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The synaptic phenomena of long-term potentiation (LTP) and long-term
depression (LTD) have been intensively studied for over twenty-�ve years.
Although many diverse aspects of these forms of plasticity have been ob-
served, no single theory has offereda unifying explanation for them. Here,
a statistical “bin” model is proposed to account for a variety of features
observed in LTP and LTD experiments performed with �eld potentials
in mammalian cortical slices. It is hypothesized that long-term synap-
tic changes will be induced when statistically unlikely conjunctions of
pre- and postsynaptic activity occur. This hypothesis implies that �nite
changes in synaptic strength will be proportional to information trans-
mitted by conjunctions and that excitatory synapses will obey a Hebbian
rule (Hebb, 1949). Using only one set of constants, the bin model offers an
explanation as to why synaptic strength decreases in a decelerating man-
ner during LTD induction (Mulkey & Malenka, 1992); why the induction
protocols for LTP and LTD are asymmetric (Dudek & Bear, 1992; Mulkey
& Malenka, 1992); why stimulation over a range of frequencies produces
a frequency-response curve similar to that proposed by the BCM theory
(Bienenstock, Cooper, & Munro, 1982; Dudek & Bear, 1992); and why this
curve would shift as postsynaptic activity is changed (Kirkwood, Rioult,
& Bear, 1996). In addition, the bin model offers an alternative to the BCM
theory by predicting that changes in postsynaptic activity will produce
vertical shifts in the curve rather than merely horizontal shifts.

1 Introduction

Long-term potentiation (LTP) and long-term depression (LTD)are persistent
changes in synaptic ef�cacy that can be induced by electrical stimulation.
These phenomena have been intensively studied since 1973 (Bliss & Lomo,
1973), motivated by the hypothesis that synaptic changes affect information
processing in the brain (reviewed in Bliss & Collingridge, 1993; Beggs et
al., 1999). Recently, simple protocols have been developed so that either
LTP or LTD can be reliably induced in �eld potentials in the mammalian
hippocampus (Dudek & Bear, 1992;Mulkey & Malenka, 1992) and neocortex
(Kirkwood, Dudek, Gold, Aizenman, & Bear, 1993).
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Although these protocols are now widely accepted, an understanding
of why they work has taken years to develop and is still incomplete. For
example, a paradox surrounds the asymmetry of induction protocols.Induc-
tion of LTP requires only about 100 presynaptic stimulation pulses, while
induction of LTD requires 900 pulses. This seems unbalanced, since these
protocolstypically produce amplitude or slopechanges of nearly equal mag-
nitude (Dudek & Bear, 1992; Mulkey & Malenka, 1992; Kirkwood, Rioult,
& Bear, 1996). Existing models of synaptic plasticity would not predict this
disparity (Hebb, 1949; Bienenstock, Cooper, & Munro, 1982; Bear, Cooper,
& Ebner, 1987; Lisman, 1989). A seemingly unrelated phenomenon can be
observed during LTD induction. As 1 Hz stimulation is delivered, the mag-
nitude of the synaptic response declines in a decelerating manner (Mulkey &
Malenka, 1992). No theory has been offered to explain this phenomenon or
to relate it to other observations about LTD. Another question concerns the
reduced magnitude of depression seen in slices of visual cortex taken from
dark-reared rats. The well-known BCM theory (Bienenstock et al., 1982) has
been used with some success to describe the results of LTP and LTD exper-
iments in rat visual cortex (Kirkwood et al., 1996). The BCM theory does
not predict that the magnitude of LTD observed in slices from dark-reared
animals would be reduced, only that the frequency at which LTD is induced
should be lower. Yet experimental results show that the magnitude of LTD
is reduced in slices from dark-reared animals relative to controls (Kirkwood
et al., 1996). Taken together, these issues suggest that there may be gaps in
our knowledge about how synaptic plasticity is induced.

According to the bin model, all of these phenomena may be a conse-
quence of the following hypothesis: Long-term synaptic changes will be in-
duced when statistically unlikely conjunctions of pre- and postsynaptic activity
occur. This implies that changes in synaptic strength will be proportional
to information transmitted by conjunctions, subject to the constraint that
synaptic strengths are bounded. This hypothesis is a novel fusion of two
earlier lines of thought concerned with synaptic conjunctions and informa-
tion theory.

The idea that conjunctions of pre- and postsynaptic activity could cause
changes in synaptic strengths was �rst proposed by Hebb (1949) and has
since been investigated extensively through both physiological (e.g., Kelso,
Ganong, & Brown, 1986; Kirkwood& Bear, 1994) and modeling studies (e.g.,
Linsker, 1988; Zador, Koch, & Brown, 1990).

The hypothesis that synaptic strengths are related to transmitted infor-
mation was originally proposed by Uttley (1966). Uttley argued that synap-
tic strength was proportional to the negative of the mutual information
between the presynaptic input and the postsynaptic output. This negative
relationship allowed for negative feedback and a highly stable system, with
synaptic strengths often tending toward zero (Uttley, 1970, 1979). In con-
trast, Brindley (1969) and Marr (1970) proposed that synaptic strengths were
related to the positive of the mutual information function, thus leading to
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bistable synapses. Whenever the mutual information was above a threshold,
the synapse would assume a single positive strength; whenever the mutual
information was below this threshold, the synapse would be set to zero
strength. In a slightly different vein, Linsker (1988) showed that if synapses
obeyed a Hebbian rule, they would maximize information transfer.

The bin model described here proposes that synaptic strengths are pro-
portional to the positive of the information transmitted by conjunctions (not
mutual information). Further, the bin model shows that if synaptic strength
isproportionalto information transmitted by conjunctions, then the synapse
will obey a Hebbian rule (different from Linsker’s assertion). Here, these
ideas are combined in a new way to account for the aggregate behavior of
synapses seen in LTP and LTD experiments using �eld potentials in mam-
malian cortical slices.

2 The Bin Model

2.1 Probability and Information. Consider a model synapse with an
identi�ed presynaptic input and postsynaptic output, as shown in Fig-
ure 1A. Imagine that there is a time-stamped record of all the spikes that are
�red on each of these axons over a given period of time. Imagine further
that this record is divided into many small time bins of equal size. Let us
de�ne three temporal arrangements that could occur between a presynaptic
and a postsynaptic spike:

� A hit will occur whenever a presynaptic and a postsynaptic spike occur
in the same bin.

� A near-miss will occurwhenever a presynaptic spike occurs in a vacant
bin immediately after a postsynaptic spike.

� A miss will occur whenever a presynaptic spike occurs in a vacant bin
and does not produce a near-miss.

We can make our de�nitions of these events arbitrarily precise by choosing
the bin size to be suitably small (see the appendix for a more thorough
treatment of binning).

Now let us calculate how often the presynaptic input and the postsynap-
tic output will produce hits. To determine chance performance, consider
how often hits would occur if Npr presynaptic and Npo postsynaptic spikes
were randomly “dropped” into a row of Nb time bins, with the restriction
that neither the presynaptic nor the postsynaptic cell may drop more than
one of its own spikes into a bin (see Figure 1B). Given this model, the proba-
bility that n hits would occur by chance is described by the hypergeometric
distribution (see Figure 1C), which is well known in the statistical literature
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(e.g., Johnson & Kotz, 1969; Meyer, 1970):

P(n | Npr, Npo, Nb) D

Npo
n

Nb ¡ Npo
Npr ¡ n

Nb
Npr

(2.1)

where:

P(n | Npr, Npo, Nb) D the probability that n hits will occur, given Npr, Npo,
Nb

n D the number of times a pre- and postsynaptic spike
will be in the same bin

Npr D the number of presynaptic spikes in the time period

Npo D the number of postsynaptic spikes in the time pe-
riod

Nb D the number of bins in the time period

with the restriction that:

n · Npr · Npo · Nb.1

For large values of (Npo/Nb), the hypergeometric distribution approaches
the binomial distribution (Meyer, 1970). The distribution will attain a max-
imum at npeak (Johnson & Kotz, 1969), given by:

npeak D �oor
(Npr C 1)(Npo C 1)

(Nb C 2)
. (2.2)

Figure 1: Facing page. Bin model synapse. (A) Npr represents the number of
spikes �red by the presynaptic neuron (black ovals) in the given time period,
Npo represents the number of spikes �red by the postsynaptic neuron (open
ovals) in the same time period, and Nb is the number of bins in the time period.
A hit occurs whenever the pre- and postsynaptic cells �re spikes in the same
time bin. This is identi�ed by an arrow. In this case, there are three hits (n D 3).
(B) To calculate how many hits would occur by chance, the model assumes
that spikes are dropped randomly into a row of time bins. In this example,
�ve presynaptic and six postsynaptic spikes are dropped into 25 time bins.
(C) The hypergeometric distribution describes the probability, P, of obtaining
each number of hits, n, for the example chosen.

1 For the mathematics to be correct, Npr must always be less than or equal to Npo. Thus,
Npo should always represent the cell that �red the most spikes. In this article, Npo will be
assigned to the postsynaptic cell for the sake of clarity only. Of course, the model would
work equally well if Npo were assigned to the presynaptic cell if it �red the most spikes,
but that would make the nomenclature confusing.
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This model implies that conditional probability is related to information
transmission between the presynaptic input and the postsynaptic output. If
the postsynaptic cell has access to the number of hits, n, along with knowl-
edge of Npr, Npo, and Nb, then it can determine the presynaptic spike train
to some extent. If it does not have access to n, however, the postsynaptic cell
cannot make any distinctions among the set of possible presynaptic spike
trains given by Npr and Nb. Therefore, n can be thought of as a message that
conveys information about the presynaptic spike train to the postsynaptic
cell. Using the formulation developed by Shannon (1948), the amount of
information about the presynaptic spike train conveyed by n to the postsy-
naptic cell is given by:

I(n, Npr, Npo, Nb) D ¡ ln(P(n | Npr, Npo, Nb)).

To normalize this expression, we may add a constant so that no information
will be conveyed when the system is in its most probable state (when n D
npeak):

I(n, Npr, Npo, Nb) D ¡ ln(P(n | Npr, Npo, Nb)) C C,

where C D ln(Ppeak).
This suggests the substitution:

W D
P(n | Npr, Npo, Nb)

Ppeak
,

where W is the normalized probability of occurrence: 0 · W · 1. Now the
information conveyed by n may be rewritten as:

I(n, Npr, Npo, Nb) D ¡ ln(W). (2.3)

Note that W D 1 when n D npeak, while W will approach zero when n is at
either tail of the distribution. Intuitively, equation 2.3 means that when n is
much larger or much smaller than the peak value npeak, then W is small and
n conveys much information. If n is near npeak, however, then W is relatively
large and the informationconveyed by n is low. This is illustrated in Figure 2,
where the information content is shown for each number of hits in the case
where there are 5 presynaptic spikes, 25 bins, and several different numbers
of postsynaptic spikes. As can be seen from the �gure, the most extreme
values of n convey the most information.

2.2 Probability Related to Changes in Synaptic Strength. Now plau-
sible values for Nb, Npr, n, and Npo will be chosen so that probability values
produced by the bin model can be related to changes in synaptic strength
reported in �eld potential experiments of LTP and LTD. The exact values
of these parameters are relatively unimportant, since it will be shown later
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Figure 2: Unlikely numbers of hits convey the most information. (A, left) Prob-
ability of occurrence, P, for each number of hits, n, is plotted when Npr D 5,
Npo D 6, and Nb D 25. (A, right) The information (from equation 2.3, but given
in bits) conveyed about the presynaptic spike train is plotted for each number of
hits. Note that the information is lowest when n is near the peak value, npeak D 1,
and highest when n is much greater than npeak. (B, left) When the postsynaptic
�ring Npo is increased to 13, but Npr and Nb remain the same, the distribution is
shifted to the right. (B, right) Information is again lowest when n is near the peak
value npeak D 3, but highest when n is either greater than or less than npeak. (C,
left) When the postsynaptic �ring Npo is further increased to 19 but Npr and Nb

remain the same, the distribution is shifted even farther to the right. (C, right) In-
formation is highest when n is much less than npeak. This also shows that changes
in postsynaptic �ring rate can alter the amount of information conveyed by a
given number of hits.
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(in Figure 6) that the bin model is quite robust and produces qualitatively
similar results for a wide range of parameter values. In what follows, it will
be assumed that hits will lead to potentiation, while near-misses and misses
will lead to depression. It will be shown that highly unlikely events will lead
to large changes in synaptic strength, while moderately unlikely events will
lead to only moderate changes in synaptic strength. In the case of two rela-
tively sparse spike trains (where bins are more often empty than occupied),
this implies that if a given number of hits will lead to strong potentiation,
then the same number of near-misses will lead to equally strong depression.
In contrast, the same number of misses will lead to only mild depression,
since misses are not as unlikely as hits or near-misses if the spike trains are
sparse.

In choosing a bin size for the model, the work of Bi & Poo (1998) is infor-
mative. Using paired recordings from hippocampal neurons in culture, Bi
and Poo have shown that potentiation is triggered when a presynaptic spike
precedes a postsynaptic spike by 20 ms or less, an event that we may inter-
pret as a hit (see the appendix for a more thorough treatment of binning and
the calculation of probabilities associated with hits). In contrast, depression
is triggered when a presynaptic spike follows a postsynaptic spike by 20 ms
or less, an event that we may interpret as a near-miss. Although Bi and
Poo did not closely examine misses, this type of event is prevalent in LTD
experiments using �eld potentials (and will be discussed later). Motivated
by the work of Bi and Poo, a bin size of 20 ms will be chosen for the model,
and no more than one hit will be counted in a given bin.

How many bins (Nb) should be used? In experiments using hippocampal
slices, Huang, Colino, Selig, and Malenka (1992) have shown that prior
synaptic activity can in�uence the later induction of LTP. When a weak
tetanus (30 Hz, 0.15 s) was delivered 20 minutes before 100 Hz stimulation,
the induction of LTP was inhibited. In contrast, the same treatment given
80 minutes before 100 Hz stimulation was without effect. This suggests
that if there is a �nite time window during which spikes are integrated for
long-term plasticity, that window is longer than 20 minutes but shorter than
80 minutes. In other experiments, Xu, Anwyl, and Rowan (1997) reported
that transient exposure to stress could affect the induction of LTD in awake
rats for 5 minutes after the stress was removed. When the stress had been
removed for 20 minutes, however, no effects were seen. These data would
suggest a time window at least 5 minutes long but shorter than 20 minutes.
Taking into considerationdata fromboth studies, a timeperiodof20minutes
will be chosen for the purposes of this model. When this 20-minute period
is divided by 20 ms, it yields 60,000 bins (Nb D 60,000).

In the slice, the number of presynaptic spikes �red (Npr) during the given
time period will be determined by the number of stimulation pulses deliv-
ered. For the case of LTP induction, Npr will be 120, since this is the number
of presynaptic pulses delivered during “theta burst” stimulation, a widely
accepted protocol that has proved effective in inducing LTP in mammalian
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cortical structures (Kirkwood et al., 1993). In response to theta burst, it will
be assumed that summation of postsynaptic potentials will cause the cell to
�re 30 spikes—one spike for each burst of 4 pulses delivered at 100 Hz. This
is motivated by the fact that postsynaptic potentials delivered at 100 Hz
with near-threshold stimulation intensity frequently summate to produce
spikes within 3 to 5 pulses (Beggs, 1998). Thus, n will be 30 for the case of
LTP induction with 100 Hz. For the case of LTD, Npr will be 900, since this is
the number of pulses commonly used for induction of depression (Dudek &
Bear, 1992; Mulkey & Malenka, 1992). In response to 900 pulses delivered at
1 Hz, it will be assumed that the postsynaptic cell �res no action potentials.
This is reasonable, since �eld potentials recorded during LTD induction do
not show population spikes, indicating that action potentials are not �red
(Dudek & Bear, 1992; Mulkey & Malenka, 1992). Thus, n will be zero during
LTD induction.

Next, the number of spikes for the postsynaptic cell (Npo) must be chosen.
Although spontaneous activity in the slice is nearly zero, there is evidence to
suggest that experimental conditions before slicing may nonetheless in�u-
ence synaptic plasticity after slices are prepared. For example, days of light
deprivation (Kirkwood et al., 1996) have been shown to in�uence synaptic
plasticity dramatically in slices of visual cortex taken from experimental
animals, relative to controls. From these data, it is plausible that some bio-
physical mechanism becomes tuned to the average �ring rate and retains
that tuning even after slices are prepared (see Quinlan, Philpot, Huganir,
& Bear, 1999 for a candidate mechanism). Because light deprivation seems
to have the effect of reducing the threshold for potentiation equally on all
inputs to a given cell, we will assume that this effect is postsynaptically
mediated and may be represented by Npo. In the unanesthetized mammal,
the average �ring rate of a cortical or hippocampal pyramidal neuron is
typically 1 Hz or slightly higher (e.g., Thompson, Deyo, & Disterhoft, 1990;
Czepita, Reid, & Daw, 1994; Collins & Pare, 1999). For the purposes of this
model, a postsynaptic �ring rate of 1.5 Hz will be chosen. In 20 minutes,
this �ring rate will produce 1800 spikes (Npo D 1800).

Now that we have candidate values for Nb, Npr, n, and Npo, we may
use them to calculate probabilities and relate them to observed changes in
synaptic strength. We may develop a correspondence between the probabili-
ties generated by the bin model and the amplitude changes observed during
the induction of LTD. During LTD induction, 900 presynaptic pulses are de-
livered, and no postsynaptic spikes are produced. This is evidenced by the
fact that the �eld potentials in studies of LTD do not show population spikes.
As these 900 pulses are delivered, the magnitude of the synaptic response
shows a progressive decline (Dudek & Bear, 1992;Mulkey & Malenka, 1992).
This decline is seen in Figure 3A, which is an average of seven experiments
and is typical of LTD induction observed with �eld potentials (Mulkey &
Malenka, 1992). Note that 1 Hz stimulation initially causes enhancement,
but this is a short-term effect and mostly rebounds at the end of stimula-
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tion. Because this article describes a model of long-term potentiation and
depression, we will not attempt to �t this short-term effect, but will focus
only on effects that produce more enduring synaptic changes (see Varela et
al., 1997, for a description of short-term plasticity in rat cortex).

The magnitude of depression for a given point along the declining curve
can be matched to the number of pulses that have been delivered in the LTD
induction protocol up to that point (see Figure 3B). Consider an excitatory
synapse with initial strength S that is observed to show long-term depres-
sion of an amount DS by the end of an experiment with 900 pulses. Before
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Table 1: Parameters for the
LTD Induction Curve.

Pulses W DS

0 1.0 0.00
100 2.1 £ 10¡1 0.22
200 1.4 £ 10¡2 0.44
300 8.0 £ 10¡4 0.63
400 4.4 £ 10¡5 0.74
500 2.3 £ 10¡6 0.86
600 1.2 £ 10¡7 0.91
700 6.2 £ 10¡9 0.96
800 3.2 £ 10¡10 0.98
900 1.6 £ 10¡11 1.00

the synapse begins its decline in ef�cacy, the observed depression is 0.00 DS.
After 100 pulses, the observed depression is approximately 0.22 DS. After
300 pulses, the observed depression is approximately 0.63 DS. By the end of
the experiment, the depression is 1.00 DS. These correspondences are taken
from Figure 3B and listed in Table 1.

To relate these depressions to probabilities, the bin model can be used to
calculate the probabilities of zero hits for each number of pulses, since no
postsynaptic spikes are produced during the LTD induction protocol (be-
cause no population spikes are observed in the LTD �eld potentials). These

Figure 3: Facing page. The LTD induction curve reveals a relationship between
probability and changes in synaptic strength. (A) Plot of �eld EPSP slope taken
during the application of 1 Hz stimulation for 900 pulses (15 minutes) in hip-
pocampus (data replotted from Mulkey & Malenka, 1992). The graph is a sum-
mary of seven experiments; some error bars are omitted for clarity. Zero marks
the beginning of 1 Hz stimulation, and 900 marks the end. Note that 1 Hz stim-
ulation initially causes enhancement, but this is a short-term effect and mostly
rebounds at the end of stimulation. The bin model does not attempt to model
these short-term effects. (B) The number of pulses at each point along the curve
can be matched with the amount by which synaptic strength has decreased (DS).
(C) A plot of changes in synaptic strength, DS, against normalized probability,
W. Values for DS were taken from the data shown in A; values for W were cal-
culated according to the bin model for each multiple of 100 pulses. Note that no
change in strength is speci�ed for W D 1.0, while the largest changes are associ-
ated with the lowest values of W. (D) A family of functions describing changes
in synaptic strengths, DS(W), is plotted for different values of R (R D 0.2 lowest
curve, R D 50, uppermost curve). (E) The function DS(W) (solid curve) pro-
vides the best �t to the data (black squares), when R D 0.205. This minimizes
the squared error. (F) The function DS(W) (solid curve) is plotted against the
data (black squares) on a log scale, showing the goodness of �t.
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W values are listed in Table 1. From data in this table, it is possible to graph
the magnitude of depression as a function of W. The resulting relationship,
when plotted as magnitude of depression against W, is a sharply bending
curve (see Figure 3C).

We seek a function that can �t this sharply bending curve. Let DS(W) be a
function that would take as input the normalized probability of occurrence
W ranging from 0 to 1, and produce as output the magnitude by which the
synaptic strength is changed, DS(W), ranging from 1 to 0.

We can deduce some general qualities of the function DS(W) from look-
ing at the numbers listed in Table 1. First, when W is very small, DS is
large. This means that as W approaches 0, DS(W) should approach 1. Sec-
ond, when W is relatively large, DS is very small. This means that as W
approaches 1, DS(W) should approach 0. Third, as W increases from 0 to
1, the magnitude of DS(W) always decreases and never increases. Math-
ematically, this means that the magnitude of DS(W) should decrease in a
strictly monotonic fashion as W ranges from 0 to 1. A function satisfying
these general requirements is given by:

DS(W) D
1 ¡ WR

1 C WR , (2.4)

where W is the normalized probability of occurrence of an event and DS(W)
is the magnitude of change in strength caused by an event with probability
W and

0 · W · 1

0 · DS(W) · 1

0 · R · 1.

Equation 2.4 has been plotted for several values of R in Figure 3D. The
value of R can be any positive constant and will determine the exact shape of
the curve. Note that with the appropriate choice of R, DS(W) can reach any
point in the space de�ned by the requirements. For R ¿ 1, the magnitude of
DS(W) will be large only when W is near 0, while for R À 1, the magnitude
of DS(W) will be small only when W is near 1. What value of R will best
describe the data obtained in �eld potential experiments performed in slices
of mammalian cortical structures?

Using numerical methods,2 a value of R was chosen to minimize the
squared error between the data points given in Table 1 and the function
DS(W). It is found that R ¼ 0.205 gives the best �t to the LTD induction
curve (see Figures 3E and 3F). As the graph shows, this curve would not
lead to much depression until W < 0.2, when the magnitude of DS values

2 Numerical integration was performed using Mathematica 3.0.1.
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would start to become greater than 0.2. This means that only unusually
large numbers of misses would lead to substantial depression, while the
vast majority of synaptic events would cause little change.

In this model we will assume that the relationship between probability
and synaptic depression is one instance of a general mechanism that will be
at work in synaptic potentiation as well. As will be shown later, this assump-
tion provides a reasonable description of the data for LTP experiments. We
may combine both relationships:

If n ¸ npeak, then: DS(W) D C
1 ¡ W0.205

1 C W0.205 for hits.

If n < npeak, then: DS(W) D ¡
1 ¡ W0.205

1 C W0.205
for misses
and near-misses. (2.5)

Note the use of plus and minus signs to indicate the direction of synap-
tic change. These equations indicate synaptic potentiation for improbable
numbers of hits and synaptic depression for improbable numbers of misses
or near-misses, and no synaptic changes when n D npeak.

2.3 Information Related to Changes in Synaptic Strength. Let us ex-
plore the relationship between probability and changes in synaptic strength
by introducing the relation:

ds(W) D ¡k ¢ ln(W). (2.6)

If the proportionality constant k is chosen correctly, ds(W) can approximate
DS(W) for most values of W (see Figure 4A). As W approaches zero, how-
ever,ds(W) approaches in�nity and departs from DS(W) (see Figure 4B). We
will choose the value for k that minimizes the squared error, weighted by
the probability of occurrence, over the interval from 0 to 1 (this minimizes
the expected value of the squared error):

E D
1

0
W ¢ ((ds(W)) ¡ (DS(W)))2 ¢ dW.

This may be rewritten as:

E D
1

0
W ¢ (¡k ¢ ln(W)) ¡

1 ¡ W0.205

1 C W0.205

2

¢ dW.

Using numerical methods,3 E may be plotted as a function of k (see Fig-
ure 4C). As can be seen from the graph, E is minimized when k ¼ 0.101.
This value of k may now be substituted back into ds(W), and ds(W) may

3 Numerical integration was performed using Mathematica 3.0.1.
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Figure 4: Actual changes in synaptic strength are nearly proportional to trans-
mitted information. (A) The functions ds(W) and DS(W) are plotted together.
Note that they are indistinguishable at this scale. The function DS(W) �ts the
experimental data, describing changes in synaptic strength as a function of nor-
malized probability. Real changes in synaptic strength must be bounded, so the
function DS(W) has a maximum value of 1 as W approaches 0. The function
ds(W) is proportional to transmitted information. Information becomes in�nite
as W approaches 0, creating a difference between ds(W) and DS(W). (B) A plot
of ds(W) and DS(W) at higher scale, showing that there are differences as W
approaches zero. (C) When the proportionality constant in ds(W) is chosen to
minimize the error between ds(W) and DS(W), the curves are in fairly close
agreement. A plot of the expected value of the error (squared difference be-
tween ds(W) and DS(W) weighted by the normalized probability) against the
value of R. Note that E is minimized when k ¼ 0.101.
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be plotted together with DS(W). From the graphs, it is evident that ds(W)
and DS(W) are in fairly good agreement except at small values of W (see
Figures 4A and 4B).

Let us now discuss the intuitive meaning ofds(W) and DS(W). The infor-
mation conveyed by an event with a normalized probability of occurrence
W is given by ¡ ln(W). This means that ds(W) is proportional to the in-
formation conveyed by W. The function DS(W) was chosen to map the
probabilities generated by the bin model onto changes in synaptic strength
that were observed in experiments. In other words, DS(W) gives the magni-
tude of synaptic change as a function of probability. Because the magnitude
of synaptic change must be �nite, the output of DS(W) is mapped onto a
bounded interval from 0 to 1. In contrast, the output of the function ds(W)
has no such restrictions and approaches in�nity as W approaches zero. Thus,
the function DS(W) closely approximates ds(W) for events with high prob-
abilities of occurrence and deviates from ds(W) only for events with low
probabilities of occurrence. From this it is clear that DS(W) accurately mod-
els changes in synaptic strength and closely approximates ds(W) except at
very small values of W. This leads to an interesting conclusion: Changes in
synaptic strength are proportional to the information transmitted by con-
junctions, subject to the constraint that the magnitude of synaptic change is
bounded.

Excitatory synapses that obey this principle will also obey Hebb’s rule.
If synaptic strength is proportional to information, then increases in infor-
mation transfer at excitatory synapses will lead to increases in synaptic
strength, up to some maximum limit. The information conveyed by the
number of hits, n, can be thought of as the amount by which knowledge of
n will allow one to delimit the sample space of all possible presynaptic spike
trains, given Npr, Npo, and Nb. If an excitatory synapse were to change so as
to increase the information given by n, then it would change so as to make
the observed n larger than the peak value npeak (recall Figure 2). This could
be done if a synapse were to become strong enough to ensure that it �red
the postsynaptic cell every time it received a presynaptic impulse. Under
these conditions, n would be much larger than expected by chance, and the
information conveyed by n would be high. Every postsynaptic period of si-
lence could be used to predict when the presynaptic input did not �re. This
is the case of a classic Hebb synapse (Hebb, 1949), where synaptic strength
increases whenever the presynaptic and postsynaptic cell are active at the
same time, thus driving n > npeak and increasing information transfer.

3 Application to Synaptic Plasticity

One of the most successful descriptions of long-term synaptic plasticity in
mammalian cortex is the BCM theory (Bienenstock et al., 1982). In addition
to its many predictions about the development of visual cortex, two well-
known studies (Dudek & Bear, 1992; Kirkwood et al., 1996) have shown a
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Table 2: Parameter Values for Normally Reared Rats.

Stimulus n Npr Npo Nb W DS(W)

0.067 Hz 0 80 1800 60,000 4.0 £ 10¡1 ¡1.9
1 Hz 0 900 1800 60,000 1.6 £ 10¡11 ¡19.8
10 Hz 6 120 1800 60,000 3.8 £ 10¡1 C2.0
20 Hz 9 120 1800 60,000 3.3 £ 10¡2 C6.7
100 Hz 30 120 1800 60,000 1.0 £ 10¡18 C20.0

correspondence between the plasticity predicted by the BCM theory and
the potentiation and depression observed in experiments with slices from
mammalian cortical structures. We will examine whether the bin model can
describe changes in amplitude observed by Kirkwood et al. (1996). In these
experiments, �eld potentials were used to assess the synaptic plasticity of
slices of visual cortex taken from normally reared and dark-reared rats. The
normally reared rats will be considered �rst.

The values of Npr are determined by the induction protocols used. Test
pulses were delivered once every 15 seconds (0.067 Hz), low-frequency
stimuli were delivered with 900 pulses, and high-frequency stimuli were
delivered with 120 pulses (see Table 2). The choice of n in several cases re-
quires explanation. When 120 pulses of theta burst are applied at 100 Hz,
it will be assumed that the neuron will spike 30 times, once for each burst
of 4 pulses. When 120 pulses are applied at 20 Hz, it will be assumed that
summation of postsynaptic potentials will be less, leading to only 9 spikes.
When 120 pulses are applied at 10 Hz, it will be assumed that even less
summation occurs, leading to only 6 spikes. The results of the model are
fairly robust with respect to the exact choice of n (see Figure 6). It is impor-
tant, however, that some gradual decline in the number of spikes occurs
as stimulation frequency is reduced. It will be assumed that no postsynap-
tic spikes occur whenever stimulation is applied at frequencies of 2 Hz or
lower, because postsynaptic summation is negligible in this range. Values
for DS(W) were multiplied by 20 to scale to the maximum potentiation seen
in the experiments (maximum LTP: 20%). As can be seen from the open
circles in Figures 5A and 5B, the model predicts the general shape of the
curve fairly well, with minor discrepancies for some of the points.

An intuitive explanation for the shape of this curve can be derived from
the equations for the bin model. High-frequency stimulation produces sev-
eral hits (about 30) that lead to large changes in synaptic strength because
each hit is unlikely to have occurred by chance. Although the misses pro-
duced by low-frequency stimulation are not as unlikely, the fact that there
are so many of them (about 900) is very unlikely, and this leads to large
changes. Thus, the asymmetry of induction protocols for LTP and LTD
arises because hits convey more information than misses, which arises be-
cause neurons are quiescent more often than they are �ring spikes. The test
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Table 3: Parameter Values for Dark-Reared Rats.

Stimulus n Npr Npo Nb W DS(W)

0.067 Hz 0 80 300 60,000 1.0 £ 100 0.0
1 Hz 0 900 300 60,000 5.8 £ 10¡2 ¡5.7
2 Hz 0 900 300 60,000 5.8 £ 10¡2 ¡5.7

10 Hz 6 120 300 60,000 5.9 £ 10¡5 C15.2
20 Hz 9 120 300 60,000 2.1 £ 10¡8 C19.0

100 Hz 30 120 300 60,000 1.8 £ 10¡41 C20.0

pulse will always produce a miss, but since it is delivered at such a low fre-
quency, only 80 misses will occur in the 20-minute integration period. This
small number of misses is not enough to convey as much information as
900 misses, so the depression induced by the test pulse is barely noticeable.

One of the predictions of the BCM theory is that the stimulation fre-
quency at which depression crosses over to potentiation, called h , should
shift as a function of postsynaptic activity (see Figure 5C). Speci�cally, one
prediction of the BCM theory is that as postsynaptic activity decreases, h

should slide to the left (Bienenstock et al., 1982). This means that a stim-
ulation frequency that caused depression under normal conditions might
cause slight potentiation under conditions of reduced postsynaptic activity.
To test this prediction, Bear and colleagues (Kirkwood et al., 1996) prepared
slices of visual cortex from rats reared in a completely dark environment.
When these dark-reared slices were stimulated with a range of frequencies,
the curve produced was indeed shifted with respect to the curve produced
by control animals (see the �lled circles in Figure 5A). Let us see if the bin
model can describe the experimental data and whether the model can give
some insight as to the nature of this shift.

For the dark-reared rats, it will be assumed that the average �ring rate
of neurons in visual cortex will be lower than the rate for neurons from rats
reared in a fully lighted environment. Although the data are not available
for rats, Czepita et al. (1994) found that the spontaneous �ring rate for
neurons in dark-reared cats could be less than half of the �ring rate for
neurons in normally reared cats activated by visual stimuli. For this model,
a spontaneous �ring rate of 0.25 Hz will be used for dark-reared rats, giving
300 spikes in the period of 20 minutes (Npo D 300). Otherwise, the values
for n, Npr, and Nb are the same as those previously given for the normally
reared rats. The resulting probabilities and changes in synaptic strength are
given in Table 3 and plotted as �lled circles in Figure 5B. As can be seen
from the �gure, the model is qualitatively similar to the data.

In their original paper, Bear and colleagues made note of the fact that h

for the slices from the dark-reared rats is shifted to the left with respect to h

for slices from the normally reared rats. Interpreted this way, the data would
agree with the BCM theory, which predicts a leftward shift. According to
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the BCM theory, the threshold frequency h is a re�ection of the average
postsynaptic �ring frequency. If a presynaptic input is activated at the same
frequency as h , then no synaptic change will result. If a presynaptic input
is activated at a frequency below h , then two things will happen. First,
depression will result. Second, the average postsynaptic �ring frequency
will decline, causing h to shift to the left, where it will re�ect this lowered
average �ring rate. In a similar manner, a presynaptic input that is activated
at a frequency above h will cause potentiation and will cause h to shift to the
right. From this description, it should be clear that the BCM theory predicts
that the frequency-response curve will shift left or right along the horizontal
axis as a function of postsynaptic activity. No mention is made in the BCM
theory about vertical shifts of the curve (Bienenstock et al., 1982; Clothiaux,
Bear, & Cooper, 1991).
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Now let us discuss what the bin model predicts. The shape of the frequen-
cy-response curve predicted by the model was described previously. How
will this curve change as postsynaptic activity is reduced? If postsynaptic
activity is reduced from 1.5 Hz (normally reared) to 0.25 Hz (dark reared),
then a presynaptic spike that arrives at a synapse will be much less likely
to encounter a postsynaptic spike. This fact has two consequences. First,
since hits are much rarer, they will convey more information per spike than
under normal conditions. Thus, 9 hits produced by theta burst stimulation
at 20 Hz will convey more information in slices from dark-reared rats than
in slices from normally reared rats. The potentiation seen in slices from
dark-reared rats at 20 Hz will therefore be greater than that seen in slices
from normally reared rats. Second, since misses are much more common,
they will convey less information per spike than under normal conditions.
Because of this, the 900 misses produced by LTD induction will convey
less information in slices from dark reared rats than in slices from normally
reared rats. Consequently, the LTD seen in slices from dark-reared rats will
be less than that in slices from normally reared rats. The overall effect of a
reduction in postsynaptic activity, then, will be to cause an upward shift in
the frequency-response curve (see Figure 5D). This view is consistent with
the data that show that LTP is greater and LTD is less in slices from dark-
reared rats than in controls (for upward shifts under different conditions
of reduced activity, see Wang & Wagner, 1999). Note that the BCM theory
does not explicitly predict that the magnitude of LTD should be decreased
in slices from dark reared rats, only that h should shift to the left.

Figure 5: Facing page. The bin model compared to experimental data and the
BCM theory. (A) Magnitude of synaptic change (DS) plotted against the log of
stimulation frequency (Hz) for original data (modi�ed from Kirkwood et al.,
1996). Open circles represent slices of visual cortex prepared from rats reared
in a lighted environment; �lled circles represent slices of visual cortex prepared
from dark-reared rats. (B) Points predicted by the bin model show fairly close
agreement to the actual data. (C, D) Shifts in threshold compared for the BCM
theory and the bin model. (C)The BCM theory models a decrease in postsynaptic
activity by a threshold shift to the left, but does not specify that the amplitude
of the curve should be changed. Thus, the peak magnitude of LTD for normal
and deprived cortex is not predicted to differ. (D) In the bin model, a decrease
in postsynaptic activity produces an upward shift in the curve. Note that the
bin model predicts that the magnitude of LTD for deprived cortex will be less
than that for normal cortex, in contrast to the BCM theory. (E, F) Experimental
test to distinguish between the BCM theory and the bin model. (E) Data from
Kirkwood et al. (1996) are plotted with the additional circled point that would
be predicted by a leftward shift of the curve (as described by the BCM theory)
if 900 pulses at 0.5 Hz were delivered to slices from dark-reared rats. (F) Values
given by the bin model with the additional circled point that would be predicted
if 900 pulses were delivered at 0.5 Hz to slices from dark-reared rats.
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Which of these two theories better describes the data? A simple test could
illuminate the issue: How much LTD will be produced in slices from dark-
reared rats if they are stimulated at 0.5 Hz? The BCM theory, which describes
only a leftward shift in the curve, would predict that the magnitude of LTD
in slices from dark-reared rats at 0.5 Hz should be greater than that seen
at 1 Hz and that this should be similar to the LTD seen in normal slices
stimulated at 1 Hz (see Figure 5E). The bin model, however, describes a
vertical shift in the curve and would predict that the LTD seen at 0.5 Hz
would be less than that seen at 1 Hz in slices from dark-reared rats (see
Figure 5F).

To explore the robustness of the bin model, three sets of parameters—in-
tegration period (Nb), average postsynaptic �ring rate (Npo), and number of
action potentials (n)—were either increased or decreased by 50% for slices
from both normally reared and dark-reared rats. The results of these ma-
nipulations, shown in Figure 6, demonstrate that the model is extremely
robust. Even under larger parameter variations, the qualitative predictions
of the model remain unchanged.

4 Summary and Conclusions

Using only one set of constants, the bin model offers robust explanations
for several disparate phenomena observed in LTP and LTD experiments.
Many of these phenomena are not adequately explained by current theo-
ries. The asymmetry of induction protocols for LTP and LTD arises because
hits convey more information than misses, which is a result of the fact that
neurons are quiescent more often than they are �ring spikes. The curving

Figure 6: Facing page. Robustness of the bin model. (A, B) Effects of a 50%increase
or decrease in integration period. Nb (normally 60,000) was altered to either
90,000 or 30,000; all other parameters remained the same. (A) For slices from
normally reared rats, the unaltered curve is plotted with open circles, the increase
is plotted with squares, and the decrease is plotted with triangles. Note the
minimal changes. (B) Slices from dark-reared rats. Note that no changes at all
occurred in this case. (C, D) Effects of a 50% increase or decrease in postsynaptic
�ring rate. (C)For slices from normally reared rats, Npo (usually1800)was altered
to either 2700 or 900. Note the minor vertical shifts. (D) For slices from dark-
reared rats, Npo (usually 300) was altered to either 450 or 150. Again, note minor
vertical shifts. (E, F) Effects of a 50% increase or decrease in the number of action
potentials �red in response to stimulation at 10, 20, and 100 Hz. For both types
of slices, n (usually n D 6, 9, 30) was altered to either (9, 14, 45) or (3, 5, 15).
(E) Minimal changes were brought at 10, 20, and 100 Hz, while no changes
were brought at 1 Hz and at the test pulse, since no action potentials were �red
there. (F) Again note the slight changes. Overall, the bin model retains the same
qualitative predictions over large variations in parameter values.
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decline in synaptic strength seen during LTD induction is a consequence of
the function DS(W), whose shape describes synaptic changes proportional
to information transfer, subject to the constraint that synaptic changes must
be bounded. The shape of the frequency-response curve predicted by the
BCM theory and observed in experiments can also be explained in terms of
the bin model. Unlikely numbers of hits cause potentiation, unlikely num-
bers of misses cause depression, and the misses caused by test pulses do not
occur frequently enough in the integration time period to produce substan-
tial depression. The bin model can also explain why reduced postsynaptic
activity shifts this frequency-response curve. Reduced postsynaptic activ-
ity means that hits will convey more information per spike, so potentiation
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will be greater at a given frequency. Reduced postsynaptic activity will also
mean that misses convey less information, so the magnitude of depression
will be less at a given frequency. The net effect of these changes will be an
apparent upward shift in the frequency-response curve, an interpretation
that is different from that offered by the BCM theory. Finally, the bin model
offers a testable prediction so that these theories can be distinguished.

It should be noted that the bin model is not an attempt to explain directly
the biophysical basis of LTP and LTD, nor is it an attempt to explain short-
term synaptic plasticity. Rather, the bin model argues that a statistical view
of synaptic interactions can offer a robust and uni�ed description for pre-
viously unexplained phenomena seen in experiments of long-term synap-
tic plasticity. A major consequence of this view is that long-term synaptic
changes encode transmitted information. We hope that such a description
may inspire experimental tests of this idea and contribute to the formulation
of more detailed biophysical models in the future.

Appendix: Binning and the Calculation of Probabilities

It may be argued that the de�nition of a hit presented in the bin model
includes cases where LTD would be observed. For example, if a postsynaptic
spike is assigned to a bin because it occurs at the beginning of a 20 ms
period and a presynaptic spike occurs at any time less than 20 ms after this
postsynaptic spike, it will be assigned to the same bin, resulting in a hit.
However, this case should lead to LTD, as shown by Bi and Poo (1998),
because the presynaptic spike occurs after the postsynaptic spike.

It can be shown that although binning the spike trains may destroy some
information about precise temporal order, it does not alter the calculation of
probabilities of hits or misses when compared to methods that do take pre-
cise temporal order into account. For example, consider a parallel recording
where one presynaptic and one postsynaptic spike occur in a 1000 ms pe-
riod. To keep track of temporal order, let us attach a “trailer ” that is 10 ms
long after the presynaptic spike. Let us also attach a “leader ” that is 10 ms
long before the postsynaptic spike. We will de�ne a hit to occur whenever
the presynaptic trailer and the postsynaptic leader overlap in time. Thus, a
hit will occur only when the presynaptic spike is followed by the postsy-
naptic spike by less than 20 ms. There can be no hit if the postsynaptic spike
occurs before the presynaptic spike. This interval of 20 ms constitutes a “hit
zone” over which a hit will occur. The probability that the presynaptic spike
would produce a hit with the postsynaptic spike can be calculated by taking
the ratio of the length of the hit zone (20 ms) to the length of the recording
period (1000 ms): 20/1000 D 0.02. But this is exactly equivalent to calcu-
lating the probability with a bin method that does not account for precise
temporal order. The probability that a randomly dropped spike would land
in the same 20 ms bin already occupied by a previously dropped spike in a
1000 ms period is 1/50 D 0.02. (The period is divided into 50 bins of 20 ms
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length.) The case of multiple spikes can be handled in a similar manner,
demonstrating that binning does not alter the calculation of probabilities,
although it may destroy some temporal information.
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