Paul Miller: Research Statement

Memory Systems in the Brain

Several questions are important for all types of memory system. 1) Is the memory encoded in a
discrete, even binary manner, or is it analog? 2) How is the stability of the memory maintained
for a timescale much greater than that of the underlying processes? 3) How is the memory
encoded and later decoded? My research addresses these questions through mathematical and
computational modeling. I am investigating short-term memory systems, based on cortical ac-
tivity, and long-term memory systems, based on molecular switches within the postsynaptic
density.

Cortical models of decision-making based on working memory.
Introduction

Most decisions that we make are based on earlier information, so require memory. My research
focuses on tasks that require such a decision based on prior information, or context. The prior
information is recent, typically a few seconds old, so can be stored in working memory, which
is maintained by neuronal activity. The tasks that I model have three phases. First, an initial
stimulus or context that must be encoded. Second, the initial encoding should persist in some
form during a delay period. Third, a second stimulus results in a motor response. The important
feature of these tasks is that the motor response depends on the first stimulus, so requires memory.
I have collaborated with and have access to data from the group of Ranulfo Romo, a world leader
in this line of experimental research.

Sequential discrimination by integral feedback control.

Ranulfo Romo’s group have carried out a set of experiments where they have recorded activity
of neurons that respond to a discrimination task (see e.g. Romo et al. 1999, Brody et al. 2002,
Romo et al. 2004). In the task, a monkey experiences a vibrational stimulus to its index finger,
at a frequency, f1, followed by a delay of three to six seconds, then a second vibrational stimulus
at a frequency, f2. The monkey must indicate by moving a lever to the left or right, whether the
second frequency is higher or lower than the first. Romo’s group have recorded from neurons in
many areas of the brain, such as somatosensory cortex, prefrontal cortex, premotor areas and
motor cortex. They see neurons in the sensory areas whose activity correlates with the stimulus,
but only while the stimulus is present. Neurons in motor areas indicate the decision, or response
of the monkey at the end of the second stimulus. Prefrontal, premotor and supplementary motor
neurons can show stimulus-dependent activity, delay activity and decision-making activity. Hence
from the behavior of the different neurons involved, it is possible to verify models of the neuronal
circuitry used to complete the task. I am constructing models and simulating networks of spiking
neurons to perform the task.

The models I have produced to carry out the sequential discrimination task use integral feedback
control (Yi et al. 2000). Two groups of neurons are required, which can be found in the prefrontal
cortex. The first group receives stimulus-dependent input that is time-locked to the stimulus,
from somatosensory areas. The second group integrates the activity of the first group, and
can maintain its firing rate once the first group is quiescent (Seung et al. 2000, Miller et al.
2003). The hallmark of integral feedback control is the presence of inhibitory feedback from the
integrator to its input. This type of network has the important feature that the amplitude of the
stimulus can be encoded, whereas an integrator alone would encode the product of amplitude
and duration of a stimulus. I have simulated this model, and variations of it using a network of
integrate-and-fire neurons (Miller et al. 2004b). Many of the features of neurons in the network



are observable in the experimental data.

The ability of humans and monkeys to carry out this type of discrimination depends on the two
frequencies and grows with the difference in frequencies. Using noisy spiking network models,
with trial to trial variations, I will calculate neurometric functions, which measure whether the
information contained in the spikes of a single neuron is sufficient to discriminate f2>f1 versus
f2<f1 on a trial by trial basis. I will compare these functions with those measured experimentally,
and with the psychometric curves evaluated on the basis of performance. In particular, it will
be informative to see how the threshold for discrimination (that is the difference between 2 and
f1 needed for 75% correct responses) varies with the absolute frequencies.

Future projects: Reading out the position of a population ‘bump’ of activity.

Networks capable of supporting a ‘bump’ attractor have achieved much success in modeling
spatial working memory (Compte et al. 2000). In spatial working memory tasks, the position
of a spot on a screen must be remembered for a few seconds, after which the animal makes an
eye movement to the prior location of the spot. In the experiments, the location of the spot
is along a ring, so in models of the task, neurons are labeled by their preferred location as an
angle around the ring. A ‘bump’ attractor is a localized peak in activity of neurons, triggered
by the stimulus (the spot on the screen). The ‘bump’ persists once the stimulus is removed,
so can maintain the memory of the earlier stimulus location. In computer models, the position
of the center of the bump is given by the population vector (the sum of vectors, one for every
neuron, in the direction of each neuron’s preferred angle, with amplitude of the firing rate of that
neuron). However, it is far from clear how any motor response could be based on the information
contained within a population vector.

I will formulate and compare methods for making a motor response based on the activity of a
‘bump’ attractor. The motor response is an eye saccade. The direction of saccade is the vector
sum of components for vertical and horizontal movement, as these are the directions muscles are
able to move the eye. Hence a coordinate transformation is necessary, from polar to rectangular,
between neurons encoding angle and the motor neurons. The loss of angular symmetry entailed
may explain observed biases in saccades — errors occur along preferred directions.

Figure 1 A bump attractor encodes
the memory of spatial location. If a
bump initially encodes location at an-
gle 1 (left curve) then moves to angle 2
(right curve), the neurons whose activ-
ity changes the most are those on the
flanks of the bump (marked by arrows
between curves). Neurons near the cen-
ter of the bump change little in their
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The neurons which most sensitively encode the position of the bump are not those at the center
of the bump, but those at its sides, as indicated in Figure 1. This is because if the bump moves
a little, neurons at the center do not change their firing rate by much, as they sit on a plateau
of activity. It is the neurons on the side which rapidly change their firing rate when the bump
moves. Some methods for stabilizing the position of a bump result in the profile of the bump
changing. In particular, the bump may get wider while its center maintains a constant position.
It will be important to test whether different readout mechanisms are sensitive to such changes
in the width of a bump.



The required connection strengths between orientation-sensitive neurons in the bump attractor
and horizontal /vertical motor output neurons can be learned. I will investigate the use of reward-
based Hebbian learning rules to generate the appropriate connections strengths. Reward-based
learning results in the potentiation of synapses if there is presynaptic activity, postsynaptic
activity and a correct response. It is likely that the criterion for correct response, in terms
of direction of eye saccade, will initially need a broad window in order to obtain some correct
responses. As learning proceeds and the saccades become more accurate, the allowed error for a
correct, rewarded response, can be narrowed. Hence the transformation from memory to motor
output will allow me to test methods of reward-based learning.

Stochastic modeling of molecular processes underlying long-term mem-
ory.
Introduction

Chemical reactions sustain all biological systems. However, intuition based on chemistry in
the test tube, to all intents and purposes a macroscopic system, may not be appropriate for
understanding the chemistry of living cells (Halling 1989). Biological reactions are often confined
to small compartments within a cell and may involve only tens of molecules for any given reactant.
Hence stochastic effects, particularly shot noise, become important.

Shot noise arises when reactions are considered as discrete events. The law of mass action is
appropriate for a macroscopic system, where it is meaningful to talk of a rate of reaction that
can vary continuously with the concentration of reactants. However, when only a small number
of molecules of each reactant are available, the concentrations and hence the rates vary discretely
as a result of each individual reaction. Reaction steps occur probabilistically (Gillespie 1977),
so large fluctuations about the mean rate can occur. Such fluctuations are known as shot noise.
A particular effect of shot noise is a reduction in stability of otherwise stable states. Hence we
investigate the stable lifetime of memory systems composed of a small number of molecules.

Bistability in the CaMKII-Phosphatase system and synaptic plasticity.

Synapses are the connections between neurons, whose strengths determine the ability of one
neuron to excite another. Each neuron receives thousands of inputs through its synapses, each
of which can become stronger or weaker following appropriate stimulation. The strengthening
and weakening of synapses affects the network’s responses to external inputs and is believed to
play a key role in long-term memory (Morris 2003).

Figure 2 Experimental protocols lead to LTP or LTD. The
postsynaptic current is measured in response to presynaptic ac-
l; tion potentials. A specific pattern of applied stimuli are given
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Experimental protocols can lead to a strengthening (LTP) or weakening (LTD) of synapses (see
Figure 2). Activation of calcium-dependent protein kinase II (CaMKII) is known to be essential
for many forms of LTP. A key issue is whether the ten to twenty holoenzymes of CaMKII present
post-synaptically are capable of maintaining the activation that may underly memory storage. I
have addressed this question using Monte Carlo computer simulations of a model for a molecular
switch (Lisman and Zhabotinsky 2001) and using stochastic analysis in terms of estimating the
hopping frequency over barriers. The key result is that fifteen to twenty holoenzymes can be
sufficient to maintain stable states for as long as a human lifetime (Miller et al. 2004a).

Future directions — potentiation versus depression.

The system studied so far possesses bistability. A state with primarily unphosphorylated CaMKII
is stable at low calcium concentrations, a state of highly phosphorylation is stable at high cal-
cium and both can be stable over an intermediate range of calcium. In the model system, any
increase in the concentration in calcium leads to a greater probability for phosphorylation, which
correlates with synaptic strength. However, experiments show that a small increase in calcium
concentration can lead to a reduction in synaptic strength (LTD). Therefore I will extend the
system of CaMKII and phosphatase, in cooperation with appropriate inhibitors, to model LTD
as well as LTP. At a minimum, the system must possess (1) bistability at low calcium concen-
trations, (2) a state with low activity that is stable alone at intermediate calcium concentrations
and (3) a state with high activity that is stable alone at high concentrations.

Once a scheme for bidirectional plasticity is established, I will address key features of the phe-
nomenon computationally. The first issue is to relate the changes in phosphorylation to the
time course of a transient calcium signal, as the system may not reach a steady state during the
transient period of elevated calcium. Second, it will be important to model a range of synapses
with a distribution of volumes and concentrations of reacting species. This is important, as
while changes in a single synapse may be all or none, total synaptic strength changes in a graded
manner when measured across a population. The ease of LTP is history-dependent. This can
be explained with a population of synapses that range from difficult to easy to potentiate. Once
the easy ones are potentiated, it becomes more difficult to observe further potentiation. The
corollary is that as more synapses are potentiated, the easier it is to observe depression, as there
are more ‘UP’ to knock ‘DOWN’. I will investigate these ideas with the bidirectional model.

Funding agencies and requirements.

In my first year as Assistant Professor, I will apply for funding to the National Institutes of
Health (from whom I have already obtained a five-year grant), the National Science Foundation
(in particular for a CRCNS grant, aimed at computational modeling in neuroscience), the David
and Lucile Packard Foundation and the Searle Scholars Program.

I require access to computational resources in order to be successful in these projects. I have
experience at running parallel code on national supercomputers, and in managing a large in-
house Beowulf cluster. I will use start-up money to set up an initial computer cluster if possible,
which can be expanded as further funds become available. If I need additional computational
power at any time, I will apply for use of national resources, such as those at the Pittsburgh
Supercomputing Center.
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Paul Miller: Statement of Teaching Philosophy and Interests.
Teaching Philosophy

As a teacher I see my main goal is to enable understanding of concepts, while students gain
mastery of problem-solving techniques. I believe it is important to differentiate the physical,
chemical or biological processes involved from the mathematical techniques that are best used to
investigate them. In this way, I aim to teach students to gain an intuition of what the answer to
a problem should be, or could be, so that when solving it they are not just ‘turning the handle’.

Teaching Diverse students:

The ability to grasp new concepts differs from the ability to manipulate mathematical equations,
so students will often excel in one ability to a greater extent than the other. By clarifying the
concepts using different analogies and models, the student who has difficulty with the mathe-
matical formalism still gets to appreciate the key idea or process. Such appreciation encourages
the student to work on mathematical skills with a clear purpose and motivation. On the other
hand, a student who excels more at the mathematical method is forced to think more deeply
about the subject and to connect different ideas. Students who simply crank through equations
to get the correct answers, with little understanding of what they are doing, will be challenged,
as they should be if they are to develop into critical thinkers and good scientists.

The questions I ask in class, homeworks and exams are diverse in style and difficulty. It is impor-
tant that all students are encouraged by what they have learned, but also that the strong students
are stretched mentally. Similarly, I ask intuitive and visual questions, to ensure understanding,
as well as requiring strong problem-solving skills.

Using Diverse methods:

I think it is important to encourage full class involvement. While a certain amount of teaching
from the front is necessary, I usually see if the logical steps in an argument or calculation can
come from others in the classroom. Since not all students volunteer answers, at certain points
in the class I will ask questions whose answers should be written down by everyone. In smaller
classes I check their responses before continuing by giving the ‘official’ version. At the end of
class I usually give a two minute test on the main point of that class. The tests count in a
small way toward the final course grade. The idea is to make the one or two questions simple
enough that all students who were attentive in the class answer correctly. Hence attendance and
attentiveness are encouraged, and the students leave class with a reminder of the one or two
main points, or main skills they have acquired.

An important skill in the classroom is to encourage questions without getting side-tracked from
the goals of the lesson, and to be welcoming of all attempts at answers, while clearly distinguishing
correct responses from any errors. I think I succeed at this by being empathetic, often being
able to address the cause of any mistake rather than just saying ‘wrong’, by being approachable,
with a friendly demeanor, but being firm when necessary.

In summary, I understand that students are far from clones of myself, but each bring their own
unique perspective to the classroom. To be a good teacher, the ability to listen is as important
as the ability to lecture, because it is only by listening that the teacher learns the students way
of thinking. I have the breadth of experience to be able to address students using a number of
approaches, so am able to communicate effectively with a wide range of students.

Teaching Experience

My teaching experiences are varied and extensive. I have taught on three different continents
(Europe, Africa and America); I have taught students ranging from high-school freshmen to



college seniors; and I have taught physics to students in non-scientific disciplines, in the life
sciences and in the physical sciences.

As a doctoral student I was a teaching assistant in computing classes and laboratory classes. 1
learned the importance of clarifying the assumptions of an experiment, and distinguishing those
assumptions from the conclusions.

After completing my Ph.D., T spent 16 months teaching Physical Science, Mathematics and
English at high-school level, in Malawi, Africa. I was motivated by my belief that education is
our most valuable asset, and should be available to everyone in the world. While there, I had to
develop various skills at classroom management, made especially difficult by the compulsory use
of English in school classes, when a significant fraction of students were far from proficient in
the language. I learned how to communicate clearly and simply, in particular the importance of
finding relevant analogies and examples, when explaining ideas in an unfamiliar culture. I saw
that gaining understanding and knowledge, at whatever the level, can bring joy.

At Georgetown in the fall of 1999, I co-taught the course ‘The Quantum World Around Us’ which
was an undergraduate course on quantum mechanics for non-scientists. Instead of requiring full
mathematical calculations, we treated the wave function as an arrow (a vector with amplitude and
phase) and used the sum over trajectories approach to explain effects ranging from interference
to discretization of bound states. My reviews for this class were good (available verbatim on
request). The course showed me that non-scientists, while often lacking in mathematical skills,
can otherwise be just as astute at tackling scientific problems as a trained scientist. However, I
did gain an idea of the importance of teaching basic mathematical skills, particularly probability,
to students who will one day be making business or policy decisions.

Also while at Georgetown I taught mathematics to three high-school students, in a voluntary
role at a local school.

At Brandeis I taught the sophomore physics course, ‘Oscillations and Waves’ in the Fall of
2000. The course had the reputation of being tough and had a notoriously high drop-out rate,
dissuading many students from majoring in Physics. I am happy to say that nobody dropped the
class when I taught it, and that the course evaluation received the highest score in the department
that semester (records are attached, reviews available verbatim on request). I also filled in for
two weeks while a professor was away, teaching a total of six classes in ‘Thermodynamics and
Statistical Physics’, in the Fall of 2003. Teaching a complete course requires a great deal of
organization and preparation. I am now fully aware of the key decisions that need to be made
in the months before the course starts, of the importance of early feedback to both me and the
students, and the necessity of a reliable routine to maintain momentum through the semester.

My experience indicates that I have interdisciplinary expertise. I am able to teach a wide range
of courses and I am able to adapt the way I teach a course to address the needs of the students.

Teaching Interests

I will enjoy teaching any class that involves applied mathematics, or the introduction of new
concepts to the students. My particular areas of expertise span from quantum mechanics to
computer modeling to noise in chemical and biological systems to introductory neuroscience.



