RESEARCH STATEMENT

Necmettin Yildirim

One of my research interests is the development of effective symbolic and numerical computation
methods for investigating large scale biochemical networks. Symbolic computation techniques have led to
new approaches for problem-solving in many areas of science and provide tools that enable an automatic
and computerized solution of problems in ways that are not possible with conventional computing

systems.

A second research interest of mine is the development of quantitative mathematical models of genetic
regulatory networks that are directly comparable with experimental data. Many intracellular regulatory
networks have been extensively studied using biochemical and genetic techniques. However, there have
been relatively few attempts to integrate this knowledge into mathematical models. My goal is to
determine the underlying functional mechanisms of such networks through the use of mathematical
modeling. This is very important because mathematical models provide information about how
components of these pathways are assembled and dynamically regulated. The mathematics I use to
investigate these systems is highly interdisciplinary, drawing from dynamical systems theory, symbolic

computation techniques, numerical methods and theory of reaction kinetics.

Symbolic computation approach to complex biochemical reaction networks

Multivariate systems of polynomial equations often arise in mathematical models of biochemical
networks. These models usually consist of a number of parameters whose values are generally not known
a-priori. This hampers both analytical and quantitative investigations of the mathematical model. Unlike
other software packages, computer algebra systems are capable of manipulating symbols as well as

numbers. This makes working with equations with unknown parameters easier.

My research focuses on using symbolic computations to derive rate equations for reactions catalyzed by
single enzymes and to investigate the steady-state behavior of metabolic pathways. A mathematical
description for the kinetics of a reaction catalyzed by an enzyme consists of a system of polynomial
differential equations. The dimension of the models gets large for multi substrate/product reactions if one
explicitly considers binding mechanisms of the enzyme. A standard way to reduce the dimension of the
model is by a separation of time scales approach that assumes enzyme bound species reach their steady
states fast as compared to product release. This reduces the differential equation model to a system of
multivariate polynomials if one considers the time derivative of the final product as one of the variables.
Although this system is “linear” in the concentration of enzyme bound species, the large number of
parameters makes the derivation of rate equations that only involve substrate and product concentrations
hard, sometimes impossible, if it is done by hand. Several methods have been developed to address this
problem, and the most accepted one is the graphical method developed by King and Altman[1]. Although
this method is quite general, it has the following disadvantage: if a rate equation is computed for a given

scheme and the scheme is then amended, all calculations have to be carried out again. This makes the



method unpractical for predicting the general behavior associated with broad classes of binding

mechanisms.

Mathematical models for the dynamics of metabolic pathways are systems of rational differential
equations. These pathways start with a source of material and finish with an end product, the sink. In
most cases, this will lead to the development of a steady state, where the concentration of the
intermediates remains constant because their rate of formation balances their rate of degradation. This
also requires that the flow through the pathway remains constant. Models for the dynamics of these
systems reduce to a system of “nonlinear” multivariate polynomial equations if the flux through the

pathway is considered as another variable.

There are many numeric algorithms for solving a system of multivariate polynomial equations. These
algorithms ignore the geometric properties of the solution space and solve for one solution at a time and
find an “approximation” to the solution. However, if a system can be transformed into an equivalent
system that is easier to solve, then the computation of the solutions can drastically improve. The method
of Groebner bases provides a uniform approach to solving a wide range of problems expressed in terms of
sets of multivariate polynomials[2]. The general strategy of the Groebner bases approach is to transform a
set of multivariate polynomial F into another set G of polynomials with certain nice properties, called a
Groebner basis, such that F and G are equivalent (i.e. generate the same ideal). From the theory of
Groebner bases we know that many problems that are difficult for general F are easy for Groebner bases G.
The solution of the problem for G can often easily be translated back into a solution of the problem under

consideration.

One of the nice properties of the Groebner bases technique is that the set of polynomial equations can be
transformed into a system of multivariate polynomials in upper triangular form. This allows automatic
derivation of the rate equations for an enzyme reaction scheme of any complexity under the quasi-steady
state assumption for the enzyme bound complexes. My dissertation is a nice application of symbolic and
numeric computation techniques used to analyze enzyme kinetics. In particular, I worked on the three
step conversion of glucose and creatine into NADPH using in vitro measurements of NADPH in time. I
estimated the kinetic parameters and control coefficients that determine how flux through the pathway is

controlled by the three enzymes in the system.

Modeling of genetic regulatory networks and Lac Operon

The lac operon is a classic example of an inducible genetic network. The lac operon of E.col1i consists of
a small promoter-operator region and three larger structural genes lacZ, lacY, and lacA. Preceding the lac
operon is a regulatory operon lacl that is responsible for producing a repressor protein. This control
system functions in the following manner. In the presence of glucose, Lacl represses the lac operon.
However, in the absence of glucose, but in the presence of external lactose, lactose is transported into the
cell by a permease. Intracellular lactose is then broken down into glucose, galactose, and allolactose by
the enzyme B-galactosidase. The allolactose feeds back to bind with the lactose repressor and enables the

transcription process to proceed.



It is known that the lac operon regulatory pathway is capable of showing bistable behavior. My research
focused on how bistability arises in the lac operon system in E.coli and how time delays due to the

transcriptional and translation process affects the dynamics of this system.

Among the various patterns of behaviour emerging from regulation associated with nonlinear kinetics,
bistability is extremely interesting. Bistability allows a true discontinuous switching (with hysteresis)
between alternate steady states that can convert graded inputs into switch-like responses. This permits a
discontinuous evolution of the system along different possible pathways, which can be either reversible or

irreversible, and may provide the system with a memory.

To investigate the role of time delays due to transcription and translation on the dynamics of the system,
we developed a model of ordinary differential equations with discrete time delay. Our model is five
dimensional and has three delay terms. We numerically investigated the model using published
parameter values and demonstrated that this system is indeed capable of bistability under physiological

conditions.

To investigate the origin of bistability further, we assumed that there is certain constant amount of lactose
inside the cell. This reduced the five dimensional model to three dimensions by eliminating the equations
for the permease and external lactose concentrations. By numerically solving the time-delay differential
equations of the reduced model and by performing a local stability analysis we showed that it behaved
similarly to the complete model and displayed bistability. From this, we conclude that the B-galactosidase
regulatory pathway is the essential regulatory mechanisms for bistability in the lac operon. We showed
that time delays do not affect the stability of the system in the sense that there is no evidence for a Hopf
bifurcation. Although one was reported in a recent model developed for the regulation of lac operon by
Mahaffy and Simeonov([3]. The analysis of our reduced model gives no grounds to expect a Hopf
bifurcation or oscillatory behaviour. This last result supports the conclusion that the B-galactosidase

regulatory pathway is the most essential of the regulatory mechanisms in the lac operon.

Future Projects

Over the past two years I have been working on a project involving the pheromone signaling pathway of
yeast. The yeast pheromone response is one of the best characterized signaling pathways and contains
several positive and negative feedback loops. I plan to develop mathematical models of this pathway to
interpret time-dependent data for protein activity. This is an ongoing collaborative project with
biochemists. The ultimate goal of this project is to construct a mathematical model to simulate the whole
pathway. Experimental data for protein levels obtained from either population or single cell

measurements will be used to validate the model.

I am also interested in stochastic modeling of biochemical networks, and the natural and artificial
regulation of such networks. Deterministic models overlook the random nature of biochemical reactions.
However, stochasticity is a significant effect in genetic regulatory networks because of the low copy

numbers of molecular species such as DNA and mRNA. To consider the effects of fluctuations requires



the use of stochastic models. Stochastic models can capture important behavior that is not seen in

deterministic models [4].

Estimation of parameters values in models of biochemical networks is often difficult because the data are
noisy and our knowledge of the network topology and participating molecular species is incomplete.
Additionally, determining how well the model parameters are constrained by the experimental data is as
crucial as finding optimal fits to the data. Both of these issues can be addressed using Monte Carlo
methods. Because these methods determine which parameters are least constrained by the data, that often

suggest new avenues for experimental analysis to measure the unknown parameter values.

There is a wealth of new experimental techniques in molecular and cell biology, such as biosensors and
microarrays, that have created an incredible amount of novel data. I plan to continue applying

mathematical, statistical and computational methods to interpret and analyze these new data.
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TEACHING STATEMENT

Necmettin Yildirim

Every professional believes that his/her profession is the most important of all. I think so too, but I have a
different approach. From my perspective, I see mathematics as a real basic science. Not only
hypothetically, but in practice it is a real life science. Man did not invent math, he just discovered it
because in everyday life we need it desperately. I want to show students that math is not only a fixed

formula of facts.

When I tell people that I am a mathematician and doing research in math, many of them respond in
exactly the same way: Math is hard. It is widely believed math is inapproachable to all but except a few. I
think this false concept takes its roots from negative stereotypes, scaring to fail, and many more reasons.
One of the most challenging things is to overcome the lack of confidence some students have in their
math abilities and show them how math is useful and how it makes life easier for us. There are many
methods to engage the students’ interest in the subject of math. The most obvious way to do it is to show
them how math actually interfere with our life. I find that it increases students’ understanding when I
show them how the topics of interest have applications in other sciences. I want to show them that math

is a language; it uses numbers and theorems, functions, instead of letters.

I like teaching math. Before starting my PhD program, I used to teach at colleges. And now I am teaching
again at the undergraduate level. I can make a long list of why I like teaching. First of all, I am not only
teaching it to others, I am exploring the math myself. After all those years in undergraduate and graduate
training, I still think that there is much more things to explore. Second, I believe mathematics is one of
the most enjoyable things to teach, since a math instructor not only carries mathematical knowledge, but
is given an opportunity to stimulate logical thinking and reasoning among the students. One can forget all
equations and formulas once the class is over, but, students who have learned “thinking like a

mathematician” will have a precious skill for the rest of their life.

Teaching is a dynamic profession. Especially in a science that is at a crossroad, like math, one should
know how to deliver the material to students. Students and instructor both have responsibilities in a class.
As an instructor, it is my job to provide well-prepared material, encourage students to learn and do the
necessary work. Careful preparation of class material is the first step in being able to explain complicated

topics clearly.

Since my research interest is in applied math, I often incorporate applications and ideas from other
sciences. I always spend enough time to prepare and up date my material. My teaching approach depends
on the course I teach. In advance classes, students are prone to learn more effectively with take-home
examinations or projects. I always encourage students complete projects that involve real life problems. I
believe that applications of formulas and complicated theorems to another science and seeing a concrete
results of their effort will show them that math is more than just two plus two. When students realize that
they can use simple math to understand and solve problems relevant to their lives, they will discover that

math is stimulating. I also try to give plenty of time to students for discussion inside or outside the class.



My principal is to know interest, strengths and weakness of each individual in my class. Because I
believe teaching works best when adjusted to each student’s needs. Key aims of my teaching philosophy
are interaction, waking and nurturing interest in math, supportive use of technology in the class. My
enthusiasm for math and teaching are my strengths. My major goal as an instructor and research advisor

is to transfer to students understanding and joy of applied math.
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