
RESEARCH STATEMENT

While completing the Ph.D. degree in Stony Brook, the direction of my
research has been based on both my Mathematical preferences and also on
a wider-perspective commitment to applying Dynamics in Neuroscience.

This has been a sustained personal goal along the years. Although in col-
lege I recognized the scientific promise in linking the two areas, Biology was
at the time only a complementary study interest to my pure Mathematics
major. The two disjoint halves came together after I arrived here.

I have been working on a thesis in Real Dynamics under the supervi-
sion of Prof. John Milnor, and my areas of mathematical interest include
Ergodic Theory, Complex Dynamics and Kneading Theory. In 1999 I also
started working on my first significant Neuroscience project with Prof. Paul
Adams, faculty in the Neurobiology Department. Over the past few years, I
continued learning about the physiology of the central nervous system, and
neural networks (models of Hopfield, Oja, Kohonen). I have undergone a
continuous effort to keep steady the balance between these two main fields.
Last summer I completed a three-month internship in the Carlos Brody lab-
oratory at Cold Spring Harbor Laboratories, where I plan to return and
continue my research for several more months post graduation.

In the following paragraphs, I will describe in more detail my work in
these two areas, the common themes being the complexity and plasticity of
a dynamical system and/or a neural network. I will conclude with some of
my plans for the future.

Description of Mathematical research

My dissertation illustrates how dynamic complexity of a system evolves
under deformations. This evolution is in general only partly understood.
Attempts to give a quantitative approach have considered simple examples
of dynamical systems and have made use of the topological entropy h(f)
as a particularly useful measure of the complexity of the iterated map f .
However, the only results so far have been obtained in the case of interval
polynomials of degree 2 and 3.

The logistic family Q = {fµ(x) = µx(1− x) , µ ∈ [0, 4]} illustrates many
of the important phenomena that occur in Dynamics. The theory in this case
is the most complete ([D]): µ → h(fµ) is continuous, monotonely increasing,
and different values h0 = h(fµ) are realized for a single µ in some cases, but
also for infinitely many in other cases. The cubic polynomials on the unit
interval are organized as a 2-parameter family. In the compact parameter
space of this family, the level sets of the entropy, called isentropes, were
proved to be connected ([DGMT] and [MT]).

1



In general, families of degree d polynomials depend on d − 1 parame-
ters, so the same concepts are harder to inspect for higher degrees. It is
most natural to research next a family of quartic polynomials that depends
only on two parameters. I focused on showing the Connected Isentropes

Conjecture for the family PQ of compositions of logistic maps ([R]).
I briefly studied the more general combinatorics of 2n-periodic orbits

under alternate iterations of two (+,−) unimodal interval maps.
I introduced a way to keep track of the succession of the orbit points

along the unit interval I by defining the order-data as a pair of permutation
(σ, τ) ∈ S2

n. If under alternate iterations of the two maps f and f ′ the
two critical orbits are periodic, their order-data turns out to be strongly
connected to the kneading-data of the composition f ′ ◦ f .

For a given order-data (σ, τ), I defined the left/right bones in the param-
eter space PQ to be the subsets for which either critical point has periodic
orbit of order-data (σ, τ). The bones are algebraic curves , and by definition
left bones can only intersect right bones. I called a crossing primary inter-
section, if it corresponds to a pair of maps with common periodic bicritical
orbit and secondary intersection, if it corresponds to a pair of maps with
disjoint critical orbits.

To obtain combinatorial properties of the bones, I compared the space
PQ with a model space of compositions of stunted tent maps. This technique
is not accidental; the stunted sawtooth maps are generally useful models in
kneading-theory, because they are rich enough to encode in a canonical way
all possible kneading-data of m-modal maps. The combinatorial results
made crucial use of Thurston’s Uniqueness Theorem, and of an extension of
it due to Poirier , interpreted by [MT].

In two following sections, I completed the description of the bones with
two essential properties.

The bone-curves are C1-smooth and intersect transversally. Smoothness
follows as in [M] at parameter points inside the hyperbolic components of
PQ. If the parameter point is outside these components, a quasiconformal
surgery construction is necessary in order to perturb a map with a super-
attracting cycle to a map having an attracting cycle with small nonzero
multiplier.

The bones are simple arcs in P Q with two boundary points on ∂P Q,
in other words they contain no loops. [MT] proved the similar assertion in
the case of cubic polynomials, either assuming true the well-known Fatou
Conjecture or using a weaker theorem due to Heckman. I used instead a
quite new and interesting rigidity result of [KSvS], that delivers density of
hyperbolicity in my parameter space.

I defined the n-skeleton SQ
n in PQ to be the union of all bones of period

at most 2n , together with the boundary of the space. I put a dimension
2 topological cell structure on P ST and PQ as follows: the 0-cells are all
intersections of bones in Sn and all boundary points of bones in Sn; the
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1-cells are the 1-dimensional connected components obtained by deleting
the 0-cells from the n-skeleton; the 2-cells are the 2-dimensional connected
components of the complement of Sn.

The relations between entropy and the sequence of cell complexes is
emphasized in the last section of my paper. If two points in P Q correspond
to distinct values of the entropy, then any path connecting them crosses
infinitely many bones. In more technical phrasing: for any ε > 0, there is
a large enough n for which the corresponding cell complex is fine enough
to have variation of entropy less than ε on each of its closed cells. These
considerations permitted me to transport some topological properties of the
isentropes from the previously mentioned model space to similar properties
of isentropes in PQ. More precisely, contractibility of isentropes in the
stunted tent maps model space translates as connectedness of isentropes in
PQ.
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Description of Neuroscience research

The area of neuroscience I am primarily interested in is the mechanisms
of learning and memory in neural networks. However, I try to keep my
interests as broad as possible and continue to understand how my partic-
ular models fit into a larger context. Most of my research is related to or
inspired by theories and results in dynamical systems and PDE’s, which in
my opinion have been an important catalyst for some major breakthroughs
in mathematical biology in recent times.

One of the early and yet still one of the most important learning princi-
ples is the postulate of Hebb: neurons that fire together wire together. Its
phrasing leaves space for multiple levels of interpretation. The first models
I studied considered a couple of these possibilities.
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Oja’s rule ([O]) mathematizes a linear network model which, through a
process of unsupervised learning, adjusts the synaptic weights according to
a normalized Hebbian rule. We introduced a modification that we called
the Adams’ model, based on the possible imperfections in the mechanical-
chemical hardware that supports learning, which permit information “leaks”
between neighboring cells. I made essential use of hyperbolic dynamics
([AR]) to prove the convergence of the weight vector to a stable state under
iterations. We concluded that “chaos” in such a leaking network does not
increase sensibly with its physical dimension. This constitutes just a starting
point. We anticipate that the study will naturally enlarge to encompass a
wider class of networks and become a piece of the puzzle in understanding
information transfer.

A different interpretation of Hebb’s postulate is offered by [SMA]. Dur-
ing the research program this summer, I worked on extending this model
to mathematically back up in vitro results. Recent studies in the visual
cortex suggest that intracortical inhibitory circuits are necessary to initiate
and drive ocular dominance plasticity if an eye is stimuli deprived. The
project proposed to integrate rapid GABA-ergic transmission with long-
lasting spike timing-dependent plasticity mechanisms to explain how open-
eye inputs achieve a competitive advantage and deprived inputs are selec-
tively weakened over time. As expected, a direct analytic method seemed
hopeless, so we developed a set of MATLAB simulations to illustrate the
results. The idea of this competitive, correlation based plasticity model still
seems absolutely amazing to me and I intend to delve further into it in the
future.

Future plans

An apparently nonrelated topic I am attracted to is the role of attention
in modulating brain processes, as described in [RC] and detailed in a few
papers on gain modulation by Abbott and Salinas. An idea to which I plan
to return for future research is to incorporate attention gain modulation
into the plasticity model described before. I expect that the understand-
ing of each of the mechanisms would be enhanced by seeing them at work
simultaneously.

At present, I am learning about the kinetic representation described in
[CTSM]. Part of my plan is to try to review the previous competition models
putting them in the perspective of this approach.

Last year I presented some of these neuroscience projects in the math-
ematics graduate seminar, which was exciting, and I hope that I can keep
doing this after I get my degree. I am planning to graduate in December,
with the conviction that this combination is the kind of research that could
fill my life. On a shorter and longer term, I would like my next professional
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positions to emphasize this and to help me gain more knowledge, more prac-
tice and more confidence in Mathematics and Neuroscience as separate fields
and as a wide unitary science.
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If any additional information may be needed, please don’t hesitate to
contact me.
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