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Abstract
The CompuCell3D modeling environment provides a convenient platform for biofilm simulations
using the Glazier-Graner-Hogeweg (GGH) model, a cell-oriented framework designed to simulate
growth and pattern formation due to biological cells’ behaviors. We show how to develop such a
simulation, based on the hybrid (continuum-discrete) model of Picioreanu, van Loosdrecht, and
Heijnen (PLH), simulate the growth of a single-species bacterial biofilm, and study the roles of cell-
cell and cell-field interactions in determining biofilm morphology. In our simulations, which
generalize the PLH model by treating cells as spatially extended, deformable bodies, differential
adhesion between cells, and their competition for a substrate (nutrient), suffice to produce a fingering
instability that generates the finger shapes of biofilms. Our results agree with most features of the
PLH model, although our inclusion of cell adhesion, which is difficult to implement using other
modeling approaches, results in slightly different patterns. Our simulations thus provide the
groundwork for simulations of medically and industrially important multispecies biofilms.
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1. Introduction
This paper presents the computational methodology to implement a preliminary model of
single-species biofilm growth using the Glazier-Graner-Hogeweg (GGH) model [33,34,37],1
as implemented in the CompuCell3D [17,18,44] modeling environment.2 Our fairly simple
model includes an explicit representation of a nutrient field, but does not include explicit
extracellular matrix (ECM). We show that even our simple model reproduces existing results,
providing a platform for exploring new phenomenology due to explicit cell shape, ECM
properties and multispecies interactions.

A biofilm is an aggregation of microorganisms embedded in a protective and adhesive ECM
(also called an extracellular polymeric substance or exopolysaccharide (EPS) matrix) [2]. A
biofilm is not a multicellular organism but a community of independent individuals. Although
biofilms spontaneously form patterns and structure, no evidence suggests that this formation
is the result of a genetically controlled developmental program [51,78]. Gene expression in
biofilms closely correlates with gene expression in stationary-phase bacteria in liquid culture
with some degree of anaerobic and iron-limited growth. Biofilms often contain many different
species and types of microorganisms, e.g., bacteria, archaea, protozoa, algae, and fungi [20].
They may be structurally and genetically heterogeneous, with complex community interactions
and with members of each species performing specialized metabolic functions [14].

Biofilms are very common, existing on almost any solid substrate submerged in, or exposed
to, water, from river bottoms to the lining of the gut [14]. They can also form floating mats on
liquid surfaces. Even single-species biofilms exhibit a wide variety of morphologies, making
them interesting examples of spontaneous patterning (pattern formation) [13,19,23]. Biofilms
have no “typical” structure, since, like trees in forests, biofilms can produce all sorts of shapes.
These shapes depend on multiple factors including cell motility, the existence of multiple cell
phenotypes, the nature of the secreted ECM, flows in the surrounding liquid medium, the
properties of the surface on which the biofilm grows, and mass transport in the liquid medium
and ECM. Thus biofilms serve as interesting models of the origin of multicellularity,
cooperativity, and ecological specialization, making simulations of multispecies biofilms
potentially useful in the study of these basic biological questions.

Biofilms contribute to a host of industrial and medical problems, ranging from ship fouling to
antibiotic resistance and tooth decay. Biofilms also present a unique opportunity in
environmental technologies for cleanup and containment of hazardous waste. Since biofilms
are involved in about 80% of microbial infections in humans [1], a realistic understanding of
how biofilms grow3 and how they contribute to antibiotic resistance would be of practical
value.

Because of the difficulty of observing and controlling real biofilms, they have attracted much
attention from modelers wishing to clarify the roles of different biological and physical
mechanisms in determining biofilm properties. Biofilm models generally divide into cell-
centered models with discrete cells (cellular automata [8,39,69] or individual-based models
[25,52,85]), and continuum models [3,26,28,84]. Hybrid models combine discrete cells with a
continuum representation of the ECM and/or extracellular fluid [4] or with PDEs for reaction-

1This model has previously received a number of names, of which the cellular Potts model (CPM) has been most popular. However, as
we have discussed in detail in [33], the name Potts model evokes a set of incorrect or misleading expectations concerning the model,
which have proved confusing.
2For additional information on CompuCell3D and open-source downloads of CompuCell3D software, please visit:
http://www.compucell3d.org/.
3A realistic model of biofilms would include the effects of nutrient limitation, the ways in which products of one bacterial species serve
as nutrients or toxins for others, age-dependent metabolism of cells, cell loss and necrosis, and the effects of flowing liquids.
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diffusion [66,67,68]. The first continuum, one-dimensional (1D) mathematical models of
biofilms considered only gradients perpendicular to the biofilm-liquid interface [83]. Later,
two-dimensional (2D) models based on physical principles explored the ways lateral gradients
create biofilm structures [8,25,28,39,52,66,67,68,69]. These models addressed the
spontaneous formation of heterogeneous structures, the influence of flow-induced breakage
and substrate gradients, and the role of pores in biofilms [82].

However, we still lack both a fundamental theory and accurate experimental observations of
biofilm growth [82]. In addition, most existing models have certain limitations that may impair
their viability in describing complex real biofilms. Many cell-centered and hybrid models
describe individual cells as points [66] or spheres [4]. However, cell shape can be essential in
biological development,4 and changes in cell shape reflect the elastic properties of cells.

Thus, this paper takes a cell-oriented, hybrid approach to biofilm modeling [56]. We treat cells
as macroscopic objects with mechanical properties.5 Since the size of substrate molecules is
small compared to the size of the biofilm cells, we treat substrates as continuous diffusive
fields.6 The main goal of this paper is to validate our GGH-based approach by reproducing
known simulation results for single-species biofilms. This validation is essential to future
studies, which will apply the GGH model to multispecies biofilms, where differences in cell
adhesion and elasticity between various types of cells may greatly affect biofilm development.
Because the methods against which we are benchmarking do not include explicit cell shape,
we model cells as deformable bodies rather than cells with a fixed shape, as in real bacteria.
However, we can easily add explicit cell shapes in future simulations. Treating cells as
extended, deformable objects allows us to investigate the role in biofilm formation of cell-cell
and cell-ECM adhesion, which are crucial in many types of biological pattern formation [76].
Although analyzing the effects of cell adhesion does not require spatially extended objects
[12], our approach allows us to introduce elasticity and surface tension directly, in terms of
free energies [33]. Furthermore, the GGH model allows us to include in a simple and physically
correct fashion many other biologically relevant phenomena, e.g., cell polarity and
compartmental cell structure [6].

2. The PLH biofilm model
Overall, our choice of biological mechanisms follows the very successful model of Picioreanu,
van Loosdrecht, and Heijnen (PLH) [66,67], with the important difference that our cells are
extended, elastic, adhesive objects. We do not model ECM explicitly. However, we include it
implicitly in the form of a cell-medium adhesion coefficient in the GGH effective energy (see
section 3). Thus, our GGH biofilm cells correspond to clusters of real biofilm cells surrounded
by a thin layer of ECM.

The hybrid differential-discrete PLH model [66,67] focuses on the development of single-
species biofilms containing Nitrosomonas europaea or Nitrobacter agilis, using kinetics
derived from [7,24]. A 2D rectangular mesh discretizes space. Two variables represent the

4Bacteria come in a great range of shapes and sizes, both spherical and nonspherical, and have rigid cell walls. In this paper we study
roughly spherical clusters of bacteria, although our approach allows us to describe nonspherical bacteria and control the average shape
and rigidity of cells in our biofilm simulations by changing the corresponding parameters in the effective energy (see section 3). We can
also introduce different surface energies between various cell types, which drives cell sorting and results in spatially varying species
densities within the biofilm (not presented in this paper).
5Each generalized cell (see section 3) in the model we present in this paper represents a cluster of many real cells and their associated
ECM, so it can be deformable while the real cells are rigid. The only mechanical properties of cells we model in this paper are their
surface tension and compressibility, although we could easily add a shear modulus and viscosity [6,33].
6Although the size of substrate molecules is small, the substrate density may, if it is low enough, fluctuate over distances that are large
compared to the bacterial length scale. These fluctuations are the reason that bacteria cannot, in general, sense spatial gradients directly
[9]. We omit these fluctuations since, as we show later, biofilm morphology is sensitive to only one parameter, which relates substrate
uptake to biofilm growth rate, and is averaged over a time scale much longer than that of the typical fluctuations in substrate concentration.
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state of the simulated biofilm: the soluble substrate7 concentration S, and the biomass density
C. In addition, the solid component matrix c stores information about the occupation of space.
The quantities S and C vary between 0 and 1, while the occupation state c takes either the value
0 (an unoccupied site) or 1 (a site with biomass). The variables S and C are defined as

(1)

(2)

where cX is the biofilm density, cXm is the maximum biomass density in a colony, cS is the local
substrate concentration and cS0 is the substrate concentration in the bulk liquid. The substrate
concentration cS in 2D obeys the diffusion equation

(3)

where DS is the substrate diffusion coefficient, and the substrate consumption rate, rS, depends
on both cS and the biomass density in the biofilm, cX. By construction, the PLH model does
not include the effective surface energy between cells or between cells and the bulk liquid.

In the absence of detailed experimental data, most biological models, including the PLH model,
assume a Monod-like saturation function to describe the substrate consumption rate [67]:

(4)

where μm denotes the maximum specific growth rate, YXS is the growth yield (amount of
biomass produced per unit of substrate), mS is the maintenance coefficient and KS is the Monod
saturation constant [67]. The equation for biomass balance is

(5)

where the net rate of biomass formation, rX, is

(6)

Combining equations (4)–(6) gives

(7)

which is the same as

(8)

7Many experimental biofilms are anaerobic. By substrate, we mean simply that the rate of cell growth depends primarily on the availability
of a single diffusible substance, which could be oxygen, glucose, and the like.
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At low substrate concentrations, this model allows negative biomass growth (shrinkage), while
at high substrate concentrations the biofilm growth rate reaches an observable maximal value.
To simulate cell division and mechanical elasticity, when the biomass concentration C reaches
its maximum value 1 at a given location, it divides into two equal parts. The first stays where
it started, while the other moves to a randomly chosen, adjacent grid element, updating the
occupation matrix c through a cellular-automaton mechanism [67]. Specific boundary
conditions govern substrate uptake from the environment. For a biofilm forming on a solid
support, the substrate concentration is constant and maximal (S = 1) outside the aqueous
medium [66].

In the PLH model, biofilm morphology depends on a single parameter, the nondimensional
ratio of the maximum biomass growth rate to the maximum substrate transport rate. In terms
of the quantities introduced in the preceding paragraphs, this ratio (called the Growth Group
Parameter) is [66]

(9)

where lz is the maximum biofilm thickness. If G is small, the substrate diffuses fast enough that
an appreciable quantity reaches all regions of the growing biofilm, and its isoconcentration
lines are flat and horizontal. Therefore, the growing biofilm remains essentially compact and
flat. For larger values of G, faster substrate consumption prevents the substrate from reaching
all regions of the growing biofilm, inducing competition for the substrate. In this case, both
the substrate distribution and the biofilm density become more irregular, and deep vertical
channels (valleys) form in the biofilm density in a fingering instability [21,38,60,64]. When
G is very large, growth is very slow and filamentous structures form. This general behavior
holds in both 2D and 3D simulations [66].

3. The GGH biofilm model
A general model of a growing biofilm needs three main elements [26]. First, a transport
mechanism like diffusion or advection-diffusion must bring growth substrates (e.g., oxygen,
nutrients) to the cells in the biofilm. Second, cells must grow and proliferate while consuming
growth substrates. The third and least understood element is biofilm loss due to breakage or
cell death. In addition to these fundamental mechanisms, we could explore the effects of other
factors such as cell-cell or cell-ECM adhesion,8 or the elastic reactions of biofilms to fluid-
flow-generated shear stress.

Our mathematical model of biofilm growth adapts the PLH hybrid model to the Glazier-Graner-
Hogeweg (GGH) model, also known as the cellular Potts model (CPM), which includes
subcellular, cellular, and continuum mechanisms such as cell adhesion, growth and division,
diffusion of chemicals, chemotaxis (movement of cells up or down a gradient of an extracellular
diffusing chemical), and haptotaxis (movement of cells due to changes in cell-cell and cell-
ECM adhesion, ECM stiffness, or ECM-bound chemicals). GGH applications include models
of Hydra vulgaris regeneration, cell motility [62], cell deformation [72], chick embryo mes-
enchymal chondrogenesis [17,44], growth [71] and cell motility [63], tumor growth [47,77],
embryonic convergent extension [86], vasculogenesis [57], avascular tumor growth [27],
cancer invasion [79,80], aggregation, slug behavior and culmination in Dictyostelium
discoideum [46,53,54,55,74], the liquid-like behavior of chick-cell aggregates [10], chick limb
growth [71], engineering biological structures using self-assembly [45,65], directional sorting

8Since we do not model ECM explicitly in this paper, we account for the interactions between ECM and cells using the adhesion
coefficients (see below).
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of chemotactic cells [49], evolutionary mechanisms [40,41,42], foams [48,73], and viscous
flow [22]. Figure 1 shows a few biological applications of the GGH.

GGH models include objects, interaction descriptions, dynamics and initial conditions. Objects
in a GGH model can be generalized cells or fields. Generalized cells are spatially extended
domains, which reside on a single cell lattice and may correspond to clusters of biological cells,
biological cells, subcompartments of biological cells, or to portions of noncellular materials,
e.g., ECM, fluids, solids, etc. [6,33]. Generalized cells can carry within them chemical
concentrations, state-descriptors (e.g., time since last mitosis), descriptions of biochemical
interaction networks, etc.

Fields are continuously variable concentrations, each of which resides on its own lattice. Fields
typically represent chemical diffusants, nondiffusing ECM, etc. Multiple fields can be
combined to represent materials with textures, e.g., fibers.

Interaction descriptions and dynamics define how the various objects behave both biologically
and physically. For generalized cells, these behaviors and interactions are embodied primarily
in the effective energy (also known as the CPM Hamiltonian), which determines a generalized
cell’s shape, motility, adhesion and response to extracellular signals [33]. Local minimization
of the effective energy [76] drives most pattern dynamics [33,34,37]. The effective energy
mixes true energies, such as cell-cell adhesion, and terms that mimic energies, e.g., the response
of a cell to a chemotactic gradient of a field. Mathematically, N spatially extended cells indexed
by σ lie on a 2D or 3D lattice; the value at a lattice site (pixel) i⃗ is σ if this site lies in cell σ. A
collection of connected lattice sites with the same index represents a cell, as shown in Figure
2. To each cell we associate a cell type τ. Different cells can have the same value of τ.

A typical effective energy in our simulations includes two main terms [33,34,37]:

(10)

The first term describes the surface energy between cells, and between cells and their
environment, in terms of symmetric surface energies J(τ, τ′) = J(τ′, τ) [33,34,37]. To calculate
the energy resulting from cell-cell adhesion we consider first-, second-, and third-nearest
neighbor lattice sites, which reduces lattice anisotropy effects compared to first-neighbor
calculations [43].9 The second term corresponds to the compressibility of the cells and prevents
cell disappearance; V(σ) is the volume in lattice sites of cell σ, Vt its target volume, and λV (τ)
the strength of the volume constraint.10

Instead of the surface-adhesion coefficients J(τ, τ′), we can use surface tensions γ(τ, τ′), defined
as

(11)

Negative surface tensions correspond to mixing or dispersing cells, while positive surface
tensions correspond to cell sorting.

9Although we use a 2D model, the neighborhood description also applies in 3D.
10To control cell shapes we could add to equation (10) a term which represents the elasticity of the cell membrane or wall: ∑σ λS(τ)(S
(σ) − St(σ))2, where S is the surface area of a cell and St its target surface area [17, 44]. This term fixes the average shape of the cells.
We could also control the shape of the cells explicitly using elongation constraints [57]. Another possibility is a term of form

 (κ = 1/2 in 2D and 2/3 in 3D) to be consistent with the classical theory of elasticity [70].
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We simulate growth of cells by increasing their Vt by a function f which typically depends on
the local concentrations of chemicals C that induce growth and the internal state of the cell
[71]:

(12)

If a cell reaches a given doubling volume, it divides and splits along a random axis (with no
splitting orientation) into two cells with equal target volumes of one half the parent-cell volume
(we can easily add oriented cell division, but it is not included in the PLH model [66,67]).
Adding constraints to the effective energy can describe many other cell properties, including
osmotic pressure and membrane area [17,44], the average shape of the cells [57,86], chemotaxis
[40,54], viscosity and advective diffusion [22], rigid-body motion [6], and cell compartments
for the simulation of polarized cells, e.g., in epithelia [11].

The cell lattice evolves through attempts by generalized cells to extend their boundaries into
neighboring lattice sites, slightly displacing the generalized cells which currently occupy those
sites. These extensions change the effective energy, and we accept each one with a probability
that depends on the resulting change of the effective energy according to an acceptance
function [33]. Thus, the cell lattice evolves to minimize the total effective energy [32,36] (we
can translate the effective energy rigorously into a force-based formalism if we choose, but the
effective-energy formalism is more convenient). The rearrangement dynamics uses a
relaxational Monte-Carlo-Boltzmann-Metropolis dynamics [33,34,37,59], modified so that
averaged local movements of cell boundaries obey the overdamped force-velocity relationship
(modified Metropolis dynamics):

(13)

where μlocal is the local mobility of the object experiencing the force and υ⃗ the local boundary
velocity. The cells rearrange their positions to minimize the total effective energy [76]. At each
step we randomly select a lattice site i⃗ and attempt to change its index from σ(i⃗) to the index σ
′= σ(i⃗′) of an arbitrary lattice site i⃗′ in its third-order neighborhood (a lattice site which connects
to i⃗ by a side, edge, or corner). We accept the change with a probability P:11

(14)

where Δℋ is the difference in effective energy produced by the change, θ is the Heaviside step
function, and T is a parameter corresponding to the amplitude of cell fluctuations [61].12 One
Monte Carlo Step (MCS) by default corresponds to n index-change attempts, where n is the
total number of lattice sites (however, in our biofilm simulations, we will define a Monte Carlo
Step as  index-change attempts; see section 4).

Auxiliary equations describe cells’ absorption and secretion of diffusants and extracellular
materials (i.e. their interactions with fields), state changes within the cell, mitosis, and cell
death [33]. Usually, state changes affect generalized-cell behaviors by changing the parameters
present in the effective energy (e.g., the surface density of a particular cell adhesion molecule).
Fields evolve due to cells’ secretion and absorption at their boundaries, and diffusion, reaction
and decay under the control of PDEs. The initial condition specifies the initial configurations

11Again, we use a third-order neighborhood to minimize the effects of lattice anisotropy, which are strong for first- and second-order
interactions.
12Generally, bacteria do not change their shape greatly as they move. They move by various mechanisms (extrusion, flagella, pili), which
we do not model in detail. The quantity T corresponds to the effective fluctuations due to both bacterial motility and thermal fluctuations
such as Brownian motion.
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of all generalized cells and fields, all internal states related to auxiliary equations and any other
information required to completely describe a model.

If, as in the PLH papers cited, simulated bacteria are aerobes and we assume that they have
plenty of nutrients so their growth is limited only by their oxygen supply, our substrate field
(O) represents oxygen. We could also use it to represent a key nutrient to model anaerobic
bacteria growing in a nutrient-limited environment. Our single-species biofilm model includes
four types of generalized cell, representing: biofilm cells (b), a substrate source (o), a solid
bottom (s), and an aqueous medium (m) submerging the growing biofilm.13 The substrate-
source and solid-bottom cells are frozen, i.e. they do not exchange pixels with other cells. Fields
do not have an excluded volume, i.e. they can co-occupy space with cells. We treat the medium
as a large generalized cell without a volume constraint. We can regard the medium as all space
in the cell lattice that is not occupied by other generalized cells. Treating the medium as a
generalized cell allows us to represent the surface tension of real cells. Figure 3 shows the
initial 2D configuration for our simulations.14 The dimension of the domain in pixels is 200
× 100 × 1 (the z-axis is perpendicular to the page). We are free to assign the length scale and
time scale in the simulation, which fixes the other parameters. We set 1 pixel to 4μm, so the
vertical height of the simulation domain is 400μm, as in [66], and 1 MCS to 3000s, so 1000
MCS corresponds to approximately 35 days. Each biofilm cell initially occupies a 2 × 2 × 1
cube, which is approximately 10 times larger than the real bacterial cells.15 The initial value
of Vt for biofilm cells is equal to their initial volume. We simulate growth of biofilm cells by
applying equation (8) in the equivalent form:

(15)

In the hybrid PLH model [66,67], cells divide when the local value of C reaches 1. In the GGH
model, biofilm cells divide when V reaches the doubling volume Vd, which is twice their initial
Vt. Therefore, both C and Vt represent the closeness of cells to division, which justifies equation
(15). We can rewrite equation (15) in a form which explicitly depends on G:

(16)

where

(17)

Equations (3) and (4) give

(18)

Since cX and Vt represent the same object, they are proportional to each other:

(19)

13Since the GGH model is cell-oriented, it is easier to introduce a cell type o to supply oxygen instead of using a boundary condition
with a constant oxygen concentration at the top of the simulation domain. We also introduce a cell type s to account for the adhesion
between the growing biofilm and the solid bottom.
14We do not model here the kinetics of initial cell attachment, recruiting of cells from the medium, or breaking off and loss of chunks
from the attached biofilm.
15This rescaling, which permits us to use a much smaller cell lattice, significantly speeds up our simulations.
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We rewrite equation (18):
(20)

where the effective decay constant k is

(21)

which shows k’s dependence on G. In our simulations, we simplify equation (21) by setting
Vt = 3Vd/4, which corresponds to the average cell volume. We also ignore cell loss by setting
mS = 0,16 and do not model cell death. Equation (21) has two limiting cases:

. In the first case, k does not depend on S, so the second term in the right-
hand side of equation (20) is proportional to S, which represents substrate decay. In the second
case, the decay constant k is proportional to , so the second term in the right-hand side of
equation (20) is independent of S, which represents substrate consumption. We effectively
combine both limiting cases by rewriting equation (20) as

(22)

where

(23)

and

(24)

The substrate-source cells, representing the contact of the liquid medium with oxygen in the
air, secrete substrate, which diffuses into the medium and biofilm cells. Secretion occurs at a
constant rate, and we keep the substrate concentration S everywhere below a threshold value
1 (corresponding to the maximum solubility of substrate in water) by checking whether S > 1
anywhere. If so, we set S = 1 at those points. A constant secretion rate for substrate would
implement a constant-flux boundary. However, the requirement S ≤ 1 yields a constant-
concentration boundary, in agreement with a constant oxygen partial pressure in the
surroundings. This algorithm means that the net supply of substrate increases as its
consumption by biofilm cells increases and also increases as the separation between the biofilm
and the liquid surface decreases, which is realistic for biofilms growing in thin liquid films,
where the substrate concentration at the surface is always saturated. It does not describe well
a biofilm growing deep under water, where the maximum substrate concentration is well below
saturation. The substrate distribution is initially homogeneous and saturated, so S = 1
everywhere. Substrate-secreting generalized cells increase the concentration of substrate at a
fixed rate in the pixel corresponding to their center of mass. Biofilm cells consume substrate
by secreting negative amounts of substrate at their centers of mass.17 Substrate diffuses on the
field lattice using a forward-Euler algorithm run N′ times per MCS, where N′ depends on the
time and distance scales we have chosen, and the substrate diffusion constant, DS. We use no-

16Since we employ discrete, extended cells, not continuous biomass density, cell loss (which we do not model here) is irreversible,
differing from the PLH model [66,67], where the quantity C may drop to zero, then recover to a positive value.
17Secretion of negative substrate is equivalent to absorption of substrate, but computationally simpler to implement.
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flux boundary conditions at the bottom of the simulation domain, and periodic boundary
conditions at the sides to simulate a large biofilm.

We must specify all parameters in our simulations in GGH units: pixels, MCS,.... In the absence
of experimental measurements of these parameters, we choose them in a range which exhibits
the general classes of behaviors observed experimentally. The fluctuation amplitude T rescales
the surface-adhesion coefficients J(τ, τ′) and the volume-constraint coefficient λV. Here, we
choose these values to prevent cells from disappearing or freezing, and use the hierarchy of
surface-adhesion coefficients to keep the cells from desorting (i.e. to keep the bacterial cells
from floating off into the liquid medium). Thus, for each pair of generalized-cell types τ and τ
′ we set J(τ, τ) ≤ J(τ, τ′) and J(τ′, τ′) ≤ J(τ, τ′). For the biofilm cells we also have

, where  is on the order of the approximate critical surface
tension below which cell dissociation occurs (the factor of 12 is the number of neighbors in
the 2D third-order neighborhood), which keeps them from dispersing into the medium [34]. In
the GGH model, stronger adhesion corresponds to lower values of the surface energy J. Since
bacterial cells are viscoelastic, we could, in principle, obtain their surface adhesion coefficients
from parallel-plate compression experiments [10,29,30,31].

Unless we specify otherwise, we use the following values for the cell-cell and cell-medium
adhesion coefficients, which satisfy the above inequalities [35]:

(25)

The other J(τ, τ′) are irrelevant, so we set them to zero. We also set T = 10 following [34,37].
Our choice of parameters is somewhat arbitrary, since only experiments can provide their exact
relative values. We choose λV = 40, which prevents the cells from disappearing and makes
them fairly rigid. We take the parameters in equations (1)–(8) from [66], except for mS, which
we set to 0.18 We control the value of the non-dimensional parameter G in equation (9) by
changing cS0.

4. Implementing the GGH mathematical model in CompuCell3D
Now that we have defined our mathematical model of biofilm growth, we must translate it into
a simulation. Our simulations use CompuCell3D [15,16,17,18,44], an open-source, multimodel
software framework for simulation of the development of multicellular organisms.19 The great
advantage of the CompuCell3D implementation of the GGH is that it uses simple
CompuCell3D markup language (CC3DML) to specify models, allowing easy model sharing
and validation [6]. CC3DML is simple to read and write and fairly compact.

To illustrate the translation of our model into CC3DML code, we review the derivation and
meaning of the most relevant parts of the model. We provide the complete CC3DML code
corresponding to our simulation with G = 10 in Appendix A; all the CC3DML code, the plugins
and steppables, and the PIF and TXT files used in our simulations are available for download
from http://www.compucell3d.org/Models/biofilm.

The first section of a CC3DML configuration file defines the global parameters of the lattice
and the simulation:

〈CompuCell3D〉

18If we take mS in equation (4) equal to its original value in [66], the simulated biofilm detaches from the bottom support (simulations
not shown) which is unrealistic in the absence of fluid flows. For mS = 0, our simulated biofilms remain attached but are denser at the
bottom than the corresponding simulations in [66].
19Downloadable from http://www.compucell3d.org/.
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〈Potts〉

〈Dimensions x=“200” y=“100” z=“1”/〉

〈Steps〉20000〈/Steps〉

〈Temperature〉10〈/Temperature〉

〈Flip2DimRatio〉0.01〈/Flip2DimRatio〉

〈Boundary_x〉Periodic〈/Boundary_x〉

〈Boundary_y〉NoFlux〈/Boundary_y〉

〈Boundary_z〉NoFlux〈/Boundary_z〉

〈FlipNeighborMaxDistance〉2.1〈/FlipNeighborMaxDistance〉

〈/Potts〉.

The line 〈Dimensions x=“200” y=“100” z=“1”/〉 declares the dimensions of the lattice to be
200 × 100 × 1, i.e. the lattice is 2D and extends in the xy plane. The basis of the lattice is 0 in
each direction, so the lattice sites in the x and y directions have indices ranging from 0 to 199
and from 0 to 99, respectively.

The lines 〈Steps〉20000〈/Steps〉 and 〈Temperature〉10〈/Temperature〉 tell Compu-Cell3D that
the simulation should last 20000 MCS, with the fluctuation amplitude in equation (14), T = 10.
The line 〈Flip2DimRatio〉0.01〈/Flip2DimRatio〉 tells Com-puCell3D that it should make 0.01
times the number of lattice sites (199 × 99 × 1) index-change attempts per MCS. The purpose
of this definition is to model processes with fast time scales, in our case allowing for flexible
definition of the diffusion constant of the substrate. In our case, the diffusion constant of the
substrate is 100 times larger than the nominal value in the code (see below). The next line
〈FlipNeighborMaxDistance〉2.1〈/FlipNeighborMaxDistance〉 specifies the range of
interactions (in pixels) to be third neighbor. A value of 1 corresponds to nearest-neighbor
interactions. The longer the interaction range, the more isotropic the simulation and the slower
it runs. If the interaction range is comparable to the cell size, apparently nonadjacent cells may
contact each other. The CC3DML tags 〈Boundary_x〉, 〈Boundary_y〉 and 〈Boundary_z〉
impose boundary conditions on the lattice. In our case, the x axis is periodic; so, for example,
pixel (0, 1, 1) neighbors pixel (199, 1, 1), while the y and z axis boundaries have no-flux
boundary conditions.

The second section of the CC3DML file contains plugins, which CompuCell3D refers to every
time it calculates the effective energy in equation (10). The plugins vary from simulation to
simulation and define many of the types, behaviors and interactions of objects used in a given
simulation. The ability to specify dynamically plugins (and steppables, see below) gives
CompuCell3D its flexibility.

The CellType plugin informs CompuCell3D what generalized-cell types we are using in the
simulation:

〈Plugin Name=“CellType”〉

〈CellType TypeName=“Medium” TypeId=“0”/〉

〈CellType TypeName=“Oxygen” TypeId=“1” Freeze=“”/〉
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〈CellType TypeName=“Biofilm” TypeId=“2”/〉

〈CellType TypeName=“Support” TypeId=“3” Freeze=“”/〉

〈/Plugin〉.

Each line contains the name of a type that the simulation uses and assigns it to an integer-valued
TypeIdpeId. Medium is traditionally assigned a TypeIdpeId = 0 (this type index does not have
a volume constraint by construction). In our simulations we create four cell types, Medium,
Oxygen, Biofilm, and Support. Oxygen cells represent air above the liquid Medium in which
Biofilm cells grow. Like Support cells, they are frozen; that is, they do not move by exchanging
pixels with other generalized cells.

The Contact plugin defines the boundary energies J(τ, τ′) between cells of different types and
the interaction range (Depth) of the neighborhood used in the contact-energy summation in
equation (10):

〈Plugin Name=“Contact”〉

〈Energy Type1=“Biofilm” Type2=“Medium”〉16〈/Energy〉

〈Energy Type1=“Biofilm” Type2=“Biofilm”〉8〈/Energy〉

〈Energy Type1=“Biofilm” Type2=“Support”〉4〈/Energy〉

…

〈Depth〉2.1〈/Depth〉

〈/Plugin〉.

The VolumeLocal plugin defines the volume-constraint term in equation (10):

〈Plugin Name=“VolumeLocal”〉

〈LambdaVolume〉40〈/LambdaVolume〉

〈/Plugin〉.

The CenterOfMass plugin enables CompuCell3D to track the center of mass of each cell, for
example, to control cell growth (see below):

〈Plugin Name=“CenterOfMass”/〉.

The Mitosis plugin defines the doubling volume at which a Biofilm cell divides into two cells
with equal volumes:

〈Plugin Name=“Mitosis”〉

〈DoublingVolume〉8〈/DoublingVolume〉

〈/Plugin〉.

The NeighborTracker plugin enables CompuCell3D to track all neighbors of each cell:

〈Plugin Name=“NeighborTracker”/〉.
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The third section of the CC3DML file contains steppables. The PIFInitializer steppable,
executed only once at the beginning of a simulation, defines the initial conditions of the cell
lattice:

〈Steppable Type=“PIFInitializer”〉

〈PIFName〉Biofilm.PIF〈/PIFName〉

〈/Steppable〉.

A PIF file sets the initial cell lattice configuration for the simulations, and for n generalized
cells contains at least n lines, each of which consists of: the index of a generalized cell, the cell
type, and the range (in pixels) this cell occupies on the lattice (xmin, xmax, ymin, ymax, zmin,
zmax). Using multiple lines/cell allows specification of arbitrary geometries. In our simulations
we begin with 50 bacterial clumps distributed uniformly along the bottom (see Figure 3).

CompuCell3D executes the remaining steppables once at the conclusion of every MCS. The
FlexibleDiffusionSolverFE steppable introduces fields of chemicals and defines their secretion,
consumption, diffusion and decay, in this case, implementing equation (18):

〈Steppable Type=“FlexibleDiffusionSolverFE”〉

〈DiffusionField〉

〈DiffusionData〉

〈FieldName〉Oxygen〈/FieldName〉

〈DiffusionConstant〉0.15〈/DiffusionConstant〉

〈DecayConstant〉0.0015〈/DecayConstant〉

〈ConcentrationFileName〉Oxygen.TXT〈/ConcentrationFileName〉

〈/DiffusionData〉

〈SecretionData〉

〈Secretion Type=“Oxygen”〉1〈/Secretion〉

〈Secretion Type=“Biofilm”〉−0.0006〈/Secretion〉

〈/SecretionData〉

〈/DiffusionField〉

〈/Steppable〉.

The DecayConstant corresponds to k1 in equation (22) and the SecretionData constant for
Biofilm cells to k2. The Oxygen.TXT file sets the initial distribution C(x, y, z) of the substrate,
with the format: x, y, z, C(x, y, z). In our simulations the initial field is 1 everywhere,
representing oxygen saturation in the medium.

Finally, the TargetVolume steppable defines the growth of the Biofilm cells in response to
substrate:
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〈Steppable Type=“TargetVolume”〉

〈InitialTargetVolume Type=“Biofilm”〉4〈/InitialTargetVolume〉

〈Growth Type=“Biofilm” Field=“Oxygen” GrowthRate=“1” Saturation=“0.033”/〉

〈/Steppable〉.

In this sample program, the Biofilm cells grow under the influence of Oxygen, according to
equation (16), where GrowthRate corresponds to μm and Saturation to . The CC3DML file
ends with the line:

〈/CompuCell3D〉.

5. Results
In this section, we explore how the morphology of the growing simulated biofilm depends on
model parameters, in particular, the dimensionless parameter G in equation (9), which
Picioreanu, van Loosdrecht, and Heijnen identified as controlling the selection of flat-interface
vs. fingered growth in their hybrid model [66, 67]. Figure 4 shows the terminology we use in
this paper to describe the morphology of simulated biofilms and the color code for substrate
concentration in Figures 5–16. The leading edge is the vertical position of the highest point in
the biofilm. The trailing edge is the average position of the narrowest part of the fingers, or,
if fingers are convex, the lowest point occupied by medium. The small white square shows the
generalized-cell size. In the following figures, we represent areas containing biofilm cells with
white hatch lines, and the biofilm-medium interface as a white boundary line. We do not show
the boundaries of individual biofilm cells because they are too small on the scale of the figure.
We also show the spatial distribution of the substrate: red–high concentrations (S ~ 1), blue–
low concentrations (S ~ 0.1), black–almost no substrate (S ~ 0).

For G < 10, the biomass growth rate limits the growth dynamics (growth-limited regime). The
substrate penetrates most of the biofilm and reaches most cells. In this case, the simulated
biofilms are dense, compact and fast-growing. Growth continues even at the bottom of the
valleys between protrusions, resulting in ripples rather than fingers. For G = 1, diffusion is so
strong that no valleys form and the biofilm-medium interface remains flat. The
isoconcentration lines of the substrate remain essentially horizontal. For G = 2 and G = 5, the
biofilm-medium interface becomes rippled. The isoconcentration lines of the substrate curve
slightly, following the biofilm-medium boundary. Figures 5, 6, and 7 show simulations with
G = 1, 2, and 5, respectively.

Figure 8 shows the time evolution of a simulated biofilm for G = 10. For this value of G, the
substrate penetrates several cell diameters into the surface layer of the biofilm. The case G =
10, as we will see below, is a border between two different morphological regimes. As in Figure
9, adapted from [66], the biofilm’s structural complexity increases continuously in time.
Initially, the substrate penetrates throughout the biofilm colonies, which grow in all directions.
As they grow, the cells consume substrate and the substrate concentration develops a gradient,
increasing in the vertical direction. As the biofilm thickens, cells in regions which thicken faster
due to statistical fluctuations (protrusions) experience higher concentrations of substrate than
others. These cells produce new biomass more quickly, while the cells in the valleys (horizontal
locations where the interface between biofilm and medium lags significantly behind the highest
local vertical position of the biofilm, as in viscous fingering [21,38,60,64]) experience an
environment depleted in substrate, begin to starve, and grow slowly or cease to grow, so the
space between growing biofilm clusters fills slowly or not at all with new cells. The valleys
deepen and the biofilm becomes more irregular. The isoconcentration lines of the substrate are
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more curved than for G = 5. This fingering instability generates the fingers observed in
experimental biofilms.

For G > 10, we find a substrate-transport-limited regime: the substrate transfer rate, not the
biomass growth rate, limits the growth dynamics. The substrate penetrates thin layers of
biofilm, but less substrate reaches deeper layers. Therefore, the valleys between biofilm
protrusions are wider and deeper and the structure of the biofilm is more finger-like than for
G = 10. Cells in the valleys cease to grow and the fingers develop concave necks. The biofilm
fingers grow more slowly than for smaller values of G (reaching the top of the simulation
domain after a larger number of MCS). The bigger G, the narrower the fingers and the greater
the space between them. The neck of the finger also becomes narrower with respect to the
width of the finger. Figures 10 and 11 show simulations for G = 20 and G = 50, respectively.
At G = 50, the substrate consumption rate relative to biofilm growth is so large that more cells
starve (they do not die in our model, but they do stop dividing) and the simulated biofilm
produces fewer fingers. As a result, the isoconcentration lines of the substrate curve
significantly, because high concentrations of substrate penetrate into the larger valleys.

Figure 12 shows the structures of biofilms and the spatial distributions of substrate for various
values of G at the moment when their leading-edge height h reaches 7/8 of the vertical height
of the simulation domain (350μm = 86pixels). Our simulated biofilm morphology resembles
that in the PLH model, as shown in Figure 13. The substrate penetration length lp describes
how far the substrate diffuses into the biofilm before decaying or being consumed:

(26)

where k is the effective decay constant in equation (21). Note that not all the space covered by
white hatch lines (biofilm) is black (near-zero substrate concentration) and the width of the
blue layer within the biofilm shows the substrate penetration length, clearly showing that this
length is a source of the fingering instability. Our simulations, except for G = 50, agree with
the results of the PLH model [66] in both morphology and growth time scale. We do not report
detailed numerical comparisons of the morphologies in this paper, which focuses on validation
of our computational methods. Instead, we show the general compatibility of GGH and PLH
results and differences which we can attribute to the change in simulation method.

Table 1 compares the times (in days) at which our simulated biofilms reach a thickness of
350μm with those of [66]. For G = 50, our simulations produce biofilms with fewer fingers
than those of [66]. This difference results from our including adhesion between biofilm cells.
This adhesion generates an effective surface tension, which, as in viscous fingering [64],
suppresses high-frequency modes in the biofilm-medium boundary, and prevents separate thin
structures from forming very close to each other, generating fewer, broader fingers.

Figure 14 shows the effect on biofilm morphology of decreasing J(b, m) from 16 to 8 with G
= 10 (or γ(b, m) from 12 to 4), which is equivalent to decreasing the strength of the biofilm’s
cell-cell adhesion, so that the cells adhere to the medium and to themselves with the same
strength (if we decrease J(b, m) to 4, the surface tension of the cell-medium interface, γ(b,
m), reaches zero). More fingers form, showing that the effective cell-medium surface tension
increases the wavelength of the finger pattern, as occurs in viscous-fluid fingering instabilities
[64]. Valleys pinch off, leaving pockets of medium surrounded by biofilm as in directional
solidification. Figures 15 and 16 show the same effect for biofilms with G = 20 and 50,
respectively. The smaller G, the less sensitive the simulated morphology to the strength of cell-
cell adhesion. Weaker cell-cell adhesion produces fingers with more irregular shapes and
rougher surfaces, as we would expect when we eliminate the smoothing effects of surface
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tension. However, the parameter G still governs the pattern wavelength and overall
morphology.

Fractional occupancy (fraction of sites at height y occupied by biofilm cells) c̄(y) is a
convenient parameter to describe biofilm morphology, since it shows the effective average
finger shape. Figure 17 shows c̄(y) at the moment when the biofilm’s leading edge reaches 7/8
of the vertical height of the simulation domain (350μm = 86pixels), and compares it to the
corresponding results in the PLH model, adapted from [66]. Both models agree in curve shapes
for smaller values of G, while for larger values, G = 20 and 50, our curves cease to be monotonic,
showing that the fingers have concave necks. The differences in positions of curves between
the two models that appear at low values of G are not apparent from the biofilm-structure
figures. This difference in fractional occupancy occurs because the GGH biofilms always have
a base layer of bacterial cells that coat the bottom in a continuous layer.

Figure 14 shows also how the sensitivity of the simulated morphology to cell-medium surface
tension decreases with decreasing G. The capillary length

(27)

where γ is the surface tension and ν the kinematic viscosity, defines the critical length below
which small structures are suppressed and gives a smoothing rate. If the dimensionless ratio

(28)

is large, the biofilm structures are thick and smooth. If Rcp is small, they are narrow and rough.
The exact definition of kinematic viscosity in the GGH model is still debated. Since we are
concerned only with relative values of Rcp, we take ν = 1 in all of our calculations. To calculate
the effective decay constant k in equation (21) we use α = 304 from the PLH model [66], and
set S = 0.01 which is on the order of the substrate concentration near the biofilm-medium
interface. The profiles for J(b, m) = 8 (Rcp ~ 0.4) are more consistent with the corresponding
PLH profiles in [66] than are those for J(b, m) = 16 (Rcp ~ 1), which is the expected result,
since the PLH model [66] does not contain surface tension. Further decreasing J(b, m) or
increasing J(b, b) produces less stable fingers and, if γ(b, m) < γc = 5/6, leads to dispersion of
biofilm cells into the medium. Overall, however, changes in cell-medium surface tension and
hence Rcp affect simulated biofilm morphology less than changes in the growth-to-transport
ratio G. We leave a detailed exploration of the effects of Rcp to a future paper.

Figure 18 shows the leading-edge height h (in μm) of the simulated biofilm as a function of
time for different values of G. We measure until the leading edge of the simulated biofilm
reaches a height corresponding to 350μm. Initially, the curves in Figure 18 are convex, which
corresponds to the initial exponential biofilm growth in a medium with an unlimited supply of
substrate. Growth then slows as cells consume substrate, reducing its local concentration and
thus local cell-growth rates. Eventually, parts of the biofilm reach the higher concentrations of
substrate near the top of the simulated volume and leading-edge growth accelerates again. We
expect this acceleration because the net flux of substrate, and hence the maximum possible
growth rate, increases as the biofilm nears the surface, which increases the steepness of the
substrate gradient.

6. Discussion
Figure 19 shows the morphological regimes of biofilms in the GGH simulation. In general,
both qualitative and quantitative results of the GGH and PLH models are consistent (see Figures
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12 and 13), except for G = 50 where we obtain fewer, smoother fingers than the PLH model,
whose fingers look like cacti [66]. In our simulations, we restricted parameter variations to
G (the only parameter varied in [66]) and J(b, m) and measured only the fractional occupancy
c̄ for our simulated biofilms, leaving other quantities studied in [66] for future papers. The
difference in fractional occupancy between the two models is significant for high values of
G, but also appears for low values of G. This difference results from the base layer of biofilm
cells coating the bottom in the GGH biofilms.

At least part of the difference for high G results from our including adhesion between biofilm
cells, which creates a cell-medium surface tension, which prevents separate thin structures
from forming very close to each other. Decreasing the surface tension increases the number of
fingers and their roughness, as expected, making our simulations for high G more similar to
those in [66], although we do not reproduce a cactus pattern (characteristic of biofilms with
high finger-like structures and without a flat basal layer of cells covering the solid support, like
Acinetobacter biofilms). The GGH simulation also shows a new morphology, not found in the
PLH model [66], for G ~ 10 and small surface tension, in which valleys tend to pinch off (see
Figure 14).20 We need to repeat our simulations for generalized cells of the size of real biofilm
cells to check if this morphology is a feature specific to cell-cell adhesion.

The lack of cacti in the GGH simulation, which is the main morphological difference between
the GGH and PLH biofilm models, partially results from the inclusion of surface tension in
the GGH model. However, when we decreased the strength of the biofilm’s cell-cell adhesion
to J(b, m) = 4 (when the cell-medium surface tension is zero), cacti still did not form and the
simulated morphology did not change much, except that some cells dispersed into the medium
(results not shown). In this case, the suppression of the very-short-wavelength instabilities seen
in the PLH model may result from the cell length scale itself. By construction, the GGH model
cannot form structures with length scales smaller than a cell diameter. In this case, this length
cutoff eliminates morphologies intrinsic to continuum and hybrid models, as discussed in
[56]. Since our simulated cells are ten times the size of real cells, we need to check how this
smoothing changes as we change the simulated cell size. We will report studies of the effects
of the cell size in future papers. We also need to explore the role of cell adhesion in determining
GGH biofilm morphologies by running simulations for more values of J(b, m).

Another difference between the biofilm structures in the GGH and PLH models is that all GGH
biofilms have a flat base layer of biofilm, on top of which the fingers form. This base layer is
absent in the PLH model at higher values of G and the cacti grow up from an initially empty
plane. All our simulations have a base layer of biofilm cells covering the supporting surface.
Since cell loss is irreversible in the GGH model, we did not set mS in equation (4) equal to its
original value in [66] (for which GGH-simulated biofilms detach from the bottom support, see
footnote 18), but set mS = 0. As a result, our simulated biofilms remained attached but were
denser at the bottom (having a base layer) than the corresponding simulations in [66].

Since mass transfer, as we have confirmed in this paper, is a key determinant of biofilm
morphology, we must consider the effects of boundary conditions when we compare GGH and
PLH simulation results. The PLH simulations used a constant-concentration boundary at a
fixed distance from the leading edge of the growing biofilm, while our GGH simulations use
a constant-concentration boundary at a fixed position (which greatly simplifies the
computation). Thus the distance between the source of the substrate and the leading edge of
the biofilm decreases in time in our GGH simulations, while in the PLH model the distance
between the substrate source and the trailing edge of the biofilm increases in time. Since the

20The pinching off of valleys in simulations with G = 10 and low surface tension could be caused by differences in boundary conditions
and therefore differences in diffusion gradients.
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biofilm patterns in both models are nonstationary and the definition of the length scale lz is
somewhat arbitrary, experimental conditions should determine which of these (or another
choice entirely) is most appropriate. Since lz, the thickness of the fluid layer, enters directly
into G (equation (9)), changing the z-dimension of the simulation, while keeping all other
parameters constant, changes both the growth rate and the biofilm morphology, as Figure 20
shows. However, if we vary lz and keep G constant by changing cS0, the morphology does not
change greatly, as Figure 21 shows. Thus the net effect of the difference in boundary conditions
is small and should not significantly change the phase diagram in Figure 19. The greater
distance between the leading edge of the growing biofilm and the constant-concentration
boundary at early times in the GGH model may, however, explain more subtle differences from
PLH results, like the greater spacing between fingers which we observe in our GGH simulations
for a given value of G.

This paper is a computational methods paper, where our goal is to show how to translate the
PLH biofilm model into the GGH model using CompuCell3D. For this reason, we chose a
generalized cell size of ten times the size of biological cells, which significantly sped up our
simulations. For the same reason we did not discuss the differences in fingering patterns
between the models in the light of experimental data.

While several research groups study the fundamental mechanisms controlling the structure and
growth dynamics of bacterial biofilms, including the Montana State University Center for
Biofilm Engineering and the biofilm group at the Delft University of Technology, as far as we
know, none has measured the typical values of the growth group parameter G in equation (9)
experimentally. However, experiments have observed biofilm morphologies that correspond
to all those we obtain in our simulations with 1 < G < 50. We lack experimental measurements
of the kinetics of the thickness of the growing biofilm (our Figure 18). Experimental tests of
whether biofilm morphologies and dynamics depend on G would be valuable.

7. Summary
We have shown that the GGH model can successfully simulate the growth of a single-species
biofilm on a solid surface in a liquid medium, reproducing qualitatively the results of previous
continuum and hybrid models. Our simple 2D, single-species biofilm model includes cell
growth, proliferation, and division, diffusion of substrate, and cell-cell and cell-medium
adhesion. We neglected the kinetics of initial cell attachment, recruiting of cells from the
medium, breaking off of chunks of the biofilm and cell death. We coarse-grained to a cell size
approximately ten times the real value. Instead of modeling ECM explicitly, we treated cells
and their ECM surface layer as a generalized cell and used the generalized-cell-generalized-
cell adhesion coefficients to represent the aggregate interactions among cells and ECM. Our
GGH simulations using the kinetics of the PLH model [67] reproduced the structures obtained
in [66], and showed that biofilm size and morphology depend mainly on the non-dimensional
parameter G, the ratio of the maximum biomass growth rate to the maximum substrate transport
rate.

Cell-cell adhesion significantly affects growth and morphology for larger values of G, in the
substrate-transport-limited regime, since adhesion produces additional surface-tension forces
which smooth the biofilm. Finite cell size has similar effects, suppressing high-frequency
instabilities. Surface adhesion will be even more important in multispecies biofilms, where
adhesion will vary greatly within and between species.

The great appeal of the GGH model is its extensibility. Adding new biological mechanisms
that depend on cell-cell and cell-field interactions is as easy as adding new potential energies
or constraints to the GGH effective energy. For example, including variable adhesion among
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different bacterial species in CompuCell3D requires only a few lines of CC3DML code, making
CompuCell3D a natural framework for simulating multispecies biofilms. Each CompuCell3D
simulation presented in this paper took at most a few hours, using an earlier version of
CompuCell3D. Recent improvements to CompuCell3D have increased its speed by a factor of
ten.
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Appendix A
The CC3DML code for the simulation with G = 10.

〈CompuCell3D〉

〈Potts〉

〈Dimensions x=“200” y=“100” z=“1”/〉

〈Steps〉20000〈/Steps〉

〈Temperature〉10〈/Temperature〉

〈Flip2DimRatio〉0.01〈/Flip2DimRatio〉

〈Boundary_x〉Periodic〈/Boundary_x〉

〈Boundary_y〉NoFlux〈/Boundary_y〉

〈Boundary_z〉NoFlux〈/Boundary_z〉

〈FlipNeighborMaxDistance〉2.1〈/FlipNeighborMaxDistance〉

〈/Potts〉

〈Plugin Name=“CellType”〉

〈CellType TypeName=“Medium” TypeId=“0”/〉

〈CellType TypeName=“Oxygen” TypeId=“1” Freeze=“”/〉

〈CellType TypeName=“Biofilm” TypeId=“2”/〉

〈CellType TypeName=“Support” TypeId=“3” Freeze=“”/〉

〈/Plugin〉

〈Plugin Name=“Contact”〉

〈Energy Type1=“Medium” Type2=“Medium”〉0〈/Energy〉

〈Energy Type1=“Oxygen” Type2=“Medium”〉0〈/Energy〉

〈Energy Type1=“Oxygen” Type2=“Oxygen”〉0〈/Energy〉

〈Energy Type1=“Biofilm” Type2=“Medium”〉16〈/Energy〉

〈Energy Type1=“Biofilm” Type2=“Oxygen”〉8〈/Energy〉

〈Energy Type1=“Biofilm” Type2=“Biofilm”〉8〈/Energy〉

〈Energy Type1=“Support” Type2=“Medium”〉0〈/Energy〉

〈Energy Type1=“Support” Type2=“Oxygen”〉0〈/Energy〉

〈Energy Type1=“Support” Type2=“Biofilm”〉4〈/Energy〉
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〈Energy Type1=“Support” Type2=“Support”〉0〈/Energy〉

〈Depth〉2.1〈/Depth〉

〈/Plugin〉

〈Plugin Name=“VolumeLocal”〉

〈LambdaVolume〉40〈/LambdaVolume〉

〈/Plugin〉

〈Plugin Name=“CenterOfMass”/〉

〈Plugin Name=“Mitosis”〉

〈DoublingVolume〉8〈/DoublingVolume〉

〈/Plugin〉

〈Plugin Name=“NeighborTracker”/〉

〈Steppable Type=“PIFInitializer”〉

〈PIFName〉Biofilm.PIF〈/PIFName〉

〈/Steppable〉

〈Steppable Type=“FlexibleDiffusionSolverFE”〉

〈DiffusionField〉

〈DiffusionData〉

〈FieldName〉Oxygen〈/FieldName〉

〈DiffusionConstant〉0.15〈/DiffusionConstant〉

〈DecayConstant〉0.0015〈/DecayConstant〉

〈ConcentrationFileName〉Oxygen.TXT〈/ConcentrationFileName〉

〈/DiffusionData〉

〈SecretionData〉

〈Secretion Type=“Oxygen”〉1〈/Secretion〉

〈Secretion Type=“Biofilm”〉−0.0006〈/Secretion〉

〈/SecretionData〉

〈/DiffusionField〉

〈/Steppable〉

〈Steppable Type=“TargetVolume”〉
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〈InitialTargetVolume Type=“Biofilm”〉4〈/InitialTargetVolume〉

〈Growth Type=“Biofilm” Field=“Oxygen” GrowthRate=“1” Saturation=“0.033”/〉

〈/Steppable〉

〈/CompuCell3D〉
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Figure 1.
GGH modeling in developmental biology: (a) model of stable and branching avascular tumors
(based on the model of [5]); (b) clonal selection of B-cells in a germinal center through
competition for contact with a large antigen-presenting cell [50]; (c) tumor invasion [81]; (d)
Delta-Notch-mediated stem-cell cluster-size control in the human interfollicular epidermis
[75]; (e) mesenchymal condensation due to cell-ECM interactions [88]; (f) convergent
extension in embryonic development [87]; (g) endothelial cells, secreting an analog of VEGF-
A, chemotactically aggregate to form a vascular network [58]; (h) chick limb growth [71] and
chondrogenic condensation; (i) formation of a fruiting body in Dictyostelium discoideum
[54].
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Figure 2.
A typical GGH configuration in 2D showing portions of nine generalized cells. The numerals
indicate index values. The colors indicate cell types. A generalized cell is a collection of
connected lattice sites (squares) with the same index value. The number of lattice sites in a cell
is its volume and the number of lattice links on its boundary (interfaces with other indices) is
its surface area.
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Figure 3.
The initial lattice configuration, with biofilm cells (colonists) at the bottom, sitting on a flat
solid, and generalized cells producing substrate at the top. The space between the cells is
aqueous medium with an initially homogeneous concentration of substrate. The vertical height
corresponds to 400μm and the horizontal length to 800μm. The inset inside the simulation
domain shows an enlarged fragment of the solid bottom and a few biofilm cells.
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Figure 4.
(a) Terminology describing the morphology of simulated biofilms. (b) Color code for substrate
concentrations in Figures 5–16.
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Figure 5.
Flat-interface biofilm (white hatch lines) growth in a 2D biofilm simulation with G = 1, J(b,
m) = 16 and Rcp = 0.6 (see equation (28)). See equation (25) and text for other parameter values.
The morphology is almost flat (growth-limited regime). Colors represent substrate
concentration; see Figure 4(b).
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Figure 6.
Rippled biofilm (white hatch lines) growth in a 2D biofilm simulation with G = 2, J(b, m) =
16 and Rcp = 0.76 (see equation (28)). See equation (25) and text for other parameter values.
The ripples are smooth (growth-limited regime). Colors represent substrate concentration; see
Figure 4(b).
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Figure 7.
Rippled biofilm (white hatch lines) growth in a 2D biofilm simulation with G = 5, J(b, m) =
16 and Rcp = 0.95 (see equation (28)). See equation (25) and text for other parameter values.
The ripples turn into wide convex fingers (growth-limited regime). Colors represent substrate
concentration; see Figure 4(b).
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Figure 8.
Convex-finger biofilm (white hatch lines) growth in a 2D biofilm simulation with G = 10, J
(b, m) = 16 and Rcp = 1.06 (see equation (28)). See equation (25) and text for other parameter
values. The fingers are usually convex and the valleys do not pinch off. Colors represent
substrate concentration; see Figure 4(b).
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Figure 9.
Finger-biofilm growth in the 2D PLH model with G = 10. Isolines represent the substrate
concentration. Adapted from [66].
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Figure 10.
Concave-finger biofilm (white hatch lines) growth in a 2D biofilm simulation with G = 20, J
(b, m) = 16 and Rcp = 1.12 (see equation (28)). See equation (25) and text for other parameter
values. The fingers are concave (substrate-transport-limited regime). Colors represent substrate
concentration; see Figure 4(b).
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Figure 11.
Concave-finger biofilm (white hatch lines) growth in a 2D biofilm simulation with G = 50, J
(b, m) = 16 and Rcp = 1.16 (see equation (28)). See equation (25) and text for other parameter
values. The fingers are concave (substrate-transport-limited regime). Colors represent substrate
concentration; see Figure 4(b).
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Figure 12.
Biofilm (white hatch lines) morphologies and spatial distributions of substrate as a function of
G in the GGH model, all with J(b, m) = 16 (see equation (25) and text for other parameter
values), observed when the leading edge of the simulated biofilms reach 7/8 of the vertical
height of the simulation domain. Colors represent substrate concentration; see Figure 4(b).
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Figure 13.
Biofilm morphologies as a function of G in the 2D PLH model. Adapted from [66].
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Figure 14.
Rough-finger biofilm (white hatch lines) growth in a 2D biofilm simulation with G = 10, J(b,
m) = 8 and Rcp = 0.35 (see equation (28)). See equation (25) and text for other parameter values.
The weaker cell-medium surface tension results in more, narrower, fingers, with relatively
narrower valleys, than in the corresponding high-surface-tension G = 10 simulation in Figure
8. The valleys pinch off. Note the greater irregularity of the finger shapes and their rougher
surfaces. Colors represent substrate concentration; see Figure 4(b).
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Figure 15.
Rough-finger biofilm (white hatch lines) growth in a 2D biofilm simulation with G = 20, J(b,
m) = 8 and Rcp = 0.37 (see equation (28)). See equation (25) and text for other parameter values.
The weaker cell-medium surface tension results in more, narrower, fingers, with relatively
narrower valleys, than in the corresponding high-surface-tension G = 20 simulation in Figure
10. Note the greater irregularity of the finger shapes and their rougher surfaces. Colors represent
substrate concentration; see Figure 4(b).
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Figure 16.
Concave rough-finger biofilm (white hatch lines) growth in a 2D biofilm simulation with G =
50, J(b, m) = 8 and Rcp = 0.39 (see equation (28)). See equation (25) and text for other parameter
values. The weaker cell-medium surface tension results in more, narrower, fingers, with
relatively narrower valleys, than in the corresponding high-surface-tension G = 50 simulation
in Figure 11. Note the greater irregularity of the finger shapes and their rougher surfaces. Colors
represent substrate concentration; see Figure 4(b).
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Figure 17.
Averaged finger shapes, shown by the fractional occupancy c̄ as a function of the vertical
coordinate y for different G, observed when the leading edge of the simulated biofilm reaches
7/8 of the vertical height of the simulation domain. We have rescaled the data so that the relative
position y of the top of the finger (the leading edge) is 1 and the trailing edge has y = 0. Squares:
J(b, m) = 16. Diamonds: J(b, m) = 8. Rectangles: the corresponding data in the PLH model,
from [66].
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Figure 18.
The leading-edge height h of simulated biofilms as a function of time for different values of
G. Initial exponential biofilm growth in medium with an unlimited supply of substrate slows
as cells consume substrate and reduce its local concentration. When parts of the biofilm reach
the higher concentrations of substrate near the top of the simulation domain, leading-edge
growth accelerates again.
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Figure 19.
Schematic representation of the morphological regimes of GGH-simulated biofilms. The
borderline between ripples and fingers is at about G = 10. Valleys between convex fingers
pinch off at low surface tensions. Valleys between concave fingers do not pinch off in our
simulations. Concave fingers become rough at low surface tensions.

Popławski et al. Page 44

Math Biosci Eng. Author manuscript; available in PMC 2008 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 20.
Biofilm growth for different vertical heights of the simulation domain and thus different G.
All other parameters as in Figure 8.
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Figure 21.
Biofilm growth for different vertical heights of the simulation domain with fixed G = 10,

achieved by setting . All other parameters as in Figure 8.
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