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Abstract

The dynamics of microelectrode local field potentials from cortical slice cultures shows critical behavior. A desirable feature of
criticality is that information transmission is optimal in this state. We explore a biologically plausible neural net model that can
dynamically converge on criticality and that can return to criticality if perturbed away from it. Our model assumes the presence of a
preferred target firing rate, with dynamical adjustments of internodal connection strengths to approach this firing rate. We suggest that
mechanisms for maintaining firing rate homeostasis may also maintain a neural system at criticality.
@ 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The dynamics of local field potentials" (LFPs) from
cortical slice cultures has been shown to demonstrate
critical behavior [2].When cortical slices are cultured on 60
channel microelectrode arrays, activity consists of periods
of quiescence broken by bursts of activity of any number of
electrodes, which occur in clusters ("avalanches") of all
possible sizes. A branching ratio, <1,can be defined as the
number of electrodes that are excited after any other single
electrode is excited, averaged over time and over all
electrodes. In unperturbed cortical slice cultures, this ratio
is nearly unity for hours at a time [3].The condition <1= I
represents the critical point.

The critical point so defined has a number of interesting
properties. First, the number of electrodes involved in each
avalanche (or cluster of excitations) is distributed accord-
ing to a power law [2], similar to that seen in sand pile
avalanches, nuclear chain reactions and many other
natural phenomena [I]. Second, the Lyapunov exponent
is nearly zero at the critical point, signifying stable neutral
dynamics that is capable of exploring all possible LFP
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configurations (no local phase space attractors), and yet is
not random [5]. Thirdly, an analysis of information
transmission also shows that critical branching optimizes
information throughput [2]. These properties all suggest
that a neural network at critical branching is ideal for
information processing. Larger branching ratios lead to
excessive spread of input excitation. Information is then
lost due to the intrinsic instability of the system. Smaller
branching ratios, on the other hand, result in rapid
dampening of excitation. Information is again lost, in this
case by quenching of the input signal. Haldeman and Beggs
were able to construct a highly parsimonious neural net
model that captures these basic features [5].

Given the potential utility of remaining near the critical
point, how do local cortical networks converge on this
state? Evidence suggests that cortical networks become
critical through self-organization even in vivo. During
weeks of incubation, neurons in cortical slice cultures send
out axons and form new synapses, rewiring the network.
The fact that such networks arrive at the critical point
without an external instructive signal indicates that local
rules are sufficient to achieve criticality. In addition, acute
cortical slices show power law distributions of avalanche
sizes [2], suggesting that networks from the intact brain are
also critical.
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Current thinking on long-term synaptic plasticity center
on Hebbian mechanisms of synaptic potentiation or
depression, which strengthen or weaken individual sy-
napses [4]. These changes are rapidly induced (minutes to
hours) and tend to destabilize neural circuits because they
tend to make strong synapses stronger and weak synapses
weaker [6]. A second mechanism involving post-synaptic
resealing of firing rate operates over a much longer time
scale (hours to days) and tends to stabilize neural circuits
by moving all neurons toward a target firing rate [8]. The
first mechanism allows neural circuits to learn and store
information. The second mechanism prevents the first
mechanism from causing either runaway excitations or
"freezing" of all neural activity in the system. The second
mechanism represents a type of firing rate homeostasis.

In this paper we describe a network model of post-
synaptic firing rate homeostasis that not only is dynami-
cally stable, but that can be tuned to remain near the
critical point. A system that can return to the critical point
when perturbed away from it is doubly advantageous, not
only in being stable, but in being stable around a state that
is optimal for information processing.

2. Methods

If an electrode (node) j fires a burst, it sends an excitation
to node i. Let the probability that node i will fire be given
by P(i,j). If there are N = 60 nodes, the branching ratio is
then given by

1 N N
(1 = N L L P(i,j).

;=1 j=1

Let A(i; t) be the activation level of the local field
potential (LFP) at electrode i at time t. It gives the
probability that neurons in the immediate neighborhood
discharge simultaneously. Define a firing function F(i; t)
such that F(i; t) = 1 means that node i fires a burst at time
t, and F(i; t) = 0 means that it is quiescent. The time
evolution of A(i; t) is givenby

N

A(i; t + Jt) = S(i;t) + L P(i,j; t)F(j; t),
j=1

where Jt is the incremental time step, and S(i; t) is the
spontaneous activity at node i. We find it necessary to
introduce a spontaneous activity for each node, to prevent
the overall system from freezing in a no-fire mode after
moments of total quiescence.

Firing rate homeostasis is achieved by increasing or
decreasing S(i; t) and P(i,j; t) if the firing rate is either too
low or too high compared to a target firing rate, Fa = l/'to:

S(i; t + Jt) = exp[-ks«(F(i; t» - Fo)Jt] S(i; t),

P(i,j; t + bt) = exp[-kp( (F(ij t)} - Fo)<5t]P(i,jj t).

Here (...) represents a time average over a preceding time
interval 'tmem, and ks and kp are dimensionless rate
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constants that control how quickly the S(i; t)'s and
P(i,j; t)'s adjust to deviations away from the target firing
rate Fa.

Every node is allowed to be connected to every other.
The total number of nodes is taken to be N = 60. The
timestep is taken to be Jt = 4ms. A refractory period of
20 ms is imposed after every firing at each node. The target
single electrode firing period is 'to= 6.25s. These para-
meters are chosen to be in agreement with experiment [2,3].
For lack of more detailed information, we take the initial
P(i,j; 0) to be chosen from a flat, random distribution
between 0 and 1. The results presented below are not
sensitive to the firing rate averaging period 'tmem,as long as
this period is longer than or equal to the target firing
period. For simplicity, we take 'tmem= 'to. The results
below depend on the ratio ks/kp, and are not sensitive to
the individual values of ks and kp, as long as ks and kp are
both much less than 1. This condition guarantees that the
relative time rate of change of S(i; t) and P(i,j; t) given by
Eqs (3) and (4) are small. Convergence of each simulation
is checked visually. Convergence takes on the order of 1-2
million timesteps. A total of 10-20 million timesteps is
taken to assure the results are converged.

3. Results

(1)

Fig. 1 shows (1 as a function of ks/kp for kp = 0.01.
Note that (1 is nearly unity at ks/kp = 0.5 (i.e., this is the
critical point). Note that (1 increases monotonically as
ks/kp increases, while the average spontaneous activity
decreases. The standard deviation of (1 about its mean is
about 2% near the critical point.
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Fig. l. Logarithm graphs. Solid triangles: (1,dimensionless units. Hollow

triangles: standard deviation of (1.X's: the spontaneous rate 8(1) averaged
over all nodes and over a time period of 625s in units of probability of
firing per timestep, where each timestep is 4 ms. The critical point is
reached near ks/kp = 0.5.
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Fig. 2. Solid squares: the firing rate relative to the target firing rate,
averagedover all nodesand over a time period of 625s (dimensionless
units). Hollow squares:the firing rate of the entirearray, averagedover a
time period of625s, in Hz. The critical point is reached near ks/kp = 0.5.

Fig. 2 shows the firing rate relative to the target firing
rate, averaged over the prior 625 s (100 x to)' Homeostasis
is maintained about the target firing rate. Fig. 2 also shows
the firing rate of the entire array. Near the critical point
(ks/kp = 0.5),the array firingrate isapproximately1.5Hz,
which is close to the experimental value of 1.3Hz [2,3].

4. Discussion

We introduce a type of neural net dynamics based on
continually adjusting spontaneous nodal activity and
internodal connection strengths so that the firing frequency
at each node always tries to approach a target frequency.
Such a situation may plausibly arise from neuronal energy
or kinetic constraints. We find that not only does the
system converge on the target firing frequency, but that for
certain values of our parameters ks and kp, a natural
consequence of firing rate homeostasis is convergence to
criticality. This property of critical homeostasis is of
biological interest because criticality seems to be a general
property of resting neocortical systems, and such a state is
optimal for information transmission.

Our model rescales all the synapses of a given node either
up or down by a multiplicative factor, in accordance with
Turrigiano's criterion of synaptic scaling [6]. Our model
does not adjust synapses within a single node individually.
Thus, for a homogeneous population of neurons, the firing
rate homeostasis mechanism does not alter the shape
of the distribution of internodal connection strengths (the

P(i,j)'s); it merely stretches or compresses this distribution
so as to find a stable state. A Hebbian mechanism
operating on a much faster timescale may possibly then
be added to the firing rate homeostatic mechanism, without
mutual interference [6,7]. The Hebbian mechanism would
alter the distribution of internodal connection strengths, as
part of a learning or information processing procedure.
The firing rate homeostatic mechanism may then tune the
new set of connectivities to return the system to a stable,
optimal state.
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