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STATEMENT OF RESEARCH INTERESTS

When in graduate school I decided to focus my research on the physics of living matter, it struck
me that some of the most profound and intriguing biophysical questions can be addresses in the
study of learning in biological systems. One may even take the ability to learn one’s environment,
to respond to it actively, and to exploit it to one’s benefit as a necessary component in a definition
of life. Thus learning based on experience (variously known as information processing, sensing,
adaptation,. . . ) happens on all scales in biology, and it shows a remarkable degree of universality.

For example, at the molecular scale, the Lac operon in E. coli learns the lactose concentration
to produce β–galactosidase (the lactose-metabolizing enzyme) in proper quantities. Similarly, in
the sensory system, the retinal phototransduction cascade uses the information in the arrivals of
photons to learn the instantaneous light intensity and thus the current visual scene. Additionally, it
also learns the ambient light level (to adapt to it) and the temporal correlations (to estimate the self-
motion through the world). On the scale of cellular (neuronal) networks, learning, memory, and
adaptation are well-known. At yet larger scales, experiments on rodents are revealing how they
learn and respond to changes in their environments; this is a simple, albeit quantifiable, example of
the general phenomenon we call “learning” in everyday life. Finally, we may also view evolution
as an example of learning, where entire species adapt to the world by means of natural selection.

Since learning is such a universal part of biology, it is natural to test the hypothesis that much of
the design and function of living organisms results from optimizing learning in different contexts.
This hypothesis allows us to attack many seemingly unrelated phenomena on the same footing and
may lead to understanding of whether some biological features are accidental or are constrained
uniquely by requirements of optimality for certain natural learning tasks. Moreover, the hypothesis
is testable experimentally and, since learning can be formulated rigorously in terms of statistical
field theories [1–3], it brings the powerful intuition and the mathematical apparatus of theoretical
physics to a wide class of biological problems. Most of my publications over the past five years,
and the main research goals I have set for the future, have revolved around testing the validity of
the optimal design hypothesis and using it to sharpen the understanding of biological complexity.

Testing this hypothesis requires a clear and quantitative definition of what optimality of learn-
ing means. We have investigated this extensively in many contexts [1, 2, 4, 5]. As a result, I am
now collaborating with Leslie Osborne (UCSF) to design a series of experiments that will test if
the pursuit behavior in the primate visual system is optimal in learning the trajectory of the target
and following it. Further, understanding which ingredients are necessary to succeed in learning,
I am searching for biological implementations of them. To that end, in collaboration with Chris
Wiggins (Columbia), I am analyzing (analytically and in silico) small genetic circuits to find better
learners among them. Analysis of the whole genome genetic regulatory networks will reveal if
they are build mostly from these subunits and are otherwise organized to learn optimally. This
collaboration is funded by a “Quantitative Systems Biotechnology” grant (a continuation of our
earlier SGER) from the NSF, of which I am the Co-PI.

In a number of ways, this study of general fundamentals and limitations of learning has led
to specific advances in applications, and resulted in efficient solutions for some of the most dif-
ficult machine learning problems. One example is the information theoretic approach to feature
selection—compressing data while preserving the relevant information in them—which promises
to be an indispensable technique for many theoretical biology applications. Further, building on
the ideas by Ma, we introduced a novel entropy estimation algorithm [6, 7], which we are using
to analyze precision and variability in the neural code in the fly visual system [8, 9] and to reverse
engineer transcriptional regulatory networks [10]. Other researchers are applying our method to
different applications, ranging from linguistics and bioinformatics to control theory and dynamical
systems.

As a third example, insights from learning theory led us to use the analogy between communi-
cating nodes and spin glasses on random lattices to create a comprehensive theory of information
processing in networks [11, 12], which has eluded the field for years. The approach has already
proven itself fruitful by leading to one of the best currently available methods for reconstruction
of transcriptional regulatory networks in mammalian and other cells using microarray expression
data [10, 13–15]. Further, these techniques pave a way towards creation of tools for phenomeno-



ILYA NEMENMAN 2

logical simulation of coarse–grained description of responses of the networks to perturbations,
including diseases (such as cancer), drugs, or experimental interventions. Such problems are very
challenging, but also hint at substantial rewards in medical applications. Thus one of my principal
research goals over the next few years is to further develop the technique: there is a need to ad-
vance beyond the standard Bethe and Kikuchi approximations and also to understand if focusing
only on networks that process information and learn efficiently aids the reconstruction.

When discussing optimal information processing, my collaborators and I have noticed [1] that,
since action takes time, only the part of the stimulus that contains information about what the
world will be in the future should guide the organism’s response. One may state quite rigorously
that utility of learning is related to maximizing, extracting, and effectively representing useful, pre-
dictive information in the signal, which is the mutual information between its past and the future.
We have analyzed this quantity theoretically [1, 5, 16], and, with Rob de Ruyter van Steveninck
(Indiana), I am now testing if fly neurons, indeed, extract predictive features from a stimulus. Fur-
ther, I showed that in the vertebrate photoreceptor, where standard considerations fail to explain
the response time and the gain adaptation to the ambient light intensity, maximizing the predic-
tive information is consistent with experiments [17]. A similar analysis is now being performed on
small genetic circuits in collaboration with Mike Wall and Bill Hlavacek (LANL). Further, Randy
Gallistel (Rutgers) is experimentally testing if maximizing predictive information by foraging rats
is the origin of the paradigmatic matching laws in cognitive psychology. Additionally, we have
designed these experiments to specifically answer if some ubiquitous animal behavioral patterns,
such as the response hysteresis, sudden learning, critical periods, power law spectra of fluctuations
in responses, can be explained by a field theoretic model of evolution of the animal’s belief about
the world, where these patterns emerge as manifestations of phase transitions.

Since a multitude of other learning systems are waiting to be examined, and since I believe that
efficient learning and extraction of predictive information are important principles behind biolog-
ical complexity, I expect this line of research to play the most prominent role in my nearest future.
However, I also have interests in more traditional problems in biological and statistical physics.
These include studying formation of direction sensitivity in the visual cortex, which I believe can
be well-modeled in terms of the Kosterlitz–Thouless theory; identifying order parameters in criti-
cal systems by analyzing the mutual information between two large parts of the system (recall that
order parameters are what carries information over large distances); analyzing cellular automata
by means of the renormalization group; and others.

A critical ingredient for the success of this research program is being in a physical environ-
ment that is unusually biologically sophisticated. A physics appointment at the Indiana University
associated with the Biocomplexity Institute would fit this requirement perfectly.
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STATEMENT OF TEACHING PHILOSOPHY

I have enjoyed several opportunities to teach in my career. These include a newly created
course in Computational Biology at Columbia University, short lecture series on Statistical Infer-
ence at NYU and UCSB, three summers as a faculty member for the Methods in Computational
Neuroscience summer course at Woods Hole Marine Biological Laboratory, experience as a Teach-
ing Assistant and a laboratory instructor at SFSU and Princeton, and advising undergraduate and
graduate students (currently, I am advising a senior and a second year graduate student).

I genuinely like teaching, and I am open to and excited about teaching standard courses in the
physics and theoretical physics curriculum (starting from basics physics and all the way to sta-
tistical mechanics and quantum field theory) based on the Department’s requirements and needs.
However, having worked in the areas of theoretical biophysics, complex systems, and machine
learning, I will be most interested in teaching opportunities for advanced or special–topics courses
in biophysics, statistical learning, and related fields. While targeted to senior undergraduate or
junior graduate physics students, these courses will also be useful to mathematicians, computer
scientists, biologists—all those who wants to use quantitative methods to understand the design
and function of biological systems. With enough interest and input from other departments (in
particular, those in biomedical, chemical, and computational sciences), these courses can become
an integral part of a new interdepartmental quantitative biology curriculum, which I will be happy
to help to develop.

The following topics for courses seem to be of great overlap with my research experiences.

Introduction to Biophysical Modeling
There are many areas in biology where simple quantitative models provide clear answers to

biologically important questions. These include bacterial chemotaxis, photon counting in pho-
toreceptors, noise in biomolecular networks, protein folding, problems in adhesion, polymer and
membrane dynamics, protein–DNA interactions, pattern formation, biological scalings, population
dynamics, and many others. Currently, there is no single textbook covering such a wide range of
modern topics, though a variety of books, reviews, and lecture notes by leading scientists in the
fields are available. Thus I would like this course to be a graduate level theoretical and compu-
tational course based on original research articles. Since a crucial aspect of a graduate education
is the transition from a student to an active researcher, the course will be of a seminar type, with
many topics presented by the students themselves.

Statistical Physics and Statistical Inference
Many computer science and statistics departments now offer similar courses with the aim of

introducing students to new data analysis methods emerging from machine learning. The Elements
of Statistical Learning by T. Hastie et al. is a usual textbook. While hands–on experience with dif-
ferent algorithms is important, this is not the goal of my envisioned course. Instead I would like
to make sure that the students in this undergraduate course will see the field not as seemingly un-
related computational techniques, but as a coherent subject, where similarities of the methods are
emphasized, and the general requirements for any learning to be successful are studied. Thus a
textbook Information Theory, Inference, and Learning Algorithms by D. J. C. MacKay will be used, as
well as my own notes from the short courses I developed and presented at NYU and UCSB. Among
others topics, we will study artificial neural networks, various coding schemes and optimization
problems, and their analogs in statistical physics of disordered systems. Theoretical developments
will be applied to analysis of gene expression data and to other biologically relevant problems.

Information Theory, Learning, and Cognition
This course will have some overlap with the above; however, its main goal will not be the statis-

tical physics of learning, but rather its application to understanding how we think. I will build this
course based on the lectures Thinking about the brain by W. Bialek (Les Houches Summer School,
2001) and on my own notes on the subject, which are emerging as a result of my collaboration
with various experimental cognitive neuroscience groups. As models needed to quantify the phe-
nomena may involve elaborate mathematics, the course will be aimed at graduate students, but it
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should be accessible to advanced undergraduates as well.

Introduction to Computational Neuroscience
Computational Neuroscience is arguably the branch of biology in which quantitative meth-

ods have been the most successful in asking and answering the right questions. A course that
introduces students to standard tools in neurophysiological modeling, but is mostly focused on
the understanding of physical, mathematical, and experimental foundations behind such models
would be of great benefit not only to students interested in neuroscience but to students interested
in quantitative biology in general. Excellent textbooks such as Theoretical Neuroscience, P. Dayan
and L. Abbott and Spikes by Rieke et al. are available to guide the presentation.

Introduction to Computational Biology
I will base this course on the Computational Biology class I am now co-teaching at Columbia.

Its course description reads: “This course is designed to provide students with a broad theoreti-
cal and practical knowledge of modern computational methods as they are applied to problems
in biology. Examples will be drawn from the primary literature, and topics in functional and in-
tegrative genomics will be emphasized. The course is organized around four thematic units. The
first unit covers basic methods and fundamental topics, such as optimization. . . The second unit
is focused on comparative genomics with an emphasis on phylogeny reconstruction. . . The third
unit will cover gene expression microarray analysis. . . The final unit will cover methods used for
biological network reconstruction. . . Among the recurring themes in the course will be the impact
of noise and uncertainty and the impact of experimental considerations on data analysis and inter-
pretation.” This course would have to be modified to complement, but not overlap with similar
courses offerer at Indiana University.

Special Topics in Statistical Physics and Applied Mathematics
In addition to biologically oriented courses, I would also be interested in (co-)teaching an ad-

vanced statistical physics/applied mathematics class. Such graduate (or advanced senior) special
topics course will not be comprehensive, and it will focus on traditional mathematical and phys-
ical topics that, due to their relevance to various biological problems, fall within my sphere of
expertise. In particular, I will discuss some well known problems in pattern formation (continuous
systems and cellular automata, deterministic and stochastic), stochastic processes in equilibrium
and noneqilibrium settings with an emphasis on biochemical reactions networks, phase transitions
in optimization problems, information-theoretical analysis of systems at phase transitions, and oth-
ers. Books like Stochastic Processes in Physics and Chemistry by Van Kampen, modern review articles,
and freely available simulation tools will be used.


