Single-Cell-Based Models in Biology and Medicine
ed. by A.R.A. Anderson, M.A.J. Chaplain, K.A. Rejniak

Mathematics and Biosciences in Interaction, 151-167
(© 2007 Birkhauser Verlag Basel/Switzerland

II. 4 The Glazier—-Graner—Hogeweg Model:
Extensions, Future Directions, and
Opportunities for Further Study

Ariel Balter, Roeland M. H. Merks, Nikodem J. Poptawski,
Maciej Swat and James A. Glazier

Abstract. One of the reasons for the enormous success of the Glazier—-Graner—
HogewegGlazier—-Graner—-Hogeweg Model (GGH) model is that it is a frame-
work for model building rather than a specific biological model. Thus new
ideas constantly emerge for ways to extend it to describe new biological (and
non-biological) phenomena. The GGH model automatically integrates exten-
sions with the whole body of prior GGH work, a flexibility which makes
it unusually simple and rewarding to work with. In this chapter we discuss
some possible future directions to extend GGH modeling. We discuss off-
lattice extensions to the GGH model, which can treat fluids and solids, new
classes of model objects, approaches to increasing computational efficiency,
parallelization, and new model-development platforms that will accelerate our
ability to generate successful models. We also discuss a non-GGH, but GGH-
inspired, model of plant development by Merks and collaborators, which uses
the Hamiltonian and Monte-Carlo approaches of the GGH but solves them
using Finite Element (FE) methods.

1. Off-Lattice Extensions to the GGH Model

While the use of a fixed lattice makes GGH computations very simple compared
to FE methods, we have seen that this simplicity comes with certain costs (see
chapter II.1, section 6). The inclusion of the generalized cell as an independent
entity in the GGH allows the definition of internal cell states tied to the cell rather
than the lattice. These internal cell states allows us to specify interactions that
are calculated either partially or entirely off-lattice, i.e. they are not tied to the
grid structure of the cell lattice or any external field lattices (as in section 1.2.2).
The advantage of this addition is that it may overcome potential negative effects
of lattice discretization without abandoning the speed and simplicity of a lattice-
based formalism. The main costs of moving off lattice are increased memory usage
and slower computation.
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The original CPM included simple off-lattice concepts such as cell volumes
and surface areas, but these quantities still had a granularity of one lattice site.
An example of a strictly off-lattice quantity is a cell’s center of mass:

cin(o) = v (o) Z i, (1)

30! (D)=0c

where v(o) is the volume of cell o and 7 is a lattice site vector. We can form new
off-lattice entities from existing ones. For example, by tracking a cell’s center of
mass from one time step to the next, we can estimate its velocity:

vel(o,1) = cm(o,t) — cAnz(a,t — At)‘ @)

Many of the current and imminent extensions of the GGH model employ
off-lattice extensions. We will discuss several such extensions: implementation of
inertia, viscous fluid flow and advective diffusion, cell shape and polarity control
and rigid body motion. This use of off-lattice extensions to the GGH is completely
different from a switch to entirely lattice-free methods, which omit the underlying
lattice entirely in favor of FE-implementations of a GGH-like Hamiltonians. We
will show one such implementation to illustrate this fundamental difference.

1.1. Persistent Cell Movement—Inertial Constraints

Normal motion in the GGH model is Aristotelian. Velocity is proportional to ap-
plied force, with no inertia. While this dynamics is often appropriate in a biologi-
cal context, we also encounter situations in which motion is inertial, e.g., in fluid
flow or the motion of large objects, or persistent, e.g., in cell migration (because
cells take time to reorganize their internal machinery to change their direction of
motion) [24]. Somewhat surprisingly, we can model both inertia and cytoskeletal
persistence time by adding to our Hamiltonian an inertial term of form:

Hinertia(At) = Z )\inertia (J) | |1)_él(0', t) - ’U_e‘l(O', t— At) | |23 (3)

where vzl(a, t) is the instantaneous center-of-mass velocity of cell o and Aipertia
controls the persistence time. Typically, At is one or more MCS. If Ajpertia = 0, 0b-
jects undergo uncorrelated Brownian motion. If Ajjertia 1S large, motion is ballistic.
We are only beginning to explore the possibilities that an inertial term presents
in GGH modeling and its relation to more traditional Newtonian formulations of
inertia. It is worth noting that cell orientation (chapter I1.2, section 7.2) and cell
elongation [18] induce persistent cell motion.

1.2. Fluid Dynamics

Surprisingly, given that the GGH model does not have a concept of a solid object,
it also lacks two features key to real fluids, viscous dissipation due to shear and
advection of chemical fields (which are normally tied to an auxiliary lattice in
GGH simulations — see chapter I1.1, section 7.3). Off-lattice extensions allow us to
recover both of these important behaviors.
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1.2.1. Viscous flow. We can introduce viscosity in a fluid using a relative velocity
constraint between generalized cells. For an incompressible fluid, we add to the
Hamiltonian a viscous term [5]:

(vely (o) — vely(0))?

|lefn(o) — cim(a’)][?

Hvisc - >\visc Z 5(07 U/)

(o,0’) neighbors

5 \/ (cmy (o) = emy (0"))? + (em= () — em. ("))

lle() — crn(o”)][?

+ cyclic permutation of (z,y, 2), (4)

where || || is the Euclidean norm, subscripts indicate directional components, and
S(o,0') is the common contact area between cells o and ¢’. The parameter Ayisc
corresponds to the Navier—Stokes viscosity 1. The GGH model, with H,is. added
to the Hamiltonian, successfully reproduces Poiseuille flow and, with the advection
diffusion of section 1.2.2, it reproduces Taylor—Aris dispersion [5]. No one has yet
tried to combine inertial, Eq.(3) and viscous terms to solve the full Navier-Stokes
equations using the GGH method. Such a fluid solver would probably be inefficient,
especially at high Reynolds numbers, but it would be extremely convenient, and
would allow modeling of situations like blood flow and biofilm growth in a flowing
fluid, where inertia and transport are crucial. This method may also work for
complex fluids, e.g., in blood rheology.

1.2.2. Advective diffusion. One problem with recording the concentration of chem-
icals in external lattices is that they do not respond to flow occurring in the cell
lattice. Moving biological cells or fluid particles should carry with them, or ad-
vect chemical fields. In the GGH model, chemicals remain fixed to the external
lattice. Dan et al. implemented advection by allowing diffusion directly between
generalized cells, fluid particles, or subcells, which carry all diffusing chemicals
[5], abandoning external lattices and lattice diffusion solvers. Diffusion uses the
forward-Euler method (chapter I1.1, section 7.3.2), but between neighboring cells
rather than lattice sites. If we like, we can weight by the inverse distance between
centers of mass of neighboring cells, or by contact areas between neighboring cells.
As with normal lattice diffusion (see chapter II.1, section 7.3.2), we can include
spatially-varying diffusion constants, secretion and decay rates and reaction terms.
One disadvantage of this method is that it coarsens our description of chemical
fields so that we only resolve concentrations at the scale of individual cells.

1.3. Cell Polarity

Cells are often highly asymmetric, with their cytoskeleton primarily determining
and maintaining the asymmetry. Cells in epithelial sheets have distinct apical,
lateral and basal surfaces, and migrating cells have a leading and trailing sur-
face. The basal-apical or trailing-surface-leading-surface vector usually defines a
primary cell orientation, or polarity, but additional orientations may also be im-
portant. E.g., in-plane polarization (via the planar polarity path) helps epithelial
cells to form long-range patterns in response to external signals. In addition, cells
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like neurons can have extremely complex structures. Since the cells of the basic
GGH model are isotropic, representing even the simplest aspects of cell polarity
and shape requires extensions. The off-lattice extensions needed to give structure
to cells also permit the creation of movable elastic solids and visco-elastic materi-
als with well-defined behaviors, both classes of material lacking in the basic GGH
model.

1.3.1. Cell orientation. To track cell polarity, we can assign each cell an orienta-
tion vector as an internal state. Making all cell properties, e.g., chemotaxis and
adhesion, depend on this orientation is then straightforward. However, determin-
ing how the orientation vector should evolve is not obvious. Cell elongation (see
section 1.3.2) creates polarized cells in which the orientation passively follows the
cell geometry.

The simplest way to describe highly complex cell shapes and variations in
properties within the cell is to use compartmental cells (section 1.3.3). Different
compartments can respond to external stimuli (contact with certain cell types,
presence of external fields, etc.) differently, causing them to orient in their sur-
roundings. However, compartmentalization is computationally expensive. The op-
timal strategy will depend on the phenomena being modeled, and all methodolo-
gies require further study. One current off-lattice method associates an orientation
vector with each cell (chapter I1.2, section 7.2).

1.3.2. Inertia-tensor cell-shape constraints. Zajac used a constraint on the eigen-
values of cells’ 2°¢ moment tensor, or inertia tensor, to control cell shape in a
model of convergent extension [28]. Later, Merks used it to control cell elongation
in a vasculogenesis model [20]. Define I(o), the inertia tensor of cell o:

Lo= 30 (w&(a,m Loy iaj@), (5)
L= vi(0) . o=
id0/(i)=0 330’ (j)=o
where « and 3 denote directional indices.
The inertia tensor translates any object into an equivalent ellipsoid. Let I3 >
I, [> I5] be the eigenvalues of I. If cells are roughly ellipsoidal, the eigenvalues
of the inertia tensor give the ratios of the lengths of their principal axes. Scaling
these ratios by the volume of the cell gives us the lengths. We can now constrain
cells to maintain a given length or shape. For instance, in 2D, we could impose a
length constraint [20]:

Hi=>_ M(U(o) - Li(0))?, (6)

where [(0) is the length along the long axis of the cell o and Li(o) the target
length. Alternatively, we could constrain the aspect ratio, r = I; /I5, where I; and
I are the principle axes:

He =3 A (r(0) — Ru(0))?, (7)

where Ry is the target ratio.
To prevent cells from splitting because of the shape constraint, Merks et al.
introduced an approximate local connectivity constraint in 2D that penalizes cells
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which become multiply-connected during an index-copy attempt [20]. To check
whether an index copy into site Zchanges local connectivity, they counted how
many neighbors jn of site 7 have the same index as Z, while the next lattice site
clockwise around ;has an index different from that of 7. If the quantity:

25 N2 =60 (D),0(jn+1)) = 8(0(d),0(jn-1))) > 2 (8)

(with the sum running in cyclic order), and the local neighborhood contains
more than two non-medium cells, changing the index at the site destroys the local
connectivity. They then made cell fragmentation energetically costly by assigning
a large energy penalty to updates that change local connectivity. No similar local
rule has been developed in three dimensions (3D). Such an algorithm would be
extremely useful. Inertia-tensor description of cell elongation can also be used to
measure elastic strain and control mitotic rate in tumor growth (chapter II1.2,
section 4.2).

1.3.3. Compartmental cells. For his myzobacteria simulations, Andreas Deutsch
modeled elongated bacteria that are able to bend, but not too much [1, 27]. He
subdivided individual bacteria into strings of subcellular domains, where m(o)
is the number of subcells in cell 0. He then defined contact energies between
subdomains within a cell to give the cell a particular geometry. E.g., high contact
energy between the front and rear subcells prevents a bacterium from forming a
loop.

To control side-to-side undulations, Deutsch introduced a bending energy from
polymer physics. The elastic bending energy of a rod is proportional to its mean-
squared curvature. In Deutsch’s simulations, every three subcells define a local
curvature. If we define ci(o, 1) to be the center of mass of the u'" subdomain of
cell o, then the local radius of curvature is:

Reurvel0, 1) = |[ci(o, j+ 1) = cin(o, 11 = 1)|| x [llein(o, 1+ 1) — ein(o, w)]
HleT(o, 1) — ein(o, p — V)| — [|efn(o, p + 1) — (o, u — DI[*] . (9)

Since the mean curvature k = %, and for a rod, Hpena = f)\bend(l),%le,

curve

where Apenq is the bending modulus of the rod, the equivalent bending energy in
the GGH model is:

m(o)—2
Hbcnd = Z Z )\bcnd(g7 /J/)R(;frve (07 M) (10)
o p=1

Thus, the term resists bending of the bacterium.
Another approach to limiting bending is to constrain the angles between the
centers of mass of the subcells:
m(o)—1

angle = Z Z )\angle g, (6(0' My b — 1) @t(07 My 1 1))2, (11)

where O(o, i, p—1) is the angle between (o, 1) and ¢ (o, p—1). This constraint
places rotational springs at the joints between the lines connecting the subcells’
centers of mass. Deutsch maintained the overall length of the cell by treating the
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lines connecting the centers of mass as springs with an equilibrium length Ly (o, p)
and a spring constant Acompression:

p(o)—1
Hcompression = Z Acompression (Uv /,L)(HC’?VL(O’, M) - c?n(a, n—= 1)” - Lt (Uv 'u))Q (12)
o p=1

1.4. Elastic Solids

All cell-based materials in the classical GGH model are intrinsically visco-elastic.
The model has no elastic solids. We can implement elastic and plastic solids using
a simple algorithm similar to that in Eq.(12). Take any object o and divide it
into m(o) subcells u, where each subcell contacts at least two other subcells of
o and the triangulation defined by the connections between the centers of mass
(ct(o, p)) of neighboring subcells is topologically rigid. Then:

m(o)

Helastic = Z Z )\rigid(av Hy V)(HC’?TL(O’, /,L)—C?TL(O', V)H_Lt(0'7 My ’/))27 (13)

o p,v=1 (u,v neighbors)

where L (o, i, v) is the target length of the link between subcells  and v inside cell
o, and Ayigia is the Young’s modulus of the material, which defines the total stress
energy of o. If we define neighborhood by distance between centers of mass rather
than adjacency, then the resulting cell is visco-elasto-plastic. For instance, we could
include only contacting subcells, or all subcells within a cutoff distance. Once
two subcells separate further than the cutoff, they no longer interact elastically,
allowing slow, plastic creep.

1.5. A Lattice-Free, Finite Element, GGH-Inspired Model of Plant Development

To illustrate the difference between the off-lattice extensions of the GGH, which we
have been discussing, and lattice-free methods, we present a FE model developed
by Merks and collaborators, which uses a GGH-inspired Hamiltonian but makes
all of its computations using a FE mesh.

Most developmental phenomena simulated with the GGH model are examples
of plastic morphogenesis. Since the constituent cells swarm, mix, sort, or aggregate,
the resulting tissues behave as living “clays” in which biological form and pattern
arise primarily through cell motility. In plants and some animal tissues (e.g., in
Drosophila epithelia, see [8]) the relative positions of the cells are effectively fixed,
and only cell division changes tissue shape. Plant cells cannot migrate and, with
very few exceptions, do not slide past each other. Consequently, plant morphogene-
sis depends on patterned cell division and cell expansion, instead of cell migration
and tissue folding. This mode of development is often called symplastic growth
[6, 23].

Although GGH modeling of symplastic development is possible, it requires
computationally-expensive topology constraints or finely-tuned adhesion energies
to suppress cell motility and surface fluctuations, precisely the phenomena that
make the GGH model suitable for simulating animal development. Instead, Merks
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and collaborators developed a FE, lattice-free, GGH-inspired model that explicitly
excludes plastic cell movement.

As we discussed in chapter II.1, section 2.1, the energy-minimization philoso-
phy of the GGH model does not require lattice-based Monte-Carlo solution meth-
ods. Instead, we use two-dimensional (2D) lattice-free, polygonal finite elements
to represent cell walls in a tissue [21, 25]. However, we retain a Monte-Carlo-based
energy minimization dynamics that allows straightforward modeling of cell behav-
iors, including expansion, division, and active shape change. We allow cell walls to
move according to rules derived from the classic equations for cell expansion [16]:

1. The intracellular turgor pressure exerts a uniform force on cell walls, attempt-
ing to enlarge cells.

2. The elastic cell walls counteract the turgor pressures.

3. Walls expand irreversibly if stretched over a threshold, via cell-wall yielding.

As in GGH-models, we define a target area A; at which the cell’s turgor pressure
balances the ambient pressure, and a target length Ly for each wall element. We
denote the actual cell area, a, and wall-element length, [. We can then describe the
balance between turgor pressure and cell wall resistance in terms of a generalized
energy or Hamiltonian:

H = (ai) = A@)* +300) = L)), (14)

where indices ¢ and j sum over all cells and polygon edges, respectively. We can
add additional terms to the Hamiltonian, e.g., body forces like gravity, or cell-
length constraints.

The simulation uses a Metropolis-like dynamics (chapter I1.1, section 2.3.2).
We iteratively choose a random node, and attempt to move it in a random direction
Znew = Tz + &7, where 7= {p, 0} is a random vector chosen uniformly within the
unit circle (i.e. p € [0,1] and 6 € [0,27)) and & is the step size. To model cell
wall yielding, we introduce new nodes whenever a polygon edge’s length exceeds a
threshold value. Since we assume shape relaxation is fast compared to biological
changes, we make biologically motivated changes, like turgor pressure increases,
cell divisions or active cell shape changes, only after turgor pressures, cell expansion
and any resulting cell displacements have equilibrated.

We are currently using this method to model leaf morphogenesis, which in-
volves a dynamic interplay between leaf venation, cell expansion and cell division.
Fig.1 shows a sample simulation, in which a set of ordinary differential equations
(ODEs) in each cell implements Meinhardt’s four-species reaction-diffusion model
as a prototype for leaf venation [17]. See also a simulation MovII.4.1 from the
accompanying DVD. Cell expansion, which we model as a gradual increase in cells
target areas (Chapter II.1, section 7.2.1), is fastest where concentrations of a dif-
fusing growth repressor are lowest, near the developing vasculature which drains it,
while the vasculature itself expands four times more slowly than the surrounding
tissue. Cells divide along their shortest axis when they reach twice their original
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FIGURE 1. Relation between leaf growth and venation patterning in a sym-
plastic growth model based on [17]. Dark grey cells are vascular. Light grey
cells are normal leaf cells, with the degree of shading indicating the local con-
centration of the activator which regulates cell growth. See also a simulation
Movll.4.1.

size (Chapter II.1, section 7.2.2). We are currently developing more realistic mod-
els of leaf venation patterning, which include several molecules known to regulate
leaf venation, including the phytohormone auxin and its transporter protein PIN1.
Eventually, the set of ODEs in each cell will describe the production, decay, regu-
lation, cellular localization and transport of the molecules regulating leaf venation
patterning.

2. Modeling Extracellular Matrix

Current GGH simulations either represent Extracellular Matrix (ECM) as a spe-
cial cell, often the default cell index on lattice sites not occupied by any other
cell, producing an ECM which behaves as an infinitely compressible, inviscid fluid,
or as a non-diffusing chemical field which is non-deformable. These approxima-
tions may be adequate in many cases. However, in many morphogenetic processes
(such as bone formation) ECM properties are crucial and require more realistic
representation.

Although ECM tends to receive less attention than cells (which seem to do
all the work during morphogenesis), it is a complex, varied and highly structured
material, which includes networks of insoluble protein fibrils and numerous soluble
components. Collagens and elastins are usually the two primary classes of struc-
tural proteins contributing to the fibrils. Soluble polymers, primarily long carbo-
hydrate chains which bind water, link to these proteins. Rigid ECMs are crucial
for maintaining tissue shape, and form the structural portion of most connective
tissues and bones. ECM structure is heterogeneous, with important patterns at
length-scales from tens of angstroms to millimeters, making it extremely difficult
to model. Its fiber structure gives ECM highly anisotropic mechanical properties,
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including visco-elasto-plasticity, and often provides crucial directional cues for cell
migration.

ECM also mediates signaling between cells. ECM often binds cytokines and
growth factors, acting as a chemical reservoir and greatly reducing the effective dif-
fusion constant of diffusible signaling molecules. Ligands in the ECM also interact
with specific cell-surface receptors (integrins) and cells can sense variations in
ECM rigidity and fiber orientation. The ECM records the history of cell migration
and differentiation during morphogenesis in its fibril pattern, which then guides
further morphogenesis. Differences in ECM architecture account for much of the
difference between normal and scar tissue. Appropriate synthetic ECM can in-
duce tissue regrowth in adults, while metastasis occurs when tumor cells lose their
binding to ECM.

Existing GGH methods can describe some ECM properties. For instance, we
can model ECM binding of cytokines by lowering the diffusion constant of these
chemicals in regions of ECM. However, many ECM properties, e.g., visco-elasto-
plasticity (see section 1.4) and fibril orientation (see section 2), call for a new
vector-field class of object.!

Describing fiber orientation in terms of a vector field is complex because, at
the typical scale of a GGH lattice, each lattice site will contain fibers of almost
every possible orientation, requiring an impossibly complex description. A practi-
cal description of ECM requires careful optimization of the trade-offs among the
number of allowed fiber orientations and fiber types per site and the angular reso-
lution of those orientations. Options could range from a simple fiber with arbitrary
orientation at each site, to a dozen fibers, each with variable concentration but
only eight allowed orientations each at each site. The passage of cells can then
change the fiber structure, which the field represents. We can model the effect of
fiber orientation on morphogenesis by including terms in the Hamiltonian that
couple ECM vector fields to cell chemotaxis, haptotaxis (chapter IL.1, section 7.3),
or cell polarization (section 1.3).

3. Improving Computational Efficiency Using Alternative
Evolution Algorithms

Because it is extremely simple to implement, the modified-Metropolis algorithm
has been a central part of GGH modeling. However, the modified-Metropolis algo-
rithm rejects most index-copy attempts, making the algorithm inefficient and its
stochasticity makes parallelization awkward. We also need to improve our diffusion

1Vector fields could provide an alternative method to implement fluid flow. Instead of using the
fluid-particle method we described in section 1.2.1, we could define a flow field in the ECM and
use a sophisticated Navier—Stokes-equation solver to update the fluid flow. Cell motion would
impart vector boundary conditions and the simulation would become an immersed-boundary
calculation.
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solvers, since many current simulations spend only 10% of their time on GGH so-
lutions and 90% solving the diffusion equation. Fortunately, diffusion algorithms,
even Euler diffusion, are synchronous, and hence parallelize easily.

3.1. Rejection-Free Dynamics

Of the non-Metropolis Monte-Carlo algorithms, rejection-free algorithms such as
the N-fold way and kinetic Monte-Carlo are particularly attractive [2, 9, 7, 15].
Rather than considering a trial index copy at each step, which we may or may not
accept, these methods choose among allowed lattice updates at each step. Thus,
while they spend much more time computing possible updates, they save the time
normal Metropolis spends on rejected updates. The computational gain depends
on the average number of possible updates, the fraction of possible updates that
need to be recalculated after each update, and the average acceptance rate. If
the product of these three numbers is less than one, rejection-free algorithms are
faster. In some non-GGH cases, the gains can be dramatic (rejection-free code can
be thousands, or even millions of times faster). Rejection-free methods can also
facilitate parallel computing (section 4.2).

When we know the transition probabilities for a continuous-time Markov
process, we can construct a discrete-time process or embedded Markov chain as
well as a distribution of transition times. Consider the continuous-time Markov
process with transition rates w(j — i) = lim o p(i,t + Atlj,t),

B = Swl — et (15)

We can use Eq.(15) to calculate the probability for the transition j — i given
that some transition has occurred:

Fl—i)= = (19)
k#j
Eq.(16) is the jump probability for the discrete-time master equation:
pGin+1)=> f(—ip(n), (17)
j

where the index n measures how many transitions have occurred rather than
the amount of time that has passed. Since the stochastic process underlying the
master equation is memoryless, the waiting time to leave state j is exponentially
distributed, with a rate parameter:

A=) fG k). (18)
k#3
If the transition rates between states are proportional to exp[—AH /T] (Boltzmann

weighting), where AH is the difference in the states’ energies, we can use the
following rejection-free Monte-Carlo algorithm:

1. Determine all allowable lattice updates from the current lattice configuration.
2. Calculate the energy changes between them.
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3. Calculate the time parameter for each of these transitions, Ag.

. Choose a random time parameter, A;qndom, between 0 and max{\;}.

5. Find the transition n for which |Ax — Arandom| is the smallest, and update
the lattice using this transition.

6. Increment the time by a random time interval chosen with probability:
p(t)dt = A, exp[—Apt]dt.

7. Goto 1.

We may be able to bypass step 6 and simply increment the time by 1/\,,. Deter-
mining whether this approach works on average would be a nice research project.
Because most of the allowed updates and their energy changes will not change after
a given update, the complete set of possible updates needs to be evaluated only
once at the beginning of a simulation, with much faster local updates thereafter.
The longer the effective interaction range in the model, the larger the number of
recalculations necessary after each step and the less efficient the algorithm. Thus,
the gains of using rejection-free method are greatest for a simple, nearest-neighbor
Ising model, while rejection-free algorithms are much worse than Metropolis for
infinite-range interactions.

S

3.2. The Random-Walker Algorithm

A simple approach is to reduce but not eliminate the rejection rate. The random-
walker algorithm keeps track of boundary lattice sites and selects only these as
target sites in the modified-Metropolis algorithm, eliminating the automatic rejec-
tion of non-boundary sites in the normal algorithm [3]. For large cells and short
interaction ranges, speed gains are substantial. For small cells or subcells, the
increase in memory required outweighs the speed gains.

4. Parallelization for Large Simulations

Current practical single-processor GGH simulations can handle about 10°cells.
However, a full model of the morphogenesis of a complete organ or an entire
embryo requires the simulation of 10%-108cells. We also constantly demand more
lattice detail and complex cell behaviors in our simulations. This need for speed
suggests using distributed computing, which is widely available.

Parallel implementations of the GGH are an active area of research. The
main difficulty in GGH parallelization is that the effective energies are non-local
and updating is stochastic. For example, when a given cell crosses between nodes,
any modification to it requires parameters passing between nodes or computations
will use stale parameters.? Because in most current distributed computers (unlike
in an IBM SP-1 or SP-2), processing is fast and interprocessor communications
slow, a naive parallelization will cause the processes to spend almost all their time
waiting rather than calculating.

2Studying the effect of stale parameter on GGH simulations would be a very valuable research
project.



162 A. Balter, R.M.H. Merks, N.J. Poptawski, M. Swat and J.A. Glazier

4.1. Checkerboard Algorithm

The standard approach to parallelizing Ising-type models is to divide the lattice
into equivalent subgrids (with some overlap) one per processor. Each processor
subdivides its subgrid into a checkerboard of sublattices [22], defined so that an
update in one sublattice affects only the nearest-neighbor sublattices. We then
define a set of non-interacting sublattices, e.g., every 9" square in 2D or every
27" in 3D. If each processor then visits the same sublattice set and makes one
update in each, the updates are guaranteed to be independent. The processors
can then determine updates affecting neighboring processors, accumulate them
and pass them synchronously, change the sublattice set and repeat. For examples
of these methods see [4]. Gains from parallelization increase with the size of the
subgrid per processor (which reduces the message-passing overhead) and decrease
with the interaction range (which increases the message-passing overhead). To
date, no one has implemented a fully-optimized checkerboard version of the GGH
model.

4.2. Parallel Rejection-Free Algorithms

Rejection-free methods can use basic checkerboard parallelization, in which all
processors perform equivalent computations, or can use an asymmetrical master—
slave configuration, in which all processors can see the same lattice or in which
the lattice is partitioned into subgrids. The master node (or nodes) determines all
allowable updates, and delegates calculating the rates to slave nodes, which pass
the rates back to the master node for steps 4 through 7 in the algorithm in section
3.1. Again, checkerboarding greatly improves the efficiency of the calculations. As
far as we know, these methods have never been implemented in the GGH context.

5. Model Sharing Support

Because of the great simplicity of the GGH model’s core algorithms (the GGH
Hamiltonian and the modified Metropolis algorithm), a basic program that runs
the GGH model takes less than one hundred lines of Fortran or C++ code. A
result of this simplicity is that most of the major users of the GGH model wrote
their own proprietary software without separating the individual model they were
implementing from their GGH modeling framework. Current GGH simulations in-
creasingly focus on complex cell behaviors, requiring detailed descriptions of the
cell-cycle, transcription, and regulatory, metabolic and signaling networks. As the
GGH model has accreted new capabilities, these proprietary versions have become
more complex, with multiple, incompatible versions even within groups, making
the replication of published results substantially more difficult and the adoption
of new GGH extensions considerably slower [10, 11, 12, 26, 14]. Our efficiency
would be much greater if our GGH implementations could either incorporate new
methodologies in a simple way, or could communicate with programs that im-
plement them, saving us from having to reinvent each-others’ work and allowing
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us to seamlessly combine the efforts of different researchers. As other, non-GGH
agent-based cell-level models emerge, we would like to compare their results to
those of the GGH model for validation purposes. In addition, increasing num-
bers of computationally-non-sophisticated scientists wish to develop GGH models.
For these potential users, hard-coding complex initial conditions and interactions
represents an insuperable barrier.

5.1. GGH Packages

Several groups have recently released open-source, extensible GGH modeling pack-
ages which allow less-sophisticated users to build simulations of a wide range of
morphogenic phenomena. Wide adoption of a small number of these choices will
enormously facilitate model development and sharing. We will briefly discuss the
Tissue Simulation Toolkit [19], a modeling library which requires hard-coding of
user modifications, and CompuCell3D [13], a modeling environment, which allows
users to write models using high-level abstractions. Both allow users to reproduce
published results and share new algorithms relatively painlessly, opening the field
of GGH modeling to a much broader audience.

5.1.1. CompuCell3D. The CompuCell3D modeling environment (currently released
under the SimTk license®) was developed collaboratively by groups at the Uni-
versity of Notre Dame* and the Biocomplexity Institute at Indiana University,
Bloomington.? It supports the full GGH model, with unlimited numbers of chemi-
cal fields and complex diffusion equations. Instead of writing Fortran or C++ code,
CompuCell3D users specify models using an XML-based markup language and run
simulations from a flexible graphical player. CompuCell3D offers high-level Python
scripting abilities that allow users full control of system-level variables and permit
complex, conditional and time-dependent behavior specification without the need
for hard-coding. CompuCell3D is under active development. Its development team
welcomes participation by current and potential users in all aspects of its devel-
opment. See also three simulations: MovII.4.2, MovIIl.4.3 and MovIIl.4.4 from the
accompanying DVD.

5.1.2. Tissue Simulation Toolkit. Merks’ open-source GGH library, the Tissue
Simulation Toolkit (7'ST),° provides modules for simple 2D GGH simulations,
with sample programs (available on the accompanying DVD) that allow users to
reproduce published simulations. The TST includes a full range of GGH features
and chemical fields. Visualization tools allow users to display the cell lattice by
cell-type and chemical fields using color ramps and contour lines. The TST runs
either interactively or in the background, making the package especially suitable
for running large-scale parameter sweeps on computing clusters.

3https://simtk.org/home/compucell3d, .
4http://www.nd.edu/~Icls/compucell /.
Shttp://biocomplexity.indiana.edu/.
Shttp://sourceforge.net/projects/tst.
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5.2. Model Sharing

As other agent-based, cell-level models emerge, comparing results from different
models will require a markup language that specifies cell-level models and cell
behaviors in a generic way, independent of the simulation engine and modeling
methodology. For example, to describe chemotaxis, the markup language might
specify that epithelial cells of type C chemotax up TGF-3 gradients with a sig-
moidal response curve with saturation parameter o; and strength Ay, and chemo-
tax away from FGF-8 with a linear response with strength A,. Individual simu-
lation packages would then implement this behavior in their own ways (perhaps,
with some simplifications if they lacked specific features). CompuCell3D is already
moving in this direction with its XML-based model specification. Furthermore,
the XML-based markup language BioLogo (which is part of CompuCell3D) allows
generic specification, coding and compiling of reaction-diffusion mechanisms. The
Systems Biology Markup Language (SBML)" Level 3 is another markup language,
which currently plans features for spatial, compartmentalized models.

Even more valuable than model sharing through markup languages would be
model interoperability via sockets that allow communication between programs.
Sockets would allow GGH implementations (such as the TST or CompuCell3D) to
either incorporate their own engines to implement behaviors or communicate with
other programs that do. Using sockets, a generic markup language could specify
biological models in enough detail to allow sharing across model scales, connecting
GGH-model implementations to microscopic models like BioSpice® and Systems
Biology Workbench (SBW), and to macroscopic models like Physiome.!? The
developers of CompuCell3D are currently working with the developers of SBW to
implement sockets between their packages, allowing SBW to simulate the internal
chemical pathways of the cell and CompuCell3D to simulate cells and intra-cellular
behaviors. With a fully-defined markup language and set of sockets, a researcher
building a CompuCell3D simulation would be able to use another researcher’s
existing model for internal cell behaviors, without recoding or reimplementation.

6. Conclusions

This chapter has presented some current areas of GGH model development and
presented a view of its future, implicitly assuming that GGH modeling has a future.
Fig.6 shows the number of papers that discuss or use GGH-related models. We
would like to see an exponential rise rather than a peak followed by a leveling-off or
a drop. The citation rate through 2005 increases roughly exponentially, albeit with
a slow doubling time of five years, confirming a steady increase in interest in GGH
models. As its power and flexibility increase through new methods, packages and

"http://sbml.org.
8http://biospice.org.
9http://sbw.sourceforge.net/.
Ohttp:/ /www.physiome.org/.
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Number of Publications

FI1GURE 2. Number of publications using or citing GGH-related
models by year (source: Web of Science, PubMed, ArXiv, etc.).

model sharing, we expect the GGH approach to become a standard method for cell-
to-tissue level in silico biology, first replicating, then guiding in vitro experiments,
and eventually leading to new experimental discoveries.
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