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Abstract 

 

My dissertation investigates the important biological/biophysical question of how dynamic 

spatio-temporal interactions among morphogens, forces and growth determine embryonic 

morphogenesis. I first explore cell sorting due to continuous variations in inter-cellular 

adhesion. My analysis connects molecular signaling pathways to cell-level morphogenesis 

and suggests one way to translate genetic information into tissue structure. Next, I consider 

the role of differential adhesion in somite segmentation, a much more complicated 

phenomenon than cell sorting. My results suggest how adhesion and repulsion coordinate to 

induce segmentation. Again, my analysis connects the molecular regulation within cells to 

macroscopic patterning via control of the physical properties of cells. Finally, I use chick-

limb micromass cultures to study the role of the fibroblast growth factors, FGF4 and FGF8, 

in limb growth and patterning. FGF4 and FGF8 induce characteristic growth and patterning 

in micromass cultures, which suggests a plausible model for limb outgrowth and patterning. 
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CHAPTER ONE 

 

MULTISCALE APPROACHES TO EMERGENT 

PATTERNING DURING EMBRYONIC MORPHOGENESIS  

 

Abstract 

Morphogenesis is the formation and differentiation of tissues and organs. Morphogenesis is a 

puzzle at multiple scales, as diverse patterns at the tissue and organ level emerge from the 

underlying spatio-temporal dynamics of structurally-sophisticated and functionally-coherent 

molecular networks and cellular interactions. Biochemical signaling and physical interactions 

are the two main mechanisms by which I can explain morphogenesis in a mechanistic and, 

perhaps, quantitative manner. Exploration of morphogenetic questions using a cell-centered 

approach which crosses molecular, cellular and tissue scales unites these two mechanisms 

and illuminates emergent and complex morphogenetic behaviors. Experiments on and 

computational simulations of morphogenesis serve as independent and complementary 

approaches to discovering the underlying principles of morphogenesis, helping to guide, 

interpret and validate each other. 
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1.1 Introduction 

 

During metazoan embryonic morphogenesis, patterns and shapes arise as organisms grow. 

Because life forms are astonishingly diverse, pursuing the underlying principles of 

development is a restless and never-ending journey full of confrontation, confusion, anxiety 

and fantasy. From the times of Hippocrates (460 BC – 370 BC) and Aristotle (384 BC – 322 

BC), two theories of development competed: epigenesis, in which new structures arise 

progressively, and preformation, which suggested that a complete miniature established at 

the very beginning of development merely grew later. In the 19th century, with the 

identification of the cell as the basic unit of life, epigenesis displaced preformation, leaving 

the question of how architecturally-complex, functionally-coherent multicellular structures 

develop from a single cell. In the 1940s, the discovery that genes encode proteins suggested 

possible control mechanisms for embryogenesis. In the 1970s and 1980s, the discovery of 

homeotic genes, which provide positional information to cells, in some ways vindicated the 

preformationists (for a review, see Gilbert, 2006). However, the genome does not contain a 

full description of an organism. Instead, by controlling protein production and activity, genes 

control cell behavior to achieve a final developmental outcome. Thus, cell behavior links 

genetic information to tissue-level morphogenesis.  

 

Neglecting environmental influence, phenotype represents a spatio-temporal integration of 

genetic, signaling, metabolic, cellular and extracellular behaviors, each of which may have 

emergent characteristics (Jochen, 2004). Both components and interactions are sophisticated 

and complex. For instance, Escherichia coli has 4,400 genes, Drosophila melanogaster has 
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13,700 genes, and Homo sapiens has 27,000 genes (from http://en.wikipedia.org/wiki/Gene, 

05/10/07). Each step in the transcription and translation of genes into proteins can be 

regulated, e.g., by modification of DNA, regulation of transcription, post-transcriptional 

modification due to RNA transport, splicing and degradation, and post-translational protein 

modifications. Since genotype does not directly control phenotype, no single gene causes a 

specific morphogenetic consequence. 

  

Most contemporary theories of morphogenesis fall into one of two philosophical approaches: 

Positional-Information Theories focus on how long-range molecular signaling creates 

patterns, while Differential-Adhesion Theories focus on the role of physical interactions 

between neighboring cells. Both approaches contribute useful tools for explaining 

morphogenesis. Unfortunately, developmental biology has tended to view them as competing 

rather than complementary and to apply them in isolation. 

 

In the 1970s, Dr. Lewis Wolpert, a South-African engineer who became a prominent 

biologist, proposed his Positional-Information Theory (Wolpert, 1969, 1971, 1996, 2002) to 

explain how cells interpret genetic information reliably to produce specific and complex 

multicellular organisms. In this theory, particular types of signaling molecule serve as 

diffusive morphogens, which form concentration gradients across developmental areas. A 

cell interprets the levels of particular morphogens in the context of its genetic makeup and 

developmental history. Positional-Information Theory provides a unifying concept for the 

developmental regulation of emerging patterns, and inspired scientists to explore biological 

pattern formation in a mechanistic and quantitative manner. Modern molecular biology has 
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clarified the fundamental mechanisms of Positional Information and extended the theory by 

showing that only a relatively small number of genetic networks are essential for 

morphogenesis (Tabata, 2001). Diffusive morphogens are key molecules which act as the 

hub nodes for these genetic networks. Open questions include how morphogen gradients 

form and persist and how cells respond to morphogen gradients (Dillon and Othmer, 1999; 

Gurdon and Bourillot, 2001; Freeman, 2002; Dillon, et al., 2003; Eldar et al., 2004; Tabata 

and Takei, 2004; Umulis, et al., 2006; Gregor et al., 2007a, 2007b; Kicheva et al., 2007).  

 

Long before the molecular era, Trembley (1744) and Wilson (1907) demonstrated that hydra 

and marine sponges could regenerate from random mixed aggregates of dissociated cells or 

minute fragments. Their experiments suggested that clusters of cells have the ability to self-

organize, prompting inquiry into how cells recognize each other to form multicellular 

functional tissues. Later, Townes and Holtfreter (1955) observed that dissociated amphibian 

embryonic cells would aggregate, sort out and arrange themselves according to their original 

germ layer. They suggested Tissue-Specific-Affinities and Chemotaxis as possible sorting 

mechanisms. In the 1970s, Steinberg confirmed the Tissue-Specific-Affinity mechanism for 

cell sorting. His Differentia-Adhesion Hypothesis (Steinberg, 1963, 1970) explained cell 

population behavior in terms of pattern rearrangement to maximize cell-cell adhesion. The 

later discovery of adhesive cadherins (Yoshida and Takeichi, 1982) on the cell membrane 

provided a molecular basis for cell-type-specific cell-cell adhesion and surface tension (Foty 

and Steinberg, 2005). Additional types of adhesion molecules can also affect cell-cell 

adhesion and cell sorting (Gumbiner, 2005), though analysis of the contributions of adhesion 

molecules to cell sorting has largely focused on the classic cadherins, a subfamily of 
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cadherins that interacts with the actin cytoskeleton via catenins. Extensive studies have found 

that adhesion molecules send signals to and are regulated by genetic-regulatory and signal-

transduction pathways (for reviews, see Nelson and Nusse, 2004; Gumbiner, 2005; Halbleib 

and Nelson, 2006) and also modulate intercellular physical behaviors. 

 

Because of the apparent disjunction between the two dominant patterning theories, 

experiments on morphogenesis have tended to have either a biochemical or a physical focus. 

Similarly, mathematical models of development split into two distinct schools, e.g., in 

explaining cartilage patterning, positional reaction-diffusion models consider the interactions 

of two morphogens, an activator and an inhibitor; while mechanical-contraction models focus 

on physical interactions of cells. Both types of model can explain certain aspects of 

development and fail to explain others. Progress requires integration of biochemical and 

physical approaches, which is why the multiscale approach I employ in this thesis combines 

biochemical and physical elements.  

 

1.2 Multiscale Approaches to Development  

 

In spite of the complexity of biological development, simple molecular screens have 

identified many single genes or proteins that appear to play specific roles during 

embryogenesis, while high-throughput screens, such as genomic microarrays, mass-

spectrometry-based proteomics and yeast-two-hybrid analysis, have produced large-scale 

data to identify possible functional components of biological networks and their interactions.  
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Figure 1.1: Complexity at multiple scales. A. Biological pattern diversity. From left to 

right: maple leaf (from http://en.easyart.com), cone shell (from http://www.rudzick.de/), 

Egyptian royal angelfish (from http://www.richard-seaman.com/) and three-day chick 

embryo (Gilbert, 2006). B. Pattern diversity of a non-biological chemical reaction: 

experimental spatial patterns of the Belousov-Zhabotinsky (BZ) reaction driven at different 

frequencies (Lin et al., 2000). C. Mechanics of cell-cell interactions: green–cadherins, blue–

nuclei, red–actin cytoskeletons (from http://newswire.rockefeller.edu/). D. Genetic network; 
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green dots are nodes (from http://network-infinity.stumbleupon.com/). Diverse life forms 

begin with complex interactions at the molecular level. From the bottom, up: thousands of 

genes and other molecules form highly-connected signaling networks with specific functions 

(D). These networks determine the expression and activity of subcellular proteins, which 

determine cell-level behaviors, such as cadherin binding between cells (C). These cell 

behaviors give rise to specific patterns at the tissue level (B). The tissues, in turn, organize 

into diverse complex life forms, from leaves to vertebrates (A). Hence, to decode the origin 

of organismal diversity and specificity requires exploring function, structure and expression 

at the molecular level, understanding essential elements at each individual level, and linking 

information between levels. 

 

 

However, molecular-level approaches are still not capable of explaining how a genotype 

gives rise to a phenotype, i.e., how genetic information translates into morphology. 

Multiscale approaches (Chaturvedi et al., 2005; Merks and Glazier, 2005; Christley et al., 

2007; Mackenzie, 2006; Schnell et al., 2007) may help. The basic multiscale philosophy is 

to describe and integrate components and interactions within and between subcellular, 

cellular, tissue and organ scales. Understanding morphogenesis as the emergent outcome of 

smaller-scale components may prove valuable in clinical application, such as drug design and 

gene therapy. 

 

To build a multiscale model, I begin by including the key components and interactions of a 

biological phenomenon at each spatial scale, based on current understanding and the 
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capabilities of my simulation tools. I then identify linkages between each pair of levels I 

consider. The particular simplifications of biological reality and the range of scales I consider 

vary with the specific questions the model addresses.  

 

 

 

 
Figure 1.2: Multiscale aspects of morphogenesis. At the subcellular/molecular level, 

genetic, signaling and metabolic networks regulate key molecules (such as cadherins, 

integrins, and cytoskeletal and extracellular matrix (ECM) components), which determine 

cell behaviors. Cell behaviors give rise to patterns at the tissue level and to anatomical 

architecture at the organ level.  

 

 

Since genes control cell behaviors through protein production and modification and the 

behaviors of interacting cells give rise to emergent morphologies, in this thesis, I adopt a 

gene protein 

Subcellular: Gene,  
                    Protein: Cadherins, Integrins,  
                            Cytoskeleton, Extracellular  
                            Matrix, Morphogens. 
 
Cell:             Physical Interactions,  
                    Biochemical Signaling 
 
Tissue…  Organ… 
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cell-centered approach (Merks and Glazier, 2005) in which cells and the molecules that 

modulate their behaviors are the key components (Newman et al., 2006). In this chapter, I 

describe genetic-regulatory and signal-transduction cascades and how they affect cell 

behaviors. The transition from cells to tissue-level patterns forms the core of the subsequent 

chapters, which I will not review here. Large scales, e.g., whole organs, are beyond the scope 

of this thesis.  

 

1.2.1 Cell-Level Interactions 

 

The cell is the basic unit of tissues and organs. How a cell interacts with other cells to reach 

and recognize its position or status is crucial to tissue patterning. I first categorize various 

cell-cell and cell-environment interactions as physical or biochemical, then consider their 

interplay. Both physical and biochemical interactions can cause cells to migrate, divide, 

grow, die, differentiate and switch between epithelial and mesenchymal types.  

 

1.2.1.1 Cell-Cell Adhesion and Repulsion 

Molecules on the cell membrane can lead to both cell-cell adhesion and effective cell-cell 

repulsion. The binding of corresponding cadherins on the membranes of apposing cells 

causes cell-cell adhesion, the strength of which depends on extracellular calcium 

concentration and the number, types, conformations and distributions of cadherins. Cadherin 

binding specificities and expression levels both affect the final shape of morphogenetic 
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boundaries between compartments (A tissue compartment is a group of cells which stay 

together during development, forming a coherent structural component. Sharp morphogenetic 

boundaries usually divide compartments from each other, and cells from one compartment 

normally do not cross into another compartment). The binding of Eph receptors on one cell to 

their ephrin ligands on another cell can trigger cytoskeletal collapse in both cells, causing 

them to retract from touching each other in a complex mechanism that in many ways 

resembles a repulsive interaction (Poliakov et al., 2004). 

 

1.2.1.2 Cell-Substrate Adhesion 

During morphogenesis, besides the cell-cell adhesion and repulsion involved in establishing 

compartment boundaries, extracellular matrix (ECM) proteins also help to stabilize 

structures and maintain boundaries (Downie and Newman, 1994, 1995). ECM can also 

transmit long-range forces to regulate morphogenesis at large scales (Kulesa et al., 2007). 

Cells bind to ECM via integrins, which, like cadherins, both regulate and are regulated by 

intracellular signaling cascades. This bidirectional signaling creates feedback loops, which 

regulate cell behavior and modulate the cellular environment, e.g., via haptotaxis, where cells 

migrate up or down gradients of chemicals or mechanical properties in the ECM (Rhoads and 

Guan, 2007).  
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1.2.1.3 Biochemical Signaling between Cells 

Secretion and absorption of diffusible molecules by receptor-ligand binding on cell 

membranes and/or chemical coupling through gap junctions can all cause cells to change 

their behaviors. Such changes are crucial to embryonic patterning. 

. 

Signaling can be hierarchical or reciprocal (Salazar-Ciudad et al., 2003). In hierarchical 

signaling, a cell affects another cell but is not influenced by the receiving cell. In reciprocal 

signaling, the cell sending signals is affected by the receiving cell’s responses. Reciprocal 

signaling can lead to emergent or self-organized patterns, e.g., by activator-inhibitor 

mechanisms (Gibert, 2006). Most morphogenesis involves both types of behavior. E.g., in 

both fish-skin and butterfly-wing patterning, a self-organized prepattern of activators and 

inhibitors leads to hierarchical differentiation of the final pattern, while in somitogenesis and 

limb outgrowth, a partially self-organized pattern of gene expression leads to hierarchical 

differentiation and then to self-organized cell rearrangement. 
 
During embryonic development, the most striking events involve long-range, coordinated 

cell migration. During gastrulation, epithelial cells migrate into the primitive groove to form 

the third germ layer. Both cell-substrate-adhesion and diffusive-molecule gradients can guide 

cell motion (Rhoads and Guan, 2007). To build multicellular structures, cells must migrate to 

specific locations at specific times in response to signals in their local environment. Cell 

migration on a substrate requires coordinated activity of a cell’s cytoskeleton, membrane and 

adhesion molecules. For a cell to move forward, it must:  
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1) Protrude in the direction of motion by forming and extending lamellipodia, filopodia 

or pseudopods;  

2) Create an adhesive contact between the cytoskeleton and substrate in the new region 

of contact;  

3) Selectively deadhere its trailing edge; 

4) Retract its trailing edge, which leads to forward movement of the cell body. 

 

Cell movement in response to the external environment requires self-organized force 

generation and transduction, signaling loops to regulate cytoskeleton assembly and 

disassembly, and energy generation and consumption. 

 

1.2.2 Molecular-Level Considerations 

 

Cadherins, Eph and ephrin, integrins and cytoskeletal proteins are all essential to 

controlling cell behavior during patterning. These molecules induce and/or transduce 

cell motility and cell-cell and cell-ECM physical interactions. Various signaling 

pathways regulate the expression and behavior of these molecules (e.g., those involving 

fibroblast growth factors). The molecules may themselves modify signaling cascades 

through regulatory feedback loops. Thus, understanding the regulation and signaling of 

these proteins in detail is a crucial step in extracting the key aspects of the genetic-

regulatory and signal-transduction networks to allow construction of manageably-

simple models. 



 
 

13 
 

Below, I describe the regulation and signaling loops for classic cadherins, the most 

intensively-studied cell-cell adhesion molecules, to demonstrate the intimate links among 

networks, protein activities and expression. This example illustrates the complexity of 

interactions between genes and proteins: multiple gene and signal cascades dynamically 

regulate cadherin expression and activity, creating complex spatio-temporal patterns.  

 

I also discuss the regulation and signaling loops for Ephs and ephrins, which can cause cell-

cell repulsion, and for intergrins, which generate the main adhesion between cells and ECM.  

 

1.2.2.1 Cadherin Regulation and Signaling  

Cadherins are a large family of cell-cell adhesion molecules, expressed in complex patterns 

during embryonic development (for a review, see Gumbiner, 2005). The four main 

subfamilies of cadherins are: the desmosomal cadherins, the proto-cadherins, the cadherin-

like proteins and the classic cadherins. Classic cadherins are trans-membrane proteins, 

whose C-terminals bind to the cytoskeleton via catenins. They transmit mechanical forces to 

the cell and can affect cell shape and motility (Gumbiner, 2005). Signaling cascades 

precisely regulate cadherin numbers, subtypes and conformational structures, modulating 

cadherin expression and activity. In turn, cadherin binding modifies intracellular signaling 

cascades in response to mechanical interactions (for reviews, see Tepass et al., 2000; 

Gumbiner, 2005; Halbleib and Nelson, 2006). In order to understand how signaling networks 

and cadherin interactions help translate genetic information into pattern requires detailed 

understanding of cadherin regulation and signaling. 
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Fig. 1.3 shows some elements of the signaling and regulatory loops involving cadherins. 

Changes in gene expression, transport to the cell surface and protein turnover all affect 

membrane levels and activities of cadherins. E.g., Fibroblast Growth Factor-2 (FGF-2) can 

upregulate N-cadherin expression in human calvaria osteoblasts (Debiais et al., 2001). 

Methylation and repression of promoter activity directly downregulate cadherin transcription. 

E.g., zinc-finger proteins of the Slug/Snail family and Smad-Interacting Proteins (SIP1) can 

repress E-cadherin gene transcription. Fibroblast-growth-factor (FGF) and Wnt signaling 

cascades both can regulate Snail, while Slug may be a target gene of the T-cell factor (TCF, a 

transcription factor)/β-catenin complex, which is related to the Wnt signaling pathway. Smad 

is a member of the Sonic Hedgehog (Shh) signaling pathway. Thus, FGF-, Wnt- and Shh-

cascades, the most active signaling cascades during embryonic development, can all regulate 

cadherin expression. Binding of β-catenin facilitates transportation of cadherin to the plasma 

membrane. Phosphorylation, ubiquitination, and proteolysis also regulate membrane cadherin 

levels (Halbleib and Nelson, 2006). Since cadherins connect to the actin cytoskeleton via α-

catenin and β-catenin, they can modulate Wnt transcription by sequestering β-catenin from 

the cytosol, and by competing with TCF for β-catenin. Both β-catenin and the TCF/β-catenin 

complex function as Wnt transcription factors (Gumbiner, 2005).  

 

The complexity of cadherin regulation and signaling shows why a simple description of 

cadherin expression and activities is simultaneously so desirable and so difficult to achieve.  
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Figure 1.3: Cadherin regulation and signaling. The expression of cadherins can be 

regulated by common signaling pathways, such as the FGF, Shh and Wnt cascades. In turn, 

cadherins may regulate signaling cascades, e.g., modifying the Wnt cascade through β-

catenin. The binding of cadherins on apposing cells generates intercellular mechanical forces, 

which are transferred into the cell through the cytoskeleton, e.g., via actin filaments.  

 

 

1.2.2.2 Eph/ephrin Regulation and Signaling  

Cell-cell repulsion is also important to both embryonic and adult morphogenesis. Repulsive 

interactions between transmembrane Eph receptors and their ephrin ligands are required for 

tissue compartmentalization, neurite outgrowth, angiogenesis and oncogenesis (Murai and 
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Pasquale, 2003). The Eph receptors are a large family of receptor tyrosine kinases with at 

least ten EphA and six EphB receptors. Ephrins also form a large family, with six 

glycosylphosphatidylinositol (GPI)-Anchor-linked ephrin-A ligands and three 

transmembrane ephrin-B ligands in vertebrates (Hirai et al., 1987; Murai and Pasquale, 

2003).  

 

The binding of Eph receptors on one cell to ephrin ligands on an apposing cell triggers 

signaling in both cells, modulating cell shape, adhesion and movement (Murai and Pasquale, 

2003). Various transcription factors help create the complex patterns of Eph and ephrin 

expression observed in development. TCF/β-catenin signaling can simultaneously upregulate 

some Eph receptors and downregulate some ligands in the intestine. During somitogenesis, 

the Notch/Delta pathway regulates Eph expression through Mesp, a transcription factor, 

which also represses DLL expression. DLL, in turn, maintains ephrin expression. Some 

homeobox genes regulate expression of Eph receptors or ephrins. For example, Vax2 

modulates EphB2 in the developing retina and the Krox-20 zinc finger regulates Eph during 

hindbrain segmentation. Translation of Eph receptors is restricted to specific subcellular 

compartments during axon growth.  

 

Eph receptors regulate cytoskeletal dynamics via Rho-family small GTPases (Rho, Rac and 

Cdc42). Rac promotes lamellipodia and Cdc42 promotes filopodia, increasing cell motility 

and adhesion. Rho activation reduces cell motility and adhesion, causing collapse of growth 

cones, retraction of cell processes, cell rounding and detachment. Binding to Eph receptors 

reduces the activity of H-Ras, which can increase cell proliferation and modulate cell   
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Figure 1.4: Forward and reverse signaling cascades resulting from Eph/ephrin 

interaction. The binding of Eph receptors (Gray color. Left, EphA. Right, EphB) to ephrin 

receptors (Gray color. Left, ephrinA. Right, ephrinB) on apposing cells triggers bi-directional 

signaling cascades: Eph or ephrin intracellular domains bind to cytoplasmic proteins, such as 

Ephexin and Kalirin, which interact with FAK or Rho-, Ras- and Rac-family small GTPases, 

modifying cells’ motilities and adhesion properties (Picture from Murai and Pasquale, 2003). 

 

migration (Murai and Pasquale, 2003). Ephrin signaling may act through proteins containing 

Src homology-2 (SH2) or PSD95/Dlg, ZO-1 (PDZ) binding motifs to regulate focal-

adhesion-kinase (FAK) and mitogen-activated-protein-kinase (MAPK) activity, and modulate 

cell-ECM binding (Murai and Pasquale, 2003). 
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1.2.2.3 Integrin Regulation and Signaling 

Integrins are transmembrane heterodimers with α- and β-subunits. Mammals have twenty 

four distinct integrins combining one of eighteen α-subunits with one of eight β-subunits. 

Integrins bind to extracellular proteins, including fibronectin, collagen and laminin and to the 

cytoskeleton (in particular to microfilaments) through scaffolding proteins like talin, paxillin 

and α-actinin, allowing them to transmit information about cell-substrate interactions to cells. 

Integrins interact with other cell-surface receptors, including growth-factor receptors, 

activating signaling pathways and affecting cell proliferation, differentiation, shape and 

motility (for reviews, see Hynes, 2002; Moissoglu and Schwartz, 2006).  

 

1.2.3 Tissue-Level Considerations 

 

While we know the least about morphogenesis at this level, boundary and initial conditions 

seem to be the primary determinants of tissue organization. 

 

1.2.4 Summary 

 

In this thesis, I focus on cadherins, integrins and Ephs/ephrins, since they are the most 

important bridges which connect gene activity to cell behavior. Because they are 

regulated by genetic cascades, modulate signaling pathways and control many 
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mechanical interactions at the cell level, they transfer information from the molecular 

to the cellular level. 

 

1.3 Emergent Patterning during Embryonic Development 

 

Emergence is an essential and fundamental aspect of morphogenesis. A few classical 

theoretical and experimental examples illustrate pattern emergence from simple interactions 

of two or more factors. The Keller-Segal model (Keller and Segal, 1971) of the spiral 

patterns of cell migration during Dictyostelium discoideum cell aggregation employs two 

coupled partial-differential equations (PDEs). An equation for cell density describes 

chemotaxis (in which cells migrate up or down gradients of certain diffusing chemicals). A 

second equation describes concentration changes of the signaling chemical cAMP due to 

diffusion, decay and cell secretion. The interplay of chemotaxis and diffusion results in 

spiral-wave chaos (Van Oss et al., 1996). Similar equations describe cardiac fibrillation 

(Bernus et al., 2003). In Turing-type reaction-diffusion models (Turing, 1952; Newman and 

Frisch, 1979; Sick et al., 2006), the diffusion-driven instability of an activator and an 

inhibitor creates stable, static patterns. 

 

During embryonic development, proliferation and death of cells complicate morphogenesis. 

E.g., in cartilage patterning during vertebrate limb development, the mesenchymal precursors 

to the cartilage cells must develop while the limb grows from an initially-homogeneous 

mesenchymal cluster of cells. A structure at the distal end of the limb, the Apical Ectodermal 
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Ridge (AER) is essential to limb growth and patterning. Currently, two different models 

compete to explain its role, the progress zone model, which focuses on the AER’s regulation 

of differentiation (Summerbell and Wolpert, 1973), and the early-specification model 

(Richardson et al., 2004 ), which focuses on the AER’s role in growth. Choosing between the 

models is complex, especially since molecular expression studies support neither one 

(Duboule, 2002; Saunders, 2002; Wolpert, 2002; Tabin and Wolpert, 2007). Thus limb 

development shows that patterning and growth can be indispensable for each other and that 

molecular details are required to explain morphogenesis at the tissue level, necessitating a 

multiscale approach.  

 

1.4 Relations among Experiment, Modeling and Simulation 

 

Biological experiments normally suggest possibilities rather than prove causal relations, both 

because single genes or proteins rarely cause morphological consequences directly, and 

because the networks regulating morphogenesis are redundant. Thus, observation and 

interpretation are context dependent. The current state of experimental technology further 

prevents many potentially definitive experiments.  

 

Mathematical modeling and computer simulations complement experiments. Models allow 

simple and clear determination of cause and effect. Analytical or numerical stability analysis 

can probe the origins of complicated emergent behaviors. However, building models and 

simulations requires limiting the number of parameters and assumptions, and hence requires 
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radical simplification of biological complexity. Both computer technology and the lack of 

experimentally-measured parameter values thus limit the scope and accuracy of simulations.  

 

Experiments and simulations need to be used together to uncover even approximate truth. 

Simulations can predict and guide experiments, while experiments offer reference points for 

simulations. In this thesis, wherever possible, I apply both experimental and computational 

approaches to each biological question.  

 

1.5 Thesis Outline 

 

Cell-cell adhesion caused by cadherins is fundamental to biological morphogenesis. Besides 

producing physical forces between cells, cadherins are also regulated by and affect signaling 

cascades. An intensive exploration of how cadherins induce pattern formation is critical to a 

final understanding of how genotype leads to phenotype. In Chapters Two and Three, I 

observe sorting of cells which express a continuous range of cadherin levels experimentally, 

construct a multiscale model of sorting and explore cell-sorting kinetics using computer 

simulations. 

 

However, patterning requires more than cell-cell adhesion. Cell-ECM interactions and cell-

cell repulsion are also elements of morphogenesis. During somitogenesis, somites separate 

from the presomitic mesoderm sequentially along the rostro-caudal body axis. In chick, 

transient oscillations of gene expression must translate into a fixed, spatially-periodic pattern 
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of somites. In Chapter Four, I propose and validate by simulation that the coordination of 

cell-cell adhesion caused by N-cadherin and N-CAM and of cell-cell repulsion induced by 

Eph/ephrin pairs translates the oscillatory prepattern into stable morphological structures.  

 

FGFs are key molecules in almost all embryonic morphogenesis, e.g., limb cartilage 

patterning. FGFs play multiple roles, controlling cell proliferation, differentiation, migration 

and survival. In Chapter Five, I use limb-cell micromass-culture experiments to quantify the 

effects of FGF4 and FGF8 on chondrogenic patterning and cell division. I assay the changes 

in the average interval (the distance between chondrogenic nodules) and average division 

rates of cells in response to different FGF treatments, and propose a plausible model for limb 

outgrowth and patterning based on these results. 

 

In the final chapter, I present a possible mechanism for the emergence of left-right 

asymmetry during early chick development and suggest possible experimental and 

computational approaches to validate my hypotheses. 
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CHAPTER TWO 

 

 

EXPERIMENTS ON CELL SORTING DUE TO  

DIFFERENTIAL ADHESION 

 

Abstract 

While cell-adhesion molecules are essential to embryonic development, wound healing, 

immune response and cancer metastasis, significant uncertainty remains about how adhesive 

interactions between pairs of apposing molecules on cell membranes contribute to the 

formation of morphological structures. Prior experiments have studied sorting between two 

or three cell types, each expressing uniform levels of one or more adhesion molecules. 

However, none studied the developmentally-significant case of cells expressing multiple or 

continuously-variable levels of a single adhesion molecule. I studied sorting of cells 

expressing varying levels of a single cadherin molecule, E-cadherin. I transfected Chinese 

Hamster Ovary cells, which are normally non-adhesive, to create a polyclonal cell line, 

which expressed a wide range of levels of an E-cadherin-GFP fusion-protein. I then 

examined their sorting in aggregates. Cadherins clustered at the edges of cell-cell contact 

surfaces, consistent with expectations from two-dimensional experiments. I then used these 

cells to form aggregates and observed their sorting dynamics. Cells with high and low 

cadherin expression first formed homotypic clusters, then evolved towards a fully-sorted 
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configuration, with cells expressing more cadherins near the center and cells expressing 

fewer cadherins at the periphery of aggregates, though sorting appeared less complete than 

for classical sorting between two distinct cell types. 

 

2.1 Introduction 

 

The cadherin family of cell-adhesion membrane proteins plays a key role in both early and 

adult tissue morphogenesis (Radice et al., 1997; Price et al., 2002; Gumbiner, 2005). Spatio-

temporal variations in cadherins regulate many morphogenetic processes, including: neural-

crest-cell migration (Xu et al., 2001), somite segmentation (Linask et al., 1998; Horikawa et 

al., 1999), epithelial-to-mesenchymal transformations during tumor invasion and metastasis 

(Takeichi 1993; Berx and Van Roy, 2001), and wound healing (Bement et al., 1993; Lorger 

and Moelling, 2006). Often these processes involve continuous variations in the expression 

level of a single adhesion molecule. During proximo-distal limb growth (Yajima et al., 1999) 

and rostro-caudal body-axis elongation (Bitzur et al., 1994), adhesion gradients may maintain 

cells’ positions. In Drosophila, an adhesion gradient drives the oocyte towards the posterior 

follicle cell, which expresses the highest level of DE-cadherin (Godt and Tepass, 1998). A 

cell-cell adhesion gradient along the dorso-ventral axis directs lateral cell migration during 

zebrafish gastrulation (Von der Hardt et al., 2007). Thus, understanding the role of cadherins, 

especially of continuous variations in the level of a single cadherin, in creating and 

stabilizing structures is a crucial part of understanding embryonic morphogenesis. 
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The basic idea that cell sorting results from variations in cell-cell adhesivity comes from 

Steinberg’s Differential Adhesion Hypothesis (DAH) (Steinberg 1963; Steinberg and 

Wiseman, 1972; Steinberg and Takeichi, 1994; Foty and Steinberg, 2005). Cell sorting 

depends on the effective molecular binding strength between apposing cadherins, which 

depends on their types and expression levels in each cell (Friedlander et al., 1989). 

Differences in expression levels of a single type of cadherin (Steinberg and Takeichi, 1994; 

Foty and Steinberg, 2005) and differences in types of cadherins expressed (Niessen and 

Gumbiner, 2002; Foty and Steinberg, 2005) can both lead to sorting.  

 

The relationship between cadherin binding at the molecular level and cell sorting is quite 

complicated. Measurements of cadherin binding have employed a wide variety of approaches 

and obtained widely differing estimates of the cadherin binding force, cell-cell adhesion 

force and surface tension at the tissue level (Baumgartner et al., 2000; Chu et al., 2004; 

Panorchan et al., 2006; Foty and Steinberg, 2005; Prakasam et al., 2006). In some 

experiments, the scaling between cadherin expression levels and surface tension is linear 

(Foty and Steinberg, 2005); in others, the scaling between cadherin expression levels and the 

cell-cell adhesion force is quadratic (Chu et al., 2004). Cadherin reorganization into adhesive 

patches on the cell membrane due to passive diffusion and interaction with the actin 

cytoskeleton (Angres et al., 1996; Adams et al., 1998; Adams and Nelson, 1998) can greatly 

increase the effective binding strength per cadherin pair between two cells. Cluster formation 

depends on the proper functioning of the actin cytoskeleton, since actin-disrupting drugs like 

cytochalasin-D and latrunculin greatly decrease cell-cell adhesivity (Behrens et al., 1985). 

The nature of binding may differ for cadherins in different conformational states (Gumbiner, 
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2005). Cadherin distribution also changes gradually after two cells come into contact (Angres 

et al., 1996; Adams et al., 1998; Adams and Nelson, 1998; Gumbiner, 2005).  

 

Multiple transcriptional and post-translational signaling cascades can regulate cadherin 

expression levels and per-cadherin binding strengths (Gumbiner, 2005; Halbleib and Nelson, 

2006). In turn, cadherin binding can modify gene expression (Gumbiner, 2005). This 

complexity obscures the role of the cadherin-binding force in cell sorting (Prakasam et al., 

2006). Experiments on specific types of cadherin have led to at least four cadherin-binding 

models. 

 

Experiments on cell sorting in aggregates simplify this complexity, since observed sorting 

depends only on the levels of adhesion molecules (Steinberg and Takeichi, 1994). However, 

these experiments have only studied sorting between two or three cell types, each with 

defined levels and types of cell-adhesion molecules (Steinberg and Takeichi, 1994; Foty and 

Steinberg, 2005). To clarify the biologically-important case of continuously-variable levels 

of a single adhesion molecule, I transfected Chinese Hamster Ovary (CHO) cells to produce 

a polyclonal cell line, with cells that expressed a wide range of levels of a single E-cadherin-

GFP fusion protein with roughly equal fractions of cells expressing each level present (see 

Fig. 2.1A-B) and observed the distribution and expression of cadherins in sorting cell 

aggregates. Since wild-type CHO cells do not express endogenous cadherins and do not 

adhere to each other (Niessen and Gumbiner, 2002), their cell-cell adhesion is primarily due 

to the introduced E-cadherin-GFP. During sorting, the E-cadherin-GFP fusion protein reports 

E-cadherin expression, allowing observation of cadherin distribution during cell-cell 
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adhesion and cell rearrangement. Such normally non-adherent cell lines transformed to 

express recombinant cadherins are common experimental models in the study of cell sorting 

(Nose et al., 1988; Niessen and Gumbiner, 2002; Foty and Steinberg, 2005).  

 

2.2 Material and Methods 

 

2.2.1 CHO-EC7 Cell-Line Construction and Selection  

 

I grew wild-type CHO cells (Sigma) in Dulbecco’s modified Eagle medium (DMEM, 

GIBCO) supplemented with 10% fetal bovine serum (FBS, GIBCO), 10 units/ml penicillin 

and 10 μg/ml streptomycin (GIBCO) in a humidified 5% CO2 atmosphere at 37°C. I 

transfected the cells using an E-cadherin-GFP plasmid provided by Dr. J. W. Nelson of the 

Stanford University School of Medicine (Yamada et al., 2005). Briefly, I transfected 60-80% 

confluent cells with 5 μg plasmid in a 35 mm dish using Qiagen superfection reagent. After 

1-2 days of 400 μg/ml G418 selection, I transferred the transfected cells to 100 mm dishes 

and selected cells expressing E-cadherin-GFP using 400 μg/ml G418 for about two weeks. I 

isolated cell lines by cloning ring (Nose et al., 1988; Duguay et al., 2003) and analyzed their 

E-cadherin-GFP expression levels using flow cytometry (BD Biosciences FACS@Calibur). I 

then observed cell morphology and E-cadherin-GFP distribution within cells using a Leica 

multiphoton laser-scanning confocal microscope (SP2) to select cell lines positive for E-

cadherin-GFP expression on their membranes but with no or little E-cadherin-GFP in their 
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cytoplasm. I selected one polyclonal cell line, which I denoted EC7, whose cells expressed a 

broad range of E-cadherin-GFP levels with approximately uniform frequency. Because 

polyclonal lines can be unstable in culture, I cryopreserved this line and serially-cultured 

cells from the frozen stock for use for no more than one month before restarting from the 

original frozen stock. I monitored E-cadherin-GFP levels periodically using confocal 

microscopy to check that the cultured cells had not changed their range of E-cadherin-GFP 

expression.  

 

2.2.2 Flow-Cytometry Analysis of Cadherin Expression  

 

A flow-cytometer uses laminar flow to transport cells one at a time through an excitation 

laser beam. It detects forward-scattered, side-scattered and fluorescent light from the excited 

cell to provide information on its physical and biochemical characteristics. Cell sorters also 

allow selection and segregation of cells on the basis of these measurements.  

  

To prepare wild-type and transfected cells for flow-cytometry analysis, I detached the cells 

from their culture dishes using 0.05% Trypsin-EDTA (Gibco) and stopped the trypsination 

by adding an equal volume of DMEM with 10% FBS. I centrifuged and resuspended the cells 

in CO2-independent DMEM with 2% FBS. I incubated the cells in a rotary shaker at 80 rpm 

at 37˚C for about 8 hours for flow-cytometry analysis the next morning. I collected, 

visualized and analyzed the data using CellQuest Pro software. GFP has an excitation 

wavelength of 488 nm and an emission wavelength of 508 nm. Therefore, I set the laser 
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excitation to 488 nm in the flow-cytometer and defined two fluorescence collection channels: 

FL1-H, corresponding to GFP fluorescence at 530 ± 30 nm and FL2-H, corresponding to PE 

(phycoerythrin, a fluorescent dye) fluorescence at 585 ± 42 nm. I used wild-type CHO cells 

as a negative control to define GFP- and PE-fluorescent negative and positive regions, using 

a quadrant marker on an FL1-H vs. FL2-H two-parameter scatter plot. The marker divides the 

plot into sub-regions of negative, single-positive, or double-positive subpopulations. 

Transfected cells should be GFP positive and PE negative and the geometric mean of the 

fluorescence intensity of the transfected cells should be much bigger than that of the wild-

type cells. I collected data on 10,000 cells for each sample.  

 

I also used CellQuest or WinMDI to visualize the data as a GFP-fluorescence histogram to 

estimate the range of cadherins per cell, assuming that intensity increases linearly with the 

number of GFP molecules. In the histogram (Fig. 2.1B), the horizontal axis represents the 

strength of the GFP-fluorescence signal in arbitrary units (channel number out of 1024 

channels) and the vertical axis represents the number of events in that channel. I did not 

attempt to quantify either the fluorescence intensity or the absolute number of GFP 

molecules per cell. 

 

2.2.3 Ca2+-Dependence Assays  

 

To check that adhesion and cell sorting were due to cadherins, I tested whether cell 

aggregation required Ca2+ in the medium, since cadherin interactions are Ca2+ dependent. I 
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dissociated wild-type and transfected cells using either TC treatment (0.01% trypsin with 1 

mM CaCl2) or TE treatment (0.01% trypsin with 1 mM EGTA) (Nose et al., 1988). 

Cadherins remain active in TC-treated cells but TE-treatment removes them from the cell 

surface. Thus, I expected TC-treated cells to form aggregates rapidly (within 1 hour) and TE-

treated cells to take longer, because cadherin takes several hours to recover. I aggregated 

both TC- and TE-treated cells separately in 6-well Petri dishes and incubated them on a 

rotary shaker (80 rpm) at 37°C. For aggregation assays, I filled each well either with 1 × 106 

TC-treated cells in 2 ml HCMF (Hepes buffer HBSS CMF) with 1% bovine serum albumin 

and either no, 0.1 mM or 1 mM CaCl2 for 60 min, or with about 1 × 106 TE-treated cells in 2 

ml of CO2-independent DMEM with 10% FBS. I recorded the images using a 2 × objective 

in a Nikon inverted microscope in phase-contrast mode.  

 

2.2.4 Production of Cell Aggregates for Cell-Sorting Experiments  

 

I formed cell aggregates following Steinberg’s protocol (Steinberg and Takeichi, 1994). I 

washed near-confluent cells twice with Hank’s balanced salt solution (HBSS) containing 2 

mM CaCl2, then treated them for 15-30 min with trypsin 0.01% (GIBCO) with 1 mM CaCl2. 

I resuspended the cells in CO2-independent DMEM with 2% FBS, allowed them to recover 

from trypsinization for 0.5-2 hours on a shaker at 80 rpm at 37˚C, pipetted the suspensions 

gently to disperse any aggregates, then pelleted them in round-bottomed culture tubes by 

brief centrifugation at 1000 rpm in a table-top centrifuge. I incubated the pellets in DMEM 

with 2% FBS for 3-22 hours, then cut them into small fragments with a microscalpel and 
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allowed them to round up in DMEM with 2% FBS and 50 μg/ml DNase I (Sigma) on 1.25% 

agarose-coated Petri dishes (Falcon) at 37˚C in a 5% CO2 atmosphere. I then selected 

rounded-up fragments of 150-300 μm in diameter for cell-sorting analysis.  

 

2.2.5 Confocal Imaging 

 

I observed aggregates using a Leica multiphoton laser-scanning confocal microscope (SP2) 

in both two-photon and conventional confocal modes. For GFP, the two-photon excitation 

wavelength is 950 nm and the emission wavelength is 500~560 nm. I also stained aggregates 

with DAPI (4',6-diamidino-2-phenylindole, a DNA-targeting fluorescent stain) to localize 

cells in aggregates. For DAPI, the two-photon excitation wavelength is 710 nm and the 

emission wavelength is about 470 nm. The two-photon mode uses a neutral-density detector 

(NDD) to collect the fluorescence signal. I further observed the distribution of E-cadherin-

GFP on cell membranes either in Petri dishes or in three-dimensional cell aggregates using 

the microscope’s conventional confocal mode with an excitation wavelength of 488 nm and 

an emission wavelength of 500-560 nm. The conventional confocal mode uses a 

photomultiplier-tube (PMT) detector. For cell-sorting analysis, I cut the fixed two-day, three-

day and six-day cell aggregates in half using a microscalpel and laid the cut face on a glass 

cover-slip in a homemade observation chamber (Kulesa and Fraser, 2002). To reduce photo-

bleaching, I scanned three-dimensional images from the bottom to the top of the sample.  
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2.3 Experimental Results 

 

My transfected cell line, CHO EC7, exhibited a continuous variation of E-cadherin-GFP 

expression levels (Figs. 2.1A-B). The cells’ fluorescence in the GFP channel varied over a 

range of [10, 230] in relative fluorescence strength (arbitrary units indicated by the bin 

number) with an approximately equal number of cells in each channel. Assuming linear 

 

 

 
Figure 2.1: Cadherin expression levels in CHO-EC7 cells. A. Flow-cytometry analysis of 

E-cadherin-GFP expression in the transfected cell line CHO-EC7. Most CHO-EC7 cells are 

located in the GFP-positive and PE-negative subregion (the lower right quadrant). The lower 

left quadrant (green) includes GFP-negative cells. The FL1-H fluorescence channel covers a 

range of 530 ± 30 nm. The FL2-H channel covers a range of 585 ± 42 nm. B. Histogram of 

E-cadherin-GFP expression for CHO-EC7 cells. 10-20 cells fall into each GFP-fluorescence 

channel, from 10 (the yellow arrow) to 230 (the red arrow). Channel numbers are in units of 

relative fluorescence strength, given by bin number.  
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number) with an approximately equal number of cells in each channel. Assuming linear 

dependence of fluorescence on GFP number, I estimated a roughly 23-fold variation in the 

number of cadherins per cell.  

 

The exogenous cadherins altered cells’ morphologies from those of wild-type CHO cells. 

Wild-type CHO cells are non-adherent, essentially isotropic, and round up in Petri-dish 

culture. Most CHO-EC7 cells adhere to each other, elongate, spread on substrates and form 

cell clusters (Fig. 2.2). 

 

 

 

 
Figure 2.2: Wild-type CHO and transfected CHO-EC7 cells under confluent conditions. 

A. Wild-type CHO cells round up. B. CHO-EC7 cells stretch and adhere to each other. White 

round dots are cells detached from the Petri dish.  
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Figure 2.3: Suspended wild-type CHO cells and transfected CHO-EC7 cells after TC-

treatment for different concentrations of Ca2+. Isolated wild-type CHO cells immediately 

after TC–treatment: A1. Without Ca2+. B1. With 0.1 mM Ca2+. C1. With 1 mM Ca2+. Wild-

type CHO cells do not form aggregates after 60 minutes in media: A2. Without Ca2+. B2. 

With 0.1 mM Ca2+. C2. With1 mM Ca2+. Isolated CHO-EC7 cells immediately after TC-

treatment: D1. Without Ca2+. E1. With 0.1 mM Ca2+. F1. With 1 mM Ca2+. CHO-EC7 cells 

do not form aggregates after 60 minutes in media: D2. Without Ca2+. E2. With 0.1 mM Ca2+. 

F2. CHO-EC7 cells aggregate after 60 minutes in media with 1 mM Ca2+.  

 

 

After TC-treatment, neither wild-type (Figs. 2.3A1-2) nor transfected CHO-EC7 cells (Figs. 

2.3D1-2) aggregated in Ca2+-free medium over the first hour in stirred suspension, showing 

that they have little Ca2+-independent cell-cell adhesion. Wild-type CHO cells do not 

aggregate in either normal (Figs. 2.3C1-2) or low-Ca2+ medium (Figs. 2.3B1-2). E-cadherin-

GFP-expressing cells aggregate rapidly at normal Ca2+ concentrations (Figs. 2.3F1-2) and 

slowly in low Ca2+ medium (Figs. 2.3E1-2), confirming that cell adhesion is Ca2+-dependent 

and cadherin-mediated. 

 

In stirred suspensions, TE-treated E-cadherin-GFP-expressing cells take a few hours to 

aggregate, presumably due to the time they need to recover their surface cadherins after TE 

treatment. Wild-type cells do not aggregate after TE-treatment (Fig. 2.4) further confirming 

that all cell adhesion in this cell type results from E-cadherin-GFPs. 
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Figure 2.4: Suspended wild-type CHO cells and transfected CHO-EC7 cells after TE-

treatment. A. Isolated wild-type CHO cells immediately after TE-treatment. B. Wild-type 

CHO cells do not form aggregates after 10 hours. C. Isolated CHO-EC7 cells immediately 

after TE-treatment. D. CHO-EC7 cells aggregate after 10 hours. The white arrow indicates 

one aggregate. All images to the same scale as that shown in D. 

 

 

In two-dimensional cell culture, E-cadherin-GFP proteins do not localize evenly on the 

surface of CHO-EC7 cells, but form patches and cluster where cell-cell contacts form 

vertices, consistent with Nelson’s results (Adams et al., 1998). In three-dimensional 

aggregates E-cadherin-GFP proteins concentrate along cell-cell contact edges, not uniformly 
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across the contact surface (Fig. 2.5A). For a given number of cadherin molecules, this patchy 

distribution may enhance local cell-cell adhesion by increasing local cadherin concentrations.  

Cell morphologies in three-dimensional aggregates are similar to those in two-dimensional 

cultures. CHO-EC7 cells expressing E-cadherin-GFP at higher levels elongate and adhere to 

each other, while cells expressing lower levels are rounder, like wild-type CHO cells (Fig. 

2.5B).  

 

 

 

 
Figure 2.5: Cadherin distributions in CHO-EC7 cell aggregates. A. Three-dimensional 

reconstructed conventional confocal image of part of a three-dimensional cell aggregate. E-

cadherin-GFP proteins accumulate at the edges of cell-cell contact surfaces. B. Three-

dimensional reconstructed image of E-cadherin-GFP expression for a typical two-day-old 

cell aggregate. Cells with high expression levels (red arrows), and cells with low expression 

levels (white arrow) form homotypic clusters. Image contrast was enhanced using ImageJ.  
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I investigated sorting of three-dimensional aggregates with cells from the CHO-EC7 line. A 

confocal three-dimensional projection of a middle cross section (Fig. 2.5B) of a typical cell 

aggregate shows that after two days of incubation of an originally randomly-mixed cell 

aggregate, cells expressing E-cadherin-GFP at high levels (red arrows) or low levels (white 

arrow) cluster into homotypic domains (Fig. 2.5B).  

 

If sorting occurs in my aggregates, I would expect the fluorescence intensity across the 

aggregate to be initially random. As cells aggregate into homotypic patches, I would expect 

to see uniform patches of different intensity levels, surrounded by random signal. Finally, in 

the fully-sorted aggregate, I would expect to see maximal fluorescence intensity near the 

center of the aggregate and a monotonic decrease in intensity from this maximum to the 

periphery of the aggregate.  

 

Unfortunately, cadherins are expressed mostly on the cell membrane, causing big variations 

in the fluorescence intensity across aggregate cross-sections and complicating measurements 

of the degree of sorting within each aggregate. To determine whether the intensity variations 

I observe are statistically significant, I subdivided each N × N-pixel image (N = 512, 1024, or 

2048) into 2k × 2k (k = 0, 1, 2, 3, …9) subregions. Choosing k = 5 gives a subregion of size 

10 × 10 µm2 (about the size of a biological cell) and has, to my eye, the most significant 

variations across the image. However, the variation in the average intensity between 

subregions across whole images is not statistically significant at this scale.  
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I next used the transform, 

 Transformed Intensity of subregionሺ݅, ݆ሻ ൌ                                                                       

            ቆ
Mean Intensity of Subregionሺ݅, ݆ሻ

Mean Intensity of the Whole Image
ቇ
଺

,                                                                         (2.1) 

to enhance the contrast between subregions. This transform amplifies intensities which are 

bigger than the Mean Intensity of the Whole Image (MIWI) and reduces intensities which are 

weaker that the MIWI, making the difference in intensity among subregions more obvious. I 

further visualized the standard deviation in fluorescence for each subregion using this 

enhancement transform. I expected a concentric distribution of fluorescent intensity 

according to the DAH; however, I found no obvious concentric areas in most images (Fig. 

2.6).  

 

Contrast-enhanced visualization of the mean fluorescence intensity (Fig. 2.6) and standard-

deviation measurements for each block of each image showed that cells with high cadherin 

expression (brown and red) and low cadherin expression (blue) did cluster into homotypic 

domains. The standard deviation of the fluorescent intensity in each subregion was uniform 

over the whole image. Two-day aggregates (Figs. 2.6A-C) have many small clusters of cells 

with similar cadherin-expression levels. Three-day aggregates (Figs. 2.6D-F) have larger 

clusters of cells with similar cadherin-expression levels. Six-day aggregates (Figs. 2.6G-I) 

have large clusters of high-cadherin cells near the center of the aggregate with some high-

cadherin cells at the periphery. The figures suggest that cells first form small local clusters, 

which coalesce to form a larger cluster with high cadherin expression near the center of the 

aggregate and cadherin levels decreasing from the center to the periphery of the aggregate.  
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Figure 2.6: Distribution changes in E-cadherin-GFP expression levels in CHO-EC7 cell 

aggregates. Each image is an optical cross section of an aggregate, divided into 32 × 32 

subregions. Intensity is averaged over each subregion and contrast is enhanced. The color 

indicates the enhanced mean intensity in each subregion (Red corresponds to high intensity, 

blue to low). A-C. Two-day aggregates. D-F. Three-day aggregates. G-I. Six-day aggregates. 

Each letter (A-I) corresponds to a single aggregate. Multiple images for a single letter are 

differently-oriented cross-sections of the same aggregate. Scale bars are 100 µm.  

 

 

To clarify the distribution of cadherin expression within aggregates, I converted the images 

in Fig. 2.6 into intensity contour plots (Fig. 2.7). Most aggregates have multiple clusters of 

high or low cadherin expression, though Fig. 2.7F shows a clear decrease in the level of 

cadherin expression from the center to the periphery. Thus, I observed partial sorting in all 

aggregates, but complete sorting only in the aggregate in Fig. 2.7F. 

 

I attempted to quantify homotypic clustering and centralization of high-cadherin cells within 

aggregates. To check for a decrease in cadherin expression from a high expression cluster 

(not necessarily at the exact center of the aggregate) towards the periphery, I analyzed the 

intensity distribution as follows: (1) I subdivided each cross-section into four concentric 

subregions with equal areas, excluding the edge of the aggregate where the spherical 

aggregate shape makes image-intensity measurements unreliable. I manually defined the 

subregions to obtain the highest-possible mean intensities for each subregion. Fig. 2.8 shows 

the subdivisions for all aggregates. (2) I then calculated the mean fluorescence intensity of 

each subregion for all the aggregates (Fig. 2.9).  
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Figure 2.7: Cadherin-expression contour plots corresponding to Fig. 2.6. A-I. Images are 

contour plots of the corresponding intensity plots in Fig. 2.6. 

 

 

To test whether the intensities of different subregions differed significantly, I used a paired-

sample t-test to compare regions (Table 2.1). 

 

Comparing increasingly peripheral subregions to the next-most central region, i.e., CT2 vs. 

CT1, CT3 vs. CT2 and CT4 vs. CT3, the mean intensity differed significantly (one-tailed P < 

0.01, P(two-day) < 0.01). Since I used the t-test three times to test one hypothesis, I used the 

Bonferroni correction to satisfy the α = 0.05 criterion. While the relative average intensity 

decreased in more peripheral subregions, for three-day and six-day aggregates, the P values 

for CT2 vs. CT3, and CT3 vs. CT4 were not significant, possibly due to the small sample size 

(n = 5 and n = 2). In addition, the amplitude of the decrease from center to periphery did not 

increase with time as I would have expected for complete sorting. Thus, I am left with three 

possibilities: (1) Most aggregates did not sort completely. (2) Sorting was complete by day 

two. (3) My measurements were not sufficiently accurate to determine whether complete 

sorting occurred or not in most aggregates. 
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Figure 2.8: Subdivision of cross-sections of aggregates into four concentric subregions. 

A-I. Subdivision of the cross sections of aggregates into four equal-area subregions. Images 

correspond to those in Fig. 2.6. 

 

 

 

Figure 2.9: Mean fluorescence intensity with standard deviations for each subregion for 

individual aggregates. X-axis: subregions 1 to 4, center to periphery. Y-axis: Normalized 

intensity. A. Two-day aggregates. B. Three-day aggregates. C. Six-day aggregates. D. All 

aggregates. All data are normalized so that the intensity of the central region is one.  
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Table 2.1: Cadherin-expression variations by subregion and time during sorting. The 

mean and standard deviation of fluorescent intensity per pixel relative to subregion CT1, for 

each subregion, averaged over all orientations of all aggregates for a given day, and the 

significance (P value) of their difference according to the paired-sample student t-test. 

 

Subregion 2 3 4  

Day n <I2> ± SD2 <I3> ± SD3 <I4> ± SD4 Significance of deviation from the 

paired sample t-test* 

2 8 0.94 ± 0.04 0.86 ± 0.05 0.80 ± 0.03 P12, P23, P34 < 0.01 

3 5 0.91 ± 0.04 0.91 ± 0.06 0.84 ± 0.06 P12 < 0.01; P23 = 1.20; P34 = 0.06  

6 3 0.91 ± 0.03 0.86 ± 0.09 0.82 ± 0.12 P12 = 0.06; P23 = 0.54; P34 = 0.18 

 

 

2.4 Discussion  

 

In spite of the large variations in clustering of cells according to their cadherin levels, my 

experiments demonstrate that monotonic cadherin expression gradients characteristic of 

complete cell sorting can form in at least some aggregates of CHO-EC7 cells within three 

days (Figs. 2.6F, 2.7F and 2.8F), suggesting that the variation in expression of a single type 

of cell adhesion molecule can lead to an equilibrium cell-sorting configuration, in agreement 

with the computer simulations I present in Chapter Three. Real-time tracking of cells in 

aggregates would further validate my theory. However, I could not track cadherin expression 
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in an intact, living cell aggregate due to optical attenuation of the fluorescence signal. 

Because sectioning the aggregate destroys it, I had to use different aggregates for each image, 

rather than producing a time series of a single aggregate. These experiments show the 

complexity and hence difficulty of a definitive experimental study of real-time clustering in 

response to a large range of cadherin levels. 
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CHAPTER THREE 

 

 

COMPUTER SIMULATIONS OF CELL SORTING DUE TO  

DIFFERENTIAL ADHESION  

 

Abstract 

Computer simulations of cell sorting due to adhesion have primarily studied the interactions 

of cells expressing a few discrete levels of cadherins, while during development cells often 

express continuously-variable levels of cadherins. In this chapter, I first construct three 

frameworks to link the molecular binding force to intercellular adhesion and interfacial 

tension. I then use the Glazier-Graner-Hogeweg model to investigate how variations in the 

distribution of numbers of cadherins per cell and in the choice of binding model affect 

sorting. Continuous variation of a single type of cadherin molecule decreases the sorting rate 

compared to the rate for two levels. The speed of sorting depends strongly on the interfacial 

tension, which depends both on the maximum difference in number of cadherins per cell and 

on the binding model. 
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3.1 Introduction 

 

The Differential Adhesion Hypothesis (DAH) (Steinberg 1963; Steinberg and Wiseman, 

1972; Steinberg and Takeichi, 1994; Foty and Steinberg, 2005) leaves open many questions, 

including: 

1) How do molecular interactions between cadherins determine the strength of 

intercellular adhesion (Gumbiner 2005)? 

2) What is the kinetics of cadherin rearrangement within the cell membrane? 

3) How does intracellular cortical tension relate to adhesion between cells and how do 

these two effects couple during cell sorting? 

 

The relation between forces at the molecular level (pairs of cadherins), cell level (cell-cell 

adhesion) and tissue level (surface tension) is complex. This chapter proposes a simple 

framework to illustrate how homotypic cadherin binding at the molecular level produces 

intercellular adhesion and eventually determines cell sorting at the tissue level. I neglect 

complex spatial and temporal changes in cadherin behavior, assuming that cadherin 

distributions are uniform and constant on the cell membrane and that adhesion-strength per 

molecular bond is also time-independent (i.e., I assume no conformational changes of 

molecular structure). Therefore, I am able to explore how the sorting configuration and rate 

depend on a few essential parameters in the model.  
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3.2 Methods 

 

3.2.1 Reaction-Kinetics Models of E-Cadherin Binding  

 

The nature of cadherin-cadherin binding affects the way cell-cell adhesion energy depends on 

cells’ cadherin densities, and thus the correct models to use in simulations of cell sorting. 

Models of cadherin binding include the linear-zipper model based on experiments on N-

cadherin (Shapiro et al., 1995; Sivasankar et al., 1999; Chappuis-Flament et al., 2001; Zhu et 

al., 2003), the cis-dimer model based on experiments on E-cadherin (Pertz et al., 1999), and 

the trans-homophilic-bond model based on experiments on C-cadherin (Boggon et al., 2002). 

Since mutagenesis studies do not support the linear-zipper model (Gumbiner, 2005), I use the 

cis-dimer and trans-homophilic-bond models to relate the numbers of cadherins per cell to 

the cell-cell adhesion energy.  

 

The cis-dimer model (Perts et al., 1999) assumes that cis-dimers first form on the surfaces of 

individual cells and that two dimers on apposing cells then bind together to form homophilic 

tetramers.  

 

Dimerization of monomers (ܣ and ܣ or ܤ and ܤ) on individual cells’ surfaces to form dimers 

ܺ and ܻ has the form:  

ܣ ൅ ܣ ൌ ܤ ;ܺ ൅ ܤ ൌ ܻ.                                                                        (3.1) 
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Similarly, when trans-tetramers ܻܺ form between dimers (ܺ and ܻ) on two apposing cells, 

the reaction has the form: 

            ܺ ൅ ܻ ൌ ܻܺ.                                                                                                (3.2) 

I assume that the cadherin concentrations on the cells’ surfaces are constant and that I can 

apply the Law of Mass Action. Dimerization and tetramerization quickly equilibrate if ܭ஽ 

and ்ܭ, the equilibrium dimerization and tetramerization dissociation constants are large and 

the cadherin concentrations ܥ஺ ൌ ஺ܰ ஺݄ܵ⁄  and ܥ஻ ൌ ஻ܰ ܵ஻݄⁄  are lower than the dissociation 

constants (Chen et al., 2005). Here ஺ܵ and ܵ஻ are the surface areas of the cells, and ݄ is the 

amplitude of cadherin fluctuations normal to the cells’ surfaces. In this case, the total number 

of tetramers is less than the number of dimers, which in turn is less than the number of 

monomers. The equilibrium concentration of tetramers is approximately:  

            ሾܻܺሿ ൌ ஻ଶܥ஺ଶܥ ⁄்ܥ஽ଶܭ ൌ ்݇ ஺ܰ
ଶ

஻ܰ
ଶ,                                                                           (3.3)  

where ்݇ ؠ 1 ሺ்ܭ஽ଶܭ ஺ܵܵ஻݄ଶሻଶ⁄  is the tetramer effective equilibrium constant.  

 

According to the trans-homophilic bond model, cadherins bind individually between cells, so 

the concentration of bound pairs is: 

            ሾܻܺሿ ൌ ஻ܥ஺ܥ ஽ܭ ൌ ݇஽ ஺ܰ ஻ܰ⁄ ,                                                            (3.3’) 

where ݇஽ ؠ 1 ஽ܭ ஺ܵܵ஻݄ଶ⁄  is the dimer effective equilibrium constant.  

 

In the case of strong clustering of cadherins, or a large difference in the number of molecules 

per cell, the concentration of bound cadherin pairs is: 

           ሾܻܺሿ ൌ Minimumሼܥ஺, ஻ ሽܥ ൌ ݇ெMinimumሼ ஺ܰ, ஻ܰሽ,                                           (3.3’’) 
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where ݇ெ ؠ 1 ሺ ஺ܵ|ܵ஻ሻ݄⁄  is the effective equilibrium constant. The S included in the equation 

is that corresponding to the smaller of ஺ܰ or ஻ܰ. 

 

The intercellular adhesion energy density, ∆ܩ, due to cadherin binding is (Chen et al., 2005):  

ܩ∆             ൌ ሾܻܺሿ ൈ ∆݃,                                                                    (3.4) 

where ∆݃ is the cadherin-cadherin-binding free-energy per cadherin bond. Bond formation 

releases energy, so ∆݃ ൏ 0. 

 

The intercellular adhesion-energy density, ܬሺ ஺ܰ, ஻ܰሻ, on cell-cell binding is: 

ሺܬ  ஺ܰ, ஻ܰሻ ൌ ሾܻܺሿ ൈ ∆݃ ൅ ܿ,                                                                          (3.5) 

where ܿ is the energy density due to nonspecific binding. 

 

The interfacial-tension density over the contact area between two cells expressing different 

numbers of cadherin is (Graner and Glazier, 1992; Glazier and Graner, 1993):  

஺,஻ߛ ൌ ሾܬሺ ஺ܰ, ஺ܰሻ ൅ ሺܬ ஻ܰ, ஻ܰሻሿ 2⁄ െ ሺܬ ஺ܰ, ஻ܰሻ ൌ ൫ሺሾܺܺሿ ൅ ሾܻܻሿሻ/2 െ ሾܻܺሿ൯∆݃,        (3.6) 

For the cis-dimer model, according to Eq. (3.3), the interfacial-tension density is:  

௖௜௦ߛ ൌ ்݇ሺ ஺ܰ
ଶ െ ஻ܰ

ଶሻଶ∆݃/2 ൌ ்݇ሺ ஺ܰ െ ஻ܰሻଶሺ ஺ܰ ൅ ஻ܰሻଶ∆݃/2.                              (3.7) 

For the trans-homophilic-bond model, according to Eq. (3.3’), the interfacial-tension density 

is:  

௧௥௔௡௦ߛ ൌ ݇஽ሺ ஺ܰ െ ஻ܰሻଶ∆݃/2.                                                                        (3.7’) 

For the saturation model, according to Eq. (3.3’’), the interfacial-tension density is: 

௦௔௧ߛ ൌ ݇ெሺ ஺ܰ െ ஻ܰሻ∆݃/2,                                                                                      (3.7’’) 

where ஺ܰ ൐ ஻ܰ. 
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3.2.2 Glazier-Graner-Hogeweg Simulations of Cell Sorting  

 

To simulate cell sorting due to cell-cell adhesion, I used the Glazier-Graner-Hogeweg model 

(GGH) (also known as the Cellular Potts Model, CPM) (Graner and Glazier, 1992; Glazier 

and Graner, 1993). The GGH is a multi-cell, lattice-based model, which uses an Effective 

Energy, H, to describe the behavior of cells, for instance, due to cell-cell adhesion. GGH 

simulations agree quantitatively with simple cell-sorting and other experiments (Mombach 

and Glazier, 1996; Rieu et al., 2000; Zajac et al., 2000; Maree and Hogeweg, 2001; Zeng et 

al., 2004; Dan et al., 2005; Merks et al., 2006; Glazier et al., 2007; Poplawski et al., 2007).  

 

Cells in the GGH are extended domains of pixels (on a regular lattice, denoted ଓറ), which 

share the same cell index, ߪሺଓറሻ. The Effective Energy, governs how the lattice evolves as 

cells attempt to displace other cells by extending their pseudopodia, according to a modified 

Metropolis algorithm (Metropolis et al., 1953). At each step, I select a lattice site ଓറԢ and 

change its index into the index of a neighboring lattice site ଓറ with probability:  

ܲ൫ߪሺଓറԢሻ ՜ ሺଓറሻ൯ߪ  ൌ ሼ݁݌ݔሺെ∆ܪ/ܶሻ, ܪ∆ ൐ 0;  1, ܪ∆ ൑ 0ሽ,                                      (3.8) 

where ∆ܪ is the energy gain from the change and T is the intrinsic cell motility, or 

fluctuation temperature. If the lattice has ܰ pixels, I define one Monte Carlo Step (MCS) to 

be ܰ displacement attempts. 

 

For a two-dimensional simulation of an aggregate containing cells expressing varying levels 

of a single type of cadherin, I assume that: (1) The Effective Energy between cells is due to 

cell-cell adhesion. (2) The cells have fixed and identical target volumes, membrane areas, 
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and intrinsic motilities. (3) Cells do not grow, divide or die. (4) Cells are isotropic, so 

cadherins are uniformly distributed on the cell membrane and their concentration is constant. 

For these conditions, the Effective Energy is: 

ܪ ൌ ෍ ቄܬ଴ ൅ ܬ ቀܰ൫ߪሺଓറሻ൯, ܰᇱ൫ߪᇱሺଓറԢሻ൯ቁ ቀ1 െ ,ሺଓറሻߪ൫ߜ ሺଓറԢሻ൯ቁቅߪ
పറ,పറᇲ

୬ୣ୧୥୦ୠ୭୰ୱ

൅                                

         ෍ߣሺܸሺߪሻ െ ௧ܸሻଶ
ఙ

,                                                                                         (3.9) 

where, ܬ଴ is the energy per unit contact area between two cells without cadherin binding. 

Since such cells do not cohere, ܬ଴ ൐ ܬ .0 ቀܰ൫ߪሺଓറሻ൯, ܰᇱ൫ߪᇱሺଓറԢሻ൯ቁ is the adhesion-energy per 

unit contact area between cells expressing ܰ and ܰᇱ adhesion molecules. Since forming 

cadherin bonds decreases the effective energy,  

,ሺଓറሻ൯ߪቀܰ൫ܬ ܰᇱ൫ߪᇱሺଓറԢሻ൯ቁ ൏ 0. Sums go up to fourth neighbors on a square lattice. ߣ, ܸሺߪሻ and 

௧ܸ are the volume elasticity, actual volume and target volume of cell ߪ, respectively. The 

Kroeneker delta, ߜ൫ߪሺଓറሻ, ሺଓറԢሻ൯ߪ ൌ ሼ1, if ߪሺଓറሻ ൌ ;ሺଓറԢሻߪ  0, if ߪሺଓറሻ ്  .ሺଓറԢሻሽߪ

 

Each cell expresses a specific number of cadherins. The cell-cell adhesion energy relates to ܰ 

and ܰԢ according to Eq. (3.3), (3.3’) or (3.3’’) and Eq. (3.5). Since I can rescale the energy by 

the intrinsic cell motility, I am free to pick the energy scale and set ∆݃ ൌ െ1.  

 

In an ideal, fully-sorted configuration, cells expressing high levels of cadherins will cluster 

together and round up into a solid sphere, surrounded by cells expressing low levels of 

cadherins. The heterotypic boundary length (HBL, the total contact length between cells with 

different cadherin levels) between two types of cells is minimized for complete sorting. The 
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HBL is a convenient monitor of the progress of cell sorting. For cells expressing two levels of 

cadherin, the HBL is just: 

௛ܮ ൌ ෍ ቄ1 െ ߜ ቀtype൫ߪሺଓറሻ൯, type൫ߪሺଓറԢሻ൯ቁቅ
పറ,పറᇲ

୬ୣ୧୥୦ୠ୭୰ୱ

.                                                     (3.10) 

If cells express multiple cadherin levels, ܮ௪, the heterotypic boundary length weighted by the 

energy differences between neighboring cells is a better metric for cell sorting. This weighted 

heterotypic boundary length (WHBL) is simply the total interfacial tension (Eq. (3.7), (3.7’) 

or (3.7’’)). 

 

For the cis-dimer model: 

௪ܮ ൌ ்݇ ෍ ቀܰ൫ߪሺଓറሻ൯ଶ െ ܰ ′൫ߪሺଓറ′ሻ൯ଶቁ
ଶ
൛1 െ ,ሺଓറሻߪ൫ߜ ሺଓറ′ሻ൯ൟߪ

పറ,పറ′
୬ୣ୧୥୦ୠ୭୰ୱ

∆݃
2 .              (3.10')  

For the trans-homophilic-bond model: 

௪ܮ ൌ ݇஽ ෍ ቀܰ൫ߪሺଓറሻ൯ െ ܰԢ൫ߪሺଓറԢሻ൯ቁ
ଶ
൛1 െ ,ሺଓറሻߪ൫ߜ ሺଓറԢሻ൯ൟߪ

∆݃
2

పറ,పറᇲ
୬ୣ୧୥୦ୠ୭୰ୱ

.                   (3.10'') 

For the saturation model: 

௪ܮ ൌ ݇ெ ෍ ቀܰ൫ߪሺଓറሻ൯ െ ܰԢ൫ߪሺଓറԢሻ൯ቁ ൛1 െ ,ሺଓറሻߪ൫ߜ ሺଓറԢሻ൯ൟߪ
పറ,పറᇲ

୬ୣ୧୥୦ୠ୭୰ୱ

∆݃
2 .                     (3.10''') 

Different aggregates may have different maximum (initial) and minimum HBLs or WHBLs. 

To compare sorting in different aggregates, I normalize the HBL and WHBL using the 

transformation: 

݈ேሺݐሻ ൌ
ሻݐሺܮ െ M୧୬ܮ
Mୟ୶ܮ െ M୧୬ܮ

,                                                                                                          (3.11) 
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where, ܮMୟ୶ ൌ Maximum൫ܮሺݐሻ൯, ܮM୧୬ ൌ  ሻ is the HBL or WHBL at timeݐሺܮ ௦௠ andܮ ௞ orܮ

t. ܮ௞ ൌ Minimum൫ܮሺݐሻ൯ is the minimum value of HBL or WHBL over the estimated 

simulation duration of 1,000,000 MCS. ܮ௦௠ is the theoretical minimum HBL or WHBL for a 

fully-sorted aggregate. The sorting relaxation time, ߬, is the time at which the aggregate 

reaches its typical fully-sorted configuration. ߬ is defined via the relation: 

݈ேሺ߬ሻ ൌ
݈ேሺ0ሻ
݁ .                                                                                                                    (3.12) 

The sorting rate, ܴ௦, is the inverse of the sorting relaxation time: 

ܴ௦ ൌ
1
߬ .                                                                                                                                 (3.13) 

 
 
 

3.2.3 Simulation Implementation 

 

I implemented my simulations using the open-source software package CompuCell3D 

(downloadable from https://simtk.org/home/compucell3d and http://compucell3d.org/) which 

allows rapid translation of biological models into simulations using a combination of 

CC3DML and Python scripting. This framework allows a compact description of models and 

hence their publication and validation. I provide my simulation code in Appendix 7.F.  

 

All my simulations for cell sorting use aggregates of 305 cells, close to the size of the 

aggregates I studied experimentally. Each cell has a 25-pixel target volume, which sets the 

lattice length scale to approximately 2 microns per pixel. I begin with a circular-disk 

aggregate with cells randomly assigned cadherin expression numbers, with each allowed 
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number having equal probability. Each simulation uses ܶ ൌ 20 and runs for 1,000,000 MCS, 

to allow for complete sorting for continuous variation of cadherin expression over the range 

[1, 23]. I set ߣ ൌ 25, which allows patterns to evolve reasonably fast without large cell-

volume or surface-area fluctuations. Changing ߣ around this value does not greatly affect the 

relaxation of cells’ shapes and positions. I further set ܬ଴ ൌ 16 for all simulations. For 

different cadherin binding models and for the cadherin expression range [1, 23], I choose the 

values of ்݇, ݇஽ and ݇ெ (according to Eqs. (3), (3’) and (3’’)) so that cells do not ‘freeze’ or 

‘melt’. 

 

3.3 Results 

 

I first investigated sorting completeness for the trans-homophilic-bond model (Eq. (3.3’), 

݇஽ ൌ 0.02) as I moved from two levels of cadherin expression towards a continuous 

distribution of levels (two, three, five, nine and continuous levels) with the same range of 

cadherin numbers, ሾܰ௠௜௡ ൌ 1,ܰ௠௔௫ ൌ 23ሿ. The same range of cadherin expression numbers 

provides the same range of adhesion energies, independent of the number of levels.  

 

Figs. 3.1A-E show final aggregates for cells expressing discrete or continuous levels of 

cadherins. Cells with higher expression (dark/red color) assume more central positions, while 

cells with lower expression (light/blue) move to the periphery. For multiple discrete levels, 

cells follow a sorting hierarchy (Steinberg and Wiseman, 1972); each layer of cells has a 

given expression number and surrounds the layer of cells with the next-higher level. For 
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Figure 3.1: Typical simulated sorting configurations for aggregates of cells for the 

trans-homophilic-bond model. All images shown at time t = 999,000 MCS. In A-D, the 

gray scale represents cadherin-expression levels. The darkest color (gray level=0) represents 

the highest cadherin-expression level. The lightest color (gray level=200) represents the 

lowest cadherin-expression level. The cell culture medium is white (gray level=255). In E, 

HSV colors represent expression levels, ሺܪ ൌ ሺ1 െ ሺܰ െ ܰ௠௜௡ሻ ሺܰ௠௔௫ െ ܰ௠௜௡ሻ⁄ ሻ255, 

ܵ ൌ 255, ܸ ൌ 255), where ܰ is the cadherin-expression level, and ܰ௠௜௡ and ܰ௠௔௫ are the 

minimum and maximum cadherin-expression levels, respectively. Red (ܪ ൌ 0) is the highest 

expression level, blue (ܪ ൌ 255) the lowest expression level. The cell culture medium is 

white. Sorting for: A. Two levels. B. Three levels. C. Five levels. D. Nine levels. E. 

Continuous levels. Cadherin expression ranges from ܰ௠௜௡ ൌ 1 to ܰ௠௔௫ ൌ 23. In all 

simulations, ܶ ൌ 20 and ߣ ൌ 25. 

 

 

A B 

C D E 

200 μm 

200 μm 
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continuous levels (Fig. 3.1E), expression numbers decrease continuously from the center to 

the periphery of the aggregate.  

 

I investigated the time evolution of the Effective Energy and HBL/WHBL for the trans-

homophilic-bond model, in three cases:  

1) Cells with different numbers of levels of cadherin expression, but the same range 

between maximum and minimum expression number.  

2) Cells with different ranges between maximum and minimum expression number but 

with the same number of levels.  

3) Cells with different motilities, but with the same cadherin levels. 

I also studied: 

4) Cells with different cadherin binding models, but the same range between maximum 

and minimum expression number for two, five, nine and continuous levels.  

 

Fig. 3.2A shows the time evolution of the Effective Energy for cell aggregates with cells 

expressing two, three, five, nine, and continuous cadherin levels in the range [1, 23] using the 

trans-homophilic-bond model (Eq. (3.3’), ݇D ൌ 0.02). Figs. 3.2B and 3.2C illustrate the time 

evolution of the normalized WHBL for cell aggregates in Fig. 3.2A, setting ܮ௠௜௡ ൌ  ௞ andܮ

௠௜௡ܮ ൌ  ௦௠, respectively. Aggregates with two or three levels sort quickly, while aggregatesܮ

with more levels take more time to sort (Fig. 3.2D).  

 

Fig. 3.3A shows the time evolution of the Effective Energy for aggregates with two cadherin 

levels but different expression ranges: [1, 12], [1, 14.75], [1, 17.50], [1, 20.25], [1, 23], [12, 
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23], and [19.62, 23]. Figs. 3.3B and 3.3C show the time evolution of the normalized WHBL 

for the same aggregates, using ܮ௠௜௡ ൌ ௠௜௡ܮ ௞ andܮ ൌ  ௦௠, respectively. Sorting is quickestܮ

(τ = 14,040 MCS) for aggregates with the widest cadherin expression range [1, 23]. Sorting 

is slowest (no complete sorting, ߬ ൌ ∞) for aggregates with the smallest expression range 

[19.62, 23].  

 

According to the theory of liquid phase separation, the sorting rate is proportional to the 

interfacial tension divided by the viscosity, ߟ (Frenkel, 1945). This relationship should hold 

for cell sorting (Beysens et al., 2000). Fig. 3.3D plots the sorting relaxation time against the 

interfacial tension (Eq. (3.7’)) for the aggregates in Fig. 3.4A. I fitted to a power law of form 

߬ ൌ  ߛ ௕ to obtain a and b values. The relationship between ߬ and the interfacial tensionିߛܽ

is: 

߬ ൌ 3 ൈ 10଺ିߛଶ.ହ ൌ 3 ൈ 10଺ሾ݇ሺ Aܰ െ Bܰሻଶሿିଶ.ହ,                                                  (3.14) 

for ܮ௠௜௡ ൌ  :௦௠, andܮ

߬ ൌ 6.5 ൈ 10ହିߛଶ.ଵ ൌ 6.5 ൈ 10ହሾ݇ሺ Aܰ െ Bܰሻଶሿିଶ.ଵ,                                           (3.15) 

for ܮ୫୧୬ ൌ ௠௜௡ܮ ୩. Forܮ ൌ ௦௠, ܴଶܮ ൌ 0.89, and for ܮ௠௜௡ ൌ ௞, ܴଶܮ ൌ 0.98. The coefficient 

of determination ܴଶ is defined to be: ܴଶ ؠ
∑௬೔

మି∑ቀ௬೔ି௔௫೔
್ቁ

మ

∑௬೔
మ , where ሺݔ௜,  ௜ሻ is a sample pointݕ

and ܽݔ௜௕ is the fitting curve. ܴଶ can range from 0 for a bad fit to 1 for a perfect fit. Thus, the 

sorting relaxation time and interfacial tension obey an approximate power law (with 

exponent ܾ ~ െ 2). 
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Figure 3.2: Time evolution of the Effective Energies and Normalized (Weighted) 

Heterotypic Boundary Lengths for aggregates with differing numbers of cadherin levels 

for the trans-homophilic-bond model. In A-C: Red, two levels. Yellow, three levels. 

Green, five levels. Blue, nine levels. Purple, continuous levels. Thick lines show mean 

values. Thin lines show mean ± standard deviation. The heavy horizontal lines mark 1/e. A. 

Time evolution of the Effective Energy. B-C. Time evolution of the Normalized Weighted 

Heterotypic Boundary Length for the simulations in A, with ܮ௠௜௡ ൌ ௠௜௡ܮ ௞ in B andܮ ൌ  ௦௠ܮ

in C. D. Relation between relaxation time and number of levels. Red dots (ܮ௠௜௡ ൌ  .(௦௠ܮ

Blue dots (ܮ௠௜௡ ൌ   .(௞ܮ

  

 

I next compared the time evolution of the Effective Energy and normalized WHBL for 

different cadherin binding models with two, five, nine and continuous cadherin levels. I 

chose the effective equilibrium constants (்݇, ݇஽ and ݇ெ) so the cell-cell adhesion energies 

fell in the same range to exclude changes in cell sorting rates due to differences in these 

ranges. For two-level aggregates (Fig. 3.4A1), sorting times are equal, as I expected because 

Eqs. (3.7), (3.7’) and (3.7’’) give almost identical interfacial tensions. For aggregates with 

five and nine cadherin levels (Figs. 3.4B1 and 3.4C1), sorting is rapid for the saturation 

model, and slowest for the trans-homophilic-bond model. The average minimum WHBLs are 

largest for the saturation model, but are the same for both the cis-dimer model and the trans-

homophilic-bond model. Since, the WHBL is actually the interfacial tension, the interfacial 

tension is the main factor which determines the sorting rate.  
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Figure 3.3: Time evolution of Effective Energies and Normalized (Weighted) 

Heterotypic Boundary Lengths for aggregates with differing numbers of cadherins for 

the trans-homophilic-bond model. Expression ranges: Dark blue, [1, 12]. Light blue, [1, 

14.75]. Yellow, [1, 17.50]. Orange/Pink, [1, 20.25]. Red, [1, 23]. Green, [12, 23]. Purple, 

[19.62, 23]. Thick lines show mean values. Thin lines show mean ± standard deviation. 

Heavy solid horizontal lines mark 1/e. A. Time evolution of the Effective Energy. B-C. Time 

evolution of the Normalized Heterotypic Boundary Length for the same simulations as in A. 

with: B. ܮ௠௜௡ ൌ ௠௜௡ܮ .௞. Cܮ ൌ  ,௦௠. D. Relaxation time vs. interfacial tension. Dotsܮ

simulation. Lines, fitting curves ܽݔ௕. Blue, ܮ௠௜௡ ൌ ௠௜௡ܮ ,௞. Redܮ ൌ  ௦௠. B1-B7. Individualܮ

curves for B. C1-C7. Individual curves for C.  

 

 

Last, I explored the effect of cell motility on the time evolution of the Effective Energy and 

normalized (W)HBL for aggregates with two cadherin levels using the trans-homophilic-

bond model. Fig. 3.5A shows the time evolution of the Effective Energy. If the motility is too 

low (ܶ ൌ 5), cells pin before reaching their lowest-energy positions and the Effective Energy 

remains high. For larger cell motilities, aggregates sort fully. If the motility is too large 

(ܶ ൌ 60 and 80ሻ, sorting is rapid but remains incomplete (Figs. 3.5C and D). 
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Figure 3.4: Time evolution of the Effective Energies and Normalized (Weighted) 

Heterotypic Boundary Lengths for aggregates with differing numbers of cadherin levels 

and binding models. The expression range is [1, 23] in all cases. In A1-3, B1-3, C1-3 and 

D1-2: Red, cis-dimer model. Green, trans-homophilic-bond model. Blue, saturation model. 

Thick lines show mean values. Thin lines show mean ± standard deviation. Heavy horizontal 

lines mark 1/e. In A2, B2, C2 and D2, . In A3, B3, and C3, . A1, B1, 

C1 and D1. Time evolution of the Effective Energy for aggregates with cells expressing 

cadherins at two, five, nine and continuous levels, respectively. A2, B2, C2 and D2. Time 

evolution of the Normalized Weighted Heterotypic Boundary Length for the same 

simulations as A1, B1, C1 and D1, respectively, with . A3, B3, and C3. Time 

evolution of the Normalized Heterotypic Boundary Length for the same simulations as A1, 

B1, C1 and D1, respectively, with . D3. The relaxation times for different bond 

models with different levels of cadherin expression. Red, two levels with . Pink, 

two levels with . Light Green, five levels with . Green, five levels 

with . Dark Blue, nine levels with . Light Blue, nine levels with 

. 

 

3.4 Discussion   

 

The framework I have developed allows the quantitative exploration of the dependence of 

cell sorting on cadherin expression and interaction models. When cells’ expression of 

cadherin varies continuously, sorting still occurs, but more slowly than for discrete 
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Figure 3.5: Time evolution of the Effective Energies and Normalized (Weighted) 

Heterotypic Boundary Lengths for aggregates with two cadherin levels for the trans-

homophilic-bond model with different motilities. The cadherin expression range is [1, 23]. 

Red, T = 80. Green, T = 60. Light Blue, T = 40. Pink, T = 20. Dark Blue, T = 10. Purple, T 

= 5. Thick lines show mean values. Thin lines show mean ± standard deviation. Heavy solid 

horizontal lines mark 1/e. A. Time evolution of the Effective Energy. B-C. Time evolution of 

the NWHLs, with ܮ௠௜௡ ൌ ௠௜௡ܮ ௞ (B) andܮ ൌ  .௦௠ (C). D. Relaxation time vs. cell motilityܮ

Red, ܮ௠௜௡ ൌ ௠௜௡ܮ ,௞. Blueܮ ൌ   .௕ିݐܽ ௦௠. Dots, simulation. Lines, fits toܮ

 

 

expression levels. The sorting rate depends on the interfacial tension rather than directly on 

the expression levels or the cadherin-binding model. Insufficient or excessive motility 

prevents complete sorting. 

 

Why does sorting occur under most conditions that I considered? For two cadherin levels 

with Aܰ ൐ ஻ܰ, complete sorting requires that (Glazier and Graner, 1993): 

ሺܬ ஺ܰ, ஺ܰሻ ൏ ሾܬሺ ஺ܰ, ஺ܰሻ ൅ ሺܬ ஻ܰ, ஻ܰሻሿ 2⁄ ൏ ሺܬ ஺ܰ, ஻ܰሻ ൏ ሺܬ ஻ܰ, ஻ܰሻ.                    (3.16) 

Since െேಲ
మାேಳ

మ

ଶ
൏ െ ஺ܰ ஻ܰ for the trans-homophilic-bond model, െேಲ

రାேಳ
ర

ଶ
൏ െ ஺ܰ

ଶ
஻ܰ
ଶ for the 

cis-dimer model and െேಲାேಳ
ଶ

൏ െMinimumሺ ஺ܰ, ஻ܰሻ for the saturation model, the energies 

all satisfy the sorting condition. Therefore, cells should sort for all three binding models. 

 

Even cells with a continuous distribution of cadherin levels satisfy the sorting inequality, so 

cells with fewer adhesion molecules envelop cells with more adhesion molecules, which sort 



 
 

73 
 

towards the center of the aggregate, creating an adhesion gradient, decreasing from the center 

to the periphery (Fig. 3.1E). Such sorting could be a simple mechanism for cells to reach 

and maintain their positions during morphogenesis. I discuss one biologically-significant 

example of this mechanism in section 4.5.4. 

 

The sorting rate and hence the rate of patterning depend on interfacial tension, which in turn 

depends on the range of cadherin expression, equilibrium constants and free energies of 

cadherin bonds (see Eqs. (3.7), (3.7’) and (3.7’’)).  

 

Patterns of gene expression are often fuzzy initially, then gradually become distinct. Both 

changing cell identity and cell movement are possible mechanisms for refining initially-fuzzy 

expression patterns or for fixing transient patterns of morphogens. These mechanisms may 

act in parallel with, or coordinate with, other morphogenic mechanisms, such as Turing-type 

reaction-diffusion instabilities or Wolpertian threshold-based positional coding. E.g., if a 

transient gradient formed by diffusion, decay and reaction determines a cadherin-expression 

gradient, differential adhesion can maintain the morphogen profile. If an intracellular 

morphogen controls cell adhesion, sorting can create a morphogen gradient, reversing the 

standard hierarchy. The speed of morphogen gradient formation will depend on the 

interfacial tension. 

 

During development, signaling cascades modulate cadherin expression. Because cell sorting 

is slow compared to fluctuations in gene-expression levels and because sorting reifies noise 

into a stable gradient, transient fluctuations in cadherin expression will not change 
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morphology, increasing developmental robustness. I discuss these issues in more detail in 

section 4.5.4. 
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CHAPTER FOUR 

 

COORDINATED ACTION OF N-CAM, N-CADHERIN, EPHA4 

AND EPHRINB2 TRANSLATES GENETIC PREPATTERNS 

INTO STRUCTURE DURING SOMITOGENESIS IN CHICK1 

 

Abstract 

During gastrulation in vertebrates, mesenchymal cells at the anterior end of the presomitic 

mesoderm (PSM) periodically compact, transiently epithelialize and detach from the 

posterior PSM to form somites. In the prevailing clock-and-wavefront model of 

somitogenesis, periodic gene expression, particularly of Notch and Wnt, interacts with an 

FGF8-based thresholding mechanism to determine cell fates. However, this model does not 

explain how cell determination and subsequent differentiation translate into somite 

morphology. In this chapter, I use computer simulations of chick somitogenesis to show that 

experimentally-observed temporal and spatial patterns of adhesive N-CAM and N-cadherin 

and repulsive EphA4-ephrinB2 pairs suffice to reproduce the complex dynamic 

morphological changes of somitogenesis in wild-type and N-cadherin (-/-) chick, including 

intersomitic separation, boundary shape evolution and sorting of misdifferentiated cells 

across compartment boundaries. Since different models of determination yield the same, 

                                                 
1 This chapter has been published as Glazier et al., 2007. 
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experimentally-observed distribution of adhesion and repulsion molecules, the patterning is 

independent of the details of this mechanism. 

 

4.1 Introduction 

 

Somitogenesis, during which initially-continuous anterior-posterior (AP) bands of loosely-

bound cells on either side of the medial primitive streak, the pre-somitic mesoderms (PSM), 

break apart sequentially and periodically (at intervals of ~90 minutes in chick) in AP 

sequence into a spatially-regular series of separated, tightly-bound somites is the classical 

example of segmentation during vertebrate embryogenesis. In vertebrates, somites are the 

precursors of vertebrae, muscle and skin derivatives, and provide a scaffold for assembly of 

the peripheral vasculature and nervous system (Gossler and Hrabe de Angelis, 1998).  

 

Somite formation requires: (i) Physical separation of somitic tissue from the initially-

continuous PSM, (ii) Coalescence of cells in the forming somite, and (iii) The establishment 

of a stable border between the somite and the PSM.  

 

Experimentally, animal species differ in the cell rearrangements which create the somite-

PSM border and how aggressively new somites pull apart from the PSM (Kulesa et al., 

2007). In Xenopus embryos, two short, discrete fissures start from both the medial and lateral 

edges of the PSM and expand gradually towards the middle of the PSM to form a stable 

somite-PSM border (Afonin et al., 2006). In zebrafish embryos, cell rearrangements within 
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forming somites are minimal and the forming-somite-PSM border develops when cells in the 

forming somite gently detach from their PSM neighbors, forming a medial notch which 

spreads laterally (Wood and Thorogood, 1994; Henry et al., 2000; Jiang et al., 2000). In both 

animals, the cells then retract towards the center of the forming somite or towards the PSM, 

depending on the side of the somite-PSM boundary. 

 

In chick embryos, cell rearrangements during somite-PSM border formation are more 

dramatic. Somitogenesis occurs in a complex spatio-temporal pattern, not via simple 

cleavage of the PSM (Kulesa and Fraser, 2002). Time-lapse analyses reveal that the forming 

somite-PSM boundary develops a dynamic ball-and-socket shape and that some cells cross 

the presumptive somite-PSM boundary (Kulesa and Fraser, 2002). Tissue transplantation 

studies have shown that cells in the region near the posterior border of the forming somite 

possess border-forming signals mediated by Notch and reinforced by Lunatic Fringe (Sato et 

al., 2002). Transplantation of the ventral–most cells in the posterior of the forming somite 

induces formation of ectopic borders and somite subdivisions in more dorsal PSM tissues 

(Sato and Takahashi, 2005). Thus, in chick, the initial separation of a forming somite from 

the PSM appears to occur in a ventral-to-dorsal (VD) direction. However, in line with most 

experimental and computational studies, this chapter will treat the PSM and somites as 

essentially two-dimensional, neglecting VD and medial-to-lateral (ML) variation. 

 

To explain the complex cell rearrangements in chick somitogenesis I employ computer 

simulations, which allow me to study how previously-determined spatio-temporal variations 

in gene expression (prepatterns) lead to variations in cell adhesion and local 
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microenviroment, which induce cell rearrangement into coherent somites. The 

rearrangements, in turn, can further affect gene expression (feedback). 

 

Essentially all models of somitogenesis to date have neglected the properties and movement 

of individual cells, and concentrated on mechanisms to generate periodic patterns of gene 

expression in the PSM, i.e., somite specification. This focus on early gene expression seemed 

reasonable, because determination of cell fate occurs early, about three somitic-clock cycles 

(about 4½ hours) before physical segmentation (Dubrulle and Pourquié, 2004). The existence 

of a prepattern is consistent with the finding that reversal of the AP axis of the PSM leads to 

reversed somites (Keynes and Stern, 1988). The numerous theoretical models of gene-

expression patterning include (Schnell and Maini, 2000; Baker et al., 2003, 2006), the clock-

and-wavefront model (Cooke and Zeeman, 1976; Dubrulle et al., 2001) reaction-diffusion 

models (Meinhardt, 1996), cell-cycle models (Primmett et al., 1988, 1989; Stern et al., 1988; 

Collier et al., 2000), and the clock-and-induction model (Schnell and Maini, 2000). Each of 

these models includes certain key features of the underlying biology and predicts that the 

PSM develops spatially-periodic patterns of gene expression in tissue blocks, but fails to 

explain some experimental observations. Pourquié and co-workers’ version of the clock-and-

wavefront model (Durbrulle and Pourquié, 2002; Pourquié, 2004) is, perhaps, the most 

successful (Baker et al., 2006).  

 

The actual process of somite formation–how a somite pulls apart from the PSM and the 

ensuing morphological changes–is not well understood. The only mathematical model 

attempting to describe the bulk movement of somitic cells to form a somite (Schnell et al., 
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2002) does not account for the intercellular mechanical forces involved in somite formation. 

Grima and Schnell (Grima and Schnell, 2007) have investigated the possibility that 

minimization of tissue surface tension drives the subsequent morphological changes leading 

to rounded somites. This chapter addresses another question—given a prepattern of gene 

expression, can known biological mechanisms give rise to the patterns of cell movement 

and morphological changes observed in both wild-type and gene-knock-out 

experiments? My model is completely agnostic about the origin of this pattern of gene 

expression (it works equally well with any of the somite-specification models in the 

preceding paragraph).   

 

4.1.1 Nomenclature 

 

Because somitogenesis proceeds in a temporally-periodic and spatially-progressive fashion, 

the identity of groups of cells changes in time, making nomenclature somewhat confusing 

(See Fig. 4.2). I use the nomenclature most common in the experimental community. At the 

beginning of a 90-minute cycle of somite formation, the anterior-most portion of the PSM 

becomes the site of a newly forming somite, which I refer to as S0; I will then refer to the 

portion of PSM immediately posterior to the region which contains the forming somite as the 

anterior PSM or S-1. Initially, these two regions are contiguous; the forming somite S0 then 

gradually separates from the remaining PSM along the presumptive somite-PSM boundary. 

When somite separation is complete, the forming somite S0 becomes somite S1, the anterior 

portion of the remaining PSM, S-1, becomes S0 and the cycle repeats (Ordahl, 1993; Pourquié 



 
 

80 
 

and Tam, 2001). I call the regions of the PSM successive somite lengths behind S-1, S-2, S-

3,…. Each somite also has an anterior and posterior compartment, which I will denote S-1A 

and S-1P, respectively, and a central (or core) and peripheral region. 

 

4.2 Patterns of Gene Expression and Protein Distribution during 

Somitogenesis 

 

To understand how the gene expression prepattern translates into changes in tissue 

morphology, I first review the functions of key molecules and their expression patterns. 

 

4.2.1 Cell Adhesion Molecules 

 

N-CAM and N-cadherin are homophilic membrane-bound proteins which contribute to 

contact adhesion between cells. The strength of adhesion increases with protein density and 

type on each cell, though, as I have addressed in Chapters Two and Three, the form of the 

dependence is not completely clear (Foty and Steinberg, 2005). While both molecules are 

homotypically adhesive as isolated monomers, they normally associate into groups which 

then aggregate in the cell membrane to form clusters (e.g., clusters of trimers of dimers) 

which increases the effective binding-strength per molecule. Both molecules bind to the actin 

cytoskeleton via β-catenin. This binding affects their effective adhesivity directly, possibly 

through changes in conformation of their extracellular domain, and indirectly, because a 
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functional actin cytoskeleton is necessary for their clustering. In general, for a given receptor 

density, N-CAM results in weaker adhesion than N-cadherin. 

 

 

 

 
Figure 4.1: Schematic diagram of the distribution of adhesion and repulsion molecules 

within the segmenting tissue during chick somitogenesis. A. N-cadherin and N-CAM 

protein distributions based on immunocytochemistry experiments (Linask et al., 1998). The 

PSM has a uniform low background level of N-cadherin and N-CAM. N-CAM levels do not 

change significantly during segmentation, while N-cadherin levels increase in the inner core 

of the forming somite. B. EphA4 and ephrinB2 levels based on in situ hybridization 

experiments (Baker and Antin, 2003; Aulehla and Pourquié, 2006). During segmentation 

EphA4 expresses in the anterior compartment of the forming somite and the anterior of the 

PSM; ephrinB2 expresses in the posterior compartment of forming somite. Both EphA4 and 

ephrinB2 mRNA levels decrease after the somite has separated from the PSM. 

 

 

A B 
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In avian and mouse embryos, somite formation follows compaction (i.e., a reduction in the 

intercellular space between cells) and the heightened expression of N-CAM and N-cadherin 

(Duband et al., 1987; Linask et al., 1998), which are expressed at lower levels in the rest of 

the PSM (Fig. 4.1A). In mice (Kimura et al., 1995), cadherin-11 strictly correlates with S0; it 

is not expressed in other parts of the PSM. Fig. 4.1A schematically illustrates the dynamic 

changes of cell-adhesion molecule types and concentrations during somite segmentation in 

chick embryos. Before segmentation, mesenchymal cells in the PSM weakly express N-CAM 

and N-cadherin. During segmentation, the condensing cells in S0 significantly increase their 

N-CAM and N-cadherin expression.  

 

Before and during somite separation, the cells at the periphery of S0 epithelialize (Dubrulle 

and Pourquié, 2004). During this epithelialization, N-CAM remains uniformly distributed 

over the entire surfaces of epithelial cells, whereas N-cadherins concentrate predominantly 

on the apical surfaces (which somewhat counter-intuitively face towards the center of the 

somite). Cells located in the core of the somite remain mesenchymal and continue to have 

essentially uniform surface distributions of both N-CAM and N-cadherin (Duband et al., 

1987; Linask et al., 1998).  

 

4.2.2 Eph/ephrin-Induced Cell “Repulsion” 

 

Ephs and ephrins are families of heterotypically-active cell-surface receptors that can lead to 

effective “repulsion” between a cell expressing an Eph and a cell expressing the 
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corresponding ephrin. How contact leads to effective repulsion is still under active 

investigation. A plausible mechanism is that pairing of complementary Ephs and ephrins on 

apposing cells triggers bidirectional signaling, which results in the local collapse of the actin 

cytoskeleton in both cells near their point of contact (Harbott and Nobes, 2005). This 

collapse then locally disrupts the condensation and pairing of cell adhesion molecules like N-

CAM and N-cadherin, which reduces, but need not completely eliminate, the strength of their 

homotypic intercellular binding (as suggested in  Kasemeier-Kulesa et al., 2006 and Cooke et 

al., 2005). Thus EphA4-ephrinB2 “repulsion” in somites may actually result from a reduction 

in effective cell-cell adhesion. Since Eph-Eph and ephrin-ephrin apposition has no effect on 

the cytoskeleton, cell adhesion molecules remain fully functional within the interior of an 

Eph-expressing or ephrin-expressing domain. Thus boundaries between domains expressing 

an Eph and its complementary ephrin are structurally weak, while the domains themselves 

can be strong, allowing tissue to pull apart along Eph/ephrin contact lines. Collapse of the 

actin cytoskeleton also destroys the pseudopods or leading edges which cells use to move in 

a particular direction (Mellitzer et al., 1999; Xu et al., 1999; Poliakov et al., 2004), 

preventing a cell expressing Eph from moving into a cluster of cells expressing the 

corresponding ephrin and vice versa (contact inhibition). The net effect is to establish 

compartmental boundaries between clusters of cells expressing Eph and clusters of cells 

expressing the complementary ephrin. Such boundaries are clearly visible using ordinary 

microscopy. 

 

Eph/ephrin signaling is responsible for boundary formation in the developing hindbrain 

(Mellitzer et al., 1999; Xu et al., 2000) and is necessary for the formation of intersomitic 
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boundaries and subsequent epithelialization (Durbin et al., 1998). During somite 

segmentation, EphA4 expresses in the anterior half of somites (S0A) and in the anterior tip of 

the PSM (S-1A), while ephrinB2 expresses in the posterior half of somites (S0P) (Fig. 4.1B) 

(Nieto et al., 1992; Bergemann et al., 1995; Durbin et al., 1998; Baker and Antin, 2003; 

Baker et al., 2003). EphA4/ephrinB2 signaling also regulates the mesenchymal-to-epithelial 

transition of the PSM during somitogenesis (Barrios et al., 2003). 

 

4.2.3 Interaction between Adhesion and Repulsion during Somitogenesis  

 

That the adhesive interactions of N-CAM and N-cadherin are homophilic while EphA4 and 

ephrinB2 produce an effective heterorepulsion (repulsion between cells of two 

complementary types) is crucial to the observed mechanics of somite formation. Cells 

expressing EphA4 and cells expressing ephrinB2 meet both at the presumptive somitic 

boundary (S0P to S-1A) and inside each somite (at the center of S0, i.e., S0A to S0P). If contact 

between cells expressing EphA4 and cells expressing ephrinB2 causes the separation of the 

posterior end of S0 (S0P) from the anterior end of the PSM (S-1A), why does it not cause a 

similar boundary to form inside S0 (between S0A and S0P) subdividing it into two non-

contacting smaller somites? N-cadherin in the center of the somite seems to be essential, 

since, in mouse, knocking out N-cadherin results in segmentation of normal somites into two 

separated sub-somites (Kimura et al., 1995; Radice et al., 1997; Horikawa et al., 1999). One 

question I will investigate through simulation is what interactions of adhesion and repulsion 

lead to segmentation without fragmentation of individual somites. 
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4.2.4 From Genetic Oscillators to Adhesion/Repulsion-Protein Patterns 

 

Molecular signaling during segmentation prepattern specification is still a subject of 

intensive research. The following highly simplified and speculative description provides at 

least a working hypothesis for these mechanisms. The embryo elongates primarily through 

division of cells in the extreme posterior of the PSM and in the tail bud. Cells leave the tail 

bud then cease to transcribe fgf8 mRNA. fgf8 mRNA slowly degrades, but continues to be 

translated into FGF8 protein (Dubrulle and Pourquié, 2004); thus the average level of FGF8 

in more anterior PSM cells is lower than in more posterior cells. In addition, the precursor to 

retinoic acid (RA), RALDH2 diffuses into the PSM from the anterior of the embryo. FGF8 

and RA couple antagonistically within cells to select either high-RA or high-FGF8 states in a 

bistable manner (Diez del Corral et al., 2003; Goldbeter et al., 2007). Above a threshold level 

of FGF8, individual cells in the PSM exhibit spontaneous oscillations in expression levels of 

many genes, especially those belonging to the Notch, Wnt and FGF signaling cascades 

(Palmeirim et al., 1997, Dequeant et al., 2006; Kulesa et al., 2007), with a period which 

depends on cytoplasmic FGF8 levels. Neighboring cells’ oscillators synchronize via Delta-

Notch signaling (Horikawa et al., 2006). The oscillation of FGF8 activity is superimposed on 

the background decrease of FGF8, a somewhat unusual circuit that results in a whole block 

of cells (the size of one somite, or about 200 microns in chick) switching to the high-RA state 

nearly simultaneously. The combination of this switch with the local phase of the oscillation 

determines the cell’s later differentiation (Aulehla et al., 2003; Aulehla and Herrmann, 

2004). Oscillations cease some time after this switch, but their persistence has no known 

effect on cell differentiation. 
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The phase read-out during cell determination seems to depend on Wnt signaling (Aulehla and  

Pourquié, 2006), though the full regulatory cascades are not known. Fig. 4.2 summarizes 

regulatory interactions (bottom) and AP expression patterns (top). The fundamental 

prepatterning mechanism is the inhibitory coupling from Notch to Wnt, via Axin2, Nkd1 and 

other pathways, which leads to elevated levels of Wnt in the centers of presumptive somites 

and of Notch at presumptive somite boundaries. The expression domains are fairly broad, 

with substantial overlap in the regions midway between a presumptive somite’s center and its 

boundaries. Wnt stabilizes cytoplasmic β-catenin, which acts as a transcription factor 

increasing expression of N-cadherin, which accumulates in a broad area around the 

presumptive somite core (Nelson et al., 2004). Notch similarly transiently upregulates 

Eph/ephrin expression and activity at the presumptive somite boundaries. The selective 

expression of the transcription factor Mesp2 activated by RA (Moreno and Kintner, 2004) in 

the anterior half of each presumptive somite defines anterior and posterior compartments by 

inhibiting DLL1 expression in the anterior compartments (Takahashi et al., 2003). Mesp2 

further leads to transient expression of EphA4 in the anterior compartments (Nakajima et al., 

2006), which peaks near the presumptive anterior boundary. In the posterior compartments, 

DLL1 maintains ephrinB2 expression (De Bellard et al., 2002), peaking near the presumptive 

boundary. Other protein level changes result from unknown mechanisms. The time lag from 

determination to segmentation seems primarily to result from transcriptional and translational 

delays and the time required for EphA4, ephrinB2, N-CAM and N-cadherin to reach 

functional levels (Kulesa, 2007). ephrinB2 levels seems to increase more slowly than do the 

levels of the other molecules. I have included this difference in the timing of molecular level 

changes in my simulations; however, the exact sequence is not crucial to my results.  
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4.2.5 From Adhesion-Protein Patterns to Segmentation  

 

Based on experiments that show that cells in the PSM condense into somites by changing 

their adhesive and migratory properties (Gossler and Hrabe de Angelis, 1998), my key 

hypothesis is that the primary ways that the cells’ internal differentiation states translate into 

mechanical activity are through:  

1) Differential expression and binding of the cell-adhesion molecules N-CAM and N-

cadherin. 

2) Differential expression and bidirectional activation of EphA4 receptors and ephrinB2 

proteins.  

Segmentation then results from the spatio-temporal coordination of N-CAM, N-cadherin and 

Eph/ephrin expression.  

 

4.3 Segmentation Model 

 

I use a two-dimensional approximation, neglecting DV variations. I also neglect medio-

lateral (ML) variations in cell properties (which may be quite important in many cases), 

assume that the intrinsic level of cytoskeletal cell motility is constant in all cells and that cells 

do not divide or die. 
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Figure 4.2: Schematic diagram of the translation of FGF8, Wnt and Notch cyclic 

expression into spatially-periodic patterns of N-cadherin, EphA4 and ephrinB2. Top 

Left. Within the PSM, fgf8 mRNA decay decreases FGF8 protein levels. Above a threshold 

FGF8 concentration, intracellular Wnt concentration oscillates with a period of ~90 minutes. 

Intercellular Delta-Notch signaling (not shown) synchronizes neighboring cells, producing 

coherent oscillations in Wnt concentration. Top Right. When the FGF8 concentration falls 

below a threshold, Wnt oscillations cease, creating a spatial oscillation in Wnt levels. The 

inhibitory interaction between Wnt and Notch leads to out-of-phase expression of Wnt and 

Notch. Middle Right. N-cadherin, EphA4 and ephrinB2 levels. N-cadherin expression is 

maximal at the cores of somites. EphA4 is expressed in anterior somite compartments and 

ephrinB2 in posterior compartments. Both are maximal at somite boundaries. Bottom. 

Plausible regulatory links from Wnt and Notch to N-cadherin, EphA4 and ephrinB2. The 

mutual inhibition of Wnt and Notch by axin2 and Nkd1 causes the Wnt and Notch 

oscillation. In the anterior somite, Notch signaling is suppressed by Mesp2, which also 

induces EphA4 expression. In the posterior somite, EphrinB2 is maintained by DLL1.  

 

 

Based on the biological observations I described above, my model assumes that 

somitogenesis depends predominantly on four molecular species: N-CAM, N-cadherin, 

EphA4 and ephrinB2. I make a number of simplifying assumptions concerning the behavior 

and spatiotemporal expression patterns of these molecules. I assume that the distribution of 

these adhesive and repulsive species is uniform over cell membranes and that the primary 
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effect of peripheral epithelialization is to change the relative cell sizes and adhesions in the 

somite core and periphery rather than redistributing adhesion molecules over the cell surface. 

 

I assume that binding of EphA4 and ephrinB2 on apposing cells reduces their effective 

adhesion due to their cell-adhesion molecules. However, I do include the variation in levels 

of molecular expression between the core and periphery of each somite and between the 

anterior and posterior halves of each somite compartment. 

 

I assume the following temporal sequence of molecular distributions (see Fig. 4.3). All 

molecular levels turn on abruptly at the beginning of a segmentation cycle (times t0, t1, t2, 

t3,…) and remain the same until the end of the simulation. In reality, these levels would 

change further as the somites matured, but the chief focus of this chapter is the initial 

formation of the somites rather than their later maturation. I do not attempt to model the 

origin of the somite-cycle timing. Within the posterior PSM (S-2, S-3,…), all cells express a 

uniform background level of N-CAM and N-cadherin, keeping the cells loosely connected. 

At the beginning of each segmentation cycle, N-cadherin levels in the cells at the core of S-1 

(the somite posterior to the forming somite) increase substantially, N-cadherin levels in cells 

at the periphery of S-1 decrease, high levels of EphA4 appear in the anterior half of the 

anterior compartment (S-1A) and low levels in the posterior half of the anterior compartment 

(S-1A). To represent the delayed appearance of ephrinB2, I also turn on a low level of 

ephrinB2 in the anterior half of S0P, and a higher level in the anterior half of S0P.  
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Figure 4.3: Schematic diagram of the spatio-temporal activation of N-cadherin, N-

CAM, EphA4 and ephrinB2 during somite segmentation. Upper Panels. At t0, all cells 

have uniform N-cadherin and N-CAM levels. At t1, N-cadherin levels increase in the core of 

the anterior domain of the PSM (the new somite S-1). At t2, when the somitic boundary 

between S-3 and S-1 starts to form, N-cadherin levels increase in the core of somite S-1. Lower 

Panels. At t0, no cells have EphA4 or ephrinB2. At t1 the cells in the anterior compartment of 

S-1 increase their EphA4 level, with a high level in the anterior half of the compartment and a 

low level in the posterior half. At t2 the cells in the anterior compartment of the new S-1 

increase their EphA4 level, with a high level in the anterior half of the compartment and a 

low level in the posterior half, while the cells in the posterior compartment of S0 increase 

their levels of ephrinB2, with a high level in the posterior half of the compartment and a low 

level in the anterior half. Both Panels. At t3, the somitic boundary forms between S0 and S-1, 

and the expression of N-cadherin, EphA4 and ephrinB2 reiterates caudally. 
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I assume that cells in the PSM initially have the same size. I represent the epithelialization 

and compaction of the peripheral cells into epithelial cells, by increasing the size of 

peripheral cells and decreasing the size of core cells slightly when a given compartment 

begins to express either EphA4 or ephrinB2.  

 

At the following cycle (t2, t3,…), this entire pattern repeats, shifted posteriorly by one somite 

length. 

 

4.4 Computer Simulation of Segmentation 

 

4.4.1 Additions to the Glazier-Graner-Hogeweg Model 

 

I implemented my somite segmentation model using the Glazier-Graner-Hogeweg model 

(GGH) (see Chapter Three, Section 3.2.2)  

 

In this simulation, the Effective Energy is: 

ܪ ൌ ෍ ܬ ቀ߬൫ߪሺଓറሻ൯, ߬൫ߪሺଓറԢሻ൯ቁ ቀ1 െ ,ሺଓറሻߪ൫ߜ ሺଓറԢሻ൯ቁߪ
పറ,పറᇲ

୬ୣ୧୥୦ୠ୭୰ୱ

൅෍ߣ൬ܸ൫ߪሺଓറሻ൯ െ ௧ܸ ቀ߬൫ߪሺଓറሻ൯ቁ൰
ଶ

ఙ

 

൅෍ߚ൬ܵ൫ߪሺଓറሻ൯ െ ܵ௧ ቀ߬൫ߪሺଓറሻ൯ቁ൰
ଶ
 

ఙ

,                                                                              (4.1) 

where J is the total adhesion energy per unit surface area between cells of type τሺσሻ and τሺσ'ሻ 

(negative for adhesion), ௧ܸ the target volume of cells of type ߬, ܸ the actual volume of each 
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cell, ߣ the strength of the volume constraint (the bigger ߣ, the smaller the cells’ volume 

fluctuations), ܵ௧ the target membrane area for cells of type ߬, ܵ the actual membrane area of 

each cell, and β the membrane elasticity.  

 

I discuss the conversion between MCS and experimental time below. 

 

4.4.2 GGH Somitogenesis Simulation 

 

To translate my model into a GGH simulation, I must define the GGH parameters and their 

temporal changes for each cell.  

 

Fig. 4.4 shows the initial condition of my two-dimensional rectangular lattice (170 x 450 

pixels). I begin with a segment of PSM, with ECM surrounding the PSM in the anterior and 

lateral directions. The segment of PSM, which extends to the bottom of the lattice, is long 

enough to allow more than three somites to form and the ECM layer is thick enough that the 

cells do not interact with the lattice edges in the region of somite formation. The long axis of 

the rectangle corresponds to the AP axis in the embryo and the short axis to the ML axis. 

Each cell initially occupies 5 × 5 pixels and each somite contains 20 × 20 cells, which 

corresponds to the approximately 400 cells in chick somites (Kulesa and Fraser, 2002).  

 

Fig. 4.4 shows the 10 cell types: 

1. ECM substrate (a single large generalized cell with unconstrained volume), ߬ ൌ ECM. 
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2. Mesenchymal cells in the posterior PSM with uniform volumes and low background 

levels of N-cadherin and N-CAM, ߬ ൌ cPSM. 

3. Epithelial cells in the periphery of the anterior half of the anterior compartments of 

somites, with increased volumes, high levels of EphA4, background levels of N-CAM 

and low levels of N-cadherin, ߬ ൌ NCAM, EphH. 

4. Epithelial cells in the periphery of the posterior half of the anterior compartments of 

somites, with increased volumes, low levels of EphA4, background levels of N-CAM 

and low levels of N-cadherin, ߬ ൌ NCAM, EphL. 

5. Mesenchymal cells in the core of the posterior half of the anterior compartments of 

somites, with decreased volumes, low levels of EphA4, background levels of N-CAM 

and high levels of N-cadherin, ߬ ൌ Ncadherin, EphL. 

6. Epithelial cells in the periphery of the posterior half of the posterior compartments of 

somites, with increased volumes, high levels of ephrinB2, background levels of N-

CAM and low levels of N-cadherin, ߬ ൌ NCAM, ephrinH. 

7. Epithelial cells in the periphery of the anterior half of the posterior compartments of 

somites, with increased volumes, low levels of ephrinB2, background levels of N-

CAM and low levels of N-cadherin ߬ ൌ NCAM, ephrinL. 

8. Mesenchymal cells in the core of the anterior half of the posterior compartments of 

somites, with decreased volumes, low levels of ephrinB2, background levels of N-

CAM and high levels of N-cadherin, ߬ ൌ Ncadherin, ephrinL. 

9. Mesenchymal cells in the anterior region of the PSM corresponding to the core of 

somite S-1, with their original volumes, background levels of N-CAM and high levels 

of N-cadherin, ߬ ൌ Ncadherin. 
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Figure 4.4: Simulated spatio-temporal levels of N-cadherin, N-CAM, EphA4, and 

ephrinB2 during somitogenesis. At t0 = 0 MCS, the simulation begins with a regular array 

of PSM cells expressing background levels of N-CAM and N-cadherin, and surrounded by 

ECM. At t1 = 5000 MCS, the N-cadherin level increases in the core of S-1 and the N-CAM 

level increases at the periphery. EphA4 levels increase to High in the anterior half of S-1A and 

to Low in the posterior half, while the peripheral cells in S-1A grow slightly in volume and the 

core cells shrink slightly in volume. At t2 = 7000 MCS this process repeats in the new S-1 and 

the ephrinB2 level increases to High in the posterior half of S-0P and to Low in the anterior 

half, while the peripheral cells in S-0P grow slightly in volume and the core cells shrink 

slightly in volume. At t3 = 9000 MCS, the process repeats for the new S0 and S-1 somites. 

 

 

10. Mesenchymal cells in the anterior region of the PSM which will correspond to the 

periphery of somite S-1, with their original volumes, background levels of N-CAM 
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and low levels of N-cadherin, ߬ ൌ NCAM. 

 

A clock controls the temporal distribution of cell types. All cells except the ECM begin as 

type cPSM. At the beginning of the first somite cycle in the simulation, at t1, cells in the 

anterior region of the PSM which I define as beginning as S-1A, change their types from type 

cPSM to type NCAM, EphH, NCAM, EphL, or Ncadherin, EphL and those in S-1P, change 

their types from type cPSM to type Ncadherin or NCAM. At the beginning of each 

succeeding somite cycle, the cells in the new S0P change their types from types Ncadherin or 

NCAM to types NCAM, ephrinH, NCAM, ephrinL, Ncadherin, ephrinL, cells in S-1A change 

from type cPSM to type NCAM, EphH, NCAM, EphL, or Ncadherin, EphL and cells in S-1P, 

change from type cPSM to type Ncadherin or NCAM. Fig. 4.4 shows the spatio-temporal 

activation of NCAM, N-cadherin, Eph, and ephrin during the simulation, which 

schematically reproduces the biological pattern in Fig. 4.3.  

 

4.4.2.1 Simulation Implementation 

I implemented my simulations using CompuCell3D (see Chapter Three, Section 3.2.3). I 

provide my simulation code in Appendix 7.G. 

 

4.4.2.2 Parameter Values  

My simulation has a substantial number of parameters, most of which are not known 

quantitatively from experiments. Fortunately, the patterning depends primarily on the 
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hierarchy of the adhesion energies. Since my primary goals in this chapter are qualitative 

reproduction of experiments, I retain a good deal of flexibility in choosing parameter values. 

 

4.4.2.3 Global parameters 

The parameter Tm determines the intrinsic cell motility and rescales all of the other 

parameters in the Effective Energy. I am therefore free to fix it and vary the scale of my other 

parameters or vice versa. In this case I fix Tm = 100 unless I specify otherwise. I then chose 

the remaining parameters so that ΔH/Tm in Eq. (3.8) is neither too large nor too small 

(typically between about 0.05 and 0.5). If ΔH/Tm is too small, the cells will not move. If 

ΔH/Tm is too large, cells will interact with the lattice, producing unnatural shapes or even 

falling apart. In principle, I can calculate Tm from experiments measuring the diffusion-

constants of cells in the tissue, but these measurements are not yet available for somites. I 

chose the values of β = 20 and λ = 20 for the cell-volume and surface-area constraints to keep 

surface and volume fluctuations relatively small, without causing cells to stop moving. I 

present the parameters in Tables 4.1, 4.2 and 4.3. 

 

4.4.2.4 Cell-adhesion energies 

I have two types of adhesion in my simulations: cell-ECM adhesion and cell-cell adhesion.  

 
The biology of the somite largely determines my adhesion hierarchy (where I have no 

information at all, I generally set parameters equal to a default value). 
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I assume that adhesion between cells with higher levels of N-CAM or N-cadherin is stronger 

and that both N-CAM and N-cadherin are homotypically adhesive and that N-cadherin is 

more cohesive than N-CAM: 

 

 

Table 4.1: Initial and target values for surface areas and volumes of specific cell types in 

my somitogenesis simulations. 

 

     
τ  

 Initial ߣ
V 

Biological 
Value (μm2) 

Vt Biological 
Value (μm2) 

β S St 

ECM 0 N/A N/A N/A N/A 0 N/A N/A 
NCAM 20 25 100 25 100  20 20 20
Ncadherin 20 25 100 25 100 20 20 20
NCAM, EphH 20 25 100 36 144 20 20 24
NCAM, EphL 20 25 100 36 144 20 20 24
Ncadherin, EphL 20 25 100 16  64 20 20 16
NCAM, ephrinH 20 25 100 36 144 20 20 24
Ncadherin, ephrinL 20 25 100 16  64 20 20 16
NCAM, ephrinL 20 25 100 36 144 20 20 24
cPSM 20 25 100 25 100 20 20 20
 

 

 

Table 4.2: Global parameters in my somitogenesis simulations. 

 

 Simulation Value Biological Value 
Tm 100 MCS (no comparable value) 
t1 5000 MCS 0 minutes 
t2 7000 MCS 90 minutes 
t3 9000 MCS 180 minutes 
ttotal 15,000 MCS (no comparable value) 
Δ 7.0 14 μm 
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Table 4.3: Initial adhesion energies for mesenchymal and epithelial cell sorting during 

somitogenesis. m, mesenchymal cell class, e, epithelial cell class.  

 

                   τ  
 

EC
M

 

N
C

A
M

 

N
cadherin 

N
C

A
M

, Eph
H  

N
C

A
M

, Eph
L  

N
cadherin, Eph

L  

N
C

A
M

, ephrin
H  

N
cadherin, ephrin

L  

N
C

A
M

, ephrin
L  

cPSM
 

τ                   Class  m m e e e e e e m 
ECM 0 15 15 15 15 15 15 15 15 15 

NCAM  -20.25 -24 -20.25 -20.25 -24 -20.25 -24 -20.25 -20.25 

Ncadherin   -38.44 -24 -24 -38.44 -24 -38.44 -24 -38.44 

NCAM, EphH    -20.25 -20.25 -24 -20.25 -24 -20.25 -20.25 

NCAM, EphL     -20.25 -24 -20.25 -24 -20.25 -20.25 

Ncadherin, EphL      -38.44 -24 -38.44 -20.25 -38.44 

NCAM, ephrinH       -20.25 -24 -20.25 -20.25 

Ncadherin, ephrinL        -38.44 -24 -38.44 

NCAM, ephrinL        -20.25 -20.25 

cPSM          -20.25 

 
 

 

For my two classes of epithelial (e) and mesenchymal (m) cells surrounded by ECM, I need 

an initially-random mixture of the two cell types to sort stably, with the epithelial cells at the 

surface and mesenchymal cells condensing in the core, which requires the following relations 

among the adhesion energies (Glazier and Graner, 1993): 

ሺm,mሻܬ  ൏
ሺm,mሻܬ ൅ ,ሺeܬ eሻ

2 ൏ ,ሺmܬ eሻ ൏ ,ሺeܬ eሻ,                                                   (4.2) 

 



 
 

100 
 

To prevent cells dispersing into the ECM, rather than sticking together, requires that (Glazier 

and Graner, 1993): 

,ሺeܬ     eሻ ൏ ,ሺeܬ ECMሻ ൑ ,ሺmܬ ECMሻ,                                                   (4.3) 

to prevent cells from dispersing into the ECM, I set J(cell, ECM) = 15 initially. The 

interaction energy per unit contact length between cells includes both adhesion and effective 

repulsion. Binding between EphA4 and ephrinB2 on apposing cells reduces the effective 

adhesion (increases J) by an Effective Repulsion Energy, Jr, compared to the adhesion 

energy, Ja, which I would predict based on the number and type of cell-adhesion molecules. 

The decrease in adhesion need not scale linearly with the number of bound Eph/ephrin pairs. 

The simplest approximation to such an effect is to write the net adhesion, J, as a sum of the 

adhesion and repulsion alone plus a bilinear perturbation of strength c: 

,ሺ߬ଵܬ ߬ଶሻ ൌ ,௔ሺ߬ଵܬ ߬ଶሻ ൅ ,௥ሺ߬ଵܬ ߬ଶሻ ൅ ,௔ሺ߬ଵܬܿ ߬ଶሻܬ௥ሺ߬ଵ, ߬ଶሻ.                              (4.4) 

When c is positive, the interaction weakens adhesion compared to the additive case. When c 

is negative, the interaction strengthens adhesion compared to the additive case.  

 

Additionally, cells expressing EphA4 should not mix with cells expressing ephrinB2. In this 

case, the energy for cell-cell interaction with repulsion must be larger than cell-cell 

interaction with adhesion: 

,ሺEphܬ cadherin, ephrin, cadherinሻ ൐                                                                                        

,ሺEphܬ cadherin, ECMሻ ൅ ,ሺephrinܬ cadherin, ECMሻ
2 ൌ                                                      

,ሺcadherinܬ ECMሻ ൅ ,ሺcadherinܬ ECMሻ
2 .                                                                         (4.5) 
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Since domains of EphA4 and ephrinB2 separate but remain compact as the ECM furrow 

forms between them, the ECM must engulf both domains: 

,ሺEphܬ             cadherin, Eph, cadherinሻ ൏ ,ሺEphܬ  cadherin, ECMሻ,        

,ሺephrinܬ             cadherin, ephrin, cadherinሻ ൏ ,ሺephrinܬ  cadherin, ECMሻ.                  (4.6) 

  

4.4.2.5 Target areas and volumes  

In two dimensions, the ratio of a cell’s target membrane area squared to its target volume 

determines how “floppy” the cell is. If the ratio is small, cells will be round and stiff; in the 

opposite limit, cells will be floppy and extended like an uninflated beach ball.  

 

4.4.2.6 Time 

The conversion between MCS and experimental time depends on the average values of 

ΔH/Tm, and hence on the choices of parameters. I make this assignment empirically, by 

observing the time in MCS that somite reorganization takes after I switch on the pattern of N-

CAM, N-cadherin, EphA4 and ephrinB2 and set it to the corresponding experimental time. 

For the values of parameters I have chosen, 2000 MCS = 90 minutes (or 1 MCS = 2.7 

seconds).  

 

Because my initial configuration uses non-biological, rectangular cells, I set t0 = 5000 MCS 

to allow the PSM to relax before I turn on the initial pattern of N-CAM and N-cadherin. 

Since the somitic clock interval is 2000 MCS, t1 = 7000 MCS, t2 = 9000 MCS, and so on. 
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4.5 Results and Discussion 

 

4.5.1 Parameter Choices 

 

All viable developmental mechanisms must be relatively insensitive to fluctuations in key 

parameters. Biochemical redundancy is one source of such robustness. My model lacks such 

redundancy. However, even reasonable agreement with experiment would be unsatisfactory 

if it required very tight parameter tuning. Instead, I expect that a viable model will have a 

relatively broad range over which parameters have relatively little effect on segmentation. I 

therefore conducted parameter sweeps to explore parameter dependencies and optimize my 

choices.  

 

Fig. 4.5 shows the long-time morphologies (t = 10,000 MCS) for cell motility Tm between 50 

and 200 and repulsion energy Jr between 20 and 60. For very high cell motility Tm ≥ 150 

(Figs. 4.5A1-A5), coherent somites fail to form. Similarly, if the effect of EphA4/ephrinB2 

binding is too weak (Jr < 50), the simulation does not form a clear intersomitic boundary. 

Only for strong repulsion (Jr = 60) and low motility (Tm ≤ 100) does the somitic furrow form 

(Figs. 4.5C5 and 4.5D5). Thus, the sensitivity to motility is fairly low (I can vary Tm by a 

factor of 2), but the sensitivity to variations in repulsion strength requires further study. 
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4.5.2 Segmentation Requires EphA4/ephrinB2 Repulsion  

 

Fig. 4.6A shows the long-time configuration (t = 10,000 MCS) of a simulation in the absence 

of EphA4 and ephrinB2. The epithelial cells from different somites and mesenchymal cells 

from the anterior and posterior domains of each somite mix. Segmentation fails, as is 

observed in experiments in zebrafish which lack EphA4 (Barrios et al., 2003). 

 

4.5.3 Segmentation Requires Multiple Levels of EphA4/ephrinB2 Expression 

 

I now explore the effect of EphA4/ephrinB2 repulsion on segmentation. 

 

My model includes two non-zero levels of EphA4 and ephrinB2: High and Low. I define JrHH 

to be the repulsion energy between a cell with a high level of EphA4 and a cell with a high 

level of ephrinB2, JrHL to be the repulsion energy between a cell with a high level of EphA4 

and a cell with a low level of ephrinB2 or between a cell with a low level of EphA4 and a 

cell with a high level of ephrinB2, and JrLL to be the repulsion energy between a cell with a 

low level of EphA4 and a cell with a low level of ephrinB2. 

 

First, I test whether correct segmentation requires two levels of EphA4 and ephrinB2 

expression within each somite compartment. I assume an additive relation between adhesion 

and repulsion (c = 0 in Eq. (4.4)) and that levels of EphA4 and ephrinB2 are uniform, JrHH = 

JrLL = JrHL = 60. Fig. 4.6B shows that an intersomitic furrow ( ) forms correctly. However 
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an obvious intrasomitic notch ( ) develops between the anterior and posterior somite 

compartments, which does not occur in normal somite segmentation. Therefore, correct 

segmentation appears to require multiple levels of EphA4 and ephrinB2. 

 

 

 

Figure 4.5: Morphologies of somites for different cell motilities and EphA4/ephrinB2 

repulsion strengths. Arrows ( ) mark intersomitic boundaries. A1-A5, B1-B5. For very 

high motilities, coherent somites do not form. C1-C3, D1-D2. Weak repulsion does not 

produce sharp intersomitic boundaries. C5, D5. Segmentation with somite separation 

requires strong repulsion and limited cell motility. All simulations are shown after 15,000 

MCS. 
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Next, I assume that the effect of the higher level of expression of EphA4 and ephrinB2 in the 

somite and PSM periphery results in effective repulsion energies of JrHH = JrHL = 3JrLL= 60, 

still assuming an additive relation between adhesion and repulsion (c = 0 in Eq. (4.4)). Fig. 

4.6C shows that an intersomitic furrow ( ) forms correctly. A very small intrasomitic 

notch ( ) develops between the anterior and posterior somite compartments, as is observed 

experimentally. The resulting morphology is very close to normal somite segmentation. 

 

Now I examine the effect of the bilinear term on the final pattern morphology. I assume a 

cooperative relation between adhesion and repulsion (c = 1/50 in Eq. (4.4)) and assume that 

high and low levels of EphA4 and ephrinB2 are equal: JrHH = JrLL = JrHL = 60. Even this 

small perturbation greatly changes the morphology from Fig. 4.6B. Fig. 4.6D shows that an 

intersomitic notch forms ( ) but the somites do not separate. Somewhat surprisingly, the 

size of the intrasomitic notch ( ) is much smaller. Again, correct somite formation seems to 

require multiple levels of EphA4 and ephrinB2.  

  

Finally, I assume a cooperative relation between adhesion and repulsion (c = 1/50 in Eq. 

(4.4)) and that the effect of the higher level of expression of EphA4 and ephrinB2 in the 

somite and PSM periphery results in effective repulsion energies of JrHH = JrHL = 3JrLL= 60, 

as in Fig. 4.6C. Fig. 4.6E shows only a slight intersomitic notch ( ) and no intrasomitic 

notch ( ). As in Figs. 4.6A and 4.6D, the somites do not separate. 

 

Thus I will use additive repulsion (c = 0) at two levels, with JrHH = JrHL = 3JrLL= 60 for my 

remaining simulations if I do not specify otherwise. 
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Figure 4.6: Effects of adhesion/repulsion coordination on somite morphology. Heavy 

arrows ( ) mark intersomitic boundaries. Light arrows ( ) mark intrasomitic 

compartment boundaries. A. Without EphA4 and ephrinB2, cells mix between the posterior 

of a somite and the anterior of the following somite. B. Linear interaction of adhesion and 

repulsion with uniform repulsion results in both intersomitic and intrasomitic separation. C. 

Linear interaction of adhesion and repulsion with graded repulsion results in intersomitic 

separation without intrasomitic separation. D. Weak nonlinear interaction of adhesion and 

repulsion with uniform repulsion results in both intersomitic and intrasomitic segmentation. 

E. Nonlinear interaction of adhesion and repulsion with graded repulsion results in 

intersomitic segmentation without intrasomitic segmentation. All simulations are shown after 

15,000 MCS 

 

 

The Takeichi group (Horikawa et al., 1999) has observed the separation of the anterior and 

posterior somite compartments during somite formation in N-cadherin (-/-) mouse embryos. I 

removing N-cadherin from my simulation. I kept the repulsion at the same levels as the 
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simulated this experiment by setting the adhesion energy for cell types expressing N-cadherin 

equal to the adhesion energy for the corresponding cell type expressing N-CAM, effectively 

values used for Fig. 4.6B. I observed both intersomitic ( ) and intrasomitic ( ) furrows as 

seen in Fig. 4.7D. Thus N-cadherins seem essential to keeping the two compartments of a 

somite fused during segmentation. 

 

4.5.4 Dynamic Morphological Changes and Error Correction during 

Segmentation  

 

Time-lapse movies of shape changes during segmentation show intriguing effects (Kulesa 

and Fraser 2002) (Figs. 4.8A-F). In particular, the boundary between S0 and S-1 forms a 

characteristic ball-and-socket or W shape (Fig. 4.8C), with the groove between S0 and S-1 

first opening up at the dips of the W, followed by the arms of the W retracting and sometimes 

folding inwards. Initially, the PSM envelops the forming somite, forming a sleeve. During 

segmentation, the sleeve cells fold back into the PSM along the S0-S-1 boundary and the 

somite eventually rounds up. 

 

One way to reproduce this dynamics would be for the PSM to cohere more to ECM than 

other cell types, i.e., J(cPSM, ECM) < J(other cell type, ECM), in which case I expect that 

PSM cells will partially surround the S0 somite. A possible mechanism for such behavior 

would be a reduction in membrane levels of integrins in the posterior compartments of S-1 

and later (S0, S1,…) somites. 
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Figure 4.7: Comparison of somite structures in wild-type and N-cadherin-knockout 

experiments and simulations. Heavy arrows ( ) mark intersomitic boundaries. Light 

arrows ( ) mark intrasomitic compartment boundaries. A. Experimental wild phenotype 

(adapted from Horikawa et al., 1999). B. Simulated wild phenotype after 15,000 MCS. C. 

Experimental N-cadherin-double-knockout phenotype (adapted from Horikawa et al., 1999). 

The somites separate into Uncx4.12-positive and Uncx4.1-negative regions. Uncx4.1 is a 

specific marker for the posterior compartments of somites. D. Simulated N-cadherin-double-

knockout phenotype at 10,000 MCS. Both somites and somite compartments separate.  

 

 

                                                 
2 Gene names are given in italics. 
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In Figs. 4.8G-L, a black arrow ( ) marks intersomitic boundaries (corresponding to the 

white arrow in Figs. 4.8A-B). During the clock cycle before segmentation proper, and thus 

before the initiation of ephrinB2 expression in S-1 (Figs. 4.8G-H), as in the experiment, I 

observe anterior cells at the sides of S-2 move anteriorly and wrap around the posterior end of 

S-1. During the following clock cycle (Figs. 4.8I-J), the appearance of ephrinB2 in S0P 

(formerly S-1P) causes the formation of a W-shaped intersomitic furrow between S0 and S-1, 

as in Figs. 4.8C-D. During the following cycle, the wings of the W retract and the somite 

rounds up (Figs. 8K-L and 8E-F). The details of the retraction differ somewhat from the 

experiment, with the wings of the W retracting but not folding inwards, as is seen in some 

experiments. 

 

Because biological signaling is noisy, some cells will slightly misread the somitic clock 

during determination. As a result they will differentiate inappropriately for their location 

(misdifferentiate). Such misdifferentiation occurs primarily near compartment boundaries, 

where cells are near a biological threshold between differentiation states and a small amount 

of noise can throw the switch. Kulesa and Fraser may have observed such effects in their 

movies, where cells initially on one side of the presumptive intersomitic boundary cross the 

boundary during segmentation (Kulesa and Fraser, 2002). The white and black dots in Figs. 

4.8A-F denote cells that are not simply carried along as the W extends and retracts, but 

actually cross from S-2 to S-1 and from S-1 to S-2 respectively.  

 

My simulations show that adhesion-based cell-sorting provides a viable mechanism for the 

correction of minor errors in differentiation. In my simulation in Figs. 4.8G-L, I have allowed 
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Figure 4.8: Simulated and experimental somite segmentation dynamics. A-F. Confocal 

time-lapse images of vitally-stained tissue (adapted from Kulesa and Fraser, 2002). White 

arrows indicate intersomitic boundaries. The white and black dots label cells which cross the 

presumptive boundary. G-L. Simulated somite segmentation with preferential adhesion 

between PSM and ECM and AP indeterminacy of somite differentiation. Black Arrows ( ) 

mark intersomitic boundaries. Scale bar in experimental image 8F is 50 μm and JrHH = JrHL = 

3JrLL = 80. 

 

 

for misdifferentiation by having each cell read its AP position with a small error chosen from 

a Gaussian distribution with a width, Δ, of 14 microns when it selects its type, making the 
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initial compartment boundaries blurry. Thus, some cells in S0P assume types (red) that should 

be in S-1A, etc... If I follow these red cells during their subsequent time evolution (Figs. 4.9 

A-C), I find that adhesion-driven cell sorting causes most (though not all) of them to cross 

into the correct compartment, in a manner identical to that in the experiments. The greater the 

cell motility compared to the rate of furrow formation, the more complete the correction. 

 

 

 

Figure 4.9: Detail of boundary crossing of misdifferentiated cells from Fig. 4.8. A. 9000 

MCS. B. 10,000 MCS. C. 11,000 MCS.  

 

 

4.6 Conclusion 

 

In this chapter, I have shown that multilevel homotypic adhesion and heterotypic repulsion 

can reproduce many of the phenomena of normal somite segmentation, including the ball-

A C B 
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and-socket dynamics and compartment crossing by misdifferentiated cells. Simulated N-

cadherin knockouts produce an intrasomitic furrow as observed in experiments.  
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CHAPTER FIVE 

 

 

EFFECTS OF FGF4 AND FGF8 ON CHONDROGENIC 

PERIODICITY AND CELL DIVISION IN CHICK-FORELIMB 

MICROMASS CULTURE  

 

Abstract 

During vertebrate limb development, multiple fibroblast growth factors (FGFs) interact with 

other factors to regulate limb outgrowth and chondrogenic patterning3. While some FGFs 

may be redundant during limb development, the multiple fgf genes and FGF proteins differ 

subtly from each other in their expression patterns and/or receptor-binding specificities, 

suggesting that many FGFs could have distinct functions. To investigate the differences 

between two key FGFs, FGF4 and FGF8, in regulation of limb outgrowth and patterning, I 

used chick-limb micromass culture as an in vitro model and analyzed cell division and 

chondrogenesis under different concentrations of exogenous FGFs. To examine the roles of 

FGF4 and FGF8, I quantitatively assayed chick-forelimb micromass cartilage patterns and 

average cell-division rates in response to FGF4 and/or FGF8 treatment. Since FGF4 and 

FGF8 co-express in the posterior limb Apical Ectoderm Ridge (AER) (Martin, 1998), I also 

explored micromass patterning under simultaneous application of FGF4 and FGF8, which 

                                                 
3 Here, “FGF” stands for an FGF protein, “fgf” stands for an fgf gene. 
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caused pattern changes different from the simple combination of the effects of FGF4 and 

FGF8. Both carboxyfluoroscein-succinimidyl-ester (CFSE) staining to measure rates of cell-

division within the cultures and flow cytometry showed that the cell-division rate increased 

roughly linearly with the concentration of FGF4 and FGF8 over the range 12.5 ng/ml—100 

ng/ml. FGF4 enhances cell division more than FGF8 does at the same concentration. I then 

explain the different effects of FGF4 and FGF8 on chondrogenic patterning and cell 

proliferation based on published receptor-binding specificities. The effects of these FGFs 

may result from partial overlap of their downstream signaling pathways. I also propose a 

model for the roles of FGF4 and FGF8 during limb outgrowth and chondrogenesis: The distal 

and posterior cells in the limb bud divide more frequently due to high levels of expression of 

FGFs in the distal-posterior domain and their descendants contribute a greater fraction of the 

final volume of the limb than the descendants of cells in other areas.  

 

5.1 Introduction 

 

5.1.1 Limb Development 

 

Vertebrate limb outgrowth and patterning depend on the establishment and maintenance of 

three signaling centers within the limb bud: (1) the apical ectodermal ridge (AER), an 

epithelial structure running from the anterior to the posterior of the distal margin of the bud; 

(2) the zone of polarizing activity (ZPA) in the mesenchyme at the posterior of the bud, which 

expresses diffusible Sonic Hedgehog (Shh); (3) nonridge ectoderm. Elimination of the AER 



 
 

115 
 

prevents subsequent proximo-distal growth. Diffusible FGFs define AER function, connect 

signaling centers and can compensate for an excised AER (Niswander et al., 1993; Vogel and 

Tickle 1993; Niswander et al.,1994; Vogel et al., 1995; Hara et al., 1998; Martin, 1998; 

Lewandoski et al., 2000; Sun et al., 2002; Sanz-Ezquerro and Tickle 2003). Grafting the ZPA 

to the anterior side of a host limb bud results in mirror-image duplication of the posterior 

limb. Shh is responsible for anterior-posterior limb patterning and can compensate for an 

excised ZPA (Tickle et al., 1997). 

 

5.1.2 Roles of FGFs and their Receptors during Limb Development 

 

FGFs belong to a large family (at least 22 members) of growth factors (Zhang et al., 2006). 

Developing chick limb expresses five FGF genes, fgf2, fgf4, fgf8, fgf9, and fgf10 (fgf17 in 

mouse) (Martin, 1998), and four fibroblast-growth-factor receptors (FGFR). FGFR1 and 

FGFR2 play roles in early limb development (Deng et al., 1997; Xu et al.,1998; Li et al., 

2005). The AER expresses fgf2, fgf4, fgf8, and fgf9, and the mesencyme underlying the AER 

expresses fgf2 and fgf10 (Martin, 1998). 

 

5.1.3 Importance of FGF4 and FGF8 

 

Although removal of AER truncates limb growth (Martin, 1998), ectopic FGF1, FGF2 

(Savage and Fallon 1995), FGF4 (Niswander et al., 1993), FGF8 and FGF10 (Martin, 1998) 
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can rescue limb growth. Paradoxically, knockout of fgf2, fgf4 (Moon et al., 2000; Sun et al., 

2000), fgf9 (Lewandoski et al., 2000), or fgf17 (Xu et al., 2000) individually has no effect on 

limb development. Inactivation of fgf8 results in a small limb (hypoplasia) (Sun et al., 2002; 

Lu et al., 2006). In the absence of both FGF4 and FGF8 activity, limb development fails (Sun 

et al., 2002). FGF8 signaling from the AER forms a positive feedback loop with FGF10 in 

the underlying mesenchyme, which is essential for limb initiation, outgrowth and patterning 

(Lewandoski et al., 2000). fgf4 RNA localizes to the posterior AER and establishes a positive 

feedback loop with Shh in the ZPA (Niswander et al., 1994). Thus, both FGF4 and FGF8 are 

essential to proximo-distal and antero-posterior growth and patterning.  

 

5.1.4 Micromass Cell Culture 

 

Chondrogenic mesenchymal condensation in chick-limb-mesenchyme micromass cultures 

provides an in vitro model for limb growth, which allows exploration of morphogens’ effects 

on cartilage patterning and limb growth using serum-free defined media (SFDM, Paulsen and 

Solursh, 1988) and in the absence of external cues from the non-AER ectoderm, body flank, 

AER and ZPA. At the cellular level, micromass cultures exhibit chondrogenic condensations 

similar to those in limb mesoblast in vivo, although the random spot-stripe patterns that form 

in vitro lack the controlled architecture of the developing limb bud. 
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5.2 Materials and Methods 

 

5.2.1 Micromass Cell-Culture Techniques 

 

Micromass cell-culture experiments use pools of mesenchymal tissue isolated from the distal 

0.2 mm of Hamburger and Hamilton (HH) (Hamburger and Hamilton, 1992) stage 24-25 

wing buds of White Leghorn embryos (Purdue University, West Lafayette, IN) (Downie and 

Newman, 1994, 1995). This tissue is free of myoblasts and myogenic precursors (Newman et 

al., 1981). I treated the limb tip with 10mM EDTA for 20 minutes at 37°C to remove the 

ectoderm cells (Downie and Newman, 1994). The cultures therefore consisted almost entirely 

of mesenchymal cells. I plated cells at 1.75 × 105 per 10 μl spot on 24-well plates (Costar Cat. 

No. 3526) with DMS (90% DM4 with 10% Fetal bovine serum (FBS) and antibiotics). I 

added Serum-free defined medium (Paulsen and Solursh, 1988) (60% Ham’s F12, 40% 

DMEM, 5 μg/ml insulin, 10 nM hydrocortisone, 50 μg/ml L-ascorbic acid (to enhance 

chondrogenesis), 5 μg/ml chicken transferrin (a blood plasma protein for iron-ion delivery) 

and antibiotics) into each well. I then added FGF4 (R & D Systems, molecular weight 16 

KD), FGF8 (R & D Systems, molecular weight 23 KD) or a combination of the two at 

concentrations of 12.5, 25, 50, or 100 ng/ml. This range covered those reported to change 

chondrogenesis patterning (Moftah et al., 2002). Cells attached to the plates after 45 minutes. 

I replaced the old medium with fresh SFDM after 48 hours, and daily thereafter. I fixed 

cultures after 6 days and stained them for cartilage matrix with Alcian blue at pH 1.0 

                                                 
4 DM–60% Ham’s F12 and 40% Dulbecco's Modified Eagle's Medium (DMEM). 
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(Downie and Newman, 1994; Moftah et al., 2002). I visualized and recorded the cartilage 

patterns using a Nikon binocular dissection microscope at 1.5 × with a double fiber-optic side 

light and calibrated the length scale of the images with a micrometer under the same 

magnification.  

 

5.2.2 Image Analysis 

 

5.2.2.1 Measurement of the Average Interval 

To measure the periodicity of the chondrogenic patterns, I used the Average Interval, LA, the 

mean distance between neighboring peaks (center lines of the chondrogenic areas) or 

between the spot centers (Fig. 4.1), computed using the peak-length method (Miura et al., 

2000; Kiskowski et al., 2004), which defines the average peak interval to be twice the total 

number of pixels in the region of interest (ROI) divided by the number of pixels that contain 

peaks (center lines of chondrogenic areas) and valleys (center lines of nonchondrogenic 

areas): 

Aܮ ؠ  
Number of total pixels ൈ  2

Number of peak and valley pixels
,                                                                      (5.1) 

 

This method is independent of the size of the chondrogenic condensations and the types of 

chondrogenic patterns (i.e., spots or stripes) (Miura et al., 2000, 2006; Kiskowski et al., 

2004) as long as the chondrogenic and nonchondrogenic areas are separated. I implemented 
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Figure 5.1: Typical limb-cell micromass-culture image. The chondrogenic domains are 

stained by Alcian blue. The thick arrow points to a stripe. The thin arrow points to a spot. 

The black curve indicates a valley line, which is the center line of a nonchondrogenic area 

between chondrogenic spots or stripes. Another black line indicates a peak line, which is the 

center line of a chondrogenic stripe. The double arrows show the distances between centers 

of chondrogenic spots and between peak lines. 
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Figure 5.2: Image processing to compute the average interval between clusters using the 

peak-length method. A. A gray-scale image of an Alcian-blue-stained micromass culture. B. 

Binary-thresholded image of A, showing well-separated chondrogenic and nonchondrogenic 

areas. C. Detail of B (250 × 250 pixels). D. Peak (chondrogenic) and valley 

(nonchondrogenic) lines marking the center lines of chondrogenic and nonchondrogenic 

areas in C.  

 

 

the algorithm described in Miura et al., and Kiskowski et al., (Miura et al., 2000, 2006; 

Kiskowski et al., 2004) using ImageJ software, specifically for Alcian-blue-stained 

micromass culture (see Appendix 7.D for the detailed operation procedure and Macro code).  

 

1) I first segregated chondrogenic from non-chondrogenic areas in the gray-scale image 

(Fig. 5.2A) by background subtraction using a ‘rolling ball’ of size 10 pixels (27 × 27 

μm2) to produce the results in Fig. 5.2B. The main idea of the ‘rolling ball’ algorithm 

is to apply a local threshold to optimally remove the surrounding noise (for details on 

the algorithm, see documentation for the ImageJ package at http://rsb.info.nih.gov/ij). 

1mm 

B C D 
1mm 
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2) I then generated a binary image using the ‘Particle Analysis’ operation in ImageJ (See 

Appendix 7.D) and selected for any chondrogenic area bigger than 10 pixels (27×27 

μm2).  

 

3) Finally, I selected a region of interest (100 × 100 or 250 × 250 pixels), skeletonized 

both the primary binary image (shown in Fig. 5.2C) and its inverted image, and 

counted the number of peak and valley pixels. Fig. 5.2D illustrates the peak and 

valley lines for the selected region in Fig. 5.2C.  

 

5.2.2.2 Measuring the integrated density of Alcian-blue staining 

The chondrogenic degree is normally determined by measuring the density of extracted 

Alcian-blue stain from the micromass culture (Downie and Newman, 1994, 1995). I used 

image analysis to integrate the Alcian-blue density over the two-dimensional micromass 

image to estimate the degree of chondrogenesis. I converted the RGB image into a gray-scale 

image and inverted it, so regions with strong Alcian-blue staining had large gray-scale 

values. I then subtracted the background intensity using the rolling ball algorithm in ImageJ 

(see Appendix 7.E for code). This algorithm reduces background noise and maintains initial 

differences in intensity. I then integrated the intensity over the whole image using ImageJ 

(see Appendix 7.E for code). I further defined the cartilage-fraction ratio as the integrated 

Alcian-blue staining (IS) divided by the total micromass area (TA). To minimize differences 

between runs, I normalized IS and TA for test samples by dividing them by the IS or TA 
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values for SDFM-treated samples. I use the normalized cartilage-fraction ratio (NCFR) to 

stand for the chondrogenic degree: 

ܴܨܥܰ ൌ
∑ ୱୟ୫୮୪ୣܵܫ ∑ ⁄SDFMܵܫ
ୱୟ୫୮୪ୣܣܶ∑ SFDMܣܶ∑/

,                                                                                   (5.2) 

where the sum is over three different runs.  

 

Similarly, in order to check for changes in average nodule size, I used ImageJ to measure the 

average size of the cartilage nodules. I used the same ‘rolling ball’ size for all the images to 

remove background noise and used the same particle threshold size in the ‘Particle Analysis’ 

function of ImageJ for all the images. I then divided the average nodular size for each run 

with FGF treatment by the average for runs with SFDM treatment only. 

 

5.2.3 CFSE Staining and Flow-Cytometry Analysis of Cell Division 

 

If I stain cells with a pulse label of CFSE, all cells take up a comparable amount of CFSE. 

When cells later divide, the CFSE partitions equally between the daughter cells, reducing 

staining intensity by a factor of two. I can then measure the cell-division rate by checking the 

fluorescence intensity using flow-cytometry (Lyon and Parish, 1994; Cooperman et al., 

2004). For limb-micromass culture specifically, before plating, I suspended cells in DM (60% 

DMEM, 40% F-12), incubated them at a concentration of 1 × 106 cells/ml in DM with 5μM 

CFSE for 10 minutes at 37°C with CO2, then added 1/5 FBS, and washed with DMS twice. I 

then plated cells into culture wells at 1.75 × 105/10 μl per spot. For each experiment, I plated 

CFSE-untreated cells as autofluorescence controls, and Colchicine-treated (1 ng/ml, 
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colchicine inhibits cell division) and CFSE-treated cells as no-cell-division controls. I used 

CFSE-treated cells cultured with SFDM only as untreated controls. I incubated CFSE-treated 

cells with SFDM and FGFs for the first two days, and with SFDM only thereafter. After 4 

days, I detached cells with 0.5% trypsin-0.2% EDTA (Gibco) for 20 minutes at 37°C, added 

FBS, about 1/10 by volume of trypsin solution, and fixed them with 4% paraformaldehyde. 

Afterwards, I washed the cells, filtered them through a 50 μm nylon filter (Small Parts, Inc.), 

and stored them in PBS with 2% FBS in the dark at 4°C for about 12-16 hours for analysis 

the next morning. Analysis used a FACS@Calibur flow-cytometer and cell-Quest Pro 

software (BD Biosciences, CA). The absolute division rate, RD, is: 

ܴD ؠ
MIF of no Division Control െ MIF of Autofluorescence

MIF of Sample െ MIF of Autofluorescence ,                                     ሺ5.3ሻ  

where, MIF is the Mean Intensity of Fluorescence of the samples as given by cell-Quest Pro, 

MIF of no Division Control is the MIF for colchicine-treated and CFSE-treated cells. MIF of 

Autofluorescence is the MIF from CFSE-untreated cells and MIF of Sample is the MIF for the 

CFSE-treated cells with SFDM only or also with FGFs.  

 

5.3 Results  

 

Fig. 5.3 shows representative images of Alcian-blue stained cultures for SFDM only (Figs. 

5.3A1-4), various FGF4 concentrations (Fig. 5.3B1-4), various FGF8 concentrations (Figs. 

5.3C1-4), and various FGF4 and FGF8 treatments (Figs. 5.3D1-4).  
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5.3.1 Total Micromass Area and Integrated Density of Alcian-Blue Staining 

 

Fig. 5.4A shows that the total area occupied by cells differs for different FGF treatments. 

Each data point averages three runs of two replicates each. The two-dimensional micromass 

area decreases significantly with increasing FGF dosage (paired-sample t-test, P ~ 0.05, for 

details, see caption of Fig. 5.4). 

 

Fig. 5.4B shows the Normalized Cartilage-Fraction Ratio (NCFR). Since the NCFR 

represents the degree of chondrogenesis, Fig. 5.4B shows that both FGF4 and FGF4 and 

FGF8 in combination inhibit chondrogensis (most P values < 0.1), while FGF8 alone may 

enhance chondrogenesis slightly (most P values > 0.2).  

 

5.3.2 Average Intervals and Nodule Sizes 

 

Fig. 5.4C shows the mean average intervals from three runs, each with two replicates. FGF8 

may slightly increase average intervals, while FGF4 decreases them (most P values > 0.2). 

Consistent with the change in average intervals in Fig. 5.4C, FGF8 may reduce nodule size 

(paired-sample t-test, P > 0.1), while FGF4 increases it (P < 0.01) at low and high 

concentrations and FGF4 and FGF8 double treatment increases it at high concentration (P = 

0.01). 
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Figure 5.3: Alcian-blue stained chick-forelimb-cell micromass cultures after six days of 

incubation. FGF treatment types are indicated to the left of each row, FGF concentrations at 

the top of each column. A1-A4. Micromass culture with SFDM only. B1-B4. Micromass 

cultures treated with FGF4 at 12.5 ng/ml, 25 ng/ml, 50 ng/ml and 100 ng/ml; C1-C4. 

Micromass cultures treated with FGF8 at 12.5 ng/ml, 25 ng/ml, 50 ng/ml and 100 ng/ml; D1-

D4. Micromass cultures treated with FGF4 and FGF8 each at 12.5 ng/ml, 25 ng/ml, 50 ng/ml 

and 100 ng/ml. FGF4 (B4) but not FGF8 (C4) inhibits cartilage formation at high 

concentrations. FGF4 and FGF8 double treatment (D4) also inhibits chondrogenesis.  
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Figure 5.4: Micromass chondrogenic features after various FGF treatments. All values 

are means for three runs normalized by values for control samples treated with SFDM only. 

Blue, FGF4 treatment. Red, FGF8 treatment. Green, FGF4 and FGF8 double treatment. 

Using the paired-sample student t-test, I checked the statistical significance of changes, 

caused by different FGF dosage ranges (low–12.5 ng/ml to 25 ng/ml, middle–25 ng/ml to 50 

ng/ml, and high–50 ng/ml to 100 ng/ml). A. Normalized Average Total Micromass Area. The 

P value under FGF8 treatment is only significant for low concentrations (P = 0.06). The P 

values for the area changes under middle range FGF4 treatment and FGF4 and FGF8 double 

treatment are not significant. For the other cases, P values ranged from 0.03 to 0.10. B. The 

NCFR as defined in Eq. (5.2). FGF8 causes no obvious changes (P > 0.25) for low or high 
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doses, the change in the middle range is significant (P = 0.09). FGF4 treatment at low and 

high doses decreases the ratio (P ≤ 0.1) but the change is not significant in the middle range 

(P = 0.25). FGF4 and FGF8 double treatment may decrease the ratio at high concentrations 

(P = 0.01). C. Normalized average intervals between cartilage nodules or peaks/valleys show 

no change with treatment (P values range from 0.1 to 0.49, most > 0.2). D. The normalized 

average size of cartilage nodules. The size changes caused by FGF4 at low and high ranges 

are significant (P ≤ 0.01). The changes caused by FGF8 are not significant (P ≥ 0.1). The 

change at high concentrations for FGF4 and FGF8 double treatment is significant (P = 0.01).  

 

5.3.3 Average Rates of Cell Division 

 

Fig. 5.5A shows a typical flow-cytometry histogram (x–relative CFSE stain intensity, y–

event counts) for CFSE-stain analysis. The horizontal CFSE fluorescence-intensity axis has a 

MIF cell autofluorescence of about 20. The MIF of FGF4-treated cells is about 700-900, the 

MIF of FGF8-treated cells is about 1000-1300. The MIF for cells treated with SFDM only is 

about 2400. Table 5.1 shows mean cell-division rates. Both FGF4 and FGF8 enhance cell 

division, with the division rate increasing with increasing FGF concentration. FGF4 has a 

stronger effect than FGF8 at the same concentration. FGF4 and FGF8 double treatment may 

produce higher cell-division rates than either FGF treatment alone, but the values were not 

statistically significant. Using the paired-sample student t-test, I checked the statistical 

significance of differences in cell-division rates over three different dosage ranges (low–12.5 

to 25 ng/ml, middle–25 to 50 ng/ml, and high–50 to 100 ng/ml). Different FGF4 doses caused 
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significant changes (P values from 0.01 to 0.07). For FGF8 treatment, cell division changed 

significantly only for high doses (P = 0.04). 

 

 

 
 
Figure 5.5: Mean cell-division rates assayed by CFSE staining. Typical flow-cytometry 

histograms (x–relative CFSE stain intensity, y–event counts). From left to right, the curves 

show an autofluorescence control (since some cells have strong autofluorescence, I use cells 

without CFSE treatment as autofluorescence controls), FGF4-treated cells, FGF8-treated 

cells, SFDM-control cells and no-division-control cells (10,000 cells and four runs for each 

treatment. In each run, all the samples were selected from a sample pool prepared at the same 

time, by the same person, using the same treatments).  
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5.4 Discussion  

 

5.4.1 Effects of FGFs on Cell Division 

 

The average cell-division rates in FGF-treated micromass cultures ranged from one half to 

one per day. Increasing FGF concentration increased the division rate, but only slightly for 

treatment with a single FGF. The cell-division rate in chick limb buds in vivo is much higher 

than that in vitro, three divisions per day (Vargesson et al., 1997). A possible explanation for 

this difference is that micromass cultures are missing other important proliferation signals 

present in vivo (Sun et al., 2002, Cooperman et al., 2004). FGF8 enhances cell division 

slightly, which is consistent with Moftah’s results for FGF8 in DMS (Moftah et al., 2002). 

FGF4 enhances cell division more than FGF8 does at the same concentration, which is 

consistent with Martin’s experiments, where replacing fgf8 with fgf4 induced polysyndactyly 

(webbing and the presence of extra fingers or toes) (Lu et al., 2006). 

 

5.4.2 Effects of FGFs on Chondrogenesis 

 

At different developmental stages, micromass cells express different types and amounts of 

FGFs and FGFRs. Thus, the uncertainty caused by the sample collection and experimental 

manipulations required to set up micromass cultures can cause variations between 
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experimental runs. This variation can affect chondrogenic patterning, which may explain the 

variation in the average intervals I measured for treatments which were nominally the same.  

 

 

Table 5.1: Means and standard deviations of cell-division rates for limb-cell micromass 

cultures for various FGF treatments. The average cell-division rate for micromass cultures 

with SFDM treatment was 0.55 divisions per day. Thus, cell division in untreated in vitro 

cultures was very limited.  

 

FGF Concentration 
(ng/ml) 

Means and Standard Deviations of 
Cell-Division Rates (per day) 

FGF4 FGF8 
12.5 0.89 ± 0.17 0.68 ± 0.16 
25 0.95 ± 0.18 0.70 ± 0.15 
50 1.00 ± 0.18 0.70 ± 0.14 
100 1.10 ± 0.25 0.77 ± 0.13 

 

 

My sample size is quite small. Increasing the sample size might allow verification of the 

apparent effect of FGFs on pattern intervals. Alternatively, FGFs might not change the 

pattern intervals directly, though they may increase the density threshold for chondrogenic 

patterning by inhibiting chondrogenesis. FGFs are usually considered to be permissive rather 

than instructive signaling molecules and can affect both growth and patterning (Tickle et al., 

1997); e.g., FGF2 and FGF8 interact with FGFR2 to cause perinodular inhibition (Newman et 

al., 2002). Inevitably, during embryonic development, patterns arise in conjunction with 

growth. How growth and patterning interact remains unclear, since most mathematical 

analyses of patterning have neglected growth (Turing, 1952; Crampin et al.,1999; Meinhardt, 
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2003), even though rapid growth can induce patterning instabilities (Barrass et al., 2006). 

Signaling cascades also interact, e.g., the Wnt- and FGF-signaling pathways both employ 

GSK3β to regulate β-Catenin and Snail signaling (Katoh and Katoh 2006). Some signaling 

pathways are also multi-functional; e.g., FGFs can regulate cell proliferation, differentiation, 

survival and motility simultaneously. My experiments were a partially-successful attempt to 

establish a clear quantitative description of these functions for FGF4 and FGF8. 

 

5.4.3 Effects of FGF-Receptor Binding Specificity 

 

Ligand-binding specificity and the differential-signaling capacity of individual FGF receptors 

regulate the activity of FGF-signaling pathways (Ornitz et al., 1996). FGF2, FGF4 and FGF8 

exert both negative and positive effects on chondrogenesis via MEK-ERK activation (Bobick 

et al., 2007). In vitro, individual FGFR proteins bind different FGFs with differing affinities 

(Ornitz et al., 1996; Itoh and Ornitz 2004; Zhang et al., 2006).  

 

The three distinct FGF receptors that transduce FGF signaling in the developing limb appear 

in distinct spatiotemporal patterns. Activation of each of these receptors may have distinct 

effects on cell function. Moftah et al. remark: “FGFR1 (Deng et al., 1997; Li et al., 2005) is 

widely dispersed throughout the precartilage mesenchyme prior to chondrogenic 

condensation, and may mediate the mitogenic effect of growth factors during bud outgrowth. 

FGFR2 (Xu et al., 1998) first appears in the mesoblast of the developing limb in the 

condensing precartilage mesenchyme and may mediate perinodular inhibition of 
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chondrogenesis (Noji et al., 1993; Szebenyi et al., 1995)” (Moftah et al., 2002). Different 

FGFs may bind to different FGFRs and contribute to the same goal—limb outgrowth (Yonei-

Temura et al., 1999). FGFR1 and FGFR2 may both be present in my experiments, since the 

cultures demonstrate both cartilage inhibition and proliferation. 

 

Table 5.2: Relative mitogenic activity of the binding of FGFs to specific FGF receptors. 

Measured by the incorporation of [3H]thymidine. The listed mitogenic activities generally 

agree with reported receptor-binding properties of FGFs (Ornitz et al., 1996). FGF1 is the 

only FGF that can activate all FGF receptors. Ornitz et al. (Ornitz et al., 1996) used FGF1 as 

an internal standard to determine the relative activity of the binding of other FGFs to 

different FGFRs. Setting the mitosis rate induced by binding of FGF1 to a given receptor to 

100, the activity of binding of other FGFs to the various receptors is defined to be: 

Mitosis Rate for FGF୶ binding to FGFR୷
Mitosis Rate for FGFଵ binding to FGFR୷

ൈ 100.          

 

Receptor FGF45 FGF86 
FGFR1b 15.6 5.3 
FGFR2b 14.9 5.9 
FGFR1c 102.3 57.5 
FGFR2c  94.3 91.6 
 

 

                                                 
5 From Ornitz et al., 1996. 
6 From Zhang et al., 2006. 
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Table 5.2 lists the binding affinities/specificities of FGF4 and FGF8 with FGFR1 and 

FGFR2. For cells expressing FGFR1c, FGF4 has twice the mitogenic activity (102.3) of 

FGF8 (57.5), which may explain why FGF4 is a stronger promoter of cell division and 

inhibitor of cartilage formation than FGF8 in my experiments. Since FGF4 and FGF8 bind to 

FGFR2c with the same affinity and since FGF8 maintains FGF10 expression when it binds to 

FGFR2c (Xu et al., 1998; Lizarraga, 1999), FGF4 may maintain an epithelial-to-

mesenchymal regulatory feedback loop when it binds to FGFR2c. 

 

5.4.4 Model of the Role of FGFs in Limb Outgrowth and Patterning 

 

My experiments suggest that the role of FGF4 and FGF8 in promotion of cell division is dose 

dependent, and that each FGF may have specific effects on cartilage-nodule intervals and 

sizes. While gradients of FGFs and variations in their downstream MARP/ERK signaling 

activity have been detected in limb (Nikbakht and Mclachlan, 1997; Pascoal et al., 2007), 

null results in experiments which induced mutations in FGF receptors suggest that the 

outgrowth and patterning of the more proximal portions of the limb are insensitive to FGF-

receptor signaling (Naski and Ornitz 1998; Talamillo et al., 2005). In contrast, the distal-most 

limb appears dependent on the degree of FGF-receptor signaling (Talamillo et al., 2005). 

Combining my results with current understanding, I propose a limb outgrowth-and-patterning 

model based on the following assumptions:  

(1) FGF8 concentration decreases from distal to proximal, and FGF4 concentration 

decreases from the distal-posterior AER towards the proximal-anterior region of the 
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limb. These assumptions are based on indirect detection of FGFs’ effects (Nikbakht 

and Mclachlan, 1997; Pascoal et al., 2007).  

(2) Higher FGF levels increase cell-division rates. Thus, distal and posterior limb regions 

have faster cell division. 

(3) FGFs modulate the distal pattern of chondrogenesis. As the limb grows and the AER 

moves away from the more proximal regions of the limb, the pattern of 

chondrogenesis originally laid down when the region was close to the AER remains 

unchanged, except for expansion due to cell division.  

(4) FGFs induce cartilage nodules with type-dependent and dose-dependent intervals and 

sizes.  

(5) High FGF4 concentrations inhibit cartilage formation. 

 

The domain expansion map in Fig. 5.6A suggests that the distal-posterior domain should 

expand more than the proximal-anterior domain and contribute more cells to the limb at later 

stages, consistent with the experimental results of Vargesson (Fig. 5.7, Vargesson et al., 

1997) using DiI labeling. Thus, the combined effects of FGF4 and FGF8 may explain 

differences in digit size and spacing (Fig. 5.6B). 
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Figure 5.6: Schematic diagram of limb outgrowth-and-patterning model. A. 

Dependence of cell-domain expansion on FGFs. Stages: Left, early. Center, middle. 

Right, late. First row: with FGF8 only, the distal domain (D) expands more than the 

proximal domain (Pr). Second row: with FGF4 only, the FGF gradient promotes cell 

division more in the posterior domain (Po) than in the anterior domain (A). Third row: when 

FGF4 and FGF8 work together, the distal-posterior domain will contribute most cells in the 

limb. B. Patterning model. Left column: FGF8 controls cartilage intervals. Large 

concentrations increase intervals and reduce nodule sizes. Center column: FGF4 also 

increases intervals and decreases nodule sizes. Combining the growth in (A) with the nodule 

pattern induced by the FGFs increases the size of nodules in the proximal domain. Right 

column: FGF4 and FGF8 together produce larger spacings with smaller nodules in the 

posterior-distal domain. 
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Figure 5.7: Schematic diagram of cell fates in chick limb bud. A. DiI labeling in HH stage 

20 wing bud. B. Sub-apical mesenchyme populations at HH stage 28. C. Mesenchyme, 

labelled 500 µm from the somites at HH stage 20, at HH stage 28. D. Mesenchyme labelled 

250 μm from the somites at HH stage 20, at HH stage 28. E. Mesenchyme labelled 50-75 µm 

from the somites at HH stage 20, at HH stage 28. Scale bar represents 300 μm (diagram from 

Vargesson et al., 1997). 
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CHAPTER SIX  

 

CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion 

 

Genes and their direct interactions can now be characterized. However, we still cannot 

predict phenotype from genotype because morphogenesis combines molecular, cellular, 

tissue and organ scales and because each scale contains complex dynamic interactions. 

Progress requires effective approaches to identifying the main themes and neglecting 

unnecessary information.  

 

I have presented a framework (Chapter One) and a few examples (Chapters Two through 

Five) of multiscale approaches to morphogenesis. My work on cell sorting links molecular 

binding between cadherins to cell-cell interactions and cell-sorting structures, which are 

simple morphological forms. In the more complex morphogenesis of somitogenesis, cell-cell 

adhesion and repulsion and cell-ECM interactions plausibly translate genetic information into 

physical interactions and then into phenotype. In the case of limb growth, the Progress Zone 

Model has dominated interpretation of proximo-distal limb patterning, though recent 

experiments partially support the Early-Specification Model. Molecular evidence supports 
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neither model. My assays of the roles of FGFs in chondrogenic patterning and cell division in 

micromass cell culture suggest an alternative model for limb outgrowth and patterning. 

 

To show how the methodologies I have developed can apply to other developmental 

problems, I propose a new approach to understanding the origin of left-right asymmetry in 

embryos.  

 

6.2 Future Work: Dynamic Orchestration of Cell Movement and 

Electrophoresis and the Role of Serotonin in Creating Left-Right 

Asymmetry in the Early Chick Gastrula 

 

6.2.1 Introduction 

 

Vertebrates combine a roughly bilaterally-symmetric body plan with left-right (LR) 

asymmetric organs. Experimental observations of the asymmetries in gene expression 

(Mercola and Levin, 2001; Levin, 2005) leave open many questions about the mechanisms 

leading to the initial distinction between left and right. Gap junctions (Levin and Mercola, 

1999), H+/K+-ATPase (Levin et al., 2002), H+-V-ATPase (Adams et al., 2006) and serotonin 

signaling cascades (Fukumoto et al., 2005a, 2005b; Levin et al., 2006) are all upstream of 

LR-asymmetric genes. A bioelectric circuit composed of gap junctions (Levin and Mercola, 

1999) and ion pumps (Levin et al., 2002; Adams et al., 2006) might provide both an 
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electrophoretic driving force and channels for distribution of morphogen-like small 

molecules, such as serotonin. This mechanism could translate subcellular asymmetries into 

large-scale, multi-cellular asymmetry. A mathematical electrophoretic model (Esser et al., 

2006) works well for Xenopus, but may not produce the correct LR serotonin gradient over 

the right time scale for chick, which has a different gastrulation architecture and more cells at 

the time of gastrulation. Serotonin, its receptors 5-HT-R3 and 5-HT-R4, its degradation 

enzyme MAO (Fukumoto et al., 2005a), and transporters SERT and VMAT (Fukumoto et 

al., 2005b) are all involved in LR asymmetry in both Xenopus and chick. Fully understanding 

serotonin distribution and related signaling will clarify the origin of LR asymmetry and 

serotonin’s function in controlling early embryogenesis (Levin et al., 2006), and suggest 

potential pharmaceutical interventions to prevent LR-related birth defects.  

 

6.2.2 Hypotheses 

 

How is serotonin distributed and how does it function in early gastrulation-stage chick? I 

propose that cell movement and electrophoretic forces may orchestrate the serotonin 

distribution. During early gastrulation in chick, the epithelial cells move long distance to 

form vortices on both sides of the primitive streak (Fig. 6.1, Cui et al., 2005; Chuai et al., 

2006). Serotonin first appears in the area opaca, the opaque peripheral area of the 

blastoderm, and later in the primitive streak (Levin, 2005). If cells carried serotonin, they 

would redistribute serotonin on a time-scale of 10 hours. Furthermore, ectoderm/epithelial 

ingression may form a nonconducting region (isolation zone) in the mesoderm, cause 
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mesenchymal lateral movement and lead to a membrane-depolarization positive feedback 

loop triggered by 5-HT-R3 on the left side of the primitive streak, which orients the LR axis 

with respect to the dorso-ventral (DV) and anterior-posterior (AP) axes.  

 

 

 
 

 
Figure 6.1: Schematic diagram of cell migration in a chick gastrula. As lateral epiblast 

cells move towards the posterior marginal zone, posterior epiblast cells move towards the 

primitive streak, forming a pair of counter-rotating vortices in the posterior two-thirds of the 

embryo (Diagram from Dormann and Weijer, 2006). 
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In unincubated chick, serotonin clusters in discrete spots around the periphery of the area 

opaca. At stage HH 1-4, primitive-streak cells express serotonin. Serotonin’s receptor, 5-HT-

R3, a ligand-gated Na+ and K+ cation channel, may trigger plasma-membrane depolarization 

on the left side of the streak in an acid environment. 

 

6.2.2.1 Cell movement during early gastrulation in chick may transport serotonin to the 

right position at the right time 

Cells move extensively in the early chick gastrula as in fig. 6.1 (Chuai et al., 2006). 

According to Gilbert: “At stage 2, the primitive streak forms a dense cell layer between the 

epiblast and endoblast. At stage 3, it becomes a mesenchymal rod. Soon afterward (HH 3+), 

the ingression of epiblast cells into the streak (groove formation) causes the mesenchyme of 

the streak to start lateral migration. At stage 4, Hensen’s node appears at the tip of the 

streak.” (Gilbert, 2006). The timing and direction of cell movement may bring serotonin from 

the periphery of the blastomere into the streak domain. 

 

6.2.2.2 The asymmetry of small molecules and gene expression and activity match 

specific morphogenesis events in early-gastrulation chick embryos  

An ion pump H+/K+-ATPase appearing between HH stages 2+ and 4-, produces and maintains 

an asymmetric membrane potential (HH stages 3-4+), which affects asymmetric gene 

expression. H+-V-ATPase, expressed in the primitive streak of chicks between HH stages 2-

4, supplies protons to the serotonin transporter VMAT (Fukumoto et al., 2005b), regulates 
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pH in early chick blastoderm, and is required for normal localization of serotonin (Adams et 

al., 2006). Connexin43 is expressed throughout the chick blastoderm, except in the node and 

streak at HH stages 2-3. Thus gap junction channels form everywhere except in the streak 

(Levin and Mercola, 1999). From HH 3+ (about the time the asymmetric membrane potential 

appears and about the time the groove forms), the earliest asymmetric genes are right-sided 

activin-RIIa (Levin et al.,1997) and left-sided HNF3-β. At HH 4, Hensen’s node appears. By 

stage HH 4-4+, shh appears on the left, fgf8 on the left, and nodal just to the left of the node 

(Levin et al., 1995). This pattern suggests that ingression may separate the left and right sides 

of the streak mesoderm, isolating the two sides.  

 

6.2.3 Suggested Approaches 

 

To validate my hypotheses, I will first track cell subpopulations, single cells and serotonin in 

vivo throughout the embryo between HH stage 1 and HH stage 4. I will disrupt cell 

movement and/or the bioelectric circuit (Levin and Mercola, 1999; Levin et al., 2002; Adams 

et al., 2006) to check the diffusion rate of serotonin in the absence of cell movement and 

electrophoresis. I will check whether this disruption affects only LR asymmetry or both LR 

asymmetry and patterning along the other axes and integrate these results with 

morphogenesis modeling to check their biological interpretation. I describe the procedures 

for these studies below:  
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6.2.3.1 Cell-movement tracking 

I will conduct fluorescent labeling (GFP, DiI, Bodipy-ceramide), time-lapse imaging and 

tracking of cell subpopulations and single cells (Yang et al., 2002; Cui et al., 2005; Chuai et 

al., 2006).  

 

6.2.3.2 Serotonin tracking in vivo  

I will develop a method to fluorescently tag serotonin. The problem is to keep serotonin’s 

low molecular weight (176 Da), which allows it to pass through gap junctions between cells, 

and maintain its physiological functions. I will use Fluorescence Recovery after 

Photobleaching (FRAP) to measure the diffusion rate of serotonin (Reits and Neefjes, 2001). 

Alternative methods are also available, e.g., labeling cell populations at specific positions in 

the embryo, and fixing the embryo at certain time points to produce temporal and spatial 

mappings of serotonin expression for certain cell populations.  

 

6.2.3.3 Cell and serotonin tracking 

First, I will track cells and serotonin in ovo at the same time. Then I will apply 

pharmacological treatments and genetic manipulation to disrupt or express ion pumps and 

gap junctions (Levin and Mercola, 1999; Levin et al., 2002; Adams et al., 2006), and repeat 

my tracking experiments. Then, I will block cell movement (Yang et al., 2002; Cui et al., 

2005; Chuai et al., 2006) and repeat my tracking experiments. In addition, I will use in situ 

hybridization and immunohistochemistry to confirm the expression of downstream 
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asymmetric genes and proteins (Levin et al., 1995; Levin and Mercola, 1999; Levin, 2005; 

Adams et al., 2006). 

 

To check the time correlation between cell movement, serotonin concentration and 

membrane depolarization, I will also image the membrane voltage using Bis-(1,3-

dibarbituric-acid)-trimethine-oxanol (DiBAC4(3)).  

 

6.2.3.4 Modeling of the serotonin distribution and cell movement during early chick 

gastrulation  

I will use the Glazier-Graner-Hogeweg model (GGH) (Graner and Glazier, 1992; Glazier and 

Graner, 1993) coupled with an electrophoresis model (Esser et al., 2006) to study the 

coordination of electrical potential with cell movement and reproduce the experimental 

results of chemical and genetic manipulations. The integrated model will provide a 

comprehensive quantitative tool to validate the biological interpretation of my experiments. 

 

6.2.4 Expected Results 

 

(1) If cell flow alone causes the serotonin distribution, serotonin speed will be equivalent 

to cell speed. If I interrupt the ion pump or ion-pump-dependent voltage, the 

serotonin distribution will not change.  
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(2) If the serotonin distribution is driven only by electrophoretic forces, interrupting cell 

movement will have no influence on the serotonin distribution.  

 

(3) Cell movement and electrophoretic forces may both contribute to the serotonin 

distribution, in which case both disruptions will disturb the serotonin distribution.  

 

(4) The two mechanisms may function at different locations or times, with cell flow 

creating the initial serotonin distribution, and electrophoretic forces stabilizing and 

maintaining the serotonin localization.  

 

(5) To check whether serotonin induces depolarization of cell membranes, I will compare 

the local time progression of serotonin concentration and membrane polarization.  

 

(6) Since synthesis, degradation and diffusion of serotonin occur at the same time, time-

lapse tracking of cells and serotonin is important to understanding the role of these 

three mechanisms.  
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7. APPENDICES 

 

7.A Protocols for Cell-Sorting Experiments 

 

7.A.1 Introduction 

 

Cell lines expressing recombinant cadherins are common models in the study of cell sorting 

(Steinberg and Tekeichi, 1994; Nose et al., 1988; Duguay et al., 2003; Foty and Steinberg, 

2005). Developing these lines involves cell-line construction and selection, Ca2+-

independence and Ca2+-dependence assays, and cell-aggregate building for cell-sorting 

analysis. 

 

7.A.2 Materials 

 

[Superscripts refer to catalog numbers on page 153, section 7.A.5] 

1. Chinese Hamster Ovary (CHO) cells1 expressing E-cadherin-GFP. 

2. 10% (2%) DMS: Dulbecco’s modified Eagle medium (DMEM)2, 3 with 10% (2%) 

Fetal Bovine Serum4 and 10 units/ml Penicillin, and 10 μg/ml Streptomycin5. 

3. G4186. 

4. 35 mm7 or 60 mm8 Petri dishes. 
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5. HBSS CMF with NaHCO3
9. 

6. HCMF. 

7. 0.25 M CaCl2
 Medium. 

8. Trypsin10. 

9. DNase I11.  

10. 1.25% agar-coated Petri dishes. 

11. EGTA12. 

12. HCMF with 10% Bovine Serum Albumin13.  

13. Microscalpel. 

14. CO2-independent media14.  

15. Round-bottom tubes15. 

16. Qiagen transfection Reagent16. 

17. Cloning Ring17. 

18. DNA Plasmid (for E-cadhein-GFP fusion protein; Yamada et al., 2005). 

 

7.A.3 Procedures 

 

7.A.3.1 Cell Line Construction and Selection (Nose et al., 1988; Duguay et al., 2003)  

1. Grow wild-type Chinese Hamster Ovary (CHO) cells in 10% DMS in a humidified 

5% CO2 atmosphere at 37°C. 

2. Transfect 60-80% confluent cells with 5 μg plasmid in a 35 mm dish using Qiagen 

transfection reagent according to the vendor’s instructions.  
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3. Select cells expressing E-cadherin-GFP using 400 μg/ml G418 for two days.  

4. Transfer the transfected cells to a 100 mm dish. 

5. Select cells expressing E-cadherin-GFP using 400 μg/ml G418 for about two weeks. 

6. Isolate single clones by cloning Ring (following vendor’s instructions). 

7. Analyze the E-cadherin-GFP expression levels of individual clones using flow-

cytometry: 

1) Detach cells using 0.2% trypsin for 5 minutes. 

2) Incubate cells in CO2-indepent media with 2% FBS. 

3) Culture cells in rotary shaker at 80-120 rpm at 37°C for 3-5 hours.  

4) Fix cells for 2-5 minutes using 2% formaldehyde. Pellet cells and wash twice 

using HCMF. 

5) Store cells in the dark in HCMF with 2% FBS on ice.  

6) Flow-cytometry will depend on the instrument used.  

8. Observe cell morphology and E-cadherin-GFP expression using a multiphoton laser-

scanning confocal microscope.  

9. Select the cell lines positive for E-cadherin-GFP expression on their membranes but 

with little or no E-cadherin-GFP in their cytoplasm. 

 

 7.A.3.2 Ca 2+-Independence Assay and Ca2+-Dependence Assay (Nose et al., 1988) 

1. Incubate cells with 0.01% trypsin in HCMF plus either 1 mM CaCl2 (TC-treatment) 

or 1 mM EGTA (TE-treatment) at 37°C for 30 minutes.  
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2. Wash the trypsinized cells by gently pipetting in HCMF at 4°C (about 30 times) to 

obtain a single-cell suspension. 

TC-aggregation 

1. Place TC-treated cells 1 × 106 per 2 ml HCMF containing 1 mM CaCl2 and 1% 

bovine serum albumin and either no, 0.1 mM or 1 mM CaCl2 in each well of a 6-well 

Petri dish. 

2. Incubate cells on a rotary shaker (80 rpm) for 30-60 minutes at 37°C. 

 

TE-aggregation 

1. Place TE-treated cells 1 × 106 per 2 ml of CO2 independent medium with 10% FBS in 

each well of a 6-well Petri dish. 

2. Incubate cells on a rotary shaker (80-100 rpm) for about 10 hours at 37˚C. 

 

7.A.3.3 Production of Cell Aggregates for Cell-Sorting Experiments (from Steinberg 

and Takeichi, 1994)   

1. Wash near-confluent cells twice with Hanks balanced salt solution (HBSS CMF (Ca2+ 

and Mg2+ free)) containing 2 mM CaCl2.  

2. Treat cells with trypsin 0.01% (diluted from 2.5% stock) with 1 mM CaCl2 for 20 

minutes.  

3. Re-suspend the cells in CO2-independent media with 2% FBS (GIBCO). 

4. Allow cells to recover from trypsinization for 0.5-2 hours on a shaker at 80 rpm at 

37°C. 
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5. Pipette the cell suspensions as necessary to disperse any small aggregates.  

6. Pellet the cell suspensions in round-bottomed culture tubes by brief centrifugation at 

1200 rpm in a table-top centrifuge.  

7. Incubate the thin cell pellets for 3-22 hours to allow them to firm.  

8. Cut the thin pellets into small fragments (200 × 200 μm2) with a microscalpel. 

9. Allow the fragments to round up in DMEM with 2% FBS and 50 μg/ml DNase I on 

1.25% agarose-coated Petri dishes at 37°C in a 5% CO2 environment. 

10. Select fragments of 150-300 μm in diameter for cell-sorting analysis.  

 

7.A.4 Recipes 

 

HBSS CMF, HBSS and HCMF Buffer 

COMPONENT  HBSS CMF (g/L) HBSS (g/L) HCMF (g/L) 
CaCl2•2H2O   — 0.1855 — 
MgSO4 (anhydrous)   — 0.09767 — 
KCl  0.40 0.40 0.40 
KH2PO4 (anhydrous)  0.06 0.06 0.06 
NaHCO3  0 0.35 — 
NaCl 8.0 8.0 8.0 
Na2HPO4 (anhydrous)  0.04788 0.04788 0.04788 
D-Glucose 1.0 1.0 1.0 
Phenol Red•Na  — 0.11 — 
HEPES   2.383 

 
          Preparation: 

                 Dissolve the relevant reagents for the buffer (in the above table) in distilled water. 

                 Adjust pH to 7.4.  

           Sterilization: Filter sterilize.  
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           Store at 4°C. 

0.5/0.1 M EGTA (pH=8.0) 

            Preparation: 

     Dissolve EGTA in 800 ml distilled water. 

     Adjust the pH to 8.0 using NaOH (~20 g of NaOH pellets). EDTA will dissolve at  

     pH 8.0. 

     Adjust volume to 1 liter with distilled water. 

      Sterilization: Autoclave. 

            Store at room temperature. 

 

DNase I  

            Preparation: 

                 Add 1 mg DNase I per ml HBSS CMF with 5 mM CaCl2.  

                 Prepare fresh each time. 

            Store at -20°C. 

 

CaCl2 Medium 

            Preparation: 0.25 M stock medium in distilled water.  

            Sterilization: Autoclave.  

            Store at room temperature. 

  

10% BSA  

      Preparation: Dissolve 10 g in 100 ml medium. 
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            Sterilization: Filter through a 0.45 μm pore-size filter first, then through a 0.22 

                                  μm pore-size low-protein-binding filter.  

           Store at 4°C in the dark. 

 

7.A.5 Catalog Numbers 

 

1. CHO (ECACC 85050302). 

2. DMEM (GIBCO 10313). 

3. DMEM (GIBCO 11965-118).  

4. FBS (GIBCO 16000-044). 

5. Penicillin-streptomycin (GIBCO 15140). 

6. G418 (GIBCO 11811-023). 

7. 35mm Petri dishes (Corning). 

8. 60mm Petri dishes (Falcon, Corning). 

9. HBSS CMF with NaHCO3 (made according to Sigma recipes H4891 or H6648). 

10. Trypsin 2.5% (Invitrogen 15090-046). 

11. DNase I (Sigma D5025). 

12. EGTA (Sigma E3889). 

13. Bovine Serum Albumin (Sigma A3311). 

14. CO2-independent media (GIBCO 18045-088). 

15. Round-bottom tubes (BD Biosciences). 

16. SuperFect Transfection Reagent (Qiagen 301305). 
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17. Cloning Ring  (Fisher 14-512-78). 

 

7.B Protocols for Chick-Limb Micromass Culture 

 

7.B.1 Introduction 

 

Micromass culture is a way to culture cells as confluent monolayers in order to mimic in ovo 

cellular conditions. As an in vitro approach, it allows “rapid prescreening of various 

bioactive compounds (e.g., hormones, growth factors, vitamins, adhesion factors) for effects 

on limb mesenchymal cell differentiation” (Paulsen and Solursh, 1988). 

 

For the study of chick-limb-cell chondrogenesis specifically, I developed my protocol from 

the original work of Paulsen and Solursh (Paulsen and Solursh, 1988) and my training 

experience in the Newman laboratory (Downie and Newman, 1994, 1995). It includes 

modification from Cheng Cui’s protocol (Cui, 2005), and others, which I developed in the 

Glazier laboratory. 

 

7.B.2 Materials 

 

1. White Leghorn fertilized chicken eggs. 



 
 

155 
 

2. 70% ethanol. 

3. Cold EBSS with Ca2+ and Mg2+. 

4. Fine-tip forceps. 

5. 15 ml centrifuge tube. 

6. EBSS without Ca2+/Mg2+. 

7. EDTA. 

8. Fetal Bovine Serum (FBS). 

9. Trypsin. 

10. DMS. 

11. SFDM. 

12. 18 G Needle and 3 ml syringe. 

13. Nylon filter on a filter gasket. 

14. Hemacytometer and Microscope. 

15. Centrifuge. 

16. CO2 incubator. 

17. 37˚C water bath. 
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7.B.3 Procedures 

 

7.B.3.1 Collect Limb Tips (5 dozen eggs) 

1. Incubate eggs at 38°C, with humidity above 60%, until HH stage 24-25 (Hamburger 

and Hamilton, 1951). Spray 70% ethanol on eggs. 

2. Open the eggs and extract the embryos into a dish1 containing cold EBSS with Ca2+ 

and Mg2+
. 

3. Remove the outer membrane around the embryos and transfer them to a new dish 

containing EBSS with Ca2+ and Mg2+. 

4. Use fine-tip forceps to cut off the limb tips, 0.3 mm (for stage 25), or 0.2 mm for 

stage 24) (Newman et al., 1981) from the distal end and put them into a new dish 

containing EBSS with Ca2+ and Mg2+
. 

5. Collect tips and put them into a 15 ml centrifuge tube2. 

 

7.B.3.2 Removal of Ectoderm Using EDTA Treatment 

1. Pellet collected tips at 500 rpm for about 2 minutes. 

2. Remove EBSS with Ca2+ and Mg2+
. 

3. Add 5 ml of EBSS3 without Ca2+ or Mg2+ and 100 μl EDTA4. 

4. Incubate for 20 minutes at 37°C (CO2 5%). Do not close the centrifuge-tube lid too 

tight.  

5. Add 100 μl of FBS5 to stop EDTA reaction. 
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6. Transfer tips to a clean dish with fresh EBSS with Ca2+ and Mg2+. Gently pipette to 

remove ectoderm. Use a microscope to determine the cells from which ectoderm has 

been removed.  

7. Pick out large pieces of mesenchyme and transfer into about 5 ml of fresh EBSS with 

Ca2+ and Mg2+. 

8. Spin at 500 rpm to pellet. 

9. Remove most of the medium, leaving a small amount in the tube with the pellet. 

 

7.B.3.3 Preparation of Cells for Incubation 

1. Pellet tips at 500 rpm for 5 minutes. 

2. Add 4.5 ml EBSS without Ca2+ or Mg2+ and 500 μl Trypsin6. 

3. Incubate about 15-20 minutes at 37°C (CO2 5%). Loosen the tube lid a little bit. 

4. Warm about 5 ml of DMS at 37°C. 

5. Obtain a filter unit and place in a nylon filter7 on a filter gasket8. 

6. Obtain a 3 ml syringe9 and 18 G needle10. 

7. After trypsinizing tips, close tube tightly. Spin at 500 rpm for 5 minutes to pellet. 

8. Remove media from the tube. 

9. Add 2.5 ml fresh pre-warmed DMS into the tube. 

10. Place needle and syringe in the tube and pull the media up and down 20 times to 

dissociate cells. 

11. Suck cells up into syringe. 
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12. Remove needle, replace with the filter unit and gently push media with cells through 

the filter into a clean 15 ml tube. 

13. Remove 10 μl of cell suspension for cell counting. 

14. Place 15 ml tube in centrifuge and pellet at 500 rpm for 15 minutes. 

 

7.B.3.4 Plating 

1. Remove as much DMS from the 15 ml tube as possible. I assume that 20 μl of 

medium is left. Add the proper amount of DMS to obtain the desired cell density, 

typically about 1.6-2.0 × 104 cells/μl. The volume V in μl of DMS to be added is: 

ܸ ൌ
ݔ · ݕ
ݖ െ 20,       

where x (cells) is the number of cells in one cell-counting chamber (0.1 mm3), y is the 

original volume of the cell suspension (about 2-2.5 ml) and z is the target cell 

concentration (typically, 104 cells/μl ). To count cell using a Hemacytometer, refer to 

the Sigma product specification for “Bright-Line™ Hemacytometer Sigma Z35,962-

9.” 

2. Use a micropipette to pull medium with cells up and down 5-10 times. Do not 

introduce air bubbles. 

3. Add 10 μl of cell suspension to each well of a 24-well TC-treated microplate11 or to 

60 mm cell-culture treated dishes12 and incubate in a 5% CO2 atmosphere at 37°C. 

4. Warm enough DMS to flood the cell-culture wells. 

5. After 45 minutes, flood each well with 0.5 ml or 1 ml of fresh pre-warmed (37°C) 

DMS.  
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7.B.4 Recipes 

 

EBSS with Ca2+ and Mg2+ (1 liter). 

Components: 

     One pack of modified Earle’s Balanced Salts13. 

     2.20 g Sodium Bicarbonate (NaHCO3). 

Preparation: Add 900 ml deionized and distilled H2O, adjust pH to 7.2; fill up to 1 

liter. 

Sterilization: Filter through 0.22 µm filter. 

Store at 2-8°C. 

 

DMEM (1 liter). 

Components: 

      One pack of Dulbecco’s Modified Eagle’s Medium14. 

      3.70 g Sodium Bicarbonate (NaHCO3). 

Preparation: Add 900 ml ddH2O; adjust pH to 7.2; fill up to 1 liter. 

Sterilization: Filter through 0.22 µm filter. 

Store at 2-8°C in the dark 

 

F-12 (Ham) with L-Glutamine and sodium bicarbonate (1 liter) 

Components: 

      One pack of F-1215. 

      1.18 g sodium bicarbonate (NaHCO3). 
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Preparation: Add 900 ml ddH2O; adjust pH to 7.2; fill up to 1 liter. 

Sterilization: Filter through 0.22 μm filter. 

Store at 2-8°C in the dark. 

 

DM 

Components: 

      600 ml F-12. 

      400 ml DMEM.  

Store at 2-8°C in the dark. 

 

Serum-Free Defined Medium (SFDM, 1 liter) 

Components: 

 Final 
concentration 

Add Function 

F-12                    60% 600 ml  
DMEM      40% 400 ml  
10 × chick transferrin  5 μg/ml 1000 μl Enhances myogenesis 
 
10 × L-Ascorbic Acid 

50 μg/ml 5000 μl Enhances 
chondrogenesis 

10 × Insulin                 5 μg/ml 500 μl Minimal additive, also 
promotes growth 

1 × hydrocortisone      100 Nm 100 μl Minimal additive for 
cell culture medium 

Pen-Strep                    10 units/ml 
penicillin,  
10 μg/ml 
streptomycin 

10 ml Antibiotics 

 

Store at 2-8°C in the dark. 
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DMS (100 ml)  

Components: 

      90 ml DM.     

                  10 ml FBS16. 

Store at 2-8°C in the dark. 

Prepare fresh if possible. Discard after two weeks.  

 

Transferrin: 5 mg/ml in DM  

Components:  

      50.0 mg transferrin17. 

      10 ml DM (60 ml F-12 + 40 ml DMEM). 

Prepare fresh for each use. 

Store at -20°C for up to 6 months. 

 

Ascorbic Acid 10 mg/ml  

Components:  

      100 mg ascorbic acid18. 

      10 ml DM. 

Prepare fresh for each use. 

Store at -20°C. 

 

Insulin 10 mg/ml 

Components:  
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Preparation: 10 mg/ml Insulin19 in 0.01 N7 HCl.  

Sterilization: Sterilize the HCl solution before adding the Insulin.  

Store at 0°C for up to 6 months.  

 

Hydrocortisone20 1 mM in distilled H2O  

Store at -20°C for up to 1 year. 

 

Penicillin-Streptomycin (Pen-Strep21) 

Store at -20°C. 

 

7.B.5 Catalog Numbers  

 

1. 100 mm Petri dishes (Fisher 08-757-11Z). 

2. 15ml tube (Fisher 14-959-49B). 

3. EBSS without Ca2+ or Mg2+ (Gibco 14155-063). 

4. EDTA (Fisher BP120-500). 

5. FBS (HyClone SH30071.01). 

6. Trypsin (Gibco 15400-054). 

7. Nylon filter (Nytex 20-μm mono-filament nylon mesh, 13 mm in diameter. TETKO, 

333 South Highland Ave, Briarcliff Manor, Tel: 914-941-7767, or 1-800-995-0531). 

8. Filter gasket (Millipore SX0001300). 

                                                 
7 Unit for HCl. 
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9. 3 ml syringe (Fisher 14-823-40). 

10. 18 G needle (Fisher 14-826-5D). 

11. 24-well plate (Corning 3526). 

12. 60 mm plate (Corning 430166). 

13. EBSS with Ca2+ and Mg2+ (Sigma E6132). 

14. DMEM (Gibco 12100-046). 

15. F-12 (Gibco 21700-075). 

16. FBS (Invitrogen 16000-036).  

17. Transferrin (Sigma C0880). 

18. Ascorbic acid (Sigma A4403). 

19. Insulin (Sigma I1882). 

20. Hydrocortisone (Sigma H0135). 

21. Penicillin-Streptomycin (Invitrogen 15140-148). 

 

7.C Protocols for Alcian-Blue Staining of Chick-Limb Micromass Cultures 

 

7.C.1 Introduction 

 

Stain sulfated proteoglycans with Alcian blue to show cartilage patterns (Moftah et al., 

2002).  
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7.C.2 Materials 

 

1. Fixative. 

2. 3% Acetic Acid Solution, pH 1.0. 

3. 3% Acetic Acid Solution, pH 2.5. 

4. 0.5% Alcian-blue Solution. 

5. PBS. 

 

7.C.3 Procedures 

 

1. Rinse cell cultures with PBS 3 times. 

2. Fix cultures in fixation medium for 5 minutes. 

3. Wash cultures with 3% acetic acid, pH 1.0, for 1 minute. 

4. Stain cultures overnight with 0.5% Alcian-blue solution. 

5. Remove Alcian-blue solution. 

6. Wash with 3% acetic acid, pH = 1.0, to remove unbound stain. 

7. Add 3% acetic acid, pH = 2.5. 

8. Visualize cartilage patterns under a binocular dissecting microscope. 
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7.C.4 Recipes 

 

Fixative 

Components: 

25 ml 4% Paraformaldehyde. 

75 ml of 1 × PBS. 

0.5 g Cetyl Pyridinium Chloride. 

Preparation: Stir overnight. 

Store at room temperature. 

 

3% Acetic Acid Solution 

Components: 

15.0 ml Glacial Acetic Acid. 

485.0 ml Distilled Water. 

Preparation: Adjust pH to 1. 

Store at room temperature. 

 

0.5% Alcian-blue Solution 

Components: 

0.5 g Alcian-blue 8GS. 

100.0 ml 3% Acetic Acid pH 1. 

Preparation: Stir overnight and filter. 

Store at 4˚C.  
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7.C.5 Catalog Numbers 

 

1. Alcian-blue 8GS (EMS 10207-100g or 10305-25g). 

2. Cetyl pyridinium chloride (Sigma C0732-100G or C9902-25G). 

 

7.D ImageJ Macro Code for Peak-Length Determination of the Average 

Interval 

 

Chapter Five describes the peak-length method to determine the average interval in chick-

limb micromass culture. I developed this implementation specifically for Alcian-blue-stained 

cultures. I used “Subtract Background” in ImageJ to remove unevenly distributed background 

noise and then used “Skeletonize” in ImageJ to obtain the number of peak and valley pixels 

in the chondrogenic patterns.  

 

The average interval depends on the “Rolling Ball” size, so all data analysis must use the 

same size Rolling Ball. This method is more reliable than Fourier transforms or manual peak-

peak measurement. However, choosing the Region of Interest (ROI) for skeletonization and 

further calculation is subjective. 

 

The image transform is written in ImageJ Macro code. For instructions on how to write and 

run ImageJ Macro code, please refer to the ImageJ website (http://rsb.info.nih.gov/ij/). Path 

names and files names will need to be adjusted for different computers.  
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The code includes three separate files: GetMask.txt generates a binary image with separated 

chondrogenic and non-chondrogenic regions. Selquadr.txt selects regions of 100 × 100 

pixels. SkeltonMeasure.txt skeletonizes the image and calculates the number of peak and 

valley pixels.  

 

(1) GetMask.txt 

----------------------------------------------------------------------------------------------------------------- 
open("C:\\Documents and Settings\\zhangyi\\Desktop\\2p42.jpg"); 
run("8-bit"); 
run("Size...", "width=640 height=512 constrain interpolate"); 
run("Brightness/Contrast..."); 
run("Enhance Contrast", "saturated=0.5"); 
resetMinAndMax(); 
run("Subtract Background...", "rolling=10 white"); 
run("Threshold"); 
run("Analyze Particles...", "size=10-finity circularity=0.00-1.00 show=Masks display exclude 
summarize"); 
saveAs("Jpeg", "C:\\Documents and Settings\\zhangyi\\Desktop\\Mask of 2p42.jpg"); 
close(); 
close(); 
 
 

(2) Selquadr.txt Run this code four or more times to cover the area of a typical micromass 
image. 

 
----------------------------------------------------------------------------------------------------------------- 
makeRectangle(207, 135, 250, 250); 
----------------------------------------------------------------------------------------------------------------- 
 

(3) SkeletonMeasure.txt Run this code four or more times to cover the area of a typical 

micromass image. 

----------------------------------------------------------------------------------------------------------------- 
run("Copy"); 
newImage("Untitled", "8-bit White", 250, 250, 1); 
run("Paste"); 
run("Invert"); 
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saveAs("Jpeg", "C:\\Documents and Settings\\zhangyi\\Desktop\\invert_2p42.jpg"); 
run("Invert"); 
run("Threshold"); 
run("Skeletonize"); 
saveAs("Jpeg", "C:\\Documents and Settings\\zhangyi\\Desktop\\2p42_sk1.jpg") 
run("Measure"); 
close(); 
open("C:\\Documents and Settings\\zhangyi\\Desktop\\invert_2p42.jpg"); 
run("Threshold"); 
run("Invert"); 
run("Skeletonize"); 
saveAs("Jpeg", "C:\\Documents and Settings\\zhangyi\\Desktop\\2p42_sk2.jpg") 
run("Measure"); 
close(); 
----------------------------------------------------------------------------------------------------------------- 
 

 

7.E ImageJ Macro Code to Calculate the Integrated Density of Alcian-Blue 

Staining in Micromass Culture 

 

Chapter Five describes the method and purpose of the calculation of the integrated density of 

Alcian-blue staining.  

 

INH.txt 

----------------------------------------------------------------------------------------------------------------- 
open("C:\\Documents and Settings\\zhangyi\\1p22.jpg"); 
run("8-bit"); 
run("Size...", "width=640 height=512 constrain interpolate"); 
run("Brightness/Contrast..."); 
run("Enhance Contrast", "saturated=0.5"); 
resetMinAndMax(); 
run("Subtract Background...", "rolling=50 white"); 
run("Set Measurements...", " mean integrated limit redirect=None decimal=3"); 
run("Invert"); 
saveAs("Jpeg", "C:\\Documents and Settings\\zhangyi\\INH_1p22.jpg"), 
run("Measure"); 
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7.F Code for the Cell-Sorting Kinetics Simulation in Chapter Three 

 

7.F.1 Introduction 

 

Chapter Three describes my Glazier-Graner-Hogeweg (GGH) model of cell-sorting kinetics. 

Running a GGH simulation using CompuCell3D requires initial installation of the CC3D 

package (from www.compucell3d.org), followed by loading the appropriate CC3DML and/or 

Python scripts into the CC3D Player. My simulations employ both CC3DML and Python 

scripts. The CompuCell3D implementation consists of three files:  

 

(1) ContSortingcontinous.xml contains a basic description of the GGH parameters (Eqs. 

(3.5) and (3.9)), such as the lattice size, simulation duration in Monte Carlo Steps (MCS), 

intrinsic Cell Motility (Temperature), definitions of cell types and adhesion energies between 

different types of cells and instructions on how to load the Volume Energy term (whose 

parameters the Python script will initialize). It also provides the values of k 

(Contactspecificity), J0 (offset), and specifies the cadherin binding model (Eqs. (3.3), (3.3’) 

and (3.3’’)). 

  

(2) ContSortingcontinuous.py sets up the simulation (instantiating C++ and Python objects 

and implementing the main GGH loop), defines the cadherin expression range (for 

continuous cadherin-expression levels) or levels (for discrete cadherin-expression levels), 

and calculates the heterotypic boundary length (Eqs. (3.10’), (3.10’’) and (3.10’’’)). 
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(3) ContSortSteppables.py defines and manages transitions between cell types. 

 

The listings include brief comments explaining the significance of the code modules and 

indicating how to change the parameters to implement the different simulations in this thesis. 

 

For details about how to install CompuCell3D and how to run the code, refer to the 

CompuCell3D website www.compucell3d.org. In brief, load ContSortingcontinous.xml and 

ContSortingcontinuous.py into the CompuCell3D Player and adjust the setting of the Player 

for proper visualization and image recording. 

 

7.F.2 Code 

 

(1) ContSortingcontinous.xml 

   <CompuCell3D> 
   <Potts> 
   <Dimensions x="200" y="200" z="1"/> <!-- for a two-dimensional simulation--> 
   <Anneal>10</Anneal> 
   <Steps>1000000</Steps> 
   <Temperature>20</Temperature>   
   <Flip2DimRatio>1</Flip2DimRatio> 
   <Boundary_x>Periodic</Boundary_x> 
   <Boundary_y>Periodic</Boundary_y> 
   <RandomSeed>271617</RandomSeed> 
   <FlipNeighborMaxDistance>2.25</FlipNeighborMaxDistance> 
   </Potts> 
 
   <Plugin Name="Volume"> 
   <TargetVolume>25</TargetVolume> 
   <LambdaVolume>25</LambdaVolume> 
   </Plugin> 
 
   <Plugin Name="CenterOfMass" /> 
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   <Plugin Name="CellType"> 
   <CellType TypeName="Medium" TypeId="0"/> 
   <CellType TypeName="CadExpLevel1" TypeId="1"/> 
   </Plugin> 
 
   <Plugin Name="ContactLocalProduct"> 
   <ContactSpecificity Type1="Medium" Type2="Medium">2</ContactSpecificity> 
   <ContactSpecificity Type1="Medium" Type2="CadExpLevel1">0</ContactSpecificity> 
   <ContactSpecificity Type1="CadExpLevel1" Type2="CadExpLevel1">0.02  
                   </ContactSpecificity> 
   <ContactFunctionType>Quadratic</ContactFunctionType>  
   <!-- other options are quadratic, Min, default type is linear -->  
   <EnergyOffset>16</EnergyOffset> 
   <Depth>2.25</Depth> 
   </Plugin> 
 
   <Steppable Type="BlobInitializer"> 
   <Gap>0</Gap> 
   <Width>5</Width> <!-- cell size --> 
   <CellSortInit>no</CellSortInit>   
   <Radius>50</Radius> <!-- blob size --> 
   </Steppable> 
 
   </CompuCell3D> 
 

 
(2) ContSortingcontinuous.py 

   def mainfcn(): 
 
   import sys 
   from os import environ 
   import string 
   sys.path.append(environ["PYTHON_MODULE_PATH"]) 
     
   import SystemUtils 
   SystemUtils.setSwigPaths() 
   SystemUtils.initializeSystemResources() 

          
   # Import the PluginManager for Python 

   import CompuCellPython 
   import CompuCellAuxPython 
   import PlayerPython 
   from PyPluginsExamples import VolumeEnergyFunction 
   from PyPluginsExamples import SurfaceEnergyFunction 
   from PyPluginsExamples import MitosisPy 



 
 

172 
 

# This function wraps the plugin-initialization code. 
      CompuCellPython.initializePlugins() 
    

   # Create a Simulator. This returns a Python object that wraps Simulator. 
   sim = CompuCellPython.Simulator() 
    
   simthread=PlayerPython.getSimthreadBasePtr(); 
   simthread.setSimulator(sim) 
   simulationFileName=simthread.getSimulationFileName() 
   print "simulationFileName=", simulationFileName 
 

   # Add the Python-specific extensions. 
   reg = sim.getClassRegistry() 
    
   CompuCellPython.parseConfig(simulationFileName, sim) 
    

   # Set up the Python Energy-function holder. 
   extraEnergy=CompuCellAuxPython.EnergyFunctionPyWrapper() 
   extraEnergy.setSimulator(sim) 
   extraEnergy.setPotts(sim.getPotts()) 
    
   sim.getPotts().registerEnergyFunction(extraEnergy.getEnergyFunctionPyWrapperPtr()) 
    
   typeChangeWatcher=CompuCellAuxPython.TypeChangeWatcherPyWrapper() 
   from PyPluginsExamples import TypeChangeWatcherExample 
   typeChangeWatcherExample=TypeChangeWatcherExample(typeChangeWatcher) 
   typeChangeWatcher.registerPyTypeChangeWatcher(typeChangeWatcherExample) 
    
   sim.getPotts().getTypeTransition().registerTypeChangeWatcher(typeChangeWatcher) 
       
   dim=sim.getPotts().getCellFieldG().getDim() 
   print "dim=", dim 
 
   sim.extraInit()  
# After all CC3DML steppables and plugins have been loaded, we call extraInit to  
# complete initialization. 
    
   cSpecificityField=simthread.createFloatFieldPy(dim,"ContSpec") 
 
# Initialize the contactspecifisity Field. This location in the code is important and must be    
# called before preStartInit or the field list will not be initialized properly. 
 
   simthread.preStartInit() 
   sim.start() 
   simthread.postStartInit() 
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   screenUpdateFrequency=simthread.getScreenUpdateFrequency() 
    
   from PySteppables import SteppableRegistry 
    
   steppableRegistry=SteppableRegistry() 
    
   from ContSortSteppables import ContactLocalProductSteppable 
   clpSteppable=ContactLocalProductSteppable(sim) 

 # typeContactEnergyTable={0:0.0, 1:1.00, 2:12.00, 3:23.00} 
 # The format is as follows: 
 # type: N, e.g., 1:20.1234, 2:12.19.   
 # type ContactEnergyTable={0:0.0, 1:15.00, 2:16.25, 3:17.50, 4:18.75, 5:20.0, 6:21.25, 
 #                                             7:22.50, 8:23.75, 9:25.0}  
 
   typeContactEnergyTable={0:0.0, 1:[1.0, 23.00]}  
# The format is as follows: real random number generated within the range: 
# Type: [N_min,N_max], e.g., 1:[20,30], 2:[40,50].  
# Continuous visualization shows expression levels not cell types. 
   clpSteppable.setTypeContactEnergyTable(typeContactEnergyTable) 
   clpSteppable.setInitMCS(20)  
# Here you set the MCS at which specificity/type reassignment takes place. 
   clpSteppable.setMaxType(1)  
# Here you set the max type assignment.  
   steppableRegistry.registerSteppable(clpSteppable) 
     
# For heterotypic boundary calculation at specific MCS (1).  
  from ContSortSteppables import StepChecker 
  stepDictionary={200:0, 1000:0, 2000:0, 5000:0, 10000:0, 20000:0, 50000:0, 100000:0,     
  150000:0, 200000:0, 250000:0, 300000:0, 350000:0, 400000:0, 450000:0, 500000:0, 
  550000:0, 600000:0, 650000:0, 700000:0, 750000:0, 800000:0, 850000:0, 900000:0, 
  950000:0, 999800:0, 1000000:0} # put step numbers here in the form: step:0 
  stepChecker=StepChecker() 
  stepChecker.setStepDictionary(stepDictionary) 

    
  from ContSortSteppables import ContactSpecVisualizationSteppable 

contactVisSteppable=ContactSpecVisualizationSteppable(_simulator=sim,_frequency=100) 
# Here you change the frequency with which the Python-based visualizer is called. 
   contactVisSteppable.setScalarField(cSpecificityField) 
    
# For heterotypic boundary calculation at specific MCS (2). 
  contactVisSteppable.setStepChecker(stepChecker) 
  steppableRegistry.registerSteppable(contactVisSteppable) 
  from ContSortSteppables import HeterotypicBoundaryCalculator 
  hbc=HeterotypicBoundaryCalculator(_simulator=sim,_frequency=200)  

# Change frequency here. 
   hbc.setMaxType(1) # Here you have to set the maximum cell type 
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# The next two lines are necessary if you are using hbc.setScaleLocally(False).  
    
# cadherinConcentrationList=[0,2.0,3.70] # List specificities here [N_type_1,  
# N_type_2, ...].  
# hbc.setCadherinConcentrationList(cadherinConcentrationList) # pass this list to 
# steppable. 
# hbc.setNMedium(1.2).  
# Sets cadherin concentration for medium - Nmedium is 0 by default. 
   hbc.setScaleLocally(True)  
# If you setScaleLocally to true the boundary will be scaled on a pixel-by-pixel basis. This 
# is important if you want to get "exact" scaling when each cell has a different specificity, 
# N. However, if specificity is assigned on a type-by-type basis, setting or unsetting it does 
# not matter and the result is the same as in the case where you calculate the boundary 
# length with no scaling and scale the total boundary length later. 
    
# For heterotypic boundary calculation at specific MCS (3). 
   hbc.setStepChecker(stepChecker) 
     
  steppableRegistry.registerSteppable(hbc) 
  steppableRegistry.init(sim) 
  steppableRegistry.start() 
 
  for i in range(sim.getNumSteps()): 
      sim.step(i) 
      steppableRegistry.step(i) 
      if not i % screenUpdateFrequency: 
         simthread.loopWork(i) 
         simthread.loopWorkPostEvent(i) 
  sim.finish() 
  steppableRegistry.finish(i) 
    
mainfcn() 

 

(3) ContSortSteppables.py 

# Steppables  
 
# This module contains examples of certain more and less useful steppables written in  
# Python. 

from CompuCellPython import NeighborFinderParams 
import CompuCellPython 
from whrandom import random 
from whrandom import randint 
import types 
from PySteppables import * 
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import CompuCellAuxPython 
 
class StepChecker: 
   def __init__(self): 
      self.stepDictionary=None 
   def setStepDictionary(self,_dict): 
      self.stepDictionary=_dict 
   def checkIfStepInDictionary(self,_step): 
      if self.stepDictionary.has_key(_step): 
         return True 
      else: 
         return False 
 
class ContactLocalProductSteppable(SteppablePy): 
   def __init__(self,_simulator,_frequency=10): 
      SteppablePy.__init__(self,_frequency) 
      self.simulator=_simulator 
      self.contactProductPlugin=CompuCellAuxPython.getContactLocalProductPlugin() 
      self.inventory=self.simulator.getPotts().getCellInventory() 
      self.mcsInit=1 
      self.maxType=1 
   def setTypeContactEnergyTable(self,_table): 
      self.table=_table 
   def setInitMCS(self,_mcs): 
      if _mcs>=1: 
         self.mcsInit=_mcs 
 
   def setMaxType(self,_maxType): 
      if _maxType>=1: 
         self.maxType=_maxType 
 
   def initializeTypes(self,_maxType): 
      invItr=CompuCellPython.STLPyIteratorCINV() 
      invItr.initialize(self.inventory.getContainer()) 
      invItr.setToBegin() 
      cell=invItr.getCurrentRef() 
      while (1): 
         if invItr.isEnd(): 
            break 
         cell=invItr.getCurrentRef() 
         print "Blob Initializer CELL ID=",cell.id 
         cell.type=randint(1,_maxType) 
         invItr.next() 
 
   def initializeSpecificity(self): 
      invItr=CompuCellPython.STLPyIteratorCINV() 
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      invItr.initialize(self.inventory.getContainer()) 
      invItr.setToBegin() 
      cell=invItr.getCurrentRef() 
      
cProductDataAccessor=self.contactProductPlugin.getContactProductDataAccessorPtr() 
      jVecItr=CompuCellAuxPython.jVecPyItr() 
      while (1): 
         if invItr.isEnd(): 
            break 
            cell=invItr.getCurrentRef() 
            jVec=cProductDataAccessor.get(cell.extraAttribPtr).jVec 
 specificityObj=self.table[cell.type]; 
 if isinstance(specificityObj,types.ListType): 
            jVec.set(0,(specificityObj[1]-specificityObj[0])*random()) 
         else: 
 jVec.set(0,specificityObj) 
 invItr.next() 
 
   def start(self): 
      self.initializeSpecificity() 
   def step(self,mcs): 
      if mcs==self.mcsInit: 
         self.initializeTypes(self.maxType) 
         self.initializeSpecificity() 
   
 
from PlayerPython import fillScalarValue as conSpecSet 
class ContactSpecVisualizationSteppable(SteppablePy): 
   def __init__(self,_simulator,_frequency=10): 
      SteppablePy.__init__(self,_frequency) 
      self.simulator=_simulator 
      self.contactProductPlugin=CompuCellAuxPython.getContactLocalProductPlugin() 
      self.cellFieldG=self.simulator.getPotts().getCellFieldG() 
      self.dim=self.cellFieldG.getDim() 
       
   def setScalarField(self,_field): 
      self.scalarField=_field 
    
   def setStepChecker(self, _stepChecker): 
      self.stepChecker=_stepChecker 
       
   def start(self):pass 
 
   def step(self,mcs): 
      if not self.stepChecker.checkIfStepInDictionary(mcs): 
         return 
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      cProductDataAccessor=self.contactProductPlugin.getContactProductDataAccessorPtr() 
      cell=None 
      cellFieldG=self.cellFieldG 
      for x in xrange(self.dim.x): 
         for y in xrange(self.dim.y): 
            for z in xrange(self.dim.z): 
               pt=CompuCellPython.Point3D(x,y,z) 
               cell=cellFieldG.get(pt) 
               if cell: 
                  jVec=cProductDataAccessor.get(cell.extraAttribPtr).jVec 
                  conSpecSet(self.scalarField,x,y,z,jVec.get(0)) 
               else: 
                  conSpecSet(self.scalarField,x,y,z,0.0) 
 

import sys 
class HeterotypicBoundaryCalculator(SteppablePy): 
   def __init__(self,_simulator,_frequency=1): 
      SteppablePy.__init__(self,_frequency) 
      self.simulator=_simulator 
      self.cellFieldG=self.simulator.getPotts().getCellFieldG() 
      self.dim=self.cellFieldG.getDim() 
      self.boundaryStrategy=CompuCellPython.BoundaryStrategy.getInstance() 
      
self.maxNeighborIndex=self.boundaryStrategy.getMaxNeighborIndexFromDepth(1.1) 
      self.maxType=0 
      self.coreFileName="HeterotypicBoundary" 
      self.extension="dat" 
      self.specificityList=[] 
      self.contactProductPlugin=CompuCellAuxPython.getContactLocalProductPlugin() 
      self.NMedium=0.0 
      self.scaleLocally=0 
       
   def setStepChecker(self, _stepChecker): 
      self.stepChecker=_stepChecker 
       
   def setScalarField(self,_field): 
      self.scalarField=_field 
    
   def setMaxType(self,_maxType): 
      self.maxType=_maxType 
      self.boundaryLengthMap={} 
      for i in xrange(self.maxType+1): 
         for j in xrange(self.maxType+1): 
            self.boundaryLengthMap[self.index(i,j)]=0 
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   def setOutputFileName(self,_fileName): 
      self.fileName=_fileName 
    
   def setNMedium(self,_N): 
      self.NMedium=_N 

       
   def setScaleLocally(self,_scale): 
      self.scaleLocally=_scale 
    
   def setCadherinConcentrationList(self,_list): 
      self.cadherinConcentrationList=_list 
       
   def index(self,type1,type2): 
      return type1*(self.maxType+1)+type2 
    
   def outputResults(self,mcs,_scaleFlag=""): 
      fulfileName=self.coreFileName+_scaleFlag+"_"+str(mcs)+"."+self.extension 
      file=open(fulfileName,"w") 
      file.write("Format: type1,type2 boundary(type1,type2)\n") 
      for type1 in xrange(self.maxType+1): 
         for type2 in xrange(self.maxType+1): 

file.write("%d %d %f\n" % (type1, type2, self.boundaryLengthMap[self. index(type1,  
type2)])) 
print "type1=",type1,"type2=", type2,"boundary =", self. boundaryLengthMap[self. 
index(type1, type2)] 
 
      file.close() 
 
   def start(self):pass 
    
   def areCellsDifferent(self,_cell1,_cell2): 
       if (_cell1 and _cell2 and _cell1.id!=_cell2.id) or (not _cell1 and _cell2) or (_cell1    
         and  not _cell2): 
         return 1 
       else: 
         return 0 
 
   def step(self,mcs): 
       if not self.stepChecker.checkIfStepInDictionary(mcs): 
       return 
       
      
cProductDataAccessor=self.contactProductPlugin.getContactProductDataAccessorPtr() 
      cell=None 
      cellFieldG=self.cellFieldG 
      nCell=None 
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# nPt=CompuCellPython.Point3D(0,0,0) 
   # pixelNeighbor=self.boundaryStrategy.getNeighborDirect(nPt,0) 

      type1=0 
      type2=0 
      N1=0.0 
      N2=0.0 
      scalingFactor=0.0 

 
   # Resetting boundaries 

      for i in xrange(self.maxType+1): 
         for j in xrange(self.maxType+1): 
            self.boundaryLengthMap[self.index(i,j)]=0 
 
      for x in xrange(self.dim.x): 
         for y in xrange(self.dim.y): 
            for z in xrange(self.dim.z): 
               pt=CompuCellPython.Point3D(x,y,z) 
               cell=cellFieldG.get(pt) 
 
               if not cell: 
                  type1=0 
                  N1=self.NMedium 
               else: 
                  type1=cell.type 
                  N1=cProductDataAccessor.get(cell.extraAttribPtr).jVec.get(0) 
 
# Print "cell.id=",cell.id 
               for i in xrange (self.maxNeighborIndex+1): 
                  pixelNeighbor=self.boundaryStrategy.getNeighborDirect(pt,i) 
                  if pixelNeighbor.distance: # neighbor is valid 
                     nCell=cellFieldG.get(pixelNeighbor.pt) 
                     if CompuCellPython.areCellsDifferent(nCell,cell): 
 
                        if not nCell: 
                           type2=0 
                           N2=self.NMedium 
                        else: 
                           type2=nCell.type 
                           N2=cProductDataAccessor.get(nCell.extraAttribPtr).jVec.get(0) 
 
                        if self.scaleLocally: 
                           scalingFactor=(N1-N2)**2 
                        else: 
                           scalingFactor=1.0 
                            
         self.boundaryLengthMap[self.index(type1,type2)]+=scalingFactor 
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         if self.scaleLocally: 
           self.outputResults(mcs,"_locally_scaled_") 
         else: 
           self.outputResults(mcs) 
 
        if not self.scaleLocally: 
          self.scaleBoundaryLength(mcs,"_globally_scaled_") 
 
   def scaleBoundaryLength(self,mcs,_scaleFlag): 
      fulfileName=self.coreFileName+_scaleFlag+str(mcs)+"."+self.extension 
      file=open(fulfileName,"w") 
      file.write("Format: type1,type2 boundary(type1,type2)\n") 
       
      print "SCALED BOUNDARY LENGTH" 
      for type1 in xrange(self.maxType+1): 
         for type2 in xrange(self.maxType+1): 
            scalingFactor=0.0 
            if type1==type2: 
               scalingFactor=1.0 
            else: 
               scalingFactor=(self.cadherinConcentrationList[type1]- 
                                          self.cadherinConcentrationList [type2]) **2 
                
            scaledLength=self.boundaryLengthMap[self.index(type1,type2)]*scalingFactor 
            file.write("%d %d %f\n" % (type1,type2,scaledLength)) 
            print "type1=",type1," type2=",type2," boundary=",scaledLength 

 

 

7.G Code for the Somite-Segmentation Simulations in Chapter Four 

 

7.G.1 Introduction 

 

The CC3DML file (somite.xml) contains the basic description of GGH parameters, such as 

lattice size, simulation duration in Monte Carlo Steps, Intrinsic Cell Motility (Temperature), 

definitions of adhesion energies between different types of cells, instructions to load Volume 
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and Surface energy terms (the parameters of which Python script will initialize) and modules 

tracking cells’ centers of mass and a Cell Lattice initialization routine (UniformInitializer). 

 

The two Python scripts include one, somite.py that sets up the simulation (instantiating C++ 

and Python objects and implementing the main GGH loop) and a script that contains 

implementations of Steppables (somiteSteppables.py). Steppables define and manage 

transitions between cell types (SomiteMaskSteppable) and changes in Volume and Surface 

parameters (SomiteVolumeSurfaceSteppable).  

 

The listings include brief comments explaining the significance of the code modules and 

indicating how to change the parameters to implement the different simulations. For 

convenience, complete files for implementing the somitogenesis simulations are also 

available for download from: http://compucell3d.org/Models/somiteSimulationFiles.tgz. 

 

7.G.2 Somitogenesis Code 

 

(1) somite.py 

   def mainfcn(): 
# Initialization section. 
   import sys 
   from os import environ 
   import string 
   sys.path.append(environ["PYTHON_MODULE_PATH"]) 
 
   import SystemUtils 
   SystemUtils.setSwigPaths() 
   SystemUtils.initializeSystemResources() 
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   import CompuCell 
   import PlayerPython 
# This function wraps the plugin-initialization code. 
   CompuCell.initializePlugins() 
 
# Create a Simulator. This section returns a Python object that wraps simulator. 
   sim = CompuCell.Simulator() 
 
   simthread=PlayerPython.getSimthreadBasePtr(); 
   simthread.setSimulator(sim) 
   simulationFileName=simthread.getSimulationFileName() 
 
# Add the Python-specific extensions. 
   reg = sim.getClassRegistry() 
 
   CompuCell.parseConfig(simulationFileName, sim) 
# End of Initialization section.  
# Registering objects that will allow adding cell attributes during simulation runtime. 
# For more information see CompuCell3D Python scripting tutorials at: 
# www.compucell3d.org. 
   from CompuCell import PyAttributeAdder 
   from PyListAdder import ListAdder 
   from sys import getrefcount 
   adder=PyAttributeAdder() 
   adder.registerRefChecker(getrefcount) 
   listAdder=ListAdder() 
   adder.registerAdder(listAdder) 
   potts=sim.getPotts() 
   potts.registerAttributeAdder(adder.getPyAttributeAdderPtr()) 
 
# Further initialization of Player and CompuCell3D C++ code. 
   dim=sim.getPotts().getCellFieldG().getDim() 
# After all CC3DML steppables and plugins have been loaded, 
# we call extraInit to complete initialization. 
   sim.extraInit() 
   simthread.preStartInit() 
   sim.start() 
   simthread.postStartInit() 
   screenUpdateFrequency=simthread.getScreenUpdateFrequency() 
 
# Instantiating and registering Python-based plugins.  
# Notice that all Python steppables are registered with steppableRegistry,  
# e.g., steppableRegistry.registerSteppable(somiteMaskSteppable). 
   from PySteppables import SteppableRegistry 
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   steppableRegistry=SteppableRegistry() 
 
   from somiteSteppables import SomiteMaskSteppable 
   somiteMaskSteppable=SomiteMaskSteppable(_simulator=sim,_frequency=10) 
# Sweep as [T0, T0+T, T0+2T], 
# T0=2000, 3000, 400, 5000, 6000; T=1000, 2000, 3000, 4000, 5000; 
# Specify here the MCS at which transitions take place. 
   transitionStepsList=[5000, 7000, 9000] 
   somiteMaskSteppable.setTransitionStepsList(transitionStepsList) 
   somiteMaskSteppable.blur(0.0) 
   steppableRegistry.registerSteppable(somiteMaskSteppable) 
 
   from somiteSteppables import SomiteVolumeSurfaceSteppable 
   somiteVolumeSurfaceSteppable=SomiteVolumeSurfaceSteppable(\ 
   _simulator=sim,_frequency=100) 
# Specify here the max MCS at which changes take place - this way 
# code in this steppable does not execute after all transitions have taken place. 
   somiteVolumeSurfaceSteppable.setMaxTransitionStep(\ 
   somiteMaskSteppable.getMaxTransitionStep()) 
   steppableRegistry.registerSteppable(somiteVolumeSurfaceSteppable) 
 
   steppableRegistry.init(sim) 
   steppableRegistry.start() 
 
# Main GGH-algorithm loop. 
   for i in range(sim.getNumSteps()): 
      sim.step(i) 
      steppableRegistry.step(i) 
      if not i % screenUpdateFrequency: 
         simthread.loopWork(i) 
         simthread.loopWorkPostEvent(i) 
   sim.finish() 
   steppableRegistry.finish() 
 
  mainfcn() 
 

(2) somite.xml 

   <CompuCell3D> 
   <!-- This section defines basic parameters of the GGH model.--> 
   <Potts> 
   <Dimensions x="170" y="1" z="450"/> 
   <Anneal>1</Anneal> 
   <Steps>100</Steps> 
   <Temperature>100</Temperature>  
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   <Flip2DimRatio>1</Flip2DimRatio> 
   </Potts> 
 
   <!-- Each CC3DML file must include a list  
    of all cell types used in the simulation.--> 
    <Plugin Name="CellType"> 
  <CellType TypeName="Medium" TypeId="0"/> 
 <CellType TypeName="ncam" TypeId="1"/> 
 <CellType TypeName="ncad" TypeId="2" /> 
 <CellType TypeName="eph-rec" TypeId="3"/> 
 <CellType TypeName="eph-rec-ncam" TypeId="4" /> 
 <CellType TypeName="eph-rec-ncad" TypeId="5" /> 
 <CellType TypeName="eph-lig-ncam" TypeId="6" /> 
 <CellType TypeName="eph-lig-ncad" TypeId="7" /> 
 <CellType TypeName="eph-lig" TypeId="8" /> 
 <CellType TypeName="psm" TypeId="9" /> 

     </Plugin> 
 
     <!-- This plugin tells the Player which lattice  
     projection should be displayed at the start.--> 
    <Plugin Name="PlayerSettings"> 
    <Project2D XZProj="1"/> 
    <InitialProjection Projection="xz"/> 
    </Plugin> 
 
    <!-- Additional initialization of volume and surface target values 
    and lambdas is required. This is done in the Python scripts.--> 
    <Plugin Name="VolumeLocalFlex"/> 
    <Plugin Name="SurfaceLocalFlex"/> 
 
    <!-- List of contact energies between different cell types.--> 
   <Plugin Name="Contact"> 
 <Energy Type1="Medium" Type2="Medium">0</Energy> 
 <Energy Type1="Medium" Type2="ncam">15</Energy> 
 <Energy Type1="Medium" Type2="ncad">15</Energy> 
 <Energy Type1="Medium" Type2="eph-rec">15</Energy> 
 <Energy Type1="Medium" Type2="eph-rec-ncam">15</Energy> 
 <Energy Type1="Medium" Type2="eph-rec-ncad">15</Energy> 
 <Energy Type1="Medium" Type2="eph-lig-ncam">15</Energy> 
 <Energy Type1="Medium" Type2="eph-lig-ncad">15</Energy> 
 <Energy Type1="Medium" Type2="eph-lig">15</Energy> 
 <Energy Type1="Medium" Type2="psm">15</Energy> 
 <Energy Type1="ncam" Type2="ncam">-20.25</Energy> 
 <Energy Type1="ncam" Type2="ncad">-24</Energy> 
 <Energy Type1="ncam" Type2="eph-rec">-20.25</Energy> 
 <Energy Type1="ncam" Type2="eph-rec-ncam">-20.25</Energy> 
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 <Energy Type1="ncam" Type2="eph-rec-ncad">-24</Energy> 
 <Energy Type1="ncam" Type2="eph-lig-ncam">-20.25</Energy> 
 <Energy Type1="ncam" Type2="eph-lig-ncad">-24</Energy> 
 <Energy Type1="ncam" Type2="eph-lig">-20.25</Energy> 
 <Energy Type1="ncam" Type2="psm">-20.25</Energy> 
 <Energy Type1="ncad" Type2="ncad">-38.44</Energy> 
 <Energy Type1="ncad" Type2="eph-rec">-24</Energy> 
 <Energy Type1="ncad" Type2="eph-rec-ncam">-24</Energy> 
 <Energy Type1="ncad" Type2="eph-rec-ncad">-38.44</Energy> 
 <Energy Type1="ncad" Type2="eph-lig-ncam">-24</Energy> 
 <Energy Type1="ncad" Type2="eph-lig-ncad">-38.44</Energy> 
 <Energy Type1="ncad" Type2="eph-lig">-24</Energy> 
 <Energy Type1="ncad" Type2="psm">-38.44</Energy> 
 <Energy Type1="eph-rec" Type2="eph-rec">-20.25</Energy> 
 <Energy Type1="eph-rec" Type2="eph-rec-ncam">-20.25</Energy> 
 <Energy Type1="eph-rec" Type2="eph-rec-ncad">-24</Energy> 
 <Energy Type1="eph-rec" Type2="eph-lig-ncam">-20.25</Energy> 
 <Energy Type1="eph-rec" Type2="eph-lig-ncad">-24.0</Energy> 
 <Energy Type1="eph-rec" Type2="eph-lig">-20.25</Energy> 
   <Energy Type1="eph-rec" Type2="psm">-20.25</Energy> 
 <Energy Type1="eph-rec-ncam" Type2="eph-rec-ncam">-20.25</Energy> 
 <Energy Type1="eph-rec-ncam" Type2="eph-rec-ncad">-24</Energy> 
 <Energy Type1="eph-rec-ncam" Type2="eph-lig-ncam">-20.25</Energy> 
 <Energy Type1="eph-rec-ncam" Type2="eph-lig-ncad">-24.0</Energy> 
 <Energy Type1="eph-rec-ncam" Type2="eph-lig">-20.25</Energy> 
   <Energy Type1="eph-rec-ncam" Type2="psm">-20.25</Energy> 
 <Energy Type1="eph-rec-ncad" Type2="eph-rec-ncad">-38.44</Energy> 
   <Energy Type1="eph-rec-ncad" Type2="eph-lig-ncam">-24</Energy> 
 <Energy Type1="eph-rec-ncad" Type2="eph-lig-ncad">-38.44</Energy> 
 <Energy Type1="eph-rec-ncad" Type2="eph-lig">-24.0</Energy> 
 <Energy Type1="eph-rec-ncad" Type2="psm">-38.44</Energy> 
 <Energy Type1="eph-lig-ncam" Type2="eph-lig-ncam">-20.25</Energy> 
 <Energy Type1="eph-lig-ncam" Type2="eph-lig-ncad">-24</Energy> 
 <Energy Type1="eph-lig-ncam" Type2="eph-lig">-20.25</Energy> 
 <Energy Type1="eph-lig-ncam" Type2="psm">-20.25</Energy> 
 <Energy Type1="eph-lig-ncad" Type2="eph-lig-ncad">-38.44</Energy> 
 <Energy Type1="eph-lig-ncad" Type2="eph-lig">-24</Energy> 
 <Energy Type1="eph-lig-ncad" Type2="psm">-38.44</Energy> 
 <Energy Type1="eph-lig" Type2="eph-lig">-20.25</Energy> 
 <Energy Type1="eph-lig" Type2="psm">-20.25</Energy> 
 <Energy Type1="psm" Type2="psm">-20.25</Energy> 
 <Depth>2.3</Depth> 
    </Plugin> 
 
    <!-- This plugin tracks the center of mass of each cell  
    and is necessary for laying out the prepattern of cadherin expression.--> 
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 <Plugin Name="CenterOfMass"/> 
 
 <!-- UniformInitializer lays out the initial pattern of cells. Here,  
 a rectangular block corresponding to the presomitic mesoderm (PSM).--> 
 <Steppable Type="UniformInitializer"> 
     <Region> 
         <BoxMin x="35" y="0" z="30"/> 
         <BoxMax x="135" y="1" z="430"/> 
         <Gap>0</Gap> 
         <Width>5</Width> 
        <Types>psm</Types> 
     </Region> 
</Steppable> 
</CompuCell3D> 

 

(3) somiteSteppables.py 

from PySteppables import * 
import CompuCell 
import sys 
import CompuCell 
import random 

 
# The function forEachCellInInventory takes as arguments the inventory of cells  
# and a function that will operate on a single cell. 
# It runs singleCellOperation on each cell from the cell inventory. 

def forEachCellInInventory(inventory,singleCellOperation): 
   invItr=CompuCell.STLPyIteratorCINV() 
   invItr.initialize(inventory.getContainer()) 
   invItr.setToBegin() 
   cell=invItr.getCurrentRef() 
   while (not invItr.isEnd()): 
      cell=invItr.getCurrentRef() 
      singleCellOperation(cell) 
      invItr.next() 
 
# TypeTransition is a class that describes  
# cell-type transitions (self.typeIdSource, self.typeIdTarget) 
# and at what time (in MCS) the transition should take place. 

class TypeTransition: 
   def __init__(self,_typeIdSource,_typeIdTarget,_step): 
      self.typeIdSource=_typeIdSource 
      self.typeIdTarget=_typeIdTarget 
      self.step=_step 
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# The SomiteMaskSteppable defines a set of masks that describe cell types. 
# Overlaying a mask is equivalent to defining new type transitions for a given cell. 
# Masks are overlaid before simulation begins, which is why fixed mask coordinates work  
# (e.g., self.x_rect_low=45). As discussed in the text, the development of the prepattern of  
# cadherin expression can be thought of as a series of cell-type transitions. 
   class SomiteMaskSteppable(SteppablePy): 
   def __init__(self,_simulator,_frequency=1): 
      SteppablePy.__init__(self,_frequency) 
      self.simulator=_simulator 
      self.cellFieldG=self.simulator.getPotts().getCellFieldG() 
      self.dim=self.cellFieldG.getDim() 
      self.inventory=self.simulator.getPotts().getCellInventory() 
      self.typeNameTable={"Medium":0,"AL":1,"RH":2,"3":3,"4":4,"5":5,\ 
                                           "6":6,"7":7,"8":8,"PSM":9} 
 
# Base mask parameters. 
      self.z_base_low=30 
      self.z_base_size=100 
# mask rectangle parameters. 
      self.x_rect_low=45 
      self.z_rect_low=40 
      self.x_rect_size=80 
      self.z_rect_size=80 
# mask0 parameters. 
      self.z_low_mask0=30 
      self.z_size_mask0=10 
# mask1 parameters. 
      self.z_low_mask1=40 
      self.z_size_mask1=40 
# mask2 parameters. 
      self.z_low_mask2=80 
      self.z_size_mask2=40 
# mask3 parameters. 
      self.z_low_mask3=120 
      self.z_size_mask3=10 
# The above determine the shifts in the masks' z_low positions. 
# They should be applied to all masks in the correct order. 
      self.shift=100 
      self.maskMargin=10 
      self.stepForTransition=0 
      self.transitionStepsList=[] 
      self.maxTransitionStep=0 
      self.sigmaBlur=0.0 
 
   def getMaxTransitionStep(self): 
      return self.maxTransitionStep 
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   def setTransitionStepsList(self,_transitionStepsList): 
      self.transitionStepsList=_transitionStepsList 
      self.maxTransitionStep=max(self.transitionStepsList) 
 
# When overlaying a mask, attach to each cell a transition from its current type to a  
# target type. Later, at the transition, simply read from the attached list of transitions and  
# perform those for which the current time (in MCS) matches the times defined in the  
# transition-description list. 
 
# The functions below implement a series of masks that are used to construct  
# the prepattern. 
   def maskBase(self,cell,xCM,yCM,zCM,attrib): 
      if (zCM >= self.z_base_low and zCM<self.z_base_low+self.z_base_size): 
         sourceId=cell.type 
         cell.type=self.typeNameTable["AL"] 
         # To record a type transition. 
         attrib.append(TypeTransition(sourceId,cell.type,self.stepForTransition)) 
 
   def maskRectangle(self,cell,xCM,yCM,zCM,attrib): 
      if(xCM>=self.x_rect_low and xCM <self.x_rect_low+self.x_rect_size \ 
      and zCM >= self.z_rect_low and zCM<self.z_rect_low+self.z_rect_size and\ 
      cell.type==self.typeNameTable["AL"]): 
         sourceId=cell.type 
         cell.type=self.typeNameTable["RH"] 
         attrib.append(TypeTransition(sourceId,cell.type,self.stepForTransition)) 
 
   def mask0(self,cell,xCM,yCM,zCM,attrib): 
      if(zCM>=self.z_low_mask0 and zCM <self.z_low_mask0+self.z_size_mask0): 
         if(cell.type==self.typeNameTable["AL"]): 
            sourceId=cell.type 
            cell.type=self.typeNameTable["3"] 
            attrib.append(TypeTransition(sourceId,cell.type,\ 
            self.stepForTransition)) 
 
   def mask1(self,cell,xCM,yCM,zCM,attrib): 
      if(zCM>=self.z_low_mask1 and zCM <self.z_low_mask1+self.z_size_mask1): 
         if(cell.type==self.typeNameTable["AL"]): 
            sourceId=cell.type 
            cell.type=self.typeNameTable["4"] 
            attrib.append(TypeTransition(sourceId,cell.type,\ 
   self.stepForTransition)) 
         elif(cell.type==self.typeNameTable["RH"]): 
            sourceId=cell.type 
            cell.type=self.typeNameTable["5"] 
            attrib.append(TypeTransition(sourceId,cell.type,\ 
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self.stepForTransition)) 
 

   def mask2(self,cell,xCM,yCM,zCM,attrib): 
      if(zCM>=self.z_low_mask2-self.maskMargin and zCM \ 
      <self.z_low_mask2+self.z_size_mask2): 
         if(cell.type==self.typeNameTable["AL"]): 
            sourceId=cell.type 
            cell.type=self.typeNameTable["6"] 
            attrib.append(TypeTransition(sourceId,cell.type,\ 

self.stepForTransition)) 
         elif(cell.type==self.typeNameTable["RH"]): 
            sourceId=cell.type 
            cell.type=self.typeNameTable["7"] 
            attrib.append(TypeTransition(sourceId,cell.type,\ 

self.stepForTransition)) 
 
   def mask3(self,cell,xCM,yCM,zCM,attrib): 
      if(zCM>=self.z_low_mask3 and zCM <self.z_low_mask3+self.z_size_mask3): 
         sourceId=cell.type 
         cell.type=self.typeNameTable["8"] 
         attrib.append(TypeTransition(sourceId,cell.type,self.stepForTransition)) 
 
   def maskPSM(self,cell,xCM,yCM,zCM,attrib): 
      cell.type=self.typeNameTable["PSM"] 
 
   def blur(self,_sigmaBlur): 
      self.sigmaBlur=_sigmaBlur 
 
# The imposeMask function is a Closure that takes as its first argument mask and returns a  
# function that operates on a single cell, making use of the mask object. For more  
# information on Closures in Python. Please consult, e.g., the Python Cookbook, or search  
# using a web search-engine with “python Closure” as keywords. Notice that the result  
# (return imposeMaskForSingleCell) is a function that operates on a single cell exactly as  
# required by the forEachCellInInventory algorithm. 
 
   def imposeMask(self,mask): 
      def imposeMaskForSingleCell(cell): 
         xCM=cell.xCM/float(cell.volume) 
         yCM=cell.yCM/float(cell.volume) 
         zCM=cell.zCM/float(cell.volume) 
         pyAttrib=CompuCell.getPyAttrib(cell) 
         mask(cell,xCM,yCM,zCM,pyAttrib) 
      return imposeMaskForSingleCell 
 
# Overlaying masks can be coded very elegantly in just two lines making use of the  
# imposeMask Closure and the forEachCellInInventory algorithm. 
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   def overlayMasks(self,mask): 
      imposeMaskFunction=self.imposeMask(mask) 
      forEachCellInInventory(inventory=self.inventory,\ 

singleCellOperation=imposeMaskFunction) 
 
# The singleCellTransition Closure returns a function that operates on a single cell and  
# implements a type transition for a single cell. A Closure is required because of the extra  
# argument _mcs in addition to the cell variable. 
   def singleCellTransition(self,_mcs): 
      def transition(cell): 
         pyAttrib=CompuCell.getPyAttrib(cell) 
         attribSize=len(pyAttrib) 
         if(attribSize>1): 
            for i in xrange(1,attribSize): 
# The transition will take place if and only if the current time (in MCS) (_mcs) matches the  
# step variable defined in the transition object. 
            if(pyAttrib[i].step==_mcs): 
               cell.type=pyAttrib[i].typeIdTarget 
            return transition 
 
# The doTransitions function iterates over each cell and makes type transitions as  
#  necessary. 
      def doTransitions(self,_mcs): 
      singleCellTransitionFunction=self.singleCellTransition(_mcs) 
      forEachCellInInventory(inventory=self.inventory,\ 

singleCellOperation=singleCellTransitionFunction) 
 
# The following implements the misdifferentiation of cells due to inaccurate positional  
# information. The doBlurSingleCell Closure returns a function operating on a single cell  
# object that calculates the center of mass cCM of a given cell, adds a random vector V to it  
# (the coordinates of which are chosen from a Gaussian distribution) and changes the type 
# of the current cell to the type of a cell located at cCM+V (or leaves the cell type  
# untouched, if the cell at cCM+V happens to be medium). 
 
   def doBlurSingleCell(self,_mcs): 
      def blurFunction(cell): 
         xCM=cell.xCM/float(cell.volume) 
         yCM=cell.yCM/float(cell.volume) 
         zCM=cell.zCM/float(cell.volume) 
  if self.sigmaBlur!=0.0: 
# print "Will do the bluring ",random.gauss(0.0,self.sigmaBlur) 
 xCM+=random.gauss(0.0,self.sigmaBlur) 
 yCM+=random.gauss(0.0,self.sigmaBlur) 
 zCM+=random.gauss(0.0,self.sigmaBlur) 
         pt=CompuCell.Point3D() 
 pt.x=int(xCM) 
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     pt.y=int(yCM) 
     pt.z=int(zCM) 
     neighborCell=self.cellFieldG.get(pt) 
  if neighborCell: 
        cell.type=neighborCell.type 
        return blurFunction 
 
# Iterate over each cell and apply the blur (misdifferentiation). 
   def doBlur(self,_mcs): 
      doBlurSingleCellFunction=self.doBlurSingleCell(_mcs) 
      forEachCellInInventory(inventory=self.inventory,\ 

         singleCellOperation=doBlurSingleCellFunction) 
 
# This function runs before the simulation begins. It lays out the cadherin prepattern. i.e., it  
# initializes a set of potential type transitions for each cell. 
   def start(self): 
      if(len(self.transitionStepsList)<3): 
         print "You need to provide list with MC steps \ 
         at which spin reassignment takes place" 
         sys.exit() 
# Initialize the anterior compartment (low z coordinates) initial prepattern. 
         self.stepForTransition=self.transitionStepsList[0] 
         self.overlayMasks(self.maskBase) 
         self.overlayMasks(self.maskRectangle) 
         self.overlayMasks(self.mask0) 
         self.overlayMasks(self.mask1) 
 
# Initialize transitions for anterior (low z) middle (medium z) and posterior (high z) somite  
# cells. Notice the progression from low values of z to higher values of z by manipulating  
# class variables, such as self.z_base_low and self.z_low_mask0 and shifting them for each  
# of the transition steps. 
         for i in xrange(1,3): 
          self.stepForTransition=self.transitionStepsList[i] 
          self.overlayMasks(self.mask2) 
          self.overlayMasks(self.mask3) 
# z_low for mask 2 and 3 is shifted after the call to overlay masks. 
          self.z_low_mask2+=self.shift 
          self.z_low_mask3+=self.shift 
          self.z_base_low+=self.shift 
          self.z_rect_low+=self.shift 
          self.overlayMasks(self.maskBase) 
          self.overlayMasks(self.maskRectangle) 
          self.z_low_mask0+=self.shift 
          self.z_low_mask1+=self.shift 
          self.overlayMasks(self.mask0) 
          self.overlayMasks(self.mask1) 
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# Because the overlayMasks function has the side effect of changing cell types, we need to  
# reset the cell types after imposing the masks. At the beginning of the simulation all the  
# cells are of type PSM (presomitic mesoderm). 
         self.overlayMasks(self.maskPSM) 
# This function runs every 10 MCS,  
# see somiteMaskSteppable=SomiteMaskSteppable(_simulator=sim,_frequency=10) in  
# somite.py. 
       def step(self,mcs): 
       if(mcs<=self.maxTransitionStep): 
          if mcs in self.transitionStepsList: 
            self.doTransitions(mcs) 
            self.doBlur(mcs) 
            return 
         return 
 
# SomiteVolumeSurfaceSteppable is responsible for periodically assigning new volume 
# and surface energy parameters. These parameters are local to each cell, so when cells  
# change types these parameters need to be updated as well. I have hard-coded the  
# parameters (targerVolume, lambda) (targetSurface, lambda). 
    
   class SomiteVolumeSurfaceSteppable(SteppablePy): 
      def __init__(self,_simulator,_frequency=1): 
      SteppablePy.__init__(self,_frequency) 
      self.simulator=_simulator 
      self.cellFieldG=self.simulator.getPotts().getCellFieldG() 
      self.dim=self.cellFieldG.getDim() 
      self.inventory=self.simulator.getPotts().getCellInventory() 
      self.maxTransitionStep=0 
# Format type:[targetVolume,lambda], example 2:[25.0,20.0]. 
      self.typeVolumeParamMap={1:[25.0,20.0], 2:[25.0,20.0],3:[36.0,20.0], \ 
                        4:[36.0,20.0],5:[16.0,20.0],6:[36.0,20.0],7:[16.0,20.0], 
                                                      8:[36.0,20.0],9:[25.0,20.0]} 
# Format type:[targetSurface,lambda], example 2:[20.0,20.0]. 
      self.typeSurfaceParamMap={1:[20.0,20.0],2:[20.0,20.0],3:[24.0,20.0],4:[24.0,20.0],\ 
                                                      5:[16.0,20.0],6:[24.0,20.0],7:[16.0,20.0],8:[24.0,20.0], 
                                                      9:[20.0,20.0]} 
 
      def setMaxTransitionStep(self,_maxTransitionStep): 
      self.maxTransitionStep=_maxTransitionStep 
 
# At the beginning of the simulation, all cells have these volume parameters.  
      def volumeInitSet(self,cell): 
      cell.targetVolume=25.0 
      cell.lambdaVolume=20.0 
# At the beginning of the simulation, all cells have these surface parameters.  
      def surfaceInitSet(self,cell): 
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      cell.targetSurface=20.0 
      cell.lambdaSurface=20.0 
 

# At later stages, the volume and surface parameters will change using 
# self.typeVolumeParamMap and self.typeSurfaceParamMap. 
      def volumeParamSet(self,cell): 
      par=self.typeVolumeParamMap[cell.type] 
      cell.targetVolume=par[0] 
      cell.lambdaVolume=par[1] 
 
      def surfaceParamSet(self,cell): 
      par=self.typeSurfaceParamMap[cell.type] 
      cell.targetSurface=par[0] 
      cell.lambdaSurface=par[1] 
 
      def setParameters(self,paramSetFcn): 
      forEachCellInInventory(inventory=self.inventory,\ 

singleCellOperation=paramSetFcn) 
 
      def start(self): 
      self.setParameters(self.volumeInitSet) 
      self.setParameters(self.surfaceInitSet) 
 
# This function is run every 100 MCS,  
# see somiteVolumeSurfaceSteppable = SomiteVolumeSurfaceSteppable(_simulator=sim,  
# _frequency=100) in somte.py. Notice that this function runs whether a transition takes  
# place or not, which is redundant, but makes the code easier to read. 
      def step(self,mcs): 
      if(mcs<=self.maxTransitionStep): 
         self.setParameters(self.volumeParamSet) 
         self.setParameters(self.surfaceParamSet) 
      return 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

194 
 

8. BIBLIOGRAPHY 

 

1. Adams, C.L., Chen, Y.T., Smith, S.J., Nelson, W.J., 1998. Mechanisms of epithelial 

cell-cell adhesion and cell compaction revealed by high-resolution tracking of E-

cadherin-green fluorescent protein. The Journal of Cell Biology 142, 1105-1119. 

2. Adams, C.L., Nelson, W.J., 1998. Cytomechanics of cadherin-mediated cell-cell 

adhesion. Current Opinion in Cell Biology 10, 572-577.  

3. Adams, D.S., Robinson, K.R., Fukumoto, T., Yuan, S., Albertson, R.C., Yelick, P., 

Kuo, L., McSweeney, M., Levin, M., 2006. Early, H+-V-ATPase-dependent proton 

flux is necessary for consistent left-right patterning of non-mammalian vertebrates. 

Development 133, 1657-1671.  

4. Afonin, B., Ho, M., Gustin, J.K., Meloty-Kapella, C., Domingo, C.R., 2006. Cell 

behaviors associated with somite segmentation and rotation in Xenopus laevis. 

Developmental Dynamics 235, 3268-3279. 

5. Angres, B., Barth, A., Nelson, W.J., 1996. Mechanism for transition from initial to 

stable cell-cell adhesion: kinetic analysis of E-cadherin-mediated adhesion using a 

quantitative adhesion assay. The Journal of Cell Biology 134, 549-557. 

6. Aulehla, A., Herrmann, B.G., 2004. Segmentation in vertebrates: clock and gradient 

finally joined. Genes & Development 18, 2060-2067.  

7. Aulehla, A., Pourquié, O., 2006. On periodicity and directionality of somitogenesis. 

Anatomy and Embryology 211, S3-S8. 

8. Aulehla, A., Wehrle, C., Brand-Saberi, B., Kemler, R., Gossler, A., Kanzler, B., 

Herrmann, B.G., 2003. Wnt3a plays a major role in the segmentation clock 



 
 

195 
 

controlling somitogenesis. Developmental Cell 4, 395-406. 

9. Baker, R.E., Schnell, S., Maini, P.K., 2003. Formation of vertebral precursors: past 

models and future predictions. Journal of Theoretical Medicine 5, 23-35.  

10. Baker, R.E., Schnell, S., Maini, P.K., 2006. A clock and wavefront mechanism for 

somite formation. Developmental Biology 293, 116-126.  

11. Baker, R.K., Antin, P.B., 2003. Ephs and ephrins during early stages of chick 

embryogenesis. Developmental Dynamics 228, 128-142.  

12. Barrass, I., Crampin, E.J., Maini, P.K., 2006. Mode transitions in a model reaction-

diffusion system driven by domain growth and noise. Bulletin of Mathematical 

Biology 68, 981-995.  

13. Barrios, A., Poole, R.J., Durbin, L., Brennan, C., Holder, N., Wilson, S.W., 2003. 

Eph/ephrin signaling regulates the mesenchymal-to-epithelial transition of the 

paraxial mesoderm during somite morphogenesis. Current Biology 13, 1571-1582. 

14. Baumgartner, W., Hinterdorfer, P., Ness, W., Raab, A., Vestweber, D., Schindler, H., 

Drenckhahn, D., 2000. Cadherin interaction probed by atomic force microscopy. 

Proceedings of the National Academy of Sciences of the United States of America 97, 

4005-4010. 

15. Behrens, J., Birchmeier, W., Goodman, S.L., Imhof, B.A., 1985. Dissociation of 

Madin-Darby canine kidney epithelial cells by the monoclonal antibody anti-arc-1: 

mechanistic aspects and identification of the antigen as a component related to 

uvomorulin. The Journal of Cell Biology 101, 1307-1315. 



 
 

196 
 

16. Bement, W.M., Forscher, P., Mooseker, M.S., 1993. A novel cytoskeletal structure 

involved in purse string wound closure and cell polarity maintenance. The Journal of 

Cell Biology 121, 565-578.  

17. Bergemann, A.D., Cheng, H.J., Brambilla, R., Klein, R., Flanagan, J.G., 1995. ELF-2, 

a new member of the Eph ligand family, is segmentally expressed in mouse embryos 

in the region of the hindbrain and newly forming somites. Molecular and Cellular 

Biology 15, 4921-4929. 

18. Bernus, O., Verschelde, H., Panfilov, A.V., 2003. Spiral wave stability in cardiac 

tissue with biphasic restitution. Physical Review E 68, 021917. 

19. Berx, G., Van Roy, F., 2001. The E-cadherin/catenin complex: an important 

gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer 

Research 3, 289-293. 

20. Beysens, D.A., Forgacs, G., Glazier, J.A., 2000. Cell sorting is analogous to phase 

ordering in fluids. Proceedings of the National Academy of Sciences of the United 

States of America 97, 9467-9471. 

21. Bitzur, S., Kam, Z., Geiger, B., 1994. Structure and distribution of N-cadherin in 

developing zebrafish embryos: morphogenetic effects of ectopic over-expression. 

Developmental Dynamics 201, 121-136. 

22. Bobick, B.E., Thornhill, T.M., Kulyk, W.M., 2007. Fibroblast growth factors 2, 4, and 

8 exert both negative and positive effects on limb, frontonasal, and mandibular 

chondrogenesis via MEK-ERK activation. Journal of Cellular Physiology 211, 233-

243. 



 
 

197 
 

23. Boggon, T.J., Murray, J., Chappuis-Flament, S., Wong, E., Gumbiner, B.M., Shapiro, 

L., 2002. C-cadherin ectodomain structure and implications for cell adhesion 

mechanisms. Science 296, 1308-1313.  

24. Chappuis-Flament, S., Wong, E., Hicks, L.D., Kay, C.M., Gumbiner, B.M., 2001. 

Multiple cadherin extracellular repeats mediate homophilic binding and adhesion. The 

Journal of Cell Biology 154, 231-243. 

25. Chaturvedi, R., Huang, C., Kazmierczak, B., Schneider, T., Izaguirre, J.A., Glimm, 

T., Hentschel, H.G., Glazier, J.A., Newman, S.A., Alber, M.S., 2005. On multiscale 

approaches to three-dimensional modelling of morphogenesis. Journal of the Royal 

Society Interface 2, 237-253. 

26. Chen, C.P., Posy, S., Ben-Shaul, A., Shapiro, L., Honig, B.H., 2005. Specificity of 

cell-cell adhesion by classical cadherins: Critical role for low-affinity dimerization 

through beta-strand swapping. Proceedings of the National Academy of Sciences of 

the United States of America 102, 8531-8536. 

27. Christley, S., Alber, M.S., Newman, S.A., 2007. Patterns of mesenchymal 

condensation in a multiscale, discrete stochastic model. PLoS Computational Biology 

3, e76. 

28. Chu, Y.S., Thomas, W.A., Eder, O., Pincet, F., Perez, E., Thiery, J.P., Dufour, S., 

2004. Force measurements in E-cadherin-mediated cell doublets reveal rapid adhesion 

strengthened by actin cytoskeleton remodeling through Rac and Cdc42. The Journal 

of Cell Biology 167, 1183-1194. 



 
 

198 
 

29. Chuai, M., Zeng, W., Yang, X., Boychenko, V., Glazier, J.A., Weijer, C.J., 2006. Cell 

movement during chick primitive streak formation. Developmental Biology 96, 137-

149.  

30. Collier, J.R., Mcinerney, D., Schnell, S., Maini, P.K., Gavaghan, D.J., Houston, P., 

Stern, C.D., 2000. A cell cycle model for somitogenesis: mathematical formulation 

and numerical simulation. Journal of Theoretical Biology 207, 305-316. 

31. Cooke, J., Zeeman, E.C., 1976. A clock and wavefront model for control of the 

number of repeated structures during animal morphogenesis. Journal of Theoretical 

Biology 58, 455-476. 

32. Cooke, J.E., Kemp, H.A., Moens, C.B., 2005. EphA4 is required for cell adhesion and 

rhombomere-boundary formation in the zebrafish. Current Biology 15, 536-542. 

33. Cooperman, J., Neely, R., Teachey, D.T., Grupp, S., Choi, J.K., 2004. Cell division 

rates of primary human precursor B cells in culture reflect in vivo rates. Stem Cells 22, 

1111-1120. 

34. Crampin, E.J., Gaffney, E.A., Maini, P.K., 1999. Reaction diffusion on growing 

domains: senarios for robust pattern formation. Bulletin of Mathematical Biology 61, 

1093-1120. 

35. Cui, C., Yang, X., Chuai, M., Glazier, J.A., Weijer, C.J., 2005. Analysis of tissue 

flow patterns during primitive streak formation in the chick embryo. Developmental 

Biology 284, 37-47. 

36. Cui, C., 2005. Dynamics of Cell Movement and Tissue Motion in 

Gastrulation and Micromass Cell Culture, Ph.D. Dissertation, Indiana 

University, Department of Physics. Available for download from: 



 
 

199 
 

http://biocomplexity.indiana.edu/jglazier/cv.php?pg=2#sd. 

37. Dan, D., Mueller, C., Chen, K., Glazier, J.A., 2005. Solving the advection-diffusion 

equations in biological contexts using the cellular Potts model. Physical Review E 72, 

041909. 

38. De Bellard, M.E., Ching, W., Gossler, A., Bronner-Fraser, M., 2002. Disruption of 

segmental neural crest migration and ephrin expression in delta-1 null mice. 

Developmental Biology 249, 121-130. 

39. Debiais, F., Lemonnier, J., Hay, E., Delannoy, P., Caverzasio, J., Marie, P.J., 2001. 

Fibroblast growth factor-2 (FGF-2) increases N-cadherin expression through protein 

kinase C and Src-kinase pathways in human calvaria osteoblasts. Journal of Cellular 

Biochemistry 81, 68-81. 

40. Deng, C., Bedford, M., Li, C., Xu, X., Yang, X., Dunmore, J., Leder, P., 1997. 

Fibroblast growth factor receptor-1 (FGFR-1) is essential for normal neural tube and 

limb development. Developmental Biology 185, 42-54. 

41. Dequeant, M.L., Glynn, E., Gaudenz, K., Wahl, M., Chen, J., Mushegian, A., 

Pourquié, O., 2006. A complex oscillating network of signaling genes underlies the 

mouse segmentation clock. Science 314, 1595-1598. 

42. Diez del Corral, R., Olivera-Martinez, I., Goriely, A., Gale, E., Maden, M., Storey, 

K., 2003. Opposing FGF and retinoid pathways control ventral neural pattern, 

neuronal differentiation, and segmentation during body axis extension. Neuron 40, 

65-79. 

43. Dillon, R., Othmer, H.G., 1999. A mathematical model for outgrowth and spatial 

patterning of the vertebrate limb bud. Journal of Theoretical Biology 197, 295-330. 



 
 

200 
 

44. Dillon, R., Gadgil, C., Othmer, H.G., 2003. Short- and long-range effects of Sonic 

hedgehog in limb development. Proceedings of the National Academy of Sciences of 

the United States of America 100, 10152-10157. 

45. Downie, S.A., Newman, S.A., 1994. Morphogenetic differences between fore and 

hind limb precartilage mesenchyme: relation to mechanisms of skeletal pattern 

formation. Developmental Biology 162, 195-208. 

46. Downie, S.A., Newman, S.A., 1995. Different roles for fibronectin in the generation 

of fore and hind limb precartilage condensations. Developmental Biology 172, 519-

530. 

47. Duband, J.L., Dufour, S., Hatta, K., Takeichi, M., Edelman, G.M., Thiery, J.P., 1987. 

Adhesion molecules during somitogenesis in the avian embryo. The Journal of Cell 

Biology 104, 1361-1374. 

48. Duboule, D., 2002. Making progress with limb models. Nature 418, 492-493. 

49. Dubrulle, J., McGrew, M.J., Pourquié, O., 2001. FGF signaling controls somite 

boundary position and regulates segmentation clock control of spatiotemporal Hox 

gene activation. Cell 106, 219-232.  

50. Dubrulle, J., Pourquié, O., 2004. Coupling segmentation to axis formation. 

Development 131, 5783-5793. 

51. Duguay, D., Foty, R.A., Steinberg, M.S., 2003. Cadherin-mediated cell adhesion and 

tissue segregation: qualitative and quantitative determinants. Developmental Biology 

253, 309-323. 

52. Durbin, L., Brennan, C., Shiomi, K., Cooke, J., Barrios, A., Shanmugalingam, S., 

Guthrie, B., Lindberg, R., Holder, N., 1998. Eph signaling is required for 



 
 

201 
 

segmentation and differentiation of the somites. Genes & Development 12, 3096-

3109. 

53. Eldar, A., Shilo, B.Z., Barkai, N., 2004. Elucidating mechanisms underlying 

robustness of morphogen gradients. Current Opinion in Genetics & Development 14, 

435-439. 

54. Esser, A.T., Smith, K.C., Weaver, J.C., Levin, M., 2006. Mathematical model of 

morphogen electrophoresis through gap junctions. Developmental Dynamics 235, 

2144-2159. 

55. Foty, R.A., Steinberg, M.S., 2005. The differential adhesion hypothesis: a direct 

evaluation. Developmental Biology 278, 255-263. 

56. Freeman, M., 2002. Morphogen gradients, in theory. Developmental Cell 2, 689-690. 

57. Fukumoto, T., Kema, I.P., Levin, M., 2005a. Serotonin signaling is a very early step 

in patterning of the left-right axis in chick and frog embryos. Current Biology 15, 

794-803. 

58. Fukumoto, T., Blakely, R., Levin, M., 2005b. Serotonin transporter function is an 

early step in left-right patterning in chick and frog embryos. Developmental 

Neuroscience 27, 349-363.  

59. Frenkel, J., 1945. Viscous flow of crystalline bodies under the action of surface 

tension. Journal of Physics 4, 385-431. 

60. Friedlander, D.R., Mege, R.M., Cunningham, B.A., Edelman, G.M., 1989. Cell 

sorting-out is modulated by both the specificity and amount of different cell adhesion 

molecules (CAMs) expressed on cell surfaces. Proceedings of the National Academy 

of Sciences of the United States of America 86, 7043-7047. 



 
 

202 
 

61. Gilbert, S.F., 2006. Developmental Biology. 8th edition (Sinauer Associates, 

Sunderland, Massachusetts). 

62. Glazier, J.A., Graner, F., 1993. Simulation of the differential adhesion driven 

rearrangement of biological cells. Physical Review E 47, 2128-2154. 

63. Glazier, J.A., Zhang, Y., Swat, M., Zaitlen, B., Schnell, S., 2007. Coordinated Action 

of N-CAM, N-cadherin, EphA4 and ephrinB2 translates genetic prepattern into 

structure during somitogenesis in chick. Current Topics in Developmental Biology 81, 

205-247. 

64. Godt, D, Tepass, U., 1998. Drosophila oocyte localization is mediated by differential 

cadherin-based adhesion. Nature 395, 387-391. 

65. Goldbeter, A., Gonze, D., Pourquié, O., 2007. Sharp developmental thresholds 

defined through bistability by antagonistic gradients of retinoic acid and FGF 

signaling. Developmental Dynamics 236, 1495-1508. 

66. Gossler, A., Hrabe de Angelis, M., 1998. Somitogenesis. Current Topics in 

Developmental Biology 38, 225-287. 

67. Graner, F., Glazier, J.A., 1992. Simulation of biological cell sorting using a two-

dimensional extended Potts model. Physical Review Letters 69, 2013-2016. 

68. Gregor, T., Wieschaus, E.F., McGregor, A.P., Bialek, W., Tank, D.W., 2007a. 

Stability and nuclear dynamics of the Bicoid morphogen gradient. Cell 130, 141-152. 

69. Gregor, T., Tank, D.W., Wieschaus, E.F., Bialek, W., 2007b. Probing the Limits to 

Positional Information. Cell 130, 153-164. 

70. Grima, R., Schnell, S., 2007. Can tissue surface tension drive somite formation? 

Developmental Biology 81, 435-460. 



 
 

203 
 

71. Gumbiner, B.M., 2005. Regulation of cadherin-mediated adhesion in morphogenesis. 

Nature Reviews. Molecular Cell Biology 6, 622-634. 

72. Gurdon, J.B., Bourillot, P.Y., 2001. Morphogen gradient interpretation. Nature 413, 

797-803.  

73. Hamburger, V., Hamilton, H.L., 1992. A series of normal stages in the development 

of the chick embryo. Developmental Dynamics 195, 231-272. 

74. Halbleib, J.M., Nelson, W.J., 2006. Cadherins in development: cell adhesion, sorting, 

and tissue morphogenesis. Genes & Development 20, 3199-3214. 

75. Hara, K., Kimura, J., Ide, H., 1998. Effects of FGFs on the morphogenic potency and 

AER-maintenance activity of cultured progress zone cells of chick limb bud. The 

International Journal of Developmental Biology 42, 591-599.  

76. Harbott, L.K., Nobes, C.D., 2005. A key role for Abl family kinases in EphA 

receptor-mediated growth cone. Molecular and Cellular Neuroscience 30, 1-11. 

77. Hirai, H., Maru, Y., Hagiwara, K., Nishida, J., Takaku, F., 1987. A novel putative 

tyrosine kinase receptor encoded by the eph gene. Science 238, 1717 -1720.  

78. Henry, C.A., Hall, L.A., Burr Hille, M., Solnica-Krezel, L., Cooper, M.S., 2000. 

Somites in zebrafish doubly mutant for knypek and trilobite form without internal 

mesenchymal cells or compaction. Current Biology 10, 1063-1066. 

79. Horikawa, K., Radice, G., Takeichi, M., Chisaka, O., 1999. Adhesive subdivisions 

intrinsic to the epithelial somites. Developmental Biology 215, 182-189. 

80. Horikawa, K., Ishimatsu, K., Yoshimoto, E., Kondo, S., Takeda, H., 2006. Noise-

resistant and synchronized oscillation of the segmentation clock. Nature 441, 719-

723. 



 
 

204 
 

81. Hynes, R.O., 2002. Integrins: bidirectional, allosteric signaling machines. Cell 110, 

673-687. 

82. Itoh, N., Ornitz, D.M., 2004. Evolution of the Fgf and Fgfr gene families. 

Trends in Genetics 20, 563-569.  

83. Jiang, Y.J., Aerne, B.L., Smithers, L., Haddon, C., Ish-Horowicz, D., Lewis, J., 2000. 

Notch signalling and the synchronization of the somite segmentation clock. Nature 

408, 475-479. 

84. Jochen, F., 2004. The Emergence of Complexity. (Kassel University Press, Kassel, 

Germany). 

85. Kasemeier-Kulesa, J.C., Bradley, R., Pasquale, E.B., Lefcort, F., Kulesa, P.M., 2006. 

Eph/ephrins and N-cadherin coordinate to control the pattern of sympathetic ganglia. 

Development 133, 4839-4847.  

86. Katoh, M., Katoh, M., 2006. Cross-talk of WNT and FGF Signaling Pathways at 

GSK3beta to regulate beta-Catenin and SNAIL Signaling Cascades. Cancer Biology 

& Therapy 5, 1059-1064. 

87. Keller, E.F., Segal, L.A., 1971. Model for chemotaxis. Journal of Theoretical Biology 

30, 225-234. 

88. Keynes, R.J., Stern, C.D., 1988. Mechanisms of vertebrate segmentation. 

Development 103, 413-429. 

89. Kicheva, A., Pantazis, P., Bollenbach, T., Kalaidzidis, Y., Bittig, T., Julicher, F., 

Gonzalez-Gaitan, M., 2007. Kinetics of morphogen gradient formation. Science 315, 

521-525.  

90. Kimura, Y., Matsunami, H., Inoue, T., Shimamura, K., Uchida, N., Ueno, T., 



 
 

205 
 

Miyazaki, T., Takeichi, M., 1995. Cadherin-11 expressed in association with 

mesenchymal morphogenesis in the head, somite, and limb bud of early mouse 

embryos. Developmental Biology 169, 347-358. 

91. Kiskowski, M.A., Alber, M.S., Thomas, G.L., Glazier, J.A., Bronstein, N.B., Pu, J., 

Newman, S.A., 2004. Interplay between activator-inhibitor coupling and cell-matrix 

adhesion in a cellular automaton model for chondrogenic patterning. Developmental 

Biology 271, 372-387. 

92. Kulesa, P.M., Fraser, S.E., 2002. Cell dynamics during somite boundary formation 

revealed by time-lapse analysis. Science 298, 991-995. 

93. Kulesa, P.M., Schnell, S., Rudloff, S., Baker, R.E., Maini, P.K., 2007. From segment 

to somite: Segmentation to epithelialization analyzed within quantitative frameworks. 

Developmental Dynamics 236, 1392-1402. 

94. Levin, M., Johnson, R.L., Stern, C.D., Kuehn, M., Tabin, C., 1995. A molecular 

pathway determining left-right asymmetry in chick embryogenesis. Cell 82, 803-814.  

95. Levin, M., 1997. Left-right asymmetry in vertebrate embryogenesis. Bioessays 19, 

287-296. 

96. Levin, M., Mercola, M.,1999. Gap junction-mediated transfer of left-right patterning 

signals in the early chick blastoderm is upstream of Shh asymmetry in the node. 

Development 126, 4703-4714. 

97. Levin, M., Thorlin, T., Robinson, K.R., Nogi, T., Mercola, M., 2002. Asymmetries in 

H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right 

patterning. Cell 111, 77-89. 



 
 

206 
 

98. Levin, M., 2005. Left-right asymmetry in embryonic development: a comprehensive 

review. Mechanisms of Development 122, 3-25.  

99. Levin, M., Buznikov, G.A., Lauder, J.M., 2006. Of minds and embryos: left-right 

asymmetry and the serotonergic controls of pre-neural morphogenesis. 

Developmental Neuroscience 28,171-185. 

100. Lewandoski, M., Sun, X., Martin, G.R., 2000. Fgf8 signaling from the AER is 

essential for normal limb development. Nature Genetics 26, 460-463. 

101. Li, C., Xu, X., Nelson, D.K., Williams, T., Kuehn, M.R., Deng, C.X., 2005. FGFR1 

function at the earliest stages of mouse limb development plays an indispensable role 

in subsequent autopod morphogenesis. Development 132, 4755-4764. 

102. Lin, A.L., Bertram, M., Martinez, K., and Swinney, H.L., 2000. Resonant Phase 

Patterns in a Reaction-Diffusion System. Physical Review Letters 84, 4240–4243. 

103. Linask, K.K., Ludwig, C., Han, M.D., Liu, X., Radice, G.L., Knudsen, K.A., 1998. N-

cadherin/catenin-mediated morphoregulation of somite formation. Developmental 

Biology 202, 85-102. 

104. Lizarraga, G., Ferrari, D., Kalinowski, M., Ohuchi, H., Noji, S., Kosher, R.A., Dealy, 

C.N., 1999. FGFR2 signaling in normal and limbless chick limb buds. Developmental 

Genetics 25, 331-338. 

105. Lorger, M., Moelling, K., 2006. Regulation of epithelial wound closure and 

intercellular adhesion by interaction of AF6 with actin cytoskeleton. 

Journal of Cell Science 119, 3385-3398.  



 
 

207 
 

106. Lu, P., Minowada, G., Martin, G.R., 2006. Increasing Fgf4 expression in the mouse 

limb bud causes polysyndactyly and rescues the skeleton defects that result from loss 

of Fgf8 function. Development 133, 33-42. 

107. Lyon, A.B., Parish, C.R., 1994, Determination of lymphocyte division by flow 

cytometry. Journal of Immunological Methods 171, 131-137. 

108. Mackenzie, D., 2006. Ramping up to multiscale: taking biomedical modeling to a new 

level. Biomedical Computation Review 19-26. 

109. Maree, A.F., Hogeweg, P., 2001. How amoeboids self-organize into a fruiting body: 

multicellular coordination in Dictyostelium discoideum. Proceedings of the National 

Academy of Sciences of the United States of America 98, 3879-3883. 

110. Martin, G.R., 1998. The roles of FGFs in the early development of vertebrate limbs. 

Genes & Development 12, 1571-1586.  

111. Meinhardt, H., 1996. Models of biological pattern formation: common mechanism in 

plant and animal development. The International Journal of Developmental Biology 

40, 123-134. 

112. Meinhardt, H., 2003. The Algorithmic Beauty of Sea Shells. Third edition (Springer, 

Berlin, Germany).  

113. Mellitzer, G., Xu, Q., Wilkinson, D.G., 1999. Eph receptors and ephrins restrict cell 

intermingling and communication. Nature 400, 77-81. 

114. Mercola, M., Levin, M., 2001. Left-right asymmetry determination in vertebrates. 

Annual Review of Cell and Developmental Biology 17, 779-805. 



 
 

208 
 

115. Merks, R.M.H., Brodsky, S.V., Goligorksy, M.S., Newman, S.A., Glazier, J.A., 2006. 

Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent 

remodeling. Developmental Biology 289, 44-54. 

116. Merks, R.H.M., Glazier, J.A., 2005. A cell-centered approach to developmental 

biology. Physica A 352, 113-130. 

117. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., 1953. 

Equations of state calculations by fast computing machines. The Journal of Chemical 

Physics 21, 1087-1092. 

118. Miura, T., Komori, M., Shiota, K., 2000. A novel method for analysis of the 

periodicity of chondrogenic patterns in limb bud cell culture: correlation of in vitro 

pattern formation with theoretical models. Anatomy and Embryology 201, 419–428. 

119. Miura, T., Shiota, K., Morriss-Kay, G., Maini, P.K., 2006. Mixed-mode pattern in 

Doublefoot mutant mouse limb–Turing reaction-diffusion model on a growing domain 

during limb development. Journal of Theoretical Biology 240, 562-573. 

120. Moftah, M.Z., Downie, S.A., Bronstein, N.B., Mezentseva, N., Pu, J., Maher, P.A., 

Newman, S.A., 2002. Ectodermal FGFs induce perinodular inhibition of limb 

chondrogenesis in vitro and in vivo via FGF receptor 2. Developmental Biology 249, 

270-282. 

121. Moissoglu, K., Schwartz, M.A., 2006. Integrin signalling in directed cell migration. 

Biology of the Cell 98, 547-555. 

122. Mombach, J.C., Glazier, J.A., 1996. Single cell motion in aggregates of embryonic 

cells. Physical Review Letters 76, 3032-3035. 



 
 

209 
 

123. Moon, A.M., Boulet, A.M., Capecchi, M.R., 2000. Normal limb development in 

conditional mutant of Fgf4. Development 127, 989-996. 

124. Moreno, T.A., Kintner, C., 2004. Regulation of segmental patterning by retinoic acid 

signaling during Xenopus somitogenesis. Developmental Cell 6, 205-218. 

125. Murai, K.K., Pasquale, E.B., 2003. ‘Eph’ective signaling: forward, reverse and 

crosstalk. Journal of Cell Science 116, 2823-2832. 

126. Nakajima, Y., Morimoto, M., Takahashi, Y., Koseki, H., Saga, Y., 2006. 

Identification of EphA4 enhancer required for segmental expression and the 

regulation by Mesp2. Development 133, 2517-2525. 

127. Naski, M.C., Ornitz, D.M., 1998. FGF signaling in skeletal development. Frontiers in 

Bioscience 3, d781-d794. 

128. Nelson, W.J., Nusse, R., 2004. Convergence of Wnt, beta-catenin, and cadherin 

pathways. Science 303, 1483-1487. 

129. Newman, S.A., Frisch, H.L., 1979. Dynamics of skeletal pattern formation in 

developing chick limb. Science 205, 662-668. 

130. Newman, S.A., Forgacs, G., Muller, G.B., 2006. Before programs: the physical 

origination of multicellular forms. The International Journal of Developmental 

Biology 50, 289-299. 

131. Niessen, C.M., Gumbiner, B.M., 2002. Cadherin-mediated cell sorting not determined 

by binding or adhesion specificity. The Journal of Cell Biology 156, 389-399. 

132. Nieto, M.A., Gilardi-Hebenstreit, P., Charnay, P., Wilkinson, D.G., 1992. A receptor 

protein tyrosine kinase implicated in the segmental patterning of the hindbrain and 

mesoderm. Development 116, 1137-1150. 



 
 

210 
 

133. Nikbakht, N., McLachlan, J.C., 1997. A proximo-distal gradient of FGF-like activity 

in the embryonic chick limb bud. Cellular and Molecular Life Sciences 53, 447-451. 

134. Niswander, L., Tickle, C., Vogel, A., Booth, I., Martin, G.R., 1993. FGF-4 replaces 

the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 75, 

579-587. 

135. Niswander, L., Jeffrey, S., Martin, G.R., Tickle, C., 1994. A positive feedback loop 

coordinates growth and patterning in the vertebrate limb. Nature 371, 609-612. 

136. Noji, S., Koyama, E., Myokai, F., Nohno, T., Ohuchi, H., Nishikawa, K., Taniguchi, 

S., 1993. Differential expression of three chick FGF receptor genes, FGFR1, FGFR2 

and FGFR3, in limb and feather development. Progress in Clinical and Biological 

Research 383B, 645-654. 

137. Nose, A., Nagafuchi, A., Takeichi, M., 1988. Expressed recombinant cadherins 

mediate cell sorting in model systems. Cell 54, 993-1001. 

138. Ordahl, C.P., 1993. Myogenic lineages within the developing somite. In: Bernfield, 

M., (Editor), Molecular Basis of Morphogenesis. (John Wiley and Sons, New York, 

NY), pp. 165–176. 

139. Ornitz, D.M., Xu, J., Colvin, J.S., McEwen, D.G., MacArthur, C.A., Coulier, F., Gao, 

G., Goldfarb, M., 1996. Receptor specificity of the fibroblast growth factor family. 

The Journal of Biological Chemistry 271, 15292-15297. 

140. Palmeirim, I., Henrique, D., Ish-Horowicz, D., Pourquié, O., 1997. Avian hairy gene 

expression identifies a molecular clock linked to vertebrate segmentation and 

somitogenesis. Cell 91, 639-648. 



 
 

211 
 

141. Panorchan, P., Thompson, M.S., Davis, K.J., Tseng, Y., Konstantopoulos, K., Wirtz, 

D., 2006. Single-molecule analysis of cadherin-mediated cell-cell adhesion. Journal 

of Cell Science 119, 66-74. 

142. Pascoal, S., Andrade, R.P., Bajanca, F., Palmeirim, I., 2007. Progressive mRNA 

decay establishes an mkp3 expression gradient in the chick limb bud. Biochemical and 

Biophysical Research Communications 352, 153-157. 

143. Paulsen, D.F., Solursh, M., 1988. Microtiter micromass cultures of limb-bud 

mesenchymal cells. In Vitro Cellular & Developmental Biology 24, 138-147. 

144. Pertz, O., Bozic, D., Koch, A.W., Fauser, C., Brancaccio, A., Engel, J., 1999. A new 

crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of 

E-cadherin homoassociation. The EMBO Journal 18, 1738-1747. 

145. Poliakov, A., Cotrina, M., Wilkinson, D.G., 2004. Diverse roles of Eph receptors and 

ephrins in the regulation of cell migration and tissue assembly. Developmental Cell 7, 

465-480.  

146. Poplawski, N.J., Swat, M., Gens J.S. Glazier, J.A., 2007. Adhesion between cells, 

diffusion of growth factors, and elasticity of the AER produce the paddle shape of the 

chick limb. Physica A 373C, 521-532. 

147. Pourquié, O., 2004. The chick embryo: a leading model in somitogenesis studies. 

Mechanisms of Development 121, 1069-1079. 

148. Pourquié, O., Tam, P.P., 2001. A nomenclature for prospective somites and phases of 

cyclic gene expression in the presomitic mesoderm. Developmental Cell 1, 619-620. 



 
 

212 
 

149. Prakasam, A.K., Maruthamuthu, V., Leckband, D.E., 2006. Similarities between 

heterophilic and homophilic cadherin adhesion. Proceedings of the National Academy 

of Sciences of the United States of America 103, 15434-15439. 

150. Price, S.R., De Marco Garcia, N.V., Ranscht, B., Jessell, T.M., 2002. Regulation of 

motor neuron pool sorting by differential expression of type II cadherins. Cell 109, 

205-216. 

151. Primmett, D.R., Stern, C.D., Keynes, R.J., 1988. Heat shock causes repeated 

segmental anomalies in the chick embryo. Development 104, 331-339. 

152. Primmett, D.R., Norris, W.E., Carlson, G.J., Keynes, R.J., Stern, C.D., 1989. Periodic 

segmental anomalies induced by heat shock in the chick embryo are associated with 

the cell cycle. Development 105, 119-130. 

153. Radice, G.L., Rayburn, H., Matsunami, H., Knudsen, K.A., Takeichi, M., Hynes, 

R.O., 1997. Developmental defects in mouse embryos lacking N-cadherin. 

Developmental Biology 181, 64-78. 

154. Reits, E.A., Neefjes, J.J., 2001. From fixed to FRAP: measuring protein mobility and 

activity in living cells. Nature Cell Biology 3, E145-E147.  

155. Rhoads, D.S., Guan, J.L., 2007. Analysis of directional cell migration on defined FN 

gradients: Role of intracellular signaling molecules. Experimental Cell Research 313, 

3859-3867. 

156. Richardson, M.K., Jeffery, J.E., Tabin, C.J., 2004. Proximodistal patterning of the 

limb: insights from evolutionary morphology. Evolution & Development 6, 1-5. 



 
 

213 
 

157. Rieu, J.P., Upadhyaya, A., Glazier, J.A., Ouchi, N.B., Sawada, Y., 2000. Diffusion 

and deformations of single hydra cells in cellular aggregates. Biophysical Journal 79, 

1903-1914. 

158. Salazar-Ciudad, I., Jernvall, J., Newman, S.A., 2003. Mechanisms of pattern 

formation in development and evolution. Development 130, 2027-2037.  

159. Sanz-Ezquerro, J.J., Tickle, C., 2003. Fgf signaling controls the number of phalanges 

and tip formation in developing digits. Current Biology 13, 1830-1836. 

160. Sato, Y., Yasuda, K., Takahashi, Y., 2002. Morphological boundary forms by a novel 

inductive event mediated by Lunatic fringe and Notch during somitic segmentation. 

Development 129, 3633-3644.  

161. Sato, Y., Takahashi, Y., 2005. A novel signal induces a segmentation fissure by acting 

in a ventral-to-dorsal direction in the presomitic mesoderm. Developmental Biology 

282, 183-191. 

162. Saunders, J.W. Jr., 2002. Is the progress zone model a victim of progress? Cell 110, 

541-543.  

163. Savage, M.P., Fallon, J.P., 1995. FGF-2 mRNA and its antisense message are 

expressed in a developmentally specific manner in the chick limb bud and 

mesonephros. Developmental Dynamics 202, 343-353. 

164. Schnell, S., Maini, P.K., 2000. Clock and induction model for somitogenesis. 

Developmental Dynamics 217, 415-420. 

165. Schnell, S., Maini, P.K., McInerney, D., Gavaghan, D.J., Houston, P., 2002. Models 

for pattern formation in somitogenesis: a marriage of cellular and molecular biology. 

Comptes Rendus Biologies 325, 179-189. 



 
 

214 
 

166. Schnell, S., Grima, R., Maini, P.K., 2007. Multiscale modeling in biology. American 

Scientist 95, 134-142. 

167. Shapiro, L., Fannon, A.M., Kwong, P.D., Thompson, A., Lehmann, M.S., Grubel, G., 

Legrand, J.F., Als-Nielsen, J., Colman, D.R., Hendrickson, W.A., 1995. Structural 

basis of cell-cell adhesion by cadherins. Nature 374, 327-337. 

168. Sick, S., Reinker, S., Timmer, J., Schlake, T., 2006. WNT and DKK determine hair 

follicle spacing through a reaction-diffusion mechanism. Science 314, 1447-1450. 

169. Sivasankar, S., Brieher, W., Lavrik, N., Gumbiner, B., Leckband, D., 1999. Direct 

molecular force measurements of multiple adhesive interactions between cadherin 

ectodomains. Proceedings of the National Academy of Sciences of the United States of 

America 96, 11820-11824. 

170. Steinberg, M.S., 1963. Reconstruction of tissues by dissociated cells. Some 

morphogenetic tissue movements and the sorting out of embryonic cells may have a 

common explanation. Science 141, 401-408. 

171. Steinberg, M.S., 1970. Does differential adhesion govern self-assembly processes in 

histogenesis? Equilibrium configurations and the emergence of a hierarchy among 

populations of embryonic cells. The Journal of Experimental Zoology 173, 395-433.  

172. Steinberg, M.S., Wiseman, L.L., 1972. Do morphogenetic tissue rearrangements 

require active cell movements? The reversible inhibition of cell sorting and tissue 

spreading by cytochalasin B. The Journal of Cell Biology 55, 606-615. 

173. Steinberg, M.S., Takeichi, M., 1994. Experimental specification of cell sorting, tissue 

spreading, and specific spatial patterning by quantitative differences in cadherin 



 
 

215 
 

expression. Proceedings of the National Academy of Sciences of the United States of 

America 91, 206-209. 

174. Stern, C.D., Fraser, S.E., Keynes, R.J., Primmett, D.R., 1988. A cell lineage analysis 

of segmentation in the chick embryo. Development 104S, 231-244. 

175. Summerbell, D., Wolpert, L., 1973. Precision of development in chick limb 

morphogenesis. Nature 244, 228-230. 

176. Sun, X., Lewandoski, M., Meyer, E.N., Liu, Y.H., Maxson, R.E. Jr., Martin, G.R., 

2000. Conditional inactivation of Fgf4 reveals complexity of signaling during limb 

bud development. Nature Genetics 25, 83-86. 

177. Sun, X., Mariani, F.V., Martin, G.R., 2002. Functions of FGF signalling from the 

apical ectodermal ridge in limb development. Nature 418, 501-508. 

178. Szebenyi, G., Savage, M.P., Olwin, B.B., Fallon, J.F., 1995. Changes in the 

expression of fibroblast growth factor receptors mark distinct stages of 

chondrogenesis in vitro and during chick limb skeletal patterning. Developmental 

Dynamics 204, 446-456. 

179. Tabata, T., 2001. Genetics of morphogen gradients. Nature Reviews. Genetics 2, 620-

630.  

180. Tabata, T., Takei, Y., 2004. Morphogens, their identification and regulation. 

Development 131, 703-712.  

181. Tabin, C., Wolpert, L., 2007. Rethinking the proximodistal axis of the vertebrate limb 

in the molecular era. Genes & Development 21, 1433-1442. 



 
 

216 
 

182. Takahashi. Y., Inoue. T., Gossler. A., Saga, Y., 2003. Feedback loops comprising 

Dll1, Dll3 and Mesp2, and differential involvement of Psen1 are essential for 

rostrocaudal patterning of somites. Development 130, 4259-4268. 

183. Takeichi, M., 1993. Cadherins in cancer: implications for invasion and metastasis. 

Current Opinion in Cell Biology 5, 806-811.  

184. Talamillo, A., Bastida, M.F., Fernandez-Teran, M., Ros, M.A., 2005. The developing 

limb and the control of the number of digits. Clinical Genetics 67, 143-153. 

185. Tepass, U., Truong, K., Godt, D., Ikura, M., Peifer, M., 2000. Cadherins in embryonic 

and neural morphogenesis. Nature Reviews. Molecular Cell Biology 1, 91-100. 

186. Townes, P.L., Holtfreter, J., 1955. Directed movements and selective adhesion of 

embryonic amphibian cells. The Journal of Experimental Zoology 128, 53-120. 

187. Turing, A., 1952. The chemical basis of morphogenesis. Philosophical Transactions 

of the Royal Society of London, Series B, Biological Science 237, 37-72. 

188. Umulis, D.M., Serpe, M., O'Connor, M.B., Othmer, H.G., 2006. Robust, bistable 

patterning of the dorsal surface of the Drosophila embryo. Proceedings of the 

National Academy of Sciences of the United States of America 103, 11613-11618.  

189. Van Oss, C., Panfilov, A.V., Hogeweg, P., Siegert, F., Weijer, C.J., 1996. Spatial 

pattern formation during aggregation of the slime mould Dictyostelium discoideum. 

Journal of Theoretical Biology 181, 203-213. 

190. Vargesson, N., Clarke, J.D., Vincent, K., Coles, C., Wolpert, L., Tickle, C., 1997. Cell 

fate in the chick limb bud and relationship to gene expression. Development 124, 

1909-1918. 



 
 

217 
 

191. Vogel, A., Tickle, C., 1993. FGF-4 maintains polarizing activity of posterior limb bud 

cells in vivo and in vitro. Development 119, 199-206. 

192. Vogel, A., Roberts-Clarke, D., Niswander, L., 1995. Effect of FGF on gene 

expression in chick limb bud cells in vivo and in vitro. Developmental Biology 171, 

507-520. 

193. Von der Hardt, S., Bakkers, J., Inbal, A., Carvalho, L., Solnica-Krezel, L., 

Heisenberg, C.P., Hammerschmidt, M., 2007. The Bmp gradient of the zebrafish 

gastrula guides migrating lateral cells by regulating cell-cell adhesion. Current 

Biology 17, 475-487. 

194. Wolpert, L., 1969. Positional information and the spatial pattern of cellular 

differentiation. Journal of Theoretical Biology 25, 1-47.  

195. Wolpert, L., 1971. Positional information and pattern formation. Current Topics in 

Developmental Biology 6, 183-224.  

196. Wolpert, L., 1996. One hundred years of positional information. Trends in Genetics 

12, 359-364.  

197. Wolpert, L., 2002. The progress zone model for specifying positional information. 

The International Journal of Developmental Biology 46, 869-870. 

198. Wood, A., Thorogood, P., 1994. Patterns of cell behaviour underlying somitogenesis 

and notochord formation in intact vertebrate embryos. Developmental Dynamics 201, 

151-167. 

199. Xu, J., Liu, Z., Ornitz, D.M., 2000. Temporal and spatial gradients of Fgf8 and Fgf17 

regulate proliferation and differentiation of midline cerebellar structures. Development 

127, 1833–1843.  



 
 

218 
 

200. Xu, Q., Mellitzer, G., Robinson, V., Wilkinson, D.G., 1999. In vivo cell sorting in 

complementary segmental domains mediated by Eph receptors and ephrins. Nature 

399, 267-271. 

201. Xu, X., Weinstein, M., Li, C., Naski, M., Cohen, R.I., Ornitz, D.M., Leder, P., and 

Deng, C., 1998. Fibroblast growth factor receptor 2 (FGFR2) mediated reciprocal 

regulation loop between FGF8 and FGF10 is essential for limb induction. 

Development 125, 767-775. 

202. Xu, X., Weinstein, M., Li, C., Deng, C., 1999. Fibroblast growth factor receptors 

(FGFRs) and their roles in limb development. Cell and Tissue Research 296, 33-43. 

203. Xu, X., Li, W.E., Huang, G.Y., Meyer, R., Chen, T., Luo, Y., Thomas, M.P., Radice, 

G.L., Lo, C.W., 2001. Modulation of mouse neural crest cell motility by N-cadherin 

and connexin 43 gap junctions. The Journal of Cell Biology 154, 217-230. 

204. Yajima, H., Yoneitamura, S., Watanabe, N., Tamura, K., Ide, H., 1999. Role of N-

cadherin in the sorting-out of mesenchymal cells and in the positional identity along 

the proximodistal axis of the chick limb bud. Developmental Dynamics 216, 274-284. 

205. Yamada, S., Pokutta, S., Drees, F., Weis, W.I., Nelson, W.J., 2005. Deconstructing 

the cadherin-catenin-actin complex. Cell 123, 889-901. 

206. Yang, X., Dormann, D., Munsterberg, A.E., Weijer, C.J., 2002. Cell movement 

patterns during gastrulation in the chick are controlled by positive and negative 

chemotaxis mediated by FGF4 and FGF8. Developmental Cell 3, 425-437.  

207. Yonei-Tamura, S., Endo, T., Yajima, H., Ohuchi, H., Ide, H., Tamura, K., 1999. 

FGF7 and FGF10 directly induce the apical ectodermal ridge in chick embryos. 

Developmental Biology 211, 133-143. 



 
 

219 
 

208. Yoshida, C., Takeichi, M., 1982. Teratocarcinoma cell adhesion: Identification of a 

cell-surface protein involved in calcium-dependent cell aggregation. Cell 28, 217–

224. 

209. Zajac, M., Jones, G.L., Glazier, J.A., 2000. Model of convergent extension in animal 

morphogenesis. Physical Review Letters 85, 2022-2025. 

210. Zeng, W., Thomas, G.L., Glazier, J.A., 2004. Non-Turing stripes and spots: a novel 

mechanism for biological cell clustering. Physica A 341, 482-494. 

211. Zhang, X., Ibrahimi, O.A., Olsen, S.K., Umemori, H., Mohammadi, M., Ornitz, D.M., 

2006. Receptor specificity of the fibroblast growth factor family. The complete 

mammalian FGF family. The Journal of Biological Chemistry 281, 15694-15700. 

212. Zhu, B., Chappuis-Flament, S., Wong, E., Jensen, I.E., Gumbiner, B.M., Leckband, 

D., 2003. Functional analysis of the structural basis of homophilic cadherin adhesion. 

Biophysical Journal 84, 4033-4042. 

 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

220 
 

Vita 

 

Ying Zhang was born in China on August 15th, the same day as Napoléon Bonaparte. She 

graduated from Shanghai Jiao Tong University with B.S. degrees in Applied Physics and 

International Finance and an M.S. degree in Theoretical Physics. This thesis was defended on 

August 14th, 2007 in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy in Biophysics and Molecular Biology.  


	Thesis_part1_121607
	thesis_part2_121607.pdf



