 limit is indeed singular.

The bifurcations discussed above consider that the slow variable is actually constant.
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In the full model, with " > 0, the slow variables evolve, subtly modifying the static

bifurcation picture. For concreteness, let us consider a situation where the fast

subsystem undergoes a Hopf bifurcation at � = �H . Thus, for parameter values

� < �H (� constant), the rest state is stable. As � increases past �H , the rest state

loses stability to a stable periodic orbit. However, if � is now allowed to vary slowly

through the bifurcation point, paradoxically, the transition to a periodic orbit at

�H disappears! Instead, the trajectory tracks the unstable rest state closely. The

periodic orbit appears well above the critical parameter value. Thus, what one

observes for " = 0 di�ers qualitatively from the case of " > 0. Nejshtadt �rst

investigated this phenomenon, termed delayed loss of stability [68]. Delayed loss of

stability is not restricted to the Hopf bifurcation, but occurs for the saddle-node and

transcritical bifurcations[64] as well . Thus, viewing the bifurcation points of the

fast subsystem as the transitions between di�erent segments of the slow subsystem is

only approximate. The delayed stability loss must be taken into account to estimate

the transition points. Guckenheimer has outlined steps towards a global theory of

SP models and discussed the dynamics of maps that describe successive F-S and

S-F transitions [69].

3.4 (Weakly) Coupled Bursters

The principal motivation for the development of a framework for analysis of bursters

comes from various physiological observations in biology. Best studied among these

is the �-cell burster in the pancreas. These cells are responsible for the secretion of

insulin in response to glucose. Abnormalities in their function result in diabetes. The

considerable health related implications of diabetes require a better understanding

of burst generation. � cells in the pancreas, however, do not burst by themselves,

but cluster in arrays called islets and couple to neighboring cells by gap junctions
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(small conducting pores that have a low e�ective electrical resistance). A number

of these cells act in concert, resulting in the secretion of insulin by an islet. The

�-cell islet is not a unique example of biological coupled oscillations, and assemblies

of coupled oscillating cells are rather common (see Chapter 3).

The coupling between two cells can either be via a gap-junction, which we term

di�usive (since the resistive coupling of the form, ggap(V1 � V2) is a discrete version

of di�usion), or chemical (for example, synaptic coupling, where the activity of a

cell results in the release of a chemical which in
uences the state of another cell in

the network). We postpone the discussion of synaptic coupling to Chapter 4 where

we analyze models of neural oscillators coupled by synapses, and concentrate here

on networks of di�usively coupled cells. Again, di�usive coupling is natural when

considering chemical reactions such as the Belousov-Zhabotinsky [70] reaction since

the chemicals in solution di�use.

The simplest network of coupled oscillators is a two cell network with reciprocal

di�usive coupling between the two elements. We consider models of bursters with

di�usive interactions and outline methods for their analysis. The relevant questions

are: Does the bursting behavior of individual cells survive in the network? Does

the bursting behavior change in some predictable way? Sherman has studied the

dynamics of a pair of coupled SRK models with di�usive interactions [62], using

an extension of the geometrical perturbation theory outlined above. We will follow

a similar approach to illustrate some of the new phenomena that arise in coupled

bursters. We shall consider a pair of bursters with two fast and one slow variables

and explore their dynamics using numerically constructed bifurcation diagrams. The

coupled equations are now a SP vector �eld in R
4+2 (i.e. (4,2)), with four fast and

two slow variables. The bifurcation structure of four dimensional vector �elds is

very hard to analyze completely because several global bifurcations appear in the
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enlarged phase space. However, some progress is possible because of symmetries in

the equations peculiar to di�usively coupled models.

For concreteness, we consider the dynamics of each cell to be governed by the

(2,1) SP vector �eld originally studied by Pernarowski [71] and further extended by

deVries [66]. The equation for a single cell with coupling is:

_v1 = �a

3
v31 + aûv21 + (1� a(û2 � �2))v1 � w1 � z1 + ggap(v2 � v1) (3.20)

_w1 = (1� a

3
)v31 + aûv21 � (2 + a(û2 � �2))v1 � 3� w1 (3.21)

_z1 = "(�(u� z1)); (3.22)

where a; û; � are fast subsystem parameters and � is a slow subsystem parameter;

v is equivalent to the voltage variable; w is the channel variable (analogous to the

variable n for the SRK model) and z is the slow variable. The subscripts denote the

index of the oscillator, and another set of three ODEs represent the second oscillator,

with the indices interchanged. The cubic polynomial terms in the fast equations are

suÆciently general so that Eqns. 3.20-3.22 can display most of the bursting behavior

in Figure 3.2 [66]. We �x the parameters û = 1.5, � = 0.75 so that each uncoupled

cell has a square wave bursting pattern similar to the SRK model. The bifurcation

diagram of a single cell looks qualitatively similar to that of the SRK model. The

upper steady state loses stability via a Hopf bifurcation at z = �1.640616. The

resulting periodic orbit disappears in a homoclinic bifurcation at z =1.706126 in a

teardrop shaped loop of in�nite period. An additional Hopf bifurcation occurs near

z = 5, but disappears immediately in a homoclinic bifurcation, playing no role in

bursting.

We show the time evolution of the voltage variable of the two cells in Figure 3.6a

for a small value of the coupling strength ggap. Clearly, the burst solution still

persists, but the �ne structure of the spikes changes. A magni�ed view of the
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active phase (Figure 3.6b.) shows that the two cells spike � radians out of phase.

Figure 3.6c shows that the slow variables z1 and z2 are very close to each other. We

shall make use of this last observation to analyze the network dynamics.

We note that Eqns. 3.20-3.22 are symmetric with respect to an interchange of the

indices of the oscillators, i.e., if (v1; w1; z1; v2; w2; z2) is a solution, its symmetry

couterpart, (v2; w2; z2; v1; w1; z1) is also a solution. The four dimensional fast

subsystem with " = 0, has 3 parameters, namely ggap; z1 and z2. Since numerical

integration of the full equations shows that the z1 � z2 (upto �rst order in "), we

need only consider the z1 � ggap plane in parameter space to unfold the dynamics.

Also, because of the exchange symmetry, all solutions occur with multiplicities of 2.

In the following, we shall construct numerical bifurcation diagrams to illustrate the

solution structure. An analytical treatment of some solutions is certainly possible,

but distracts from an understanding of the bursting oscillations. We shall mention

the steps required for analytic exploration whenever possible.

Figure 3.8 shows the bifurcation diagram for the coupled fast subsystem. The

original Z shaped steady state curve persists for the steady states with both oscilla-

tors at rest. The di�usive coupling does not change these states. Furthermore, two

small Z shaped curves bifurcate from the the knees of the large Z. These secondary

Z-curves are asymmetric steady states, with v1 > v2 and its symmetric counterpart.

The original Hopf bifurcation at z = zH persists, along with the second Hopf bifur-

cation near z = 5.0. These Hopf bifurcations are the in-phase (IP) periodic orbits.

In addition, two more Hopf bifurcations, one at z =1.8 and one near the saddle

node point z � 5, occur on the main Z curve which are the anti-phase (AP) periodic

orbits.

The IP branch is initially stable close to the Hopf bifurcation, but loses stability

through a pitchfork bifurcation (one stable solution for � < �c and 3 solutions (2
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stable and 1 unstable) for � > �c, where � is any generic parameter), leading to a

pair of asymmetric periodic orbits: one oscillator has large(r) amplitude oscillations,

while the other has small(er) amplitude oscillations. These asymmetric branches

(AS1 and AS2) in Figure 3.8 undergo a series of bifurcations where a pair of Floquet

multipliers go thorough 1 (torus bifurcations), and �nally disappear in a homoclinic

orbit after a series of period doubling bifurcations (PD in the bottom panel of

Figure 3.8). However, these asymmetric solutions are unstable throughout the range

of z (except in the vicinity of the pitchfork bifurcation) and do not play a role in

bursting for low ggap. The AP branch is initially unstable, but gains stability through

a torus bifurcation, and disappears in a saddle-node of periodics (SNP) bifurcation

(one Floquet multiplier goes through 1), The unstable branch of antiphase periodic

orbits, born at the SNP bifurcation, �nally disappears in a homoclinic orbit at

z � 2.9. A close look at the bursting trace reveals the following pattern: the silent

phase of the burst ends near the saddle-node point at z = 1.0, as before. The

active phase tracks the unstable in-phase branch transiently. Then the trajectory

follows the stable AP branch as z increases. The active phase terminates near the

homoclinic bifurcation of the AP branch. This structure resembles the active phase

for a single burster which terminates at the homoclinic bifurcation of its periodic

orbit.

Thus we see that weak gap junctional coupling still preserves the bursting solu-

tion, but alters the �ne structure of the burst. More importantly, the active phase

period is longer for the network than for the single cell, and the spike amplitude

is reduced for these AP solutions. Physiologically, the length of the active phase

determines the amount of insulin secretion. This result implies that coupled �-cells

can secrete larger amounts of insulin than single cells. Perturbation techniques give

leading order approximations to the duration of the active and silent phases [65]
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for the uncoupled oscillator. The active phase begins at the saddle-node point and

ends at the homoclinic point. The saddle point can be analytically computed from

the linearized vector �eld, and Melnikov's method gives a leading order (O(")) ap-
proximation to the homoclinic point. For two coupled bursters, the saddle point is

unchanged, but the homoclinic point shifts to larger values of z (see Figure 3.7),

lengthening active phase duration.

A two parameter bifurcation diagram in fz1; ggapg allows us to trace the param-

eter regimes where an AP solution is stable. We show such a diagram in Figure 3.9,

where we have traced the AP Hopf bifurcation point, the AP torus bifurcation point

(where AP becomes stable), and an approximation to the AP homoclinic. We see

that for zero coupling, the AP Hopf point and torus point merge into the IP Hopf

point at z = �1.640616. The AP homoclinic merges with the IP homoclinic. The

AP Hopf curve intersects the line SN2, indicating a second Hopf bifurcation near the

saddle-node point. The second AP limit cycle born at SN2 also undergoes torus and

homoclinic bifurcations. Horizontal cuts in this �gure at any give ggap value between

the lines SN1 and the homoclinic curve show the z range for the active phase. The

oscillators jump up synchronously at the SN1 point, follow the AP branch and jump

down at the AP homoclinic point. The AP branch is stable in the region between

the curves of torus points and homoclinic points.

As ggap increases, the parameter range where the AP solution is stable shrinks

continuously. For ggap > 0:06, the AP branch is unstable, as the torus bifurcations

on the left and right AP branches merge. For ggap > 0.072, the AP branch disappears

completely, but numerical experiments show that the bursts still persist, but are no

longer periodic (Figure 3.10). The spike patterns within the bursts are asymmetric,

with large amplitude oscillations for one oscillator, and small amplitude oscillations

for the other, which alternate from burst to burst. The phase di�erence between
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the two oscillations also oscillates about �. We term these solutions asymmetric,

phase trapped solutions, where the amplitudes and phase di�erences are periodic

with some period T, which may or may not be commensurate with the basic period

of the oscillations. We conjecture that these solutions are tertiary branches, arising

from the AP branch, which AUTO cannot follow. The approximation z1 = z2 fails

for larger values of the coupling strength or di�erent values of the parameters fû; �g.
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Figure 3.10. Time integration of coupled bursters with ggap = 0.075. Top panel:
Time evolution of v1; v2. Bottom panel: Blowup of showing phase trapped spiking
within the burst
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The above numerical experiments clearly suggest that the periodic orbits of the

fast subsystem govern the dynamics during the active phase of the coupled cells.

Thus a local theory near the Hopf bifurcation can tell us much about the qualitative

nature of the periodic solutions for the 4-dimensional fast subsystem. Transitions

to and from the active phase depend on bifurcations of other steady states or global

bifurcations, which are beyond the scope of any local theory. We next show that

a normal form reduction of the fast subsystem around the Hopf bifurcation shows

that active phase oscillations are generically either antiphase or asymmetric, phase

trapped.

Recall that the fast subsystem de�nes a vector �eld in R4 as follows:

dX1

dt
= F(X1;�1) +D1(X2 �X1); (3.23)

dX2

dt
= F(X2;�2) +D1(X1 �X2); (3.24)

The vector valued functions F(::) are identical, �1 = �2 and the coupling D is a

2�2 matrix of the form: 0
B@ggap 0

0 0

1
CA : (3.25)

The steady stateX�
1;X

�
2 undergoes a Hopf bifurcation at � = �Hopf . We linearize

about this steady state and obtain the following coupled equations:

du1

dt
= (A+ �B)u1 +N(u1) + �D(u2 � u1); (3.26)

du2

dt
= (A+ �B)u2 +N(u2) + �D(u1 � u2); (3.27)

where ui are vectors in R2 , A;B and D are real matrices, � and � are scalar

parameters, and N(::) is a thrice di�erentiable, smooth function. A has a pair of

imaginary eigenvalues. The matrix D contains the coupling terms, and B describes

the linear part away from criticality.
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With the coupling coeÆcient set to zero, Eqns. 3.26-?? split up into a pair of

independent 2-dimensional subsystems each with an asymptotically stable limit cy-

cle 
0 = (
p
� cos(!t);

p
� sin(!t)). The product system has an attracting invariant

torus T0 = 
0 � 
0 2 R
4 such that all initial conditions except zero converge ex-

ponentially fast to the torus. A family of solutions, parametrized by the two initial

phases of the oscillators covers the torus. However, since the vector �eld is au-

tonomous (no explicit time dependence), it is invariant to time-translation. Hence,

only a single parameter, namely the phase di�erence, suÆces to parametrize the

family of solutions. For non-zero coupling, we do not expect this degenerate struc-

ture to persist. Invariant manifold theory [72] implies that the attracting torus will

persist for small coupling, perhaps changing its shape and position, but remaining

smooth and close to the original torus T0. While the invariant torus as a whole

survives, the structure of the orbits in the torus changes. We note that coupling

strengths of the same order of magnitude as the nonlinear terms destroy the invari-

ant torus, and invalidate this theory. In order to see which solutions persist, we note

that the following subspaces are invariant under the 
ow:

I = (u1;u2)ju1i = u2i; i = 1; 2; (3.28)

A = (u1;u2)ju1i = �u2i; i = 1; 2: (3.29)

The two invariant subspaces I and A represent the in-phase and anti-phase

solutions. In addition, there are two more invariant subspaces, AS1 and AS2,

(0�
0), and by symmetry, (
0�0). The ASi are the two asymmetric solutions that

arise from pitchfork bifurcations from the IP branch in Fig. 3.8. Averaging methods

[9, 73], show that these four are the only solutions that persist and any other periodic

solutions arise via bifurcations from these basic solutions. The averaged equations

also give the stability of these solutions. The 
ow in R4 now reduces to the 
ow
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on the two 2-dimensional subspaces, I and A. The reduced equations have an

additional symmetry: if (fzig is a solution then f�zig is also a solution. This extra
symmetry, of course, is not a symmetry of the original equations, and we must

discard any such solutions.

We can write Eqns. 3.26-?? in polar form as:

r01 = r1(1� 
 � r21) + r2
(cos(�)� � sin(�)) (3.30)

r02 = r2(1� 
 � r22) + r1
(cos(�) + � sin(�)) (3.31)

�0 = q(r21 � r22)� 

�
(
r2
r1

+
r1
r2
) sin(�) + �fr1

r2
� r2
r1

cos(�)g�; (3.32)

where ri are the amplitudes of the oscillations emerging from the Hopf bifurcation,

� is the relative phase di�erence between the oscillators, and 
 and � are parameters

that can be derived from the original equations. We have reduced the fast subsystem

for a pair of coupled bursters (Eqns. 3.20-3.21) using a standard reduction proceduce

[74] to the polar form shown above. We show the bifurcation diagram of the reduced

equations as 
 is varied in Figure 3.11.

In the reduced form, changing 
 is equivalent to changing ggap in the original

equations. We can clearly see that for 
=0, the in-phase and anti-phase Hopf bi-

furcations merge. For low values of 
, the anti-phase oscillations are the only stable

branch. The amplitude of oscillations decreases monotonically with 
. As 
 in

increased, the anti-phase oscillations lose stability via a Hopf bifurcation. This bi-

furcation corresponds to the birth of the phase trapped solutions that oscillate about

a phase di�erence of � in the original equations (Figure 3.10). At 
=0.5, the anti-

phase oscillations disappear. Note also the two branches of asymmetric oscillations,

which correspond to oscillations where the two oscillators have di�erent amplitudes.

The branches of asymmetric oscillations arise from a pitchfork bifurcation of the

in-phase branch. Thus, we have con�rmed that the phase-trapped solutions indeed
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emerge from the anti-phase branch, and thus the relative phase di�erence oscillates

about �. If the frequency of the emergent phase oscillations is incommensurate with

the frequency of the original oscillations, then the spiking patterns in the burst looks

quasiperiodic with an incommensurate period.

The fate of these solutions in the full model, well away from the Hopf bifurcation,

depends on the presence of global bifurcations involving the stable and unstable

manifolds of other �xed points, which cannot be deduced from a local analysis

around the Hopf bifurcation. For example, the active phase in the above analysis

terminates at the homoclinic orbit, which is a global bifurcation whose existence

cannot be inferred from a local analysis. Again, symmetry arguments imply that

the degenerate homoclinic orbit, for zero coupling, splits up into two homoclinics

for the IP and AP periodic orbits. The critical z value for the IP homoclinic for

the coupled burster is the same as for a single burster. Qualitatively, since the AP

amplitude is smaller than the IP amplitude, it intersects the saddle branch of the Z

curve at z�(AP ) > z�(IP ), thus shifting the AP homoclinic to higher values of z.

We have also numerically integrated Eqns. 3.20-3.22 for a few di�erent values of

û and � corresponding to di�erent regions in the parameter space of a single cell and

�nd very di�erent patterns of bursting. However, the large number of parameters

precludes a systematic analysis (just the fast subsystem of two identical cells has 3

parameters). Sherman [62] has analyzed the bursting in a network of two identical,

coupled SRK model bursters using the same methods. For this more realistic model,

the burst period for the coupled cells is longer than for the uncoupled cells. His

analysis shows that the most common burst pattern is synchronous bursting with

asymmetric, quasiperiodic spiking, which occurs in experiments. He also shows that

non-identical cells, with di�erent slow subsystem parameters, which may or may not

burst singly, burst when coupled. In an earlier study of �-cell models with many
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cells, Smolen et al. [75] showed that most of the cells in a cluster do not burst

when uncoupled because the parameter regime for bursting for single cells is too

narrow. However, when coupled, the whole cluster, which is a model for a islet

in the pancreas, bursts robustly. The above analysis sheds some light on why the

islet bursts even when single cells need not. The study of a two cell network is also

important for understanding the dynamics of a spatially distributed model of the

islet, which we explore in the next section.

3.5 Spatially extended models

3.5.1 Introduction

As a culmination of our analysis of coupled bursters, we will study a spatially

extended model of bursting to loosely model an islet in the pancreas. The pancreas

consists of millions of islets composed of endocrine cells. Insulin secreting �-cells

make up about 80% of the cells in an islet. Individual �-cells conditionally burst

depending on the glucose concentration. In an islet, these cells connect to each

other by gap juntions. While models of single �-cells are well understood, models

of coupled bursting elements are little analyzed. Smolen et al. have analysed such a

model with heterogenous bursters [75]. Studies of networks of two coupled bursters

[62] show that the burst solution depends on the coupling strength and several types

of burst patterns arise in the same network.

One key question in models of large numbers of coupled bursters is the role of

the strength of the gap junction coupling. The maximal e�ective conductance (a

measure of coupling strength) of gap junctions has been measured in �-cells [76] in

isolated cell pairs to be 0.174�0.08 (in dimensionless units), which is rather weak

compared to the maximal conductances of the various channels. What does this

weak coupling imply for models of coupled bursters? Some experiments suggest
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that the cells in the islet burst in synchrony on addition of glucose (see [66] for a

review) but we are not aware of a de�nitive experiment that conclusively proves

synchrony. However, we can model the e�ect of weak coupling on a �eld of bursters

to determine whether the value for coupling strength for isolated cell pairs is in fact

too weak to support synchrony.

We consider a generic polynomial model of bursting which allows analytic ex-

ploration and use a similar fast-slow decomposition to that for the single cell and

two cell models. We show that the fast-slow decomposition of the continuum mod-

els leads to a two component reaction-di�usion equation for the fast subsystem.

Reaction-di�usion equations are extensively used to study pattern formation in bi-

ology and chemistry. These equations are coupled parabolic PDEs of the form:

@u

@t
= f(u) +Dr2

u; (3.33)

where u(x; t) is the vector of dependent variables, f(u) is a nonlinear vector-valued

function (the reaction term) and D is the di�usion matrix, representing the dif-

fusivities of the various species, with suitable boundary conditions. The reaction

terms represent chemical reactions, predator-prey interactions etc. Murray [77],

Grindrod [78] and Britton [79] give excellent pedagogical reviews of the applications

of reaction-di�usion equations in biology, chemistry and ecology and the analysis of

their solutions.

If the reaction terms f(u) possess two stable equilibria, then the reaction di�usion

equations can support solutions that connect these equilibria, called plane wave

solutions. Bistable behavior of spatially extended models is common in biology,

chemical reactions and models of 
uid dynamics [80, 70, 81, 43, 82, 77].

A typical plane wave solution of reaction-di�usion equations in one dimension

is a front solution, which is essentially a domain wall separating a metastable state

from a stable equilibrium state. Under very general conditions, we can show that
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the domain wall moves with a velocity, c, with unchanged shape, as the stable state

takes over the whole domain. Establishing the velocity, c, of the front is a very

delicate problem, depending on the topology of the reaction terms f(u). Fronts

can have either a discrete set of velocities or a continuous family from which one

velocity is selected [83]. The mechanism of selection is often unknown. Another

typical solution is the pulse solution, where the whole domain is in the stable state,

with a small patch of the metastable state, with the patch moving with a velocity c.

Again, depending on the geometry of the solution of the reaction terms, the patch

can be stationary in space.

The metastable and stable states need not be stationary in time, but can be

time-dependent. The most common examples of time-dependent states are models

of binary convection or oscillatory chemical reactions, where the spatially uniform

equation has an unstable steady state with a limit cycle (the steady state has un-

dergone a Hopf bifurcation). If the Hopf bifurcation is sub-critical (as in binary

convection), the steady state and the oscillations are both stable for the same pa-

rameter values. A reaction-di�usion equation for this situation has traveling waves

(front states), pulses and spatiotemporal chaos [80]. Bistability between stable os-

cillations and a stable �xed point can also arise for a di�erent case, as we have seen

for the fast subsystem of a single burster, where a stable limit cycle and a stable

�xed point coexist for parameter values between a saddle-node bifurcation and a

homoclinic bifurcation. This form of bistability has no equilibrium counterpart,

since the periodic orbit breaks time translation invariance. Reaction terms of the

above topological type occur in the Gray-Scott model of chemical reactions [84],

semiconductor lasers etc.

The analysis of a �eld of coupled bursters also allows us to gain some insight into

this important class of reaction-di�usion equations. The linearization of any vector
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�eld with a homoclinic bifurcation has a double zero eigenvalue, and the remaining

eigenvalues lie to the left of the imaginary axis (negative real part). The most

generic form of this bifurcation (a normal form, in dynamical systems terminology)

is the Takens-Bogdanov (T-B) normal form [9] given by:

Utt + �1Ut + �2U + �U2Ut + �U3 = 0: (3.34)

Argentina and Coullet [3] recently studied a model reaction-di�usion equation

constructed from a symmetric T-B normal form, with additional terms that ensured

a coexisting �xed point and limit cycle:

Utt + �1Ut + �1UUt + �U2Ut + �2U + �2U
2 + �U3 = Uxx + Uxxt; (3.35)

where �1; �2; �1; �2; �, and � are parameters. �1 and �2 are the unfolding param-

eters of the T-B normal form, and the remaining parameters are of order unity. �1

controls the number of �xed points for the spatially homogeneous equation. They

set � = � = 1, �1 = 0, and �2 = a. For a range of a, Eqn. 3.35 has 3 �xed points:

a stable node, a saddle point and a stable focus. We give the phase portrait in

Figure 3.12. At �1 = 0, the focus undergoes a Hopf bifurcation to a stable limit

cycle. As �1 increases, the amplitude of the limit cycle increases, till at �1 = �� �
0.08, it disappears in a homoclinic bifurcation. Thus, the limit cycle and the stable

node are bistable for a range of �1..

The addition of the di�usion terms results in striking spatiotemporal dynamics,

shown in Fig. 3.13. We start from random initial conditions about the unstable

focus, with �1 > ��. For �1 < 0.12, the whole domain oscillates in a chaotic manner

about the unstable focus. For �1 > 0.12, small patches of the metastable state (the

stable node) begin to appear. Since these patches are metastable, they shrink and

disappear, replaced by chaotic oscillations, which again nucleate metastable patches.

The statistics of the widths of the metastable patches resembles the statistics of
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Figure 3.12. Phase portrait for Eqn. 3.35 showing the 3 �xed points: stable node
(A), saddle point (B) and unstable focus (C).

laminar patches observed in spatiotemporal intermittency in amplitude equations

[85, 12].

The above observation is our second motivation for studying models of di�u-

sively coupled bursters. As shown before, a key ingredient for square wave bursting

is bistability between a low voltage rest state and high voltage oscillations between

a saddle node and a homoclinic bifurcation. Does the spatially extended model

exhibit well de�ned bursts? I.e., does the whole domain synchronously switch be-

tween active and silent phases? Note that oscillations within the burst need not be

synchronous. Do di�usively coupled bursters also show similar spatiotemporal in-

termittency? If so, and if the gap junction coupling is indeed weak, pancreatic islets

should secrete in chaotic bursts, which would have physiologically disastrous conse-

quences. Physiological experiments on single islets show a smooth dose response to

glucose which would imply spatiotemporally uniform dynamics rather than chaos.

We answer these questions for a minimal (generic) model for bursting, using singular

perturbation theory and techniques developed for reaction-di�usion equations.
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Figure 3.13. Numerical integration of Eqn. 3.35. The white triangular regions are
the metastable phase, and the dark regions are chaotic oscillations. The numerically
integrated values have been thresholded to distinguish the oscillating regions from
the stationary state. From [3]

3.5.2 Wave phenomena in weakly coupled bursters

Several models describe the activity of single cell bursting. We consider the Hindmarsh-

Rose equations [86], a simple polynomial model of bursting. The H-R model was

originally developed to study bursting in thalamic cells, but are general enough to

allow for di�erent types of bursts. We choose a parameter set for which the H-R

equations have a square wave bursting solution and study the dynamics of a �eld

of H-R bursters with a weak resistive coupling between neighboring cells. In the

continuum limit, resistive, gap junctional coupling between nearest neighbors of the

form V1 � V2, is equivalent to di�usion.

The equations for a continuum model of coupled Hindmarsh-Rose model are:

vt = w + 3v2 � v3 � �+Dvxx; (3.36)

wt = 1� 5v2 � w; (3.37)

�t = "(v � (�� z)

4
); (3.38)
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where v is the voltage, w is a channel variable,D is the strength of di�usive coupling,

� is the slow variable, and z is a slow subsystem variable that controls the bursting.

Taking the singular limit " ! 0; �(x) = �, we obtain a planar reaction-di�usion

equation with � treated as a parameter. The bistability of the single cell model (in

the singular limit) carries over to the reaction-di�usion equations. We will consider

the equations over the real line and the initial conditions suÆciently localized in

space.

We write Eqns. 3.36-3.37 conveniently in a Li�enard form [9], i.e., as a nonlinear

oscillator with a small damping term. We di�erentiate the v equation with respect

to t and use the wt equation to eliminate w. The governing equations then become:

vtt +G(v; �) + F (v)vt = Dvxx +Dvxxt; (3.39)

where G(v; �) = v3 + 2v2 + � � 1, which can be considered as the gradient of a

potential V (v) = v4

4
+ 2v3

3
+(�� 1)v, and a damping term F (v) = 1+3v2� 6v. The

roots of G(v; �) give the �xed points of the equations, which typically have either

one or three real roots depending on the parameter �.

We show the bifurcation diagram of Eqns. 3.36-3.37 as a function of � in Fig-

ure 3.14. The upper branch of steady states loses stability by a Hopf bifurcation at

� � �11:5. The condition for the Hopf bifurcation is: G(vH ; �H) = 0; F (vH) = 0

and Gv(vH ; �H) > 0. At � � �0:1815, a saddle-node bifurcation creates two ad-

ditional steady state branches (middle: saddle; lower: nodes). As � increases, the

amplitude of the periodic orbit increases until it disappears through an Andronov

homoclinic bifurcation at �� �0.8.
Since the damping term F (v) is small (O(Æ); � � Æ � 1 along the periodic

orbit, Eqns. 3.36-3.37 without di�usion are a perturbation of a nonlinear oscillator

of the van-der-Pol-DuÆng type, with a potential function given by
R v
0
G(u; �)du.

This analogy enables us to �nd a value for the homoclinic orbit using Melnikov
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Figure 3.14. Bifurcation diagram for the Hindmarsh-Rose equations constructed
using the automated bifurcation analysis software AUTO . Heavy lines indicate
stable �xed points and thin lines indicate unstable �xed points. The equations have
another Hopf bifurcation at � = 0.8 which terminates in a homoclinic bifurcation
nearby, but plays no role in bursting or front propagation.
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theory [65] to �rst order in Æ as �� � 0:08.

Since the di�usionless equations are bistable, we look for plane wave solutions

of the reaction di�usion equations with " = 0. First, we consider the homogeneous

oscillations (the active phase for bursting) that emerge from the Hopf bifurcation

of the upper steady state. We analyze the stability of this homogeneous oscillating

state near criticality using an analysis similar to Kuramoto's [74]. We linearize

the evolution equations (Eqns. 3.36-3.37) about the Hopf bifurcation and apply a

solvability condition to obtain a complex amplitude equation for the periodic state

of the form:

At = (1� ic2jAj2)A+ (1 + ic1)Axx: (3.40)

The complex amplitude of the oscillations near criticality is A =
p
�e�ic2�t, and

the coeÆcients c1 and c2 determine the nature and stability of the oscillations. We

�nd that c2 > 0, indicating a supercritical Hopf bifurcation. The coeÆcients c1

and c2 satisfy the Benjamin-Feir criterion [74], � � 1 + c1c2 < 0, implying that

homogeneous oscillations are unstable to long wavelength 
uctuations.

With nonzero coupling, the periodic orbit is no longer stable to localized pertur-

bations. The Benjamin-Feir criterion implies that the Ginzburg-Landau equation,

as well as the original equations are spatiotemporally chaotic [74, 87]. Moreover,

the instability implies that the frequency of oscillations increases with increasing

amplitude, while the presence of the saddle point causes the frequency to decrease

with increasing amplitude (the periodic orbit approaches the in�nite period homo-

clinic orbit). As the oscillations are spatiotemporally chaotic, small patches of large

amplitude oscillations can develop, which then \escape"into the metastable state

(the low voltage rest state). These chaotic oscillations are responsible for the nu-

cleation of the metastable phase in [3]. Might we expect a similar nucleation of the

metastable phase as for Eqn. 3.35?

88



In Figure 3.15, we show a numerical integration of the reaction-di�usion equa-

tions. Initial conditions are homogeneous oscillations, with a small phase-like per-

turbation at the left end. The perturbation grows and moves into the homogeneous

oscillating regime, leaving behind a region of unsteady oscillations.

Figure 3.15. Numerical integration of Eqns. 3.36-3.37. Figure is color coded with
light and dark regions indicating high and low values of the variable v. Length is
40 units and total time is 200. Space increases from left to right and time from
top to bottom. D = 0:2, and � = �0:15. The grid size is 200 and Gear's method
is used for integration. The system is started on the limit cycle with the left edge
advanced by 0.05� in phase. The front separating the unsteady oscillations from
the homogeneous oscillations moves with a velocity of approximately 0.2.

While the reduction to a Ginzburg-Landau form for the amplitude of oscillations

is certainly valid for parameter values near the Hopf bifurcation, the values of � in

the bistable regime is an order of magnitude higher than its value at the Hopf

bifurcation. Thus, a local analysis of the amplitude of oscillations might not hold in

the bursting regime. We must consider the global e�ects of the stable and unstable
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manifolds of the saddle point. As the periodic orbit passes close to the saddle point,

parallel to the stable manifold of the saddle point (Figure 3.12), global e�ects cause

a slow-down in the phase 
ow. The periodic orbit spends a long time near the saddle

point, and speeds up away from it.

We give a qualitative explanation of the origin of the unsteady oscillations by an

analysis similar to [88], and examine the dynamics. Although the coupling is only

in the v variable, the oscillators can di�er in both variables (v and w) along the

limit cycle. The saddle point introduces strong deformations of the phase 
ow. If

the trajectories of two interacting oscillators come close to the limit cycle, but their

phases are slightly di�erent, the interaction drives them away from the limit cycle.

The lagging oscillator is pushed out and slows down as it travels along the stable

manifold of the saddle point. The leading oscillator is pushed in and departs from

the limit cycle. Away from the saddle point, the limit cycle attracts nearby points

and synchronizes the oscillators. The phase portrait (a plot of v(x) with w(x)) for

any location behind the front is thus dense and completely �lls the region bounded

by the phase portrait of the periodic orbit of the di�usion-less equations. While this

line of reasoning qualitatively explains the instability of homogeneous oscillations,

the existence of a front solution and separating the homogeneous oscillations and

the the irregular ones, as well as the front speed must be inferred by other means.

This analysis is one of the open questions arising from this work.

Figure 3.16 shows the numerical integration of the equations, with the initial

conditions set at the lower �xed point, with a small patch excited close to the upper

�xed point. We see a front advancing to the right with a constant velocity, leaving

behind a region of unstable oscillations, much like the ones observed in the case of the

propagation of a phase-like disturbance into the homogeneously oscillating region.

A uniform state corresponding to the upper �xed point cannot be established since
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this state is unstable for the original reaction equations. A modulated oscillatory

state about this �xed point is also ruled out since the wavenumber selection by the

front competes with the dephasing interaction and renders the oscillations unstable.

Therefore, the front leaves behind a region of irregular oscillations.

Figure 3.16. Numerical integration of Eqns. 3.36-3.37. Figure is color coded with
light and dark indicating high and low values of v. Space increases from left to right
and time from top to bottom. Grid size is 200, with domain length of 20. D and
� are the same as for Figure 3.15. The initial conditions are mentioned in the text.
The front velocity is approximately 0.055 which is close to the value obtained from
the perturbation analysis.

Instability of the homogeneous oscillations suggests that we approximate the

front connecting the unsteady oscillations by the front between the unstable steady

state and the stable steady state instead. The potential (V (v; �)) of the unstable

steady state is less than that of the low v, stable steady state, indicating that the

front switches the domain from the metastable state to the stable one, and implies
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that the front velocity is positive. A front solution can be expressed as a stationary

solution in the moving frame, v(�); w(�), with � = x� ct, and c > 0. The equations

now become:

x01 = x2; (3.41)

x02 = x3; (3.42)

Dcx03 = �G(x1; �) + cF (x1)x2 + (D � c2)x3; (3.43)

where 0 denotes d
d�
, and x1 = v; x2 = v�, and x3 = v��.

Eqns. 3.41-3.43 have 3 equilibrium solutions, �0 = (v1; 0; 0)
T ; �1 = (v2; 0; 0)

T ,

�2 = (v3; 0; 0)
T , with v1; v2; v3, the three roots (upper, middle and lower respectively)

of G(v; �). Since we require heteroclinic solutions connecting di�erent equilibrium

points, �(�) = (x1(�); x2(�); x3(�)) such that lim�!�1 �(�) = �0 and lim�!1 �(�) =

�2, we linearize about �0 and �2. From the expressions for the roots of a cubic

polynomial, we see that the linearization matrix of Eqns. 3.41-3.43 about the two

solutions have 1 negative and 2 positive eigenvalues, indicating a two dimensional

unstable manifold and a 1 dimensional stable manifold. Therefore, 2 parameters

specify any trajectory leaving �0 (c being one of them). Any trajectory that tends

to �2 must be orthogonal to its two dimensional unstable subspace, requiring two

parameters for speci�cation. Thus at most a discrete set of fronts connects the two

�xed points. In fact, numerical computations show only a single stable front, and

the front velocity is unique.

We use a numerical shooting method to compute the velocity of the front as

a function of �, using Gear's method for numerical integration of the equations.

Since the unstable subspace of �0 is 2 dimensional, while the stable subspace of �2

is 1 dimensional, we reverse the pseudotime � and start the trajectory along the

stable manifold of �2. We locate an interval (c1 < c < c2) such that for c = c1, the
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trajectory blows up above �0 and for c = c2, the trajectory blows up below �0. By a

connectedness argument, a value of c exists in the interval, such that the heteroclinic

orbit connects �0 and �2, moving to the right with velocity c. By repeatedly bisecting

the interval (c1; c2) we obtain a value of c correct to 16 signi�cant digits. We show

the dependence of c on � in Figure 3.17. The front speed tends to 0 near the Maxwell

point �M = 0.4. (the value of � where the potentials of the two steady states are

equal).
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Figure 3.17. Variation of front velocity with the parameter �. The broken line is
calculated from the perturbation analysis and the solid line is the velocity calculated
using the shooting method.

We also computed the velocity of the domain wall separating the homogeneous

steady state from the unsteady oscillations by a simple perturbation analysis of the

stationary front connecting the two steady states. Numerical computations show

that the front velocity is rather small, suggesting that we use c as a small parameter,
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with the singular limit c = 0. Setting c = 0 and � = �M in Eqns. 3.41-3.43 gives us

the stationary front solution (�M being the Maxwell condition),

x1(�) = a(1 + exp(�a�
p
5=
p
2))� b; (3.44)

where a and b are constants. For � close to �M , a solvability condition gives the

front velocity, following standard perturbation techniques, as c � 0:092(�M � �).

An important point is that the limit cycle makes no non-equilibrium contribution,

suggesting that the homoclinic bifurcation and the limit cycle play no role in select-

ing the front velocity. The average velocity of the front computed from the direct

numerical integration of Eqns. 3.41-3.43 agrees with the velocity obtained from the

perturbation analysis, indicating that only the di�erence in potential between the

two �xed points determines the front velocity. The front velocity computed using

the shooting method is approximate (Figure 3.17), and agrees with the velocity com-

puted using the perturbation for � greater than the homoclinic point, ��, indicating

that for the shooting method, the limit cycle changes the front velocity, which is

not the case for either the direct computation or the perturbation analysis.

We can now apply the results obtained for the fast subsystem to study a �eld

of di�usively coupled bursters. The Hindmarsh-Rose equations exhibit square wave

bursting. The frequency of the oscillations in the active phase decreases logarithmi-

cally, as the slow variable increases toward the homoclinic point. Pernarowski [89]

has studied a di�erent polynomial model of coupled bursting cells distributed on the

unit interval with strong coupling and has shown that for certain initial conditions,

the model tends to burst uniformly. However, as we show below, weak coupling

results in very di�erent dynamics.

Figure 3.18 shows the bifurcation diagram of the fast subsystem with the nullcline

of the slow subsystem superimposed, along with the phase portrait of the bursting

oscillations. For the parameter value z = 4:5 the single cell model bursts with 9
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spikes. The slow subsystem parameter, z, controls the nature of bursting in the

full model [90]. The number of spikes per burst increases with decreasing z until

homoclinic bifurcations lead to a chaotic bursting state. For small z, the model has

a periodic spiking solution and bursting disappears.
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Figure 3.18. Numerical solution of the full Hindmarsh-Rose equations (with D=0)
projected onto the fast subsystem bifurcation diagram. The dotted line is the �
nullcline. Heavy lines indicate stable steady states and thin lines indicate unstable
steady states. Open circles represent stable periodic orbits. The silent phase tracks
the lower branch of steady states and is excited into the active phase near the saddle-
node point. The active phase tracks the periodic orbit of the fast subsystem and
terminates at the homoclinic orbit.

We show the evolution of the full model in Figure 3.19. The entire domain

begins in the active phase with a small patch at the left end advanced in phase

along the active phase oscillation. A wave of bursting sweeps across the domain

with well de�ned active and silent phases, but the oscillations in the active phase

are now irregular and of small amplitude. The bursting does not terminate at the
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same value of � for all x. The burst period is also larger than that of the single

cell model. A well de�ned wavefront separates the bursting region from the silent

region. A second, irregular wavefront switches the domain from the active to silent

phase. The front velocity in the leading edge is not uniform because of the slow

nonuniform evolution of �, which changes the potentials of the two competing �xed

points continuously.

Figure 3.19. Numerical integration of Hindmarsh-Rose equations with D=0.2. v is
color coded as in Figs. 3.15-3.16. System length is 20, increasing from left to right
and total time is 1000, increasing from top to bottom. A spatial wave of bursting
spreads across the domain.

A phase portrait for x = 10 shows that the irregular oscillations persist for

� > ��, strongly suggesting that the homoclinic bifurcation no longer plays a role.

Instead, the active phase continues till � increases till �M and the upper and middle

branches in Fig. 1 disappear in a saddle node bifurcation, leaving the lower �xed
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point as the only stationary state. Now, as v switches below the � nullcline, �

starts to decrease. Since � > �M , a (locally well de�ned) front develops with the

steady state replacing the oscillations to the right and the active phase terminates

as a spatial wavefront extinguishes the oscillations. These observations suggest

that di�usively coupled bursters do not have regular active phase oscillations nor

do they burst homogeneously. Instead, we see a pulse like solution develop, that

travels with nonuniform speed, denoting a small patch of cells that burst. The

activity corresponds to a cluster of active cells, and the boundaries of the cluster

drift. However, we do not see aberrant chaotic spatiotemporal behavior for the fast

subsystem.

The lack of uniform bursting with weak di�usive coupling implies that the mea-

surements of gap junction coupling strengths in isolated �-cell pairs may not hold for

the intact islet, where the value of ggap may be considerably larger, for synchronous

bursting. Pernarowski has recently studied a model of square wave bursters with

di�usive coupling in one dimension [89] with D = O(1="). For these high values

of D, a singular perturbation analysis shows that the domain bursts in synchrony,

with the spikes locked in phase. We can anticipate this result from our analysis of

a pair of coupled bursters, which synchronize for large coupling strengths.

We have numerically integrated several other model equations with both poly-

nomial as well as more complex kinetics for the fast subsystems. In all cases, we

see qualitatively similar behavior as the Hindmarsh-Rose equations, with some dif-

ferences. In particular, a spatially extended model using Eqns. 3.20-3.22 do not

have the irregular large amplitude oscillations about the unstable steady state. The

solution behind the transition zone has very small amplitude oscillations about the

unsteady state.

Moreover, we see that bistability of a periodic orbit and a steady state, near
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a homoclinic orbit is not suÆcient to generate spatiotemporal intermittency. The

topological structure of the vector �elds of the reaction terms is crucial. Since the

Hindmarsh-Rose equations are closely related to the normal form for a codimension-3

Takens-Bogdanov bifurcation [91], which is the topological model for the fast sub-

systems of most types of bursters [62], the fast subsystems of bursters subtly di�er

from the situation Argentina and Coullet considered. The lack of chaotic dynamics

in our model needs to be explained. Qualitatively, the lack of chaotic nucleation

of the rest state comes from failure of the Ginzburg-Landau description, because

we are considering a �nite amplitude limit cycle, which passes close to the stable

and unstable manifolds of the saddle point. Thus, the nonuniform phase velocities

along the limit cycle result in small amplitude oscillations around the unstable fo-

cus. Consequently, the amplitude of oscillations never grows large enough to \break

through"to the metastable, rest state. The Benjamin-Feir criterion for amplitude

turbulence only considers small amplitude oscillations near the Hopf bifurcation.

Additionally, it assumes that the phase gradient (see Chapter 3) does not vary

along the limit cycle. We must consider a modi�ed Benjamin-Feir criterion for �-

nite amplitude limit cycles with phase gradients that vary along the limit cycle.

A simple application of the B-F criterion to neural oscillators, where the bistable

regime is often far from the Hopf bifurcation does not tell the whole story.
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CHAPTER 4

NEURAL OSCILLATIONS

4.1 Introduction

Collective oscillations in neural arrays are hallmarks of behavioral patterns. They

range from the characteristic rhythmic movements of invertebrate motor responses

to the oscillations in di�erent frequency bands of the mammalian EEG. An im-

portant example of the latter is the 20-60 Hz rhythm in the neocortex of rats and

primates generated by the coordinated activity of large ensembles of excitatory and

inhibitory neurons. The study of neural oscillations assumes tremendous impor-

tance given their role in generating patterned behavior. Small neuronal networks

in invertebrates called Central Pattern Generators directly control movements such

as locomotion, respiration and digestion. Large scale oscillations in the neocortex

have been implicated in cognitive and behavioral tasks such as short term memory,

sleep-wake cycles and dreams, and processing of sensory stimuli [92].

The rhythmic activity of a single neuron is rarely suÆcient to drive motor pat-

terns. Neurons that drive rhythmic motor activity almost always connect in net-

works and interact among themselves in complex fashion to provide a stable os-

cillatory output. Moreover, in the cortex, processing of large amounts of sensory

inputs requires the concerted action of large ensembles of neurons. Thus, synchrony

of neural oscillators, in small or large networks organizes behavior, perception and

response; and a mathematical understanding of oscillatory dynamics of coupled neu-
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rons is vital to understand brain function. However, neuronal dynamics are highly

nonlinear, and they interact in a nonlinear, asymmetric fashion. The methods of

nonlinear dynamics, with some extensions, play a pivotal role in understanding the

generation of coherent neural oscillations.

We can succinctly write a neuronal model as:

dx

dt
= F (x; f�g); (4.1)

where x 2 Rm is a vector of state variables for a neuron. F (:) is a continuous

function from R
m ! R

m , and f�g is a vector of parameters controlling the state

of the neuron, such as sensory inputs or external, experimental manipulations. A

neural oscillator has a solution of the form x0(t+T) = x0(t); 8 t, for some minimum

positive integer T, the period of oscillations. The oscillations are asymptotically

orbitally stable if for each � > 0, there is a Æ > 0 such that if jx(0) � x0(0)j < Æ,

then jx(t)� x0(t)j 8t > 0. Furthermore, a phase � exists, such that,

lim
t!1

jx(t)� x0(t + �)j ! 0; (4.2)

where � is the asymptotic phase shift. Eqn. 4.2 essentially implies that nearby initial

conditions in phase space asymptotically tend to the periodic orbit, with at most a

phase shift. Interactions with other neurons modify the equations to:

dxi
dt

= Fi(xi; f�g) +Gi(xi;xj; �); i; j = 1; � � �n; (4.3)

where the G(xj) are smooth functions that describe the interaction.

CPGs generate rhythms autonomously, without any feedback from the sensory

inputs. The patterns of their oscillations are nevertheless under the control of the

sensory environment, so that when the environmental conditions change, the pat-

terns of oscillations change concomitantly. The inputs to the network are not oscilla-

tory in general, but the output of the network is oscillatory, i.e. the network has no

\zietgeber". Neither oscillating, single neurons nor networks require a pacemaker.
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We give a general introduction to synaptic function in Section 4.2, and outline

perturbative techniques for obtaining approximate, simple forms from complicated

evolution equations for single oscillators and networks with synaptic coupling in

Section 4.3. We discuss a model network with experimentally observed multiple

synaptic time scales using methods from Section 3.3 and geometric singular pertur-

bation theory (Section 4.4)

4.2 Coupling in Neural Networks

Besides electrical, di�usive coupling via gap junctions, interactions between neu-

rons commonly occur at specialized sites on their membranes called synaptic termi-

nals. At each terminal, one neuron is the emitter and one a receiver. Emitter sites

release chemicals called neurotransmitters, packaged in small, membrane spheres

called vesicles which di�use onto specialized protein molecules called receptors in

the receiver neuron. The release sites are located at the presynaptic terminals, the

receptor sites are situated in the post-synaptic membrane. The release of vesicles

requires a change in the membrane potential at the presynaptic terminals. When an

action potential occurs in the presynaptic cell, the voltage change at the presynap-

tic terminal initiates a complex sequence of biochemical reactions, which ultimately

result in a pulsatile release of vesicles. These vesicles di�use across the intercellular

space between the pre- and post-synaptic terminals and bind to the receptors. The

binding of neurotransmitter to the post-synaptic receptors in turn opens speci�c ion

channels in the post-synaptic cell near the synapse, causing the membrane potential

of the cell to change due to the ion 
ux.

Synapses di�er in the kinds of neurotransmitter released at the presynaptic ter-

minals as well as the receptors at the post-synaptic site. If the neurotransmitter

binding depolarizes the membrane (the membrane potential increases with respect to
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the resting membrane potential), the neurotransmitter action is called excitatory,

because suÆciently large amounts of neurotransmitters released across synapses

would ultimately cause the cell to �re an action potential. If the binding hyperpo-

larizes (the membrane potential decreases with respect to rest), the neurotransmitter

action is inhibitory. Shepherd [58] gives a detailed, pedagogical account of the physi-

ology and biochemistry of synapses. Tuckwell discusses the mathematics of synaptic

transmission [93].

Rall proposed a simple model for the synaptic potential to �t the experimen-

tally observed time courses of post-synaptic potential changes. He suggested that

if the presynaptic membrane potential crosses the threshold for action potential

generation, the post-synaptic potential at the synapse can be approximated as:

vsyn(t) = �te��t; (4.4)

where � is a rate constant, derived from �tting Eqn. 4.4 to the experimentally mea-

sured post-synaptic potentials. This approximation, called the �-function captures

the qualitative features of synaptic action, but misses important details [94], such

as the saturation of response to a high frequency stimulation. An alternative model

exploits the similarity between the ionic currents generated by voltage gated chan-

nels and the neurotransmitter gated synapses, and considers the ion current, Isyn,

due to the synaptic action to be:

Isyn = �gsyns(V � Vsyn); (4.5)

where gsyn is the maximal conductance of the channels, s is related to the channel

opening probability and Vsyn is the reversal potential for the channel (i.e. the Nernst

equilibrium potential). A simple �rst order kinetic model:

Sbound

rij(V )



rji
Sunbound; (4.6)
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suÆces to model the dynamics of the neurotransmitter receptor binding reaction.

The forward rate function rij(V ) depends on the presynaptic potential, representing

the voltage gated release of neurotransmitter. The reversible binding reaction can

be modeled as:

ds

dt
= kfs1(Vpre)(1� s)� krs; (4.7)

where kf and kr are the binding and dissociation rate constants for the neurotrans-

mitter receptor pair and s1(Vpre) is a sigmoidal function that models the transmitter

release due to the presynaptic action potential. Eqn. 4.7 also captures the satura-

tion of the synapse from prolonged stimulation, due to receptor saturation or emitter

depletion, which is important for bursting cells.

The most common example of an excitatory synapse is the glutamate-AMPA (�-

Amino-3-hydroxy-5-Methyl 4-isoxazole Propionic Acid) neurotransmitter receptor

pair, prevalent throughout the central nervous systems of vertebrates. These fast

excitatory synapses have small rise and fall time constants (rise times of �1 ms

and decay times of 5 ms). Another important excitatory synapse is the glutamate-

NMDA (N-Methyl-D-Aspartate) pair, which has slow rise and fall times. NMDA

channels are unique among excitatory synapses in that their activation requires

the post-synaptic membrane also to be depolarized (the presynaptic membrane is

necessarily depolarized for vesicle release). The NMDA synapse has rise times of

5-10 ms and decay times of �150 ms.

Inhibition in the central nervous system of vertebrates is mediated predominantly

by the neurotransmitter GABA (
-Amino-Butyric Acid) with its associated receptor

pairs GABAA and GABAB. The former, like the AMPA receptor, is fast, with

small rise and fall time constants. GABAB receptors do not directly produce a

change in the membrane potential, but set o� a complex series of reactions which

eventually triggers ion channels to open to hyperpolarize the membrane. As several
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intermediate steps are involved in GABAB action, the e�ective time constants for

the rise and fall of post-synaptic potentials are large. These synapses are examples

of slow inhibition.

We stress that the transmitter-receptor pair and not the neurotransmitter alone

is excitatory or inhibitory. Thus, in some invertebrate neurons, glutamate, in con-

juction with an appropriate receptor (not AMPA or NMDA) is actually inhibitory

[95]. Finally, the overall e�ect of the synapses depends on the collective e�ect of

several di�erent voltage and chemical gated ion channels in the membrane.

4.3 Neural Oscillations

From a mathematical viewpoint, neural oscillations generically arise in two ways,

distinguished by their parameter dependence close to the onset of oscillations. Type

I oscillations arise at a saddle-node-on-invariant-circle (Section 2.2.5), while Type

II oscillations arise at a Hopf bifurcation (sub- or super-critical). their frequency-

current relationship distinguishes them. For Type I oscillations, the frequency of

oscillations is zero at onset and increases as
p
Iapp, whereas the frequency of oscilla-

tions of Type II rises discontinuously at onset, and remains approximately constant

for increasing Iapp. The canonical Hodgkin-Huxley model is an example of Type I

oscillations while the action potentials of cortical neurons are of Type II.

The distinction between the two generic mechanisms is not restricted to the onset

of oscillations, but crucially a�ects the nature of synchrony in neural networks.

4.3.1 Weakly Coupled Oscillators: Theory

In this section, we outline formal methods for analysis of general models of the form:

dxi
dt

= Fi(xi; �) + "Gi(xi;xj; �); i; j = 1; � � �n; (4.8)

with "�1.
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Our basic assumption is that the uncoupled oscillator:

dxi

dt
= Fi(xi; �); xi 2 R

m (4.9)

has an asymptotically stable periodic solution f� 2 Rm j xi(t) = xi(t + T )g, with
period T , for some value of �. The n uncoupled oscillators have a periodic solution on

an n torus given by the direct product of the n periodic orbits, T = �1��2�:::��n.
A smooth change of coordinates exists such that xi 2 �i maps onto the unit circle

S1, parametrized by the phase of the limit cycle �i. We have omitted an implicit

coordinate change that takes xi 2 Rm to xi 2 �i, which we can obtain using a

center-manifold reduction [9].

Consider xi(t) be the periodic solution to the Eqn. 4.9 such that xi(0) � x0i 2 �i.

Let �i(t) be a phase variable such that the parametrization:

Mi : S
1 ! �i; Mi(�i(t)) = xi(t) 2 �i; t 2 [0; 2�
i]; i = 1; � � � ; m; (4.10)

maps the limit cycle �i onto the unit circle. 
i is the frequency of the limit cycle.

Since xi(t) = Mi(�i(t)) is a periodic solution to Eqn. 4.9, we have:

_xi =
dMi(�i(t))

dt
= M 0

i(�i(t))
_�i =M 0

i(�i(t))
i = Fi(Mi(�i(t); �)) (4.11)

for all t. Therefore,

M 0
i(�i(t)) = Fi(Mi(�i(t); �))=
i (4.12)

for all �i 2 S1. Substituting xi(t) =Mi(�i(t)) in Eqn. 4.8, we obtain:

M 0
i(�i(t))

_�i = Fi(Mi(�i(t)); �) + "Gi(Mi(�i(t)); �; �): (4.13)

Multiplying both sides by

�i(�i) =

iF

�1
i (Mi(�i); �)

jFi(Mi(�i); �)j2 (4.14)
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we obtain

_�i = 
i + "�i(�i)Gi(Mi(�i); �; �): (4.15)

Identifying �i(�i)Gi(Mi(�i); �; �) = g(�1; � � � ; �n; �; �), we have the phase equa-

tion:

_�i = 
i + "g(�1; � � � ; �n; �; �): (4.16)

The coordinate change assigns a phase �(t) to each x(t). If x(t) rotates around

� (not necessarily at a constant speed), �(t) rotates in [0; 2�] with speed 
i(�) =

2�=Ti. Let us now consider a pair of coupled oscillators:

d�1
dt

= 
1(�) + "g1(�1; �2; "); (4.17)

d�1
dt

= 
2(�) + "g2(�1; �2; "): (4.18)

The oscillators are frequency locked if they have a stable periodic solution. If

the frequencies 
1 and 
2 are in a 1:1 ratio, the network is entrained. We shall only

consider cases of 1:1 frequency locking in the following. Frequency locking with p : q,

with p and q relatively prime nonnegative integers result in complicated resonance

structures [96]. We further de�ne p : q phase locking for entrained oscillators as:

q�1(t)� p�2(t) = constant: (4.19)

If p = q = 1, the oscillators are synchronized. Thus, our de�nition of synchrony

implies mutual entrainment and 1:1 phase locking. The phase di�erence between

the two oscillators is �1(t)� �2(t) = �(t). As in Section 2.3, the �(t) = 0 solution is

locked in phase, and the �(t) = � solution is locked anti-phase. The above de�nitions

can be extended similarly for n coupled oscillators [74].

We have left out some technical steps such as using the invariant manifold theo-

rem to extend the center-manifold reduction of Eqn. 4.9 to the case of weak coupling.
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Although we have formally shown the existence of a coordinate change that takes

Eqn. 4.8 to Eqn. 4.16, we now show how to explicitly construct the coordinate

transformation. We closely follow the steps in [97].

Consider a weakly connected oscillator network of the form of Eqn. 4.8 such that

each oscillator has an exponentially orbitally-stable, periodic solution, �i, for " = 0.

Let � = "t be a slow time and let �(�) be a measure of the phase deviation from

the periodic orbit and,

xi(t) = �i(t+ �i(�)) + "Pi(t + �i(�); "): (4.20)

where the "Pi are the small perturbations to the product limit cycle T . �i(�) varies

slowly in time and accounts for the phase deviations due to the weak coupling. Note

that we keep the two time scales, t and � separate.

We di�erentiate the above equation with respect to t and Taylor expand to

obtain

_xi = �0i(t+ �i)(1 + "
d�i
d�

) + "
dPi(t + �i; ")

dt
+O("2)

= Fi(�i(t+ �i)) + "Gi(f�(t+ �)g) + "DFi(�i(t + �i))Pi(t+ �; ") +O("2);

where DFi is the Jacobian of the vector �eld Fi. As in regular perturbation theory,

we equate terms with like powers of ", with �0(t + �i) = Fi(�i(t+ �i)). We have:

Fi(�i(t+ �i))
d�i
dt

+
dPi(t + �i; 0)

dt
= Gi(�(t+ �)) +DFi(�i(t + �i))Pi(t + �; 0):

(4.21)

Eqn. 4.21 is a linear equation of the form:

dyi
dt

= Ai(t; �i)yi(t; �i) + bi(t; f�g); (4.22)

where we treat � 2 T as a parameter, Ai(t; �i) = DFi(�i(t+�i)) is a linear operator,

and bi(t; f�g) = Gi(f�(t + f�g)g) � Fi(�i(t + �i))
d�i
dt
. From the theory of linear
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equations, we can show that Eqn. 4.22 has a solution if and only if the solvability

condition:

< Z; b >=
1

2�

Z 2�

0

Zi(t; �i)bi(t; f�g)dt = 0; (4.23)

is satis�ed. Zi(t; �i) = q�i (t; �i), where qi(t; �i) is the solution to the adjoint equation:

dqi(t; �i)

dt
= �Ai(t; �i)

yqi(t; �i); (4.24)

with the normalization :

1

2�

Z 2�

0

Zi(t; �i)Fi(�i(t; �i))dt = 1: (4.25)

Substituting the expression for bi(t; f�g) in Eqn. 4.23, we have:

d�i
dt

=
1

2�

Z 2�

0

Zi(t+ �i; 0)Gi(f�(t+ f�g))dt

=
1

2�

Z 2�

0

Zi(s; 0)Gi(f�(s+ f�g � �i))ds; s = t+ �i:

The function Zi(t+�i) is called the phase response function, which measures the

asymptotic deviation in phase of the limit cycle for a small, impulsive perturbation.

The phase equation shows that any delays in the couplings enter into the coupling

terms as phase shifts.

An implicit assumption for the derivation of the phase equations in the previous

section is that the neuronal coupling is \weak". How small is " for most models?

Typical post-synaptic potentials are on the order of 0.5 mV in pyramidal cells in

the hippocampus, whereas the threshold voltage required for �ring is about 25 mv

above resting. Given the nonlinear summation of the post-synaptic potentials from

di�erent neurons, about 400 simultaneous EPSPs are required to discharge a pyra-

midal neuron. Thus, we can estimate " � 0.0025. This is just a crude, order of

magnitude estimate. Hoppensteadt and Izhikevich [98] give a more detailed discus-

sion of the weakness of synaptic strengths and the validity of the assumption for

neural oscillators.
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4.3.2 Weakly Coupled Neural Networks

We can now look at the phase locking properties of oscillatory neural networks

connected by synapses. We assume that the neurons oscillate periodically in re-

sponse to an externally applied constant stimulus. How do synaptic interactions

between the neurons modify the oscillations? We have already seen in Chapter

2 that weak gap junctional coupling in identical oscillators can lead to anti-phase

oscillations. The solvability condition and the adjoint equation allows us to numer-

ically construct the function gi(�i; f�g; �) for an arbitrary choice of F (fxig; f�g)
[99]. We study the dynamics of a network of 2 identical weakly coupled Hodgkin-

Huxley model neurons using numerically constructed phase equations. The HH

equations (Eqns. 3.3-3.6) now have an additional term representing the synaptic

current Isyn = �gsyns(V � Vsyn), where the terms are de�ned in Section 3.2. The

voltage equation now becomes:

Cm
dVi
dt

= �gNam
3
ihi(Vi � VNa)� gKn

4
i (Vi � VK)

� gleak(Vi � Vleak) + Iapp � gsynsj(Vi � Vsyn); i; j = 1; 2; i 6= j:

The equations for the recovery variables mi; ni; hi are as before. Hansel et al. �rst

studied this model network [100] using a simple �-function form (Eqn. 4.4) for the

dynamics of sj. We use a kinetic description of the synaptic current given by:

dsi
dt

= kfs1(V )(1� si)� krsi: (4.26)

with s1 = 1=(1+exp(�(V �Va)=Vb)), with Va =0, and Vb =2, and the rate constants
kf =1.1 and kr =0.11 to model the dynamics of the synaptic conductance. These

values are representative of the excitatory AMPA synapse [94]. A natural advantage

of this formalism is that we can independently control the rise and fall times. van

Wreeswijk and Abbott [101] have shown that the value of the fall time signi�canly
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alters the phase dynamics of networks of integrate-and-�re neurons (a caricature

of the HH equations). We numerically solve the adjoint equation (Eqn. 4.23) and

show the solution Z(�i) in Fig. 4.1. The solution to the adjoint equation is the phase

response function for the HH model. A pulse-like perturbation retards the phase

along the limit cycle for negative values of Z and advances the phase for positive

values of Z.
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Figure 4.1. Solution of of the adjoint equation (the phase response curve) for
Iapp =10�A/cm

2. The phase response is negative over a large part of the period.

We compute the phase functionH(�1��2) by computing the integral in Eqn. 4.26

numerically over the period with G(�1; �2; �; �) � �gsynsj(V � Vsyn), and show the

results in Figure 4.2.

The antisymmetric part of the interaction function has �xed points at 0 and ��
for small values of applied current. The negative slope at 0 phase di�erence indicates

that the in-phase solution is stable while the antiphase solutions are unstable. For
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Figure 4.2. The antisymmetric part of the phase interaction function H�(�1 � �2)
for Iapp = 10, 20 and 50 �A/cm2 (the amplitude of H� decreases with Iapp).
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larger values of the applied current, the stable �xed point undergoes a pitchfork

bifurcation, with two stable, symmetric solutions at non-zero phase di�erence. A

trace of the membrane potential (Figure 4.3) for Iapp =50 �A/cm2 shows that the

oscillators spike with a small phase di�erence.
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Figure 4.3. Time integration of HH equations with Iapp =50 �A/cm
2 and gsyn =0.2.

The two neurons are started antiphase and converge to a slightly out of phase
trajectory after a transient (not shown).

The phase approximation breaks down for larger values of gsyn as amplitude

e�fects become important. The derivation of the phase di�erence approximation for

coupled oscillators implicitly assumes that the deviation from the amplitude of the

limit cycle _�(�; t) � O("). As gsyn becomes large, the amplitude deviation from the

limit cycle is no longer small and must be considered.

The pitchfork bifurcation to two stable, out of phase states occurs for lower

values of the applied current for slower synapses with smaller values of kr. We
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also show the phase interaction function for a network with mutual, fast inhibition

(Figure 4.4). In contrast to mutual excitation, this network has stable in-phase and

anti-phase solutions for small values of applied current. The in-phase state becomes

unstable via an inverse pitchfork bifurcation as Iapp increases.
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Figure 4.4. The antisymmetric part of the phase interaction function H�(�1 � �2)
for fast inhibition with Iapp = 10, 20, 30, 40, and 50 �A/cm2 (the amplitude of H�

decreases with Iapp).

The phase reduction of Section 3.3.2 works well for synaptic decay constants

not much larger than the period of oscillations. However, if the decay constant is

much larger than the time period (slow synapses), the oscillations can be averaged

over and the dynamics of the slow synapses suÆce to describe the rates of action

potentials [102, 99].

113



4.4 Slowly Coupled Inhibitory Neurons

4.4.1 Background and Motivation

Central Pattern Generators (CPG) control rhythmic activities such as swimming,

heartbeat, breathing or walking. CPGs are networks often composed of a small

number of neurons whose output is oscillatory. Individual neurons in CPGs may

themselves be oscillatory and the the synaptic interactions between the neurons pat-

terns the network rhythm. Conversely, neurons in some CPGs are not endogenous

oscillators and synaptic interactions are crucial in initiating and maintaining the

network rhythm. Getting [103] and Harris-Warrick et al. [6] review the intrinsic

and synaptic properties of several invertebrate CPG networks. Some well studied

networks include the escape swim CPG in Tritonia, the gastric mill CPG in the

lobster, the 
ight CPG in locust and the CPG controlling the heartbeat of the leech

Hirudo medicinalis.

Several features of synapses contribute to temporal pattern generation in CPGs,

such as the polarity (excitatory or inhibitory), ionic dependence and temporal char-

acteristics (for example, the time course of multiphasic actions, where the synapse

has both excitatory and inhibitory components). Circuit models with complex

synaptic properties often show dramatic changes in network oscillations as the

synaptic time course varies. Wang and Rinzel [104] showed that pairs of neurons

with reciprocal inhibition can oscillate in-phase or anti-phase, depending on the de-

cay time constant of the synaptic inhibition (the value of kr in Eqn. 4.7 is small).

Detailed models of CPGs [60, 105] with complex synaptic interactions are useful in

understanding particular cases, but do not elucidate general principles, in as much

as any general principles exist in neurobiology.

Most general models of small neuronal networks [106, 104, 100] consider synaptic

interactions on only a single time scale. However, several examples of synaptic
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interactions have multiple time scales. Pyramidal cells in the mammalian cortex can

excite other cells with both fast and slow excitatory synapses, and some evidence

suggests that the same inhibitory cell can provide fast and slow inhibition in the

same target [107]. Invertebrate CPG circuits often have more complex synapses

which have a fast excitatory and slow inhibitory component or vice versa [60], as

well as mixed synapses of the same kind, which are crucial in determining the

overall rhythm of the network [108]. What are the properties of networks of neural

oscillators with mixed time scale coupling?

4.4.2 Model Dynamics

We study two oscillators coupled by both slow and fast inhibition, and show that

the presence of multiple time scales in the coupling leads to varied behavior. We

represent each oscillator by the following set of di�erential equations:

dv

dt
= �Iion(vi; ni)� gjisj(vi � Vsyn)

� g0jiqj(vi � V 0
syn) + Iapp;

(4.27)

dn

dt
=

n1(v)� n

�(v)
; (4.28)

ds

dt
=

s1(v)� s

�s
; (4.29)

dq

dt
=

q1(v)� q

�q
; (4.30)

where Iion = gNam
3
1(v)(v�vNa)+gKn

4(v�vK)+gL(v�vL), represents the voltage

activated currents (sodium and potassium) and the leakage current. n is the gating

variable for the potassium current activation sj, is the probability of channel opening

and gji speci�es the maximal conductance for the fast synapse. qj does the same

for the slow synapse. Vsyn; V
0
syn are the reversal potentials for the synaptic current.

We assume that the sodium activation is instantaneous and achieves steady state
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immediately. These equations are a reduced version of the familiar Hodgkin-Huxley

equations [61]. The functions n1(v); s1(v); �(v), and q1 are the usual sigmoidal

activation functions for the HH model. We give the functional forms in Appendix A.

The time scale �s is equivalent to the fast timescale of the spike mediated GABAA

inhibitory synapse, while �q is the long timescale associated with the slow rise and

fall of the slow inhibition. We take the slow inhibition to be one single aggregate

process as the exact mechanisms of the slow synapse are not known [108].

Rinzel and Frankel [109] studied the model (Eqns. 4.27-4.30) with slow inhibi-

tion only. Note that for 1=�q � 1, the oscillators become a singularly perturbed

dynamical system. Upon taking the singular limit �q ! 1, we can treat qj as a

parameter. The fast variables fvi; nig have a stable rest state for large values of qj.
This rest state destabilizes via a subcritical Hopf bifurcation at qj � 0.106. Since

the period of the membrane oscillations is much smaller than the time scale of the

variation of qj, the averaging theorem [9] simpli�es the dynamics of the coupled neu-

rons [109, 102, 99]. Averaging over the fast variables, only the synaptic activation

variables remain. This procedure drastically reduces the number of dimensions of

the problem. The averaged equations for the slow subsystems are:

_�si = �s1( �sj)� �si; i 6= j: (4.31)

The subcritical Hopf bifurcation of the rest state of each neuron implies that the

neurons are bistable for a small range of qj. For multiple oscillatory branches, we

must average the slow variables over each oscillatory solution. Note that the steady

states of Eqn. 4.31 are analogous to an input-output transfer function, denoting the

response of qj(fqig). We show the steady states of q1(q2) in Figure 4.5.

Rinzel and Frankel used a clever graphical construction to study the stable steady

states of Eqn. 4.31. Figure 4.5 represents the steady states for a network with a

unidirectional connection, cell 2 inhibiting cell 1. By plotting the steady states of
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Figure 4.5. Bifurcation diagram for the modi�ed Hodgkin-Huxley equations driven
by an unidirectional, slow inhibitory synapse. q1 is the activation variable of the
slow synapse from cell 1 onto cell 2. Solid lines indicate stable rest states, dashed
lines indicate unstable rest states, open (�lled) circles denote maximum amplitudes
of unstable (stable) oscillations. The square at q1 = 0.106 is the point of a subcritical
Hopf bifurcation.
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q1(q2) and q2(q1) on the same graph, we can obtain the steady states of the network

with reciprocal inhibition. The intersections of the two steady state curves are the

steady states of the network. We see 4 intersections of the steady state curves

(Figure 4.6: cell 1 at rest and cell 2 active, its symmetric counterpart, with cell 2 at

rest and cell 1 active, both cells active and both at rest. The latter two states being

intersections of unstable branches are unstable. Therefore, the network is bistable,

with either cell 1 or cell 2 active and the other at rest. A strong current pulse to

the active cell can switch the network between the two states.
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Figure 4.6. Steady states of the averaged equations for the slow variables. Solid
lines indicate stable rest states. Dashed lines indicate unstable rest states. Open
(�lled) circles denote maximum amplitudes of unstable (stable) oscillations. The
intersections of the curves are the steady states for the equations.

Now consider a mixed synapse with fast and slow components. The fast compo-

nent has a time scale comparable to the time scale of the oscillations and cannot be
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eliminated by averaging. We show the time course of the two cells for g12 = g21 = 0:3

in Figure 4.7, with all the other parameters �xed. If the slow synaptic variables qi

are initially close, the network bursts in synchrony. The spikes within the burst are

anti-phase and the amplitudes are slightly unequal. The initial conditions set both

cells at rest. We apply a constant current Iapp to both cells to model an external

stimulus. We also apply an additional small, brief current pulse to one cell as a

small perturbation to break the symmetry.
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Figure 4.7. Numerically integrated trajectories for Eqns. 4.27-4.30 shows a syn-
chronous bursting solution with antiphase spikes.

If the current pulse is too high or long, the network settles into an on-o� state, in

which either cell 1 or cell 2 spikes with a large amplitude, while the other oscillates

about the rest state with very small amplitude, as the spiking cell strongly inhibits

it. These on-o� �xed points are small perturbations of the original �xed points for

slow mutual inhibition which persist (as they should according to invariant manifold
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theory). The synchronous bursting solution is a new stable solution for mutual

inhibition with mixed time scales. We have numerically con�rmed that the burst

solution is stable. Brief current pulses (pulse widths less than �q) do not a�ect the

bursting solution. Longer pulses switch the network to an on-o� state depending on

the cell to which the current pulse is applied. The network can also be switched from

the on-o� state to a bursting state. The burst state is characterized by slow growing

oscillations before the onset and slow damped oscillations upon the termination of

the active phase. The frequency of the oscillations along the burst remains nearly

constant. This pattern of active phase oscillations di�ers from the active phase

oscillations for square wave bursting, where the frequency decreases logarithmically

as the slow parameter approaches the homoclinic orbit. Also, there is no delay in

the last spike in the active phase, unlike the square wave burster.

Extensive numerical simulations show that the synchronous bursting solution

has q1 � q2. We recall a similar dynamics for the slow variables for coupled square

wave bursters, and use the same geometrical method [110, 62] to analyze bursting in

Eqns. 4.27-4.30. Since the slow variables qi are of O(1=�s) close, we can treat them

as identical. Therefore, we can construct a one parameter bifurcation diagram for

the coupled fast subsystem (Figure 4.8).

We can use this picture to understand the nature of bursting geometrically. The

fast inhibition introduces a second Hopf bifurcation from the steady state which

represents anti-phase oscillations of the two cells. The anti-phase Hopf bifurcation

of the network is subcritical, similar to the subcritical Hopf bifurcation in a single

cell driven by a slow unidirectional synapse. We recall that fast inhibition for the

HH network (Figure 4.4) has a stable antiphase solution. Hence, the spikes within

the burst are � radians out of phase. Initially, as the external current drives the

two cells from rest, they begin to oscillate since the slow inhibition is zero. The
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Figure 4.8. Bifurcation diagram for the fast subsystem of Eqns. 4.27-4.30. The
symbols are as before. The parameter values have been slightly shifted to move
the in-phase Hopf bifurcation to q1 = 0.096. AP denotes the anti-phase branch, IP
denotes the in-phase branch and SNP denotes the Saddle Node of Periodics.
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activity of the cells causes the slow inhibition to increase and the cells track the

stable periodic branch. As qi crosses the saddle-node-of-periodics point (where the

stability of the periodic solution changes), the rest state becomes the only stable

state and the oscillations terminate. Now the synaptic variables begin to decrease

slowly as the voltage switches below the qi nullcline and the cells track the steady

state branch. Interestingly, the slow ramping of the control variable (in this case,

the synaptic variable) causes the cells to track the steady state even when it has

lost stability, due to the delayed loss of stability at the Hopf bifurcation [68, 111].

A small noise term (uniformly distributed between [�0.005,0.005]) added to the

voltage equations causes the cells to leave the rest state and jump to the unstable

in-phase oscillation branch. As qi begins to increase, the oscillators now track the

stable anti-phase branch and the burst cycle repeats. This type of bursting, which

starts at a subcritical Hopf point and ends at a saddle-node of periodics is termed

type III bursting [112], and is characterized by slow ramping and small growing and

damped oscillations prior to and after the active phase (Figure 4.9).

The burst solution is remarkable because the analysis of the averaged equations

do not predict it. If we repeat the graphical construction in Figure 4.6, the only

intersections of stable branches are the on-o� states. Moreover, neither cell is an

endogenous burster. Bursting is peculiar to the coupled network with mixed time

scales. This network illustrates that synchronous solutions are possible in networks

with inhibitory synapses, contrary to the usual dogma that inhibition leads to an-

tiphase solutions. van Wreeswijk et al. also studied a model network of integrate

and �re neurons (Type I oscillators according to the terminology of Section 3.3)

and showed that fast, mutual inhibition led to synchrony in the network. However,

their conclusions were based on the fact that the coupling strength was weak, and

the methods of Section 3.3 apply [113]. Wang and Rinzel [104] studied the case

122



0 0.05 0.1 0.15 0.2
0.1

0.2

0.3

0.4

0.5

0.6

q
1

v

Figure 4.9. A phase portrait of the bursting trajectory for cell 1 overlaid on the
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of a network with slow inhibition which also synchronized. Terman et al. clari�ed

the mechanisms of synchrony due to slow inhibition in relaxation oscillators. How-

ever, our model is remarkable in that it requires a mixed fast-slow inhibition for

synchronization. The fast spike generating currents are as important as the slow

averaged variables. Though, we have inferred the stability of the bursting solu-

tion numerically, we do not have a proof along the lines of Terman's [114] proof of

a stable bursting solution for a square wave burster. The high dimensionality of

the equations and the strong nonlinearity of the terms make any analytic progress

diÆcult.

We might be able to address some questions concerning the stability of these

bursts by constructing a simpli�ed, canonical form for the full equations. The bi-

furcation diagrams clearly indicate that the subcritical Hopf bifurcation governs the

bursting dynamics. Thus we can study the dynamics of the network by consider-

ing the normal forms for a subcritical Hopf bifurcation. We can use a theorem of

Hoppensteadt and Izhikevich [98] to show that the equations can be written as:

z0i = (bi + Aivj)zi + dizijzij2 +
nX

j=1

cijzj + nonlinear coupling terms

+O(");
(4.32)

v0i = �̂(Ri + Sijzij2 + Tivi) +O(�̂"); (4.33)

where zi 2 C , vi 2 R, bi; cij; di, and Ai are complex coeÆcients. Ri; Ti; Si are real

matrices, and �̂ = �=". Kuramoto [74] and Aronson et al. [73] have formally outlined

the reduction procedure that transforms a vector �eld near a Hopf bifurcation to the

z equation which can be used to calculate the coeÆcients for Eqns. 4.27-4.30. This

reduction results in a canonical form for a Hopf bifurcation, where the bifurcation

parameter vi is �xed. If � � O("k); �̂� 1, and vi varies slowly and consequently,

Eqns. 4.32-4.33 is singularly perturbed. The coupling terms must take into account
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that the synaptic interaction has nonlinear components that enter into the equation

at O(p"). Note that the bifurcation parameter for zi is the slow variable vj, as

for the slow synapses. Since the bifurcation is subcritical, the rest state and the

oscillations are bistable for a range of vi. Frankel and Kiemel [102] considered

a model of slowly coupled oscillators, similar to the normal form equations, with

coupling only via the slow variables and showed that the generic solutions are either

phase locked or phase trapped ones. However, their model did not include the fast

coupling terms and they did not study the case of singular perturbations, although

they did correctly include the amplitude e�ects for weakly coupled oscillators.

As we increase the coupling strength associated with the fast inhibition, we

see a qualitative change in the oscillations. The periodic bursting solution is no

longer stable, and the oscillators irregularly alternate between episodes of antiphase

spiking and in-phase bursting with anti-phase spikes (Figure 4.10) . The length of

the episodes appears to be chaotic. There is a narrow region of parameters where

the two cells spike continuously rather than burst. The mechanism of transition to

irregular bursting for this network is not clear.

A commonly observed feature in CPG networks is the lack of mutual, chemical

excitation between cells. Excitatory chemical synapses are usually unidirectional.

Instead, gap junctions or electrical coupling provide mutual excitation. One example

of a mixed electrical and slow inhibitory synaptic coupling is in the cells of the

somatogastric ganglion of the lobster, which controls the rhythmic movement of the

internal teeth that masticate food in the animal's foregut [6]. Abarbanel et al. have

studied a network of intrinsic bursters with electrical and instantaneous, inhibitory

chemical coupling. We can extend our model by incorporating an electrical coupling

term and leaving out the fast inhibitory synapse. The HH equations with mutual,

electrical coupling have parameter regimes where both the in-phase and anti-phase
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solutions are simulataneously stable, which should lead to interesting dynamics for

the network.

A model network of HH neurons with gap junctions replacing the fast inhibi-

tion also shows qualitatively similar behavior to the network with mixed inhibitory

synapses. The synchronous bursting state persists, with somewhat enlarged stabil-

ity boundaries. The spikes within the burst are in-phase, unlike in the network with

fast inhibition. The duration of the active phase is shorter, with 5-6 spikes per burst.

Also, large gap junctional coupling does not lead to chaotic bursting behavior.

Finally, we note that we have completely left out the case of mixed, mutual ex-

citation, which does not occur in CPG networks, but is widespread in the cortex of

mammalian brains. Pyramidal cells in the cortex are make fast (AMPA) and slow

(NMDA) synapses onto the same targets [?]. However, NMDA synapses are much

more complex than their faster AMPA couterparts. In addition to the aforemen-

tioned voltage dependence (pre and postsynaptic), NMDA synapses also open slow

calcium channels in the post-synaptic cell, which completely change its excitability

and �ring characteristics. The slow activation kinetics of the Ca2+ channels result in

a steady depolarized membrane voltage, that leads to repetitive bursting which has

been observed experimentally. NMDA mediated bursting is a new class of coupling

induced bursting, whose characterization must include the complex Ca2+ kinetics

of the cell. Traven et al. [105] simulated a network with unidirectional NMDA and

AMPA type synapses, and showed that the post-synaptic cell does indeed burst

repetitively, and the number of spikes in a burst is related to the NMDA activation

kinetics.

Most neurons in CPG networks are much more complicated than the simple

Hodgkin-Huxley type model considered here, with additional slow currents and spa-

tial properties. The spatial e�ects of dendrites must be studied using coupled PDE-
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ODE systems, which makes analytic solutions very hard to come by, as dendritic

proerties of neurons are not completely classi�ed experimentally. The slow currents

are more amenable to analysis. Two typical slow currents in CPG neurons are the

\sag"current, which activates when the membrane is hyperpolarized, and the T-type

calcium current, which allows the neuron to �re upon release from inhibition. Both

these currents have slow activation variables, allowing the use of singular perturba-

tion methods for their analysis. These models are usually simpli�ed by including

only the slow currents, while the slow and fast synaptic interactions are retained, by

implicitly assuming that the averaging fast, spike generating variables is legitimate

[115, 116, 117]. While averaging techniques can reduce biophysical models such as

the HH model to a Hop�eld like description, it can also mask potentially interest-

ing dynamical modes of the network. Averaged approximations are qualitatively

accurate however, if interactions between neurons have only a single time scale.

Finally, we note that even though the CPGs operate autonomously, they are un-

der the control of external in
uences through the in
uence of chemicals called neu-

romodulators [95]. These chemicals, such as acetylcholine, serotonin or adrenaline

alter the intrinsic and synaptic properties of CPG neurons (as well as cortical neu-

rons). This level of control renders the temporal patterns of CPGs labile, and several

di�erent temporal patterns can be established, without any extensive rewiring of the

circuits. A simple example of neuromodulation in our model would be a chemical

that altered the strength of the fast synapse, switching the network from a bursting

to an on-o� mode or changing the length of the bursts.
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CHAPTER 5

CONCLUSIONS AND OUTLOOK

5.1 Coupled Logistic Maps

The study of randomly coupled maps has not received much attention in the liter-

ature. We have studied a coupled logistic map that interpolates smoothly between

the locally coupled and the globally coupled regimes. The observation that the den-

dritic structure of neurons is fractal over a certain spatial length scale which implies

that the connection architecture is scale invariant, motivates this connectivity. So

we now have an additional control parameter, the connectivity exponent.

As the connectivity increases, the lattice undergoes a transition from a disordered

state to a globally synchronous state due to the appearance of a gap in the eigenvalue

spectrum of the connectivity matrix. We explained the origin of this gap using

theorems from stochastic matrix theory and the eigenvalue statistics of random

matrices. The fractally coupled network of logistic maps also exhibits macroscopic

order, with the appearance of low dimensional collective motion of the mean �eld.

The collective motion of the mean �eld, hxii, implies that the dynamics of the

individual elements is no longer ergodic.

While we have discussed networks with discrete time dynamics, we expect that

most of these results also hold for continuous time dynamics as well. For example,

a R�ossler oscillator could govern the 
ow of each site instead of the logistic map. A

suÆcient condition for synchrony in a network of chaotic continuous time oscillators
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is that the product of the Lyapunov exponent of the local oscillator and the second

largest eigenvalue of the connectivity matrix be less than 1. Further analysis of

macroscopic behavior of these continuous time networks should reveal interesting

features.

Brunnet et al. [118] have studied a large two-dimensional sheet of di�usively

coupled R�ossler oscillators and found signatures of collective behavior. Pikovsky

et al. [119] have shown that a globally coupled population of non-identical Rossler

oscillators frequency locks as the coupling strength is increased. We would expect

similar frequency locking for our fractally coupled model, although this hypothesis

remains to be checked.

Nontrivial, low dimensional collective motion in spatially extended models has

attracted considerable interest recently. A careful characterization of the low di-

mensional attractors of the fractal network holds much promise for clarifying the

relationship between connectivity and macroscopic dynamics of a network of iden-

tical, coupled dynamical elements.

We showed that the synchronization transition crucially depends on the distri-

bution of the eigenvalues of the connectivity matrix that is drawn from a particular

sparse random matrix ensemble (SRME). A comprehensive study of the eigenvalue

statistics of the SRME would be useful for our understanding of dynamics of spa-

tially structured networks.

5.2 Di�usively Coupled Bursters

We analyzed the dynamics of coupled square wave bursters using bifurcation meth-

ods and singular perturbation theory to clarify the role of gap junctional (or di�u-

sive) coupling for models of bursting. We analyzed a simple, polynomial model for

bursting using methods developed by Sherman [62] for analyzing a related model of
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coupled bursters. Our geometrical approach was only applicable for weak coupling,

where the slow variables of the single bursters are close for all time.

We proposed that the generic types of solutions near the Hopf bifurcations can

be inferred from an analysis of the coupled fast subsystems alone. Di�erences in the

slow parameters can be incorporated in this framework, which would be a possible

extension to our analysis. Aronson et al. [73] have analyzed a similar model of

coupled oscillators, with a di�erent type of coupling and showed that exotic solutions

exist, where one or both oscillators cease to oscillate as the unstable rest state

becomes stable. The polynomial model of bursting has many other types of bursting

solutions, in addition to square wave bursting, which are seen experimentally. The

geometric approach can be applied to understand the nature of bursting in coupled

networks to di�erent types of burst solutions.

We studied a spatially extended model of coupled bursters to study the e�ect of

experimentally measured gap-junction strengths on the oscillations. We showed

that singular perturbation methods reduce the continuum model to a reaction-

di�usion equation, with a slowly varying parameter. The reaction-di�usion equation

is bistable between a limit cycle (the active phase oscillations of the burst) and a low

voltage, rest state. Spatial di�usion of the voltage abolishes the burst oscillations,

replacing them with a high voltage plateau. Notably, in variance with recent results

of Argentina and Coullet [3], who studied a similar model, we do not �nd spa-

tiotemporal chaos in the fast subsystem. These results are generic for most bursting

models with one slow variable.

5.3 Weakly Coupled Neural Oscillators

We have analyzed a network of biophysically modeled neurons with reciprocal in-

hibition on two time scales, to understand how the rates of onset and decay of
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inhibition interact with the intrinsic oscillations of the neurons to produce complex

temporal patterns. For coupled neural oscillators, conventional views suggest that

excitation promotes synchrony while inhibition leads to antiphase behavior. This

view is in variance with several recent studies, which suggest that the time scale

of the onset and decay of inhibition determines whether synchrony or anti-phase

behavior is possible.

Our model of coupled neural oscillators with mixed time scales highlights some

important features of real neural networks where synapses operate on multiple time

scales. CPGs critically depend on delicately balanced phase relationships between

di�erent neurons in the network. The component neurons of these CPG networks are

usually more complex than the neurons we have considered, with several additional

slow currents present. A important extension of our work with H-H neurons would

be to study the interplay between the fast dynamics of the spike generation, and

the slow dynamics of the synapses and the intrinsic currents.

The phase equation reduction of Section 3.3 is not restricted to a small network of

oscillators, and can be extended to model large, randomly coupled networks as well

as spatially structured populations of coupled oscillators. Ermentrout has proved

some basic results for discrete and continuum arrays of phase oscillators [120], but

did not explore the case of random connectivity. Crook [121] has applied some of

Ermentrout's results to an array of model cortical excitatory neurons. It would be

interesting to apply some of the results of Chapter 1 to study networks of weakly

coupled neurons with fractal connectvity.
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APPENDIX A

This section contains the rate functions for the Hodgkin-Huxley equation (Chap-

ter 2), the SRK equation (Chapter 2) and the modi�ed Hodgkin-Huxley equation

(Chapter 3).

The Hodgkin-Huxley Model

The Hodgkin-Huxley equations are:

Cm
dV

dt
= �gNam

3h(V � VNa)� gKn
4(V � VK)� gleak(V � vleak) + Iapp; (1)

dm

dt
=

(m1(V )�m)

�m(V )
; (2)

dh

dt
=

(h1(V )� h)

�h(V )
; (3)

dn

dt
=

(n1(V )� n)

�n(V )
: (4)

The rate functions x1(V ); �x(V ); x = m; h; n are:
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�m(V ) = 0:1
V + 40

1� exp(�(V + 40)=10)
; (5)

�m(V ) = 4 exp(�(V + 65)=10); (6)

m1(V ) =
1

1 + �m(V )=�m(V )
; (7)

�m(V ) =
1

�m(V ) + �m(V )
; (8)

�h(V ) = 0:07 exp(�(V + 65)=20); (9)

�h(V ) =
1

1 + exp(�(V + 35)=10)
; (10)

h1(V ) =
1

1 + �h(V )=�h(V )
; (11)

�h(V ) =
1

�h(V ) + �h(V )
; (12)

�n(V ) = 0:01
V + 55

1� exp(�(V + 55)=10)
; (13)

�n(V ) = 0:125 exp(�(V + 65)=80); (14)

n1(V ) =
1

1 + �n(V )=�n(V )
; (15)

�n(V ) =
1

�n(V ) + �n(V )
: (16)

The parameters are �gNa = 120 mS=cm2, �gK = 36 mS=cm2, gLeak = 0:3mS=cm2,

C = 1 �F=cm2. VK = �77 mV, VNa = 50 mV, and VLeak = �54:4mV.

Modi�ed Sherman-Rinzel-Keizer Model

The SRK equations are:

�
dV

dt
= �gCam1(V )(V � VCa)� gKn(V � VK)� gSS(V � VK); (17)

dn

dt
=

n1(V )� n

�n
; (18)

dS

dt
= �

S1 � S

�S
: (19)

The rate functions are given by:
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m1(V ) =
1

1 + exp((�20� V )=12)
; (20)

n1(V ) =
1

1 + exp((�16� V )=5:6)
; (21)

S1(V ) =
1

1 + exp((�45� V )=10)
: (22)

The parameter values are (in non-dimensional units) gCa = 3:6, gK = 10, and

gS = 4, � = 1.

Modi�ed Hodgkin-Huxley Equations

The modi�ed HH equations are obtained by setting the Na activation and inacti-

vation to be instantaneous. The voltage dependent time constant for the potassium

activation n is modi�ed, and the voltages are divided by the Na reversal potential.

The equations are:

dv

dt
= �Iion(vi; ni)� gjisj(vi � Vsyn)

� g0jiqj(vi � V 0
syn) + Iapp

(23)

dn

dt
=

n1(v)� n

�(v)
(24)

ds

dt
=

s1(v)� s

�s
(25)

dq

dt
=

q1(v)� q

�q
; (26)

with Iion = gNam
3
1(v)(v� vNa)+ gKn

4(v� vK)+ gL(v� vL). The rate functions

are:
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m1(v) =
1

1 + exp((0:3� v)=0:12)
; (27)

n1(v) =
1

1 + exp((0:1� v)=0:10)
; (28)

�n(V ) =
��n

cosh((0:2� v)=0:3)
; (29)

s1(v) =
1

1 + exp(2(0:43� v)=0:12)
; (30)

q1(v) =
1

1 + exp(2(0:43� v)=0:12)
: (31)

The parameter values are gNa = 4, gK = 4, gL = 0:0333, g0ji = 5:55556, Vsyn =

V 0
syn = �0:1, and ��n = 4:5.

The particular choice results in a subcritical Hopf bifurcation and a current-

frequency relation similar to the full HH equations.
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