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Computational Biophysics. Immediately after receiving my Bachelor’s degree, I went on to
join one of the first graduate programs in Bioinformatics, at Boston University. I was awarded
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graduate school four years ago, I published fifteen papers in peer-reviewed journals.

In my future research, I plan to build on the significant progress in the area of protein
evolution to guide investigations into the mutational dynamics of upstream regulatory regions.
To accomplish this, I plan to expand the current effort in transcription factor binding site
identification in complex eukaryotic systems. Next, I plan to use the data generated from de-
novo whole-genome binding site identification to define cellular control networks, and to
understand how those networks emerge as a result of molecular evolution. I hope that this
work will yield insights across a wide spectrum of biological problems from structure-function
relationship in proteins to emergence of pathways and speciation.
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Teaching Statement
Boris E Shakhnovich

I believe that mentorship, whether in the classroom or in the lab, is a sacred trust. Students place the
weight of their future at our doorstep with no thought of recourse. We have to live up to that trust as teachers
by inspiring and guiding the students on their chosen career path. While my current position is on a research
track, I have requested extended teaching responsibilities. In fact, the most rewarding aspect of my
promotion to a faculty position has been a more direct role in teaching courses and mentoring graduate
students. During my tenure as a research assistant professor, I have supervised two graduate, two rotation,
and four undergraduate students. I have taught 3 classes at Boston University: two seminar courses, and an
additional course I developed that covers introductory topics in computational biology (to download the
lectures and homework from that class please visit romi.bu.edu/bf527). 1 have also been extensively
involved in helping to plan and amend the curriculum of the Bioinformatics program.

Students who choose to join multidisciplinary programs are a brave and industrious bunch. Since I,
myself, have gone through the curriculum at an interdisciplinary graduate program, I have first-hand
experience of the kinds of challenges facing both students and instructors in computational biology. First, the
multifaceted nature of the field increases the difficulty of identifying the common core of the science.
Second, the subject matter is rapidly evolving and so are the skills and knowledge needed to succeed.
Finally, the novelty of the field limits the choices in teaching materials and resources available to instructors.
Thus, I think that in choosing courses, students and instructors should focus on subjects where fluency will
have sustained impact by providing a suitably general framework applicable to a variety of research areas.

To give a sense of the wide array of constitute parts that make up the core of computational biology,
we can consider the canonical example of sequence alignment. The solution to that problem is a fusion of
relatively standard computer science, coupled to rigorous statistics, illuminated by a flash of insight about the
role of evolution. Most importantly, students need to have a firm grasp of the basic tenets of evolution and
quantitative population genetics, such as origins of variation, selection, and drift in order to put their own
research into a proper perspective. The knowledge of statistics is indispensable as evidenced by the fact that
application of extremal probability theory to sequence alignment made computational biology the requisite
tool for every biologist and broadly accessible to the scientific community. Students should be well versed
in chemistry and physics as these skills are necessary for understanding the basics of DNA, RNA and protein
function. What makes curricular development difficult in this area is the need for students to understand both
the fundamentals of quantitative disciplines and their application to real biological problems. In my opinion,
their knowledge of biology should span the gamut from the basic anatomy of the gene, to prokaryotic and
eukaryotic genome organization and mechanisms. Students must understand biology on a level such that they
can collaborate with experimental colleagues, ask relevant questions, and guide their own research.

Many of the above subjects belong to the realm of well-established disciplines (e.g. physics, math,
biology, chemistry), and are partially covered on their home departments. However, to learn the amount of
material necessary for research in computational biology, students must take a prohibitively large number of
these courses. Also, the traditional approaches to presenting these subjects rarely provide the students with
computational biology problems either as motivation, examples, or homework. Thus, students miss out on
the subtleties of how to properly ask biologically interesting and relevant questions when taking courses in
statistics, graph-theory, or algorithms, and computationally relevant questions when taking courses in
chemistry or molecular biology. I believe that students will benefit from a more topical approach. For
example, in my own course, I assign homework that encourages students to apply fundamental skills and
knowledge to interdisciplinary problems and a final project where they can explore current research areas.

While this statement outlines only some of my philosophy about teaching, I am excited to discuss
these issues in person. I would be comfortable teaching courses in computational and systems biology,
bioinformatics, molecular biology, evolution and population genetics. Specifically, I am interested in
incorporating multidisciplinary problems into the course material and introducing students to a broad
perspective on the subject. I am also interested in developing a concise curriculum that prepares students for
research in their area of interest. I look forward to participating in both teaching and curricular development.
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A. Introduction:
The increasing rate of data deposition from high-throughput experimental assays challenge and

undermine status-quo approaches to biology. Beginning with whole-genome sequencing, high-throughput
acquisition of biological data has recently been extended to protein structure, transcription factor media{c;d
regulation, and functional properties of genetic mutations. Along with static data, there are now techniques
to survey the phenotypic state of whole cell systems such as microarray-based expression profiling, protein
abundance, and metabolite quantification. While the boon of experimental techniques represents a
paradigm shift in the way scientific communities perceive biology, a comprehensive theory describing the
relationship between these data and the evolutionary processes that may have led to its generation is still
largely lacking. Aside from its importance as inspiration for future studies, the lack of a holistic framework
increases the difficulty in assessing the gathered data for fidelity and possible bias. For the past year, with
the help of a small group of dedicated students, and in close collaboration with both experimental and
computational scientists, I was involved in research addressing some of these issues.

The broad theme of my research proposal is the elucidation of the coordinated evolution of open
reading frames and upstream regulatory regions. The proposed research projects build on my early work
in molecular evolution and on recent success in de-novo, computational identification of transcription
factor binding sites and cis-regulatory modules. The proposal is further divided into five inter-related
areas: (1) Evolution of Transcriptional Control Regions, (i) Extending our Understanding of the Structure-
Function Relationship, (1i1) High-performance Computational Approaches to Transcription Factor Binding
Site Discovery (iv) Defining System-Level Organization of Regulatory Mechanisms and (v) Publication of
Data, Resources and Tools. Section B outlines a brief overview of the goals and methods in each area.
Section C provides an in-depth discussion of the preliminary evidence and proposed projects. The research
outlined here will help understand how pathways evolve through duplication of open reading frames and
mutational re-wiring of control regions. Along the way, I plan to continue developing tools, innovative
frameworks and open-source databases that aid experimental biologists in research defining, testing and

validating eukaryotic regulation models and structure-function relationships in proteins.



While the proposal may seem ambitious and expansive, the goals and methods are well defined,
many of the projects are well underway and preliminary results are encouraging enough to fully support
feasibility. Beyond the challenges outlined here, the comprehensiveness of the proposed approach —
promises to elucidate aspects of the inter-relationship between structural, functional and regulatory
elements of cellular organization. Specifically, by choosing to investigate biological systems at different
levels of granularity, I hope to shed light on novel evolutionary mechanisms responsible for changing the

phenotype of the cell.



B. Outline of major areas of interest

B.1 Correlated evolution of genes and controlling structures
One of the most exciting emerging areas of computational biology is concerned with the study of

both the evolutionary[1, 2] and synthetic[3-5] rewiring of transcriptional control. There is now signiﬁca;t
evidence that everything from altering gene function to speciation[6] can occur as a result of mutations in
the upstream regulatory regions. For organisms, altering transcriptional control may be a faster way to
change gene function or invent a new pathway without relying on major genomic rearrangements or the
relatively slow evolution of open reading frames. However, there is also significant evidence for
conservation of upstream regions, especially in the positions responsible for transcription factor binding[7-
9]. In fact, conservation is the most common assumption when searching for transcription factor binding
sites (TFBS) using computational techniques[10-12].

I am interested in understanding the dynamics between conservation and rewiring in the evolution
of transcriptional control. However, despite increasing numbers of whole-genome sequences and high-
throughput experimental techniques mapping transcription factor (TF) binding to upstream regions[12-15],
our ability to predict functional positions is limited.[16] This rather limited understanding of the genome
outside the open reading frame complicates prediction of regulatory mechanisms, modeling molecular
evolution, and annotating gene function.

Even if functional positions were characterized with high fidelity, models describing the impact of
mutations in the upstream region on the phenotype of the cell are as of yet inadequate. The strength of
selection, and the probability associated with fixation of mutations affecting transcriptional control are
often hard to estimate. First, transcriptional activation is often context dependent, and mutation in the
upstream region may influence not only the strength of binding between the TF and the DNA, but also the
gating logic[17] that defines the temporal expression of the downstream product. Furthermore, successful
adaptation to change in regulation control requires correlated mutations of the open reading frames. Other
considerations include the potential of other genes and upstream regions in the genome to mutate in a

coordinated fashion to create a new pathway. Another set of unknowns are the environmental constraints



influencing the impact of these mutations on the fitness of the organism. All these variables are integral in
defining the strength of selection on mutations in upstream promoter regions. Many are at present
impossible to measure with accuracy, but the role of some can be elucidated using recent results and —
proposed projects outlined in this proposal.

One of the major goals of this proposal is to capitalize on the significant progress in our
understanding of protein evolution to guide investigations into evolution of upstream promoter regions.
Specifically, I am interested in the mutational events, dynamics, and mechanisms responsible for changing
protein function. Regulatory elements in upstream regions play an integral role in placing gene function in
cellular context. Thus, successful investigation into the co-evolution of upstream regions and open reading
frames must take into account all constitute parts and requires (i) Accurate mapping of functional TF
binding sites in upstream regions because false positives or negatives introduce noise into evolutionary
models; (ii) Understanding transcriptional control in context (e.g. multi-TF control via cis-regulatory
modules controlling pathways). This is useful for defining the phenotypic consequences of mutations; and
(iii) Exploration of the evolutionary dynamics of open reading frames. The latter can be used to elucidate
the genetic potential to adapt to change of function. My lab has been working intensely in all three avenues,
laying the foundation for a cohesive research program exploring the relationship between evolution of
transcriptional control and evolution of protein sequence, structure, and function. My progress and future
plans for tackling each of these problems is briefly outlined below and in detail in section C.

B.1.1 Mapping transcription factor binding sites

A number of recent publications describe mutational dynamics of upstream regions. However, the
interpretation of these results is often difficult. For example, some models describe a gradual mutation
process of functional sites in upstream regions leading to change in TF binding specificity[2], while others
describe a sudden and remarkably simultaneous exchange of multiple binding sites across the genome
resulting in sudden emergence of a novel pathway{ 1]. High fidelity TFBS identification methods are an

indispensable prerequisite for assessing accuracy of evolutionary models and for future studies into the



evolution of upstream regions. Determining the inter-relationships between TFs and genes can then be
used to guide experimental studies probing control and regulation[15, 18].

Computational approaches aimed at identifying binding positions can be divided into two -
categories: those that look for conserved w-mers in upstream regions of hypothetically co-regulated genes,
and others that search for conservation between orthologous upstream regions. Current approaches are
shown to work with limited success on easy input sets. When some of the input upstream sequences do not
share the TFBS, (modeling experimental error or incorrect co-regulation hypothesis), or there is more than
one binding site present, the effectiveness of the computational methods quickly degenerates. Independent
assessments of these algorithms report accuracy between 10-40% for the most easily identifiable TF
binding motifs in S. Cerevisiae [12, 19-22]. These performance limits render current algorithms essentially
useless for de-novo identification of binding sites in whole genomes or when regulation mechanisms are
complex and poorly understood (e.g. Humans). Finally, current implementations of algorithms are plagued
by many false-positive predictions and their application is unsuitable to modeling evolutionary processes in
upstream regions.

One strategic goal of this proposal is to develop and implement a systematic computational
framework for de-novo discovery of transcription factor binding sites (TFBS) (See C.3.1). The primary
objective is to make the edifice applicable to both mapping TFBS in whole-genomes (See C.4.1) and
elucidation of complex regulatory models of transcription often found in eukaryotes. (See C.3.6)

First, I describe the GibTig algorithm currently under development in the lab. (See C.3.1-2) The
algorithm is a Gibbs-sampling inspired approach and uses positional conservation in conjunction with
parallelized computing strategies to increase the number of true-positive and almost eliminate false-positive
predictions of binding sites. I propose several theoretical and practical improvements to the current
implementation of the algorithm. The final product will be deployed in a distributed computational

environment and possess improved predictive capabilities. (See C.3.3)



Our second goal is to create a global map of TFBS in the Yeast genome. (See C.4.1) We aim to use
the CHIP-Chip data[13] along with paralogous gene families likely sharing functional attributes (See C.1.0)
and clustering of genes related by more remote homology (See C.2.4) to create sets of hypothetically co~
regulated genes for input into the GibTig algorithm. (See C.3.1) The improved sensitivity from the GibTig
TFBS identification method in conjunction with the computational discovery of co-regulated genes should
allow for significant improvement in sensitivity, specificity and coverage of TFBS identification in Yeast.
We can use these results to iteratively improve the GibTig algorithm with training from retrospective and
prospective experimental studies. Since this is the most computationally intensive aspect of the proposal, I
aim to leverage our close collaboration with the BlueGene team at IBM.

As a third goal, 1 plan to take advantage of our promising results in the GABA model system (See
C.3.4-5) to further elucidate the mechanisms of regulation for the GABA receptor in human neo-cortical
cells. (See C.3.6) Application of computational methods to identify TFBS in mammalian genomes presents
unique challenges (See C.3.1) due to increased length of promoter regions, complex regulation models, and
relative dearth of experimental information identifying co-regulated genes. Despite these difficulties, we
were able to use GibTigs to successfully predict and experimentally validate DNA sequences specifically
bound by proteins in neuronal nuclear extracts. Proposed projects include finding tissue-specific regulatory
elements and predicting mutations likely to significantly affect binding affinity. (See C.3.6) This project
will also serve to validate and refine our TFBS and CRM (see C.4.2) identification strategies. (See C.3.6)

Finally, I plan to disseminate all validated and hypothetical binding sites and regulation models
using a dynamic, query-driven database. The database design will allow the user to build and interact with
models describing complex transcriptional control in eukaryotic genomes. (See D.5.2-3)

B.1.2 Regulation in Context
Gene expression is modulated by combinations of transcription factors that bind all or some subset

of upstream promoter sites in a condition dependent manner [23]. Since a particular transcription factor will
generally be able to bind upstream regions and participate in the modulation of several genes, the

relationship between transcription factors and genes is many to many. A more comprehensive



understanding of the role that individual binding positions play in regulating transcription requires a model
that incorporates other factors involved in modulating expression of the downstream gene.

Correlated expression of genes controlled by cis-regulatory modules (CRMs) is a major mechanism
directing biochemical, signaling, and other pathways.[24-26] Defining the TF composition of CRMs will
shed light on the biological switches that control coordinated expression of genes involved in common
pathways. Thus, integration of individual TF binding sites into CRMs (e.g. relating groups of TFs to the
genes they regulate) is an important and necessary step in discovery of pathways, higher order regulation
processes, and the cellular control network. Furthermore, understanding and delineating subsets of genes
controlled by CRMs may prove to be an invaluable addition to the growing repertoire of techniques aimed
at de-novo prediction of individual gene function.[12, 27-30] Finally, one of the foremost challenges in
understanding the potential impact of mutations in upstream regions is the detailed elucidation of the
relationships between subsets of TFs controlling correlated expression of subsets of genes.

We have already enjoyed initial successes in reconstructing major control switches and pathways
using a neural network trained on data from the partial mapping between TFs and genes from CHIP-Chip
experiments[13]. (See C.4.0) I briefly outline a computational strategy for de-novo reconstruction of the
cellular control network in S. Cerevisiae.(See C.4.2) First, I will use newly developed measures of
functional distance (See C.2.5) to identify potentially co-regulated genes (See C.4.1). I will then use
GibTigs (See C.3.1) to create a whole-genome transcription factor binding map (See above and C.4.1).
Once the map of functional positions is completed, we plan to use the already implemented neural net
based on adaptive resonance theory (ART)[31, 32] to identify sets of TFBS shared by subsets of genes.
These binding profiles will define cis-regulatory modules. The genes they regulate are candidates for
sharing common pathway function. We can then use CRMs to explore protein interactions between TFs,
redundancies in the cellular control network, and the prevalent gating logics regulating transcriptional

control.



Next, I will make an effort to redefine gene function using TFBS profiles (See C.4.3) and begin
exploring the relationships between CRMs and evolution of open reading frames (See C.1.1). Since we
understand some of the impact of functional constraint on the dynamics of gene duplication and divergence
(See C.1.0), we can use that knowledge to guide research into the relationship between CRMs and selection
acting on open reading frames. We can also use the same kinds of methods to research the relationships

between CRMs and molecular evolution.

B.2 Understanding protein evolution
The study of molecular and organismal evolution depends on a proper understanding of protein

evolution[33-35]. Mutations of upstream regions have to be understood in perspective of the open reading
frames they help to regulate (i.e. changing the regulation of the protein makes sense only if that protein can
adapt to its new function). Since proteins represent the most basic phenotype of the cell, they are often the
substrates of selection. Genes are selected for, or against, because the proteins they code are more or less
fitted to the environment. The crux of research into molecular evolution, or any study of evolution, is the
study of change. Partly, work in the lab has been, and is going to continue to be concerned with the detailed
study of changes in proteins with respect to their sequence, structure, function, and phylogenetic
distribution.

B.2.1 Relationships between constraint, gene duplication and divergence
Gene duplication and divergence has long been credited as the primary mechanism behind

innovation in molecular evolution.[36] Currently, three pathways are hypothesized to affect the divergence
of two loci after a duplication event. The most common outcome of a duplication event is non-
functionalization, when one copy becomes a pseudogene[37, 38] while the parental locus is retained in its
original form. The less prevalent, but nonetheless important alternatives are neo-functionalization, when
one gene copy retains the original function while the other is free to find a new function undergoing nearly
neutral evolution[36], and sub-functionalization, when both copies retain purifying selection through sub-
division of parental pleiotropy.[39-41] One of my primary interests involves investigating the inter-

relationships between functional constraint, purifying selection, and preference for a duplication pathway.
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Insights from this research will contribute to our understanding of the relationship between organismal
pressure and molecular evolution not only on the level of individual proteins, but also on the level of gene
families and pathways. —

Recent studies in the lab have shown that the strength of purifying selection does not necessarily
depend on any phenotypic determinant of the gene. Instead, selection is characteristic of membership in a
gene family (See C.1.0). Surprisingly, while mutations accumulate uniformly slower for all genes in
families under strong selection, paralogs in those families diverge farther in sequence. Observation of fewer
pseudogenization events in families under strong selection supports a model where paralogs preferentially
divide ancestral function after duplication. The observed homogeneity of purifying selection on all genes in
paralogous families could be used as a signature of the relationship between function and evolutionary
pressure. Recently duplicated paralogs are likely to perform similar functions, and their divergence in
function space is limited[42]. In turn, limitation on functional divergence may impose corollary constraints
on the variability of strength of purifying selection. This line of reasoning implies that dynamics of
molecular evolution are inherently contextual[12, 43]. Since gene families not only share a constrained set
of functions[42], but also a characteristic strength of purifying selection, any gene’s ability to fix after the
duplication event, diverge, neo-functionalize, or sub-functionalize is determined by membership of that
gene in a family, and in turn that family’s function in the organism[43].

I plan to use results outlined above to connect evolutionary dynamics of the gene family to the
potential for functional change from mutations in the open reading frame and the upstream region. I plan to
use GibTigs (See C.3) to explore the relationship between selection acting on members of paralogous gene
families and transcription factor binding sites. This involves creating a model describing the likely
mutational events contributing to the evolution of regulatory control. (See C.1.1) Does strong selection on a
particular gene family mean that change in transcription is slower for those genes, or does the farther
separation of paralogs in sequence imply a faster exchange of transcriptional regulation? Furthermore,

understanding the impact of functional constraint on the dynamics of divergence after duplication will help

11



in creating a TFBS map of the S. Cerevisiae genome (See C.4.1). Finally, a comprehensive framework
describing duplication and divergence of paralogs will aid in further elucidating the relationship between
sequence, structure, and function. (See C.2.4) —

B.2.2 The prevalence of convergent vs. divergent evolution
While often forming the basis of evolutionary inquiries, documentation of differences alone is not

sufficient for a comprehensive understanding of evolutionary processes. For example, some structural and
sequence similarities can be attributed not to common evolutionary ancestry, but to favorable interactions
of the protein backbone or particularly good packing arrangements and certain chain topologies[44-51]. An
informed decision about the evolutionary relationship between two proteins requires not only the ability to
identify structural, functional, and phylogenetic similarities, but also an in-depth understanding of the
mechanisms and environmental pressures that could have lead to their generation[52-56]. One fundamental
question at the heart of molecular evolution is the role of historical versus physical factors in the observed
distribution of sequences, structures, and functions.

We have shown that some structural characteristics of proteins (e.g. designability approximated by
the maximal eigenvalue of the contact matrix) correlate with sequence entropy of protein families[57]. A
question open to debate is the relative contribution of the physical characteristics versus historical factors
that underlie this correlation. I plan to continue exploring this aspect of protein evolution. Understanding
the potential for sequence and functional diversity inherent in protein structure will help to further separate
the relative contribution of history, physics and selection in molecular evolution. I will use the data from
our studies on the dynamics and constraints affecting duplication (See B.2.1), to guide the exploration of
mathematical models describing sequence divergence. For example, one suitable choice of model can be
based on quasi-species descriptions first pioneered by Eigen.[58, 59] The traditional model can be easily
amended to incorporate uniform selection on paralogs (See B.2.1) and structural determinants of

designability.[57]



B.3 Functional annotation via structure homology modeling
Almost equivalent to solving the problem of protein evolution is the problem of annotation through

homology modeling [60-62]. Since most measures of similarity are based on evolutionary relationship, .
ability to accurately annotate new genes in recently sequenced genomes hinges in part on our ability to
understand divergence of sequence, structure, and function. The problem is complicated because even very
modest divergence from the closest homologue can carry with it the possibility of functional change[61,
63]. With sequence alignment nearing the limit of resolution and with fewer new genes amenable to
functional annotation using standard homology techniques, new functional inference will come from our
increased understanding of the structure-function relationship. The solution to the problem hinges in part on
finding the integration of evolutionary pressures that yields the most precise measure of similarity between
two arbitrarily chosen proteins{64, 65].

B.3.1 Quantifying distance in function space
In an attempt to increase generality and applicability, researchers have struggled to move away from

comparisons largely driven by intuition and define quantitative distances between homologs in
sequence[66], structure[67], and function[42, 68]. While rigorous measures for sequence and structure are
now well established, the problem of defining functional distance has been particularly daunting. Existing
database methods of describing functions using ontologies are not a-priori well-suited for calculating
functional distances [68]. However, using mostly anecdotal evidence, researchers have shown that
sequences sharing key structural characteristics often display common function[64]. Thus, there is general
consensus on the principle of the structure-function relationship, but not its quantification.

We have previously shown[69] that functional distances between domains can be successfully
quantified using Euclidian metrics applied to the gene ontology(GO)[70]. We are currently working on
extending the simple Euclidian based measure of functional distance to a more accurate and sensitive
kernel-based method. (See C.2.4). Briefly, we propose to use a diffusion kernel to implicitly describe local
distances between gene ontology classifications. Having a precise distance in function space will enable us

to quantitatively relate sequence and structure divergence to functional similarity. We can use the new
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functional distance to create a statistical framework assessing accuracy of functional annotation from
homology modeling. Furthermore, genes with small functional distance can be clustered to yield seed sets
for de-novo identification of transcription factor binding sites (see C.4.1) and expression modules[71]. —
Finally, the same kernel-based methods can be generalized to measure distances on other biologically
inspired graphs such as protein-protein interactions and genetic networks.

B.3.2 Putting the structure-function relationship in phylogenetic and transcriptional context
Relating structural homology to function has also been complicated by numerous examples of folds

performing many unrelated functions. This many-to-many relationship between structure and function has
been linked to fundamental biological processes and characteristics such as adaptation, specialization,
pleiotropy, or differential regulation.[72-74] Since protein function often depends on genomic context,
defining predominant trends in the coalescent evolution of organisms and proteins may be instrumental in
improving our understanding of the structure-function relationship[42].

We have recently shown that considering organismal context vastly improves our ability to infer
function using structural homology modeling[69]. First, I plan to extend this work redefining function
using binding profiles. (See C.4.3) Function will then carry information not only about the catalytic or
binding potential of the structure, but also about its cellular and pathway context. Next, I plan to explore the
relationship between structure and function with respect to regulatory context. Does constraint on the
functional potential imposed by structure have a corollary constraint imposed on transcriptional regulation?
Understanding the dynamics of divergence between structure and function [75, 76] will be aided by
determining the role of regulation in influencing the dynamics of molecular evolution. Finally, we will
explore the role of environment (e.g. using phylogenetic profiles) in influencing this redefined notion of
structure function relationship. For example, we can explore whether the separation of orthologs by
function among different phylogenetic profiles[77] is complemented by the co-evolution of prevalent

transcriptional control models.
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Conclusions
The goal of this research proposal is to explore biology at different levels of granularity. The

proposed work is going to allow us to build a multi-dimensional model of evolution. Using tools,
techniques and findings outlined above, we can begin exploring evolution from a series of vantage poin;s:.
Using increased understanding of the evolution of coding regions coupled with tools that identify
functional positions in upstream regions, we can begin hypothesis-driven investigations into the correlated
evolution of gene families and control sequences. The ability to trace the correlated mutations in the coding
and upstream regions that change both the biochemical function and expression pattern of the protein could
uncover novel evolutionary mechanisms. The goal is to build a comprehensive model describing the inter-
relationships between mutational dynamics of binding sites, duplication and divergence of open reading
frames, and appearance of novel pathways. The results from this research could be instrumental in
furthering our understanding of how genes function, or new pathways evolve. The forthcoming research

promises insight to some of the most interesting and urgent problems in biology, such as the origins of

speciation, transcriptional mechanisms, and complexity.
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C Research Proposal in Detail: Preliminary Evidence and Future Directions
I describe the proposed projects from a top-down perspective: first the global, long-term goals,

afterwards the progress and proposals for the constitute parts. In this first section, I describe proposed
research into evolution of functional elements in upstream promoter regions. Mutations in functional
sequences inside the upstream regions have been shown to be responsible for changes in protein function or
even speciation[1, 2, 78]. Since mutations in the upstream region change the transcriptional control of the
open reading frames, successful models will use the significant knowledge of the evolution of coding
sequences to guide this research. (See B.1)

One challenge of studying control mechanisms and their evolution is the ability to determine
positions in the upstream region that are functional with a low false positive rate. (See B.1.1) Error in
defining functional positions in upstream promoter regions, like incorrect sequence alignment for studying
evolution of open reading frames, introduces noise in any evolutionary model. To solve this problem, we
will utilize the GibTig algorithm which has been shown to minimize the false positive rate in TFBS
identification (See C.3). Another difficulty is determining the phenotypic impact of mutations (See B.1).
We will address this problem from three directions. First, I have been studying the origin and impact of
constraint on the dynamics of molecular evolution (See C.1.0). I plan to use these results to guide
investigations into the relationship between selection on the open reading frame and the upstream
regulatory region. Second, I have been studying the relationship between sequence, structure and function.
This work will be extended to relate function and regulation (See C.2) more concretely and quantitatively.
Finally, I have been investigating higher-order regulatory constructs. This will be used to formulate the
interaction network between functional sites in upstream regions and further elucidate the inter-

relationships between regulatory mechanisms.(See C.4)
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C.1 Evolution of Transcriptional Control Regions
The nature of the link between organismal and molecular evolution remains a fundamental question

in evolutionary biology. The relationship between evolution of the gene and the organism can be -
characterized by the change in fitness suffered by the organism from a mutation in the gene or its upstream
region.[79, 80] While the formulation is relatively simple, quantifying this effect is often difficult. For
example, benefit from mutation in one environment may have an opposite effect in another.[81, 82] Driven
by the recent availability of sequenced genomes along with high-throughput functional assays, researchers
observed a number of significant correlations between intrinsically functional characteristics of gene
sequences such as essentiality[83-85], number of protein-interaction partners[86], or expression level[87],
and the strength of purifying selection. However, the relative importance of each characteristic has been a
subject of vigorous debate.[88-90] Furthermore, the observed correlations have had limited impact on our
understanding of dynamics behind gene duplication and divergence. Finally, there has been no study of the
relationship between characteristics of the upstream region controlling the gene and the constraint put on

the evolution of the downstream gene.

C.1.0 Background: The origin and impact of constraint in molecular evolution
In this section, I describe the recently observed inter-relationships between functional constraint

imposed by the organism, purifying selection and dynamics of duplication. While not necessarily essential
in rich media conditions, genes from families with paralogs performing essential functions, are under
stronger purifying selection than genes in families with no paralogs fulfilling essential functions (Z7able 1).
Thus, analogously to the approach taken with individual genes[83-85], we can use existence of an essential
paralog as a marker for families under strong selection. For brevity, we will call families under strong
selection Exigent (demanding) and families with no essential genes Peregrine (wandering). We argue that
selection is a function of gene family membership because the observed differences are independent of
other functional characteristics known to correlate with purifying selection such as CAI and protein

abundance.(Data not shown) The uniformity of selection on all genes inside families, independent of their
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functional characteristics, suggests that gene families may be the appropriate context to use when
investigating the relationship between functional constraint, selection and molecular evolution.

Tablel: Comparison of SNP density. Both essential and non-essential genes in families containing at
least one essential gene show stronger purifying selection than genes in families with no paralogs fulfilling

essential functions.

Essential Genes Nonessential Genes P-Val
All genes including singletons | 01567 02158 1e-20

Families containing Families containing no

essential genes essential genes
Only nonessential genes in 012 027 le-40
families

Comparing the sequence distributions between the two types of families, I find that both are skewed
towards higher sequence divergence (lower identity) for paralogs in exigent families. (Fig /a,b) For
example, in S. Cerevisiae, the average amino-acid sequence identity between paralogs in exigent families is
40% while the average in peregrine families is 73%. We can observe qualitatively similar results when
considering paralogous families in E. Coli and C. Elegans genomes. Thus, we show that paralogs from
exigent families are farther separated in sequence space. ~ Observations of slower divergence rate (7able
1) and greater separation in sequence space between paralogs (Fig /) in exigent families are seemingly
contrary to each other. This paradox can be resolved if we hypothesize that paralogs from exigent families
survive longer before pseudogenization. A skewed distribution of pairs with more synonymous
substitutions in exigent families is consistent with longer average survival time of both duplicates before
non-functionalization.[38, 43] If we assume that synonymous substitution rate has been approximately
uniform, duplicates from exigent families survive on average 3x longer (mean Ks = 3.25) than duplicates
from peregrine families (mean Ks =1.15; P value of difference <le-40). Another way to assess preference

for a duplication pathway is to measure the non-functionalization rate. I observe that the fraction of
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pseudogenes[91] that can be attributed to duplication events in exigent families is ~7x lower than would be

expected at random e.g. if we assume an equal probability of pseudogenization, proportional to the number

of genes in each family type. (7able 2).
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Fig la. The distribution of the substitutions per replacement site (Ka) for pairs of paralogs in peregrine
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Distribution of sequence identity defined using BLAST. The distribution is drawn for pairs of paralogs in

peregrine families (squares) and exigent families (circles). The mean sequence identity for paralogs in

erecrine families is 73% while the mean for pairs of paralogs in exigent families is 40%. (Pval<le-40).
pereg p p g 8

Table 2. The number of genes and pseudogenes in both types of families (exigent and peregrine).

The ratio of pseudogenes/genes is 7x less in exigent families with a probability P <Ie-20 that this occurred

by chance. The same calculation can be done by comparing the ratio of genes in the two types of families to

that of pseudogenes.

Genes Pseudogenes Pseudogene/Gene Ratio
Exigent 278 4 .014
Peregrine 656 62 .095
Exigent/Peregrine Ratio | .40 06 P-val<le-20
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Here, I present evidence that gene family membership and selection, probably through functional
constraints imposed by the organism, play a pivotal role in the progression of molecular evolution by
influencing the fate of duplication events and subsequent divergence of paralogs. In fact, essentiality may
represent constraints complementary to those imposed by membership in a gene family. Observed
homogeneity in purifying selection on all genes in families of paralogs could be insightful of the
relationship between function and evolutionary pressure. Recently duplicated paralogs are likely to perform
similar functions and their divergence in functional space is limited[42]. In turn, limitation on functional
divergence may impose corollary constraints on the variability of strength of purifying selection. This line
of reasoning leads to the conclusion that dynamics of molecular evolution are inherently contextual[12, 43].
Since gene families not only share a constrained set of functions[42] but also a characteristic strength of
purifying selection, any gene’s ability to fix after the duplication event, diverge, neo-functionalize or sub-
functionalize is determined by membership of that gene in a family, and in turn that family’s function in the
organism[43].

Thus, the functional constraint on the open reading frames is partly determined by their regulation,
is there a relationship between functional elements in the upstream region and the constraint on the gene?
Furthermore, if functional constraint on gene families has such a profound impact on the dynamics of
evolution of the genes, what impact does it have for the evolution of the upstream regions controlling the
expression of these genes? Finally, is there a difference between evolution of regulation for paralogous and
orthologous genes? We propose the following approaches to tackling the above questions:

C.1.1 Proposed research: Modeling Evolution of Upstream Regions
There are two major challenges in modeling evolutionary mechanisms in upstream regions. First,

we have to determine the evolutionary precursors or direct descendants to the promoter sequences. Second,
we have to model the likely sequence of mutational events leading to the observed set of differences
between closely related upstream regions. The first problem: identifying closely related sequences is easier
when considering evolution of orthologous upstream regions. For example, sequence alignment of ORFs

across closely related species e.g. the seven species of Yeast[92] will yield a set of upstream regions likely

20



related directly through common descent. On the other hand, identifying homology in upstream regions of
paralogous open reading frames may prove more difficult. (See C.1.1.2)

Thus, the first part of this project will conglomerate sets of open reading frames and their upstream
regions that are likely related through evolution. These upstream regions do not have to be aligned, instead,
the GibTig algorithm, will be used to define functional positions. (See C.3). Once we know which positions
are functional, we can subject the functional elements to standard evolutionary analysis. Next, we propose
to divide the evolutionary process into discrete mutational events. This division will enable precise
modeling of evolutionary paths based on parsimony, distance or maximum likelihood.

Initially, we would propose the following set of discrete evolutionary events:

1. Addition of another copy of the functional element

2. Deletion of a copy of the functional element

3. The functional element may change in sequence e.g. point mutation

4. The element may change position with respect to the upstream binding site

5. Since binding sites may be read 3’-5’, 5°-3, complement or reverse complement, the
binding may transmute from one variant into another.

After defining the basic model, we have to consider the problems of evolution of orthologous
regions and paralogous regions separately.

C.1.1.1 Proposed Research: Correlated Evolution of ORFs and TFBS in Orthologous Upstream Regions

As mentioned above (See C.1.1), we start by identifying sets of orthologous regions related via
common descent. This can easily be done using sequence alignment in conjunction with synteny
analysis.[93] Next, we can use the sets of orthologous upstream regions to define the TFBS using the
GibTig algorithm (See C.4.1). After defining functional positions, we can use the separation of
evolutionary processes into discrete events outlined above in C.1.1 to calculate the relative likelihood of

each mutation. Using a maximum likelihood approach[94] (in collaboration with S. Sunyaev from Harvard)
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and the standard tree of the Yeast species [92], we can infer the most parsimonious scenario of evolution
for each set of elements in the upstream region[95-97].

We will try to relate our discoveries about the evolution of the upstream regions to the better- —
studied evolution of open reading frames. (See C.1.0) The evolution of open reading frames can be
characterized by evolutionary pressure e.g. non-synonymous mutations - Ka, synonymous mutations-Ks
and the ratio-Ka/Ks) (See C.1.0). Open reading frames under higher evolutionary pressure are likely to
diverge less e.g. Ka/Ks is smaller. With the model of likely evolutionary events and changes in the
upstream region in hand, we plan to correlate evolutionary pressure on the open reading frames and the
evolution of the upstream region.

Specifically, for every gene in the S. Cerevisiae genome, we plan to compile the average Ka/Ks
ratio between orthologous open reading frames (in the six sequences Yeast genomes). We proceed to
identify the evolutionary model describing the most parsimonious series of events explaining the
differences between the upstream regions. Using these two datasets, we can start asking quantitative
questions about the relationship between pressure imposed on the gene and the evolutionary model
governing mutation of its upstream region. For example, we would like to investigate whether the
functional elements in the upstream regions of proteins under high selection e.g. ribosomal proteins are
restricted to only short-term changes e.g. point mutations as opposed to rearrangements such as additions or
deletion of functional elements (See C.1.1).

C.1.1.2 Proposed Research : Evolution of functional elements in paralogous upstream regions
Research into the evolution of upstream regions related by paralogy is more difficult than
comparing upstream regions related by orthology (See C.1.1.1). Unlike orthologous regions, paralogous

upstream regions could emerge as result of more complex sequence rearrangement events €.g.
transpositions, whole-genome duplications etc. Some of these scenarios yield parallel duplication of the
upstream region along with the open reading frame, while others do not. Another problem is the

determination of time since the last common ancestor of the duplicated pair. Unlike orthologous upstream
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regions which could be tied to the speciation event, duplications and genome rearrangements have no fixed
divergence times. This problem is complicated further by the variable mutation rate across the genome[98].
We will attempt to overcome these problems by leveraging our knowledge of the consensus-based graph-
theoretical approach analogous to the one used to measure divergence and diffusion of open reading
frames. (See C.1.0)

Briefly, we first divide the genome into families of genes (See C.1.0) by building a sequence
comparison graph. Finding strongly connected components as in (C.1.0 or C.2.1) will enable identification
of closely related gene families. Using this graph, we are in a position to start evaluating which upstream
regions are related through common ancestry e.g. via transposition or whole-genome duplication events.
First, we will try to align every pair of upstream regions in the gene family using approximate alignment
algorithms commonly used for sequences with low identity e.g. LAGAN[99, 100]. If whole-upstream
region alignment proves fruitless, we will use the GibTig algorithm (See C.3.1) to search for common
motifs. Furthermore, we can leverage our TFBS map from C.4.1 as additional evidence for positions of
functional sites.

Once we have the positions and functional sites, we would like to evaluate whether upstream
regions are also divided into broad evolutionary categories akin to the open reading frames (See C.1.0). In
C.1.0, we note that essential genes can be used as markers of paralogous families under strong evolutionary
pressure. We plan to use these results to compare the conservation of functional elements in upstream
regions of paralogous families under strong versus weak evolutionary pressure.(See B.1) Furthermore, we
can then evaluate the time-frame needed to accomplish specific changes in the functional elements of the
upstream regions by comparing the divergence of the functional elements to the divergence of the rest of
the upstream promoter region. We saw in C.1.0 that membership in a gene family may influence the speed
of divergence of the gene. We can explore whether functional elements e.g. specific TFBS also influence
speed of divergence. Finally, we plan to correlate the divergence of the upstream regions to the functional

divergence of the open reading frames. (See C.4.2)
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C.2 Extending our understanding of Structure-Function Relationship
In this section, we present projects that further our understanding of the structure-function

relationship. These studies are mostly direct extensions from C.2.1 and C.2.2 and [75, 76, 101, 102]. There
is one other section in the proposal that deals with structure-function relationships: C.4.2. There, function is
redefined using transcription factor binding sites from whole-genome TFBS identification in D.4.1. The
majority of the projects in this section capitalize on the highly successful graph-theoretic approach outlined
in C.2.1 and [101].

C.2.1 Background: PDUG: Protein Domain Universe Graph: Developing a unified view of
Sequence-structure-function space

Evolution is, at its core, a science of comparison. In order to study evolution, we need to create a
computational framework to represent our current body of knowledge. We chose to approach the problem
from a graph-theoretic prospective where nodes are domains and edges are comparison measures. Aside
from providing a unified framework, evolutionary graphs like these provide a means for organization of the
diverse glut of experimental data that has become the cornerstone of bioinformatics research. We have been
very successful in applying this framework to both theoretical investigations of protein evolution [103-105]
and applied investigations of structure-function relationship[75, 76, 106]. An example of a large cluster of

protein domains connected by structural homology is shown in Fig 2.
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C.2.2 Background: Correlated Divergence of Structure and Function

Using structural similarity based clustering of protein domains: Protein Domain Universe Graph—
(PDUG), and a hierarchical system of functional annotation: Gene Ontology (GO) as two evolutionary
lenses, we find that each structural cluster (domain fold) can be characterized by a unique distribution of
functions[75]. These functional distributions are like “functional fingerprints” specific to a cluster and vary
from cluster to cluster. Furthermore, as structural similarity threshold for domain clustering in PDUG is
relaxed we observe an influx of earlier-diverged domains into clusters. These domains join clusters without
destroying the functional fingerprint. The uniqueness of the functional fingerprint is not destroyed (does not
become random), but is complemented with similar functions. This preservation of unique functional
fingerprints through evolutionary dynamics further highlights the close relationship between structure and
function. These results can be understood in light of a divergent evolution scenario that posits correlated
divergence of structural and functional traits in protein domains from one or few progenitors.

Fig 3. 4 schematic picture of how

(1gb7a, )
— protein domains diffuse into structural clusters
Z= and define them at different thresholds. Nodes
represent protein domains, links represent
{ Inula;

structural similarity at above threshold. Thick
line represents domains connected at Z,,;, =
15, dotted lines represent domains connected
at Zy;y = 11 and thin lines represent domains

connected at Z,;,=9.
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Fig 4. Examples of some functional fingerprints of folds. X-axis is the functional annotation category. Y-axis is the

normalized number of proteins annotated with that function. (a-c) Functional annotation at the fifth level of GO ontology for

Znin = 9. Notably, each cluster has its own, distinct functional fingerprint that is observably different than those of other

clusters. (d-f) At the fifth level of annotation after proteins joined their ancestral clusters, for Z,,,= 2. The fingerprints are

more diverse, however still differ significantly from each other. (g-i) At the first level of annotation with Z,;, = 2, the

fingerprints overlap significantly, and hard to distinguish one from the other

C.2.3 Proposed Research: Co-Evolution of enzymes and metabolic networks
In our previous, published work[76, 108], we introduced a general framework for investigating

relationships between protein structure and function. In those studies we chose to define function through

evidence of biochemical activity annotated using the gene ontology (GO, [70]) system. In general, function

is a poorly defined concept that can be defined in various ways. For example, enzymatic function can be

defined by inclusion and role in specific metabolic pathways. KEGG (Kyoto Encyclopedia of Genes and

Genomes) is one such pathway annotation ontology[109]. We can use previously developed techniques

(See C.2.1 and C.2.2) and the graph-theoretic frameworks of PDUG and KEGG to probe for the existence

of a structure-pathway relationship. This project would be based on the hypothesis that divergence of

structure proceeded by a parallel incorporation into an ever-widening enzymatic pathway. Thornton and co-

workers found anectodal evidence of this phenomenon, but stopped short of investigating its

prevalence[110]. I would like to develop a more systematic understanding of the correlated evolution of

protein structure and enzymatic pathways.
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C.2.3.1 Proposed Research: Divergence of pathways using a graph theoretic approach
We start with two graphs defined by nodes representing protein domains. In one graph, the edges

are path-lengths on KEGG pathway maps between domains performing enzymatic reactions. This graph
(Metabolic Expanse Graph: MEG) is defined as G=[v,e] where v=(set of vertices representing non- -
redundant protein domains as defined by DALI[76, 101], e=(set of edges weighted by distance between two
domains on the KEGG map). In the other graph, we have the same definition for nodes, but weigh the
edges by the structural similarity between the domains, Z score (See C.2.1).

The objective is to find and quantify both the static and dynamic relationship between these graphs.
We can use cutoffs to define strongly connected components in both MEG and PDUG (See C.2.1[101] and
C.1.0). The cutoffs which we will call M, for the MEG graph and Z. for the PDUG are used to vary the
average similarity between nodes and represent functional divergence in MEG and structural divergence in
PDUG.

We go on to compare the strongly connected components between PDUG and MEG using the
Jaccard distance outlined in [76]. We aim to find the cutoff values that produce the best overlap between
the two clustered graphs. This is equivalent to asking: How far diverged in structure are protein domains
that take part in common metabolic pathways? Intuitively we would expect the relationship between
structure and pathway inclusion to hold for very small distances. For instance, we would expect domains
working on closely matching metabolites to have similar active sites and mechanisms, thus sharing

structural elements. However, if metabolites are significantly different in their chemical structure the

structural similarity should decrease.

C.2.3.2 Proposed research: Measuring functional distance using similarity measures between substrates
(with Prof. Minoru Kanehisa)

If we are successful in finding the correlating divergence levels using KEGG and PDUG, we plan to
expand this research using the newly developed, more refined distance metrics measuring chemical
distance between metabolites. Dr. Kanehisa and co-workers have developed a graph-theoretic framework

for comparing chemical moieties. [111-114] Using this distance metric, we could define the Metabolic
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Moiety Similarity Graph (MMSG). MMSG would have nodes representing domains and edges would be
weighed based on the distance between the carbohydrate chains e.g. substrates for the two domains. Using
the same framework as above (See C.2.3.1), we could probe for the correlated evolution of protein —
structures and carbohydrate substrates.

Results from this work would be very helpful in identifying the primary determinants of protein
domain structures responsible for substrate selection. Furthermore, by following both the expansion of the
structural repertoire and the metabolic substrate repertoire, we will be able to understand how and in what
order evolution “discovered” the multitude of folds and superfamilies needed to carry out the necessary
metabolic functions. A deeper understanding of the differences in domains that enable manipulation of
different chemical moieties could further our understanding of the residues needed for function versus
those needed for folding.

C.2.4 Proposed Research: Measuring distance in function space using kernel mapping on GO
(with Prof. Gilad Lerman from University of Minnesota)

Due to the complex nature of the structure-function relationship and the non-linear progression of
protein evolution [42, 65, 115], relationships between proteins are currently assessed qualitatively on the
basis of many shared characteristics such as sequence, structure and function. This annotation schema
yields a hierarchical organization where proteins sharing sequence are closest, followed by those sharing
function and then structure in descending degree of proximity[110, 116]. While quantitative comparison
measures exist for sequence and structure, distance between protein functions is yet to be developed.

In [69] we show that functional distances can, in principle, be quantified using the GO annotation
system. However, one problem is that approach yields a low level of coverage. We aim to generalize that
notion of function distance [69] to a more exact, kernel-based method. Having an accurate measure of
distance in function space is integral to creating hypothetically co-regulated sets of genes for our de-novo
TFBS mapping (See C.4.1), for identifying the relationship between evolution of functional elements and

function, (See C.1.1) for relating CRMs to functions (See C.4.2), for quantifying sequence-structure-

function relationships and for assessing accuracy of homology modeling methods.
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Since GO[70] is hierarchical, the top level of hierarchy is, by design, less precise than the bottom
level. This can be seen easily by considering that there are only twenty possible annotations at the top, and
more than two thousand on the fifth level of the Gene Ontology. The basic idea behind building an -~
appropriate kernel is that edges at the bottom of the ontology shared by few domains will be assigned small
local distances or equivalently high values of local similarities. Alternatively, edges appearing at a top of a
tree and have none or few siblings will be assigned large local distances or equivalently small values of
local similarities.

We propose various techniques for embedding of the Gene Ontology into Euclidean spaces. The
first two techniques share a similar idea. They assume a metric space M represented by the graph, where
only local distances are specified and an unknown embedding P from M to a finite dimensional space E.
The actual mapping P is not needed for recovering the Euclidean distances, but only the kernel K(x,y) =
<P(x),P(y)>. The Euclidean distance between point x and y in the embedded space is d*(x,y) =
K(x,x)+K(y,y)-2K(x,y). We can propose three embedding methods that differ in their choice of kernel. The
first method applies a variant of the Laplacian embedding (equivalently the diffusion embedding) as
described in [117-119]. The second method applies a variant of locally linear embedding[120]. The last
method estimates directly the shortest path distance. It can also be approximated by the isomap
kernel[121].

C.2.5 Proposed Research: An interesting example: Evolution of vancomycin resistance.
The resistance to vancomycin is due to a cluster of five genes. [122] Enterococci gain resistance to

vancomycin by the accumulation of the vanHAX genes. The vanH enzyme, encoded by the gene of the
same name, is involved in the creation of a new pathway of enzymes that produce D-lactate from pyruvate.
The enzyme vand adds a D-lactate moiety to the end of the peptide cross-bridge, rather than another D-
alanine. The peptide strand therefore ends with a D-Ala-D-Lac, rather than the usual D-Ala-D-Ala.
Finally, vanX hydrolyzes the D-Ala-D-Ala moiety so that the new peptide moiety is more common.
Although the change in the last peptide from Ala to Lac does not have any effect upon the quality of the

peptidoglycan layer or its ability to cross-link the glycan strands, it does lower the binding affinity of the
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vancomycin to its target by 1000-fold. Vancomycin, therefore, has a tougher time in binding to its
substrate and is rendered ineffective. [123]

Recently, there has been an emergence of resistance to vancomycin and other antibacterial drugs-in
enterococci bacteria. [122, 124] This poses a major health problem not only due to an increased threat from
the proliferation of disease, but also because of a possibility that enterococci will spread the resistance to
other bacteria. The main mechanism of vancomycin action is due to blocking of bacterial cell wall
formation. We would capitalize on the recent functional evolution of the D-ala-D-ala ligase as a model for
studying functional evolution in general. We would like to address the following questions. How many
structures in general are implicated in acid-D-amino ligation? What is the most likely metabolic pathway
where the original D-ala-D-ala ligase was involved? How did that protein evolve into a D-ala-D-lac ligase?
What are the most likely ancestor functions for the rest of the genes in the vancomycin resistance cluster?
Can we generalize our findings to predict future resistance from just knowing the pressure and can we
predict the most likely “new” metabolic network that will evolve?

Preliminary studies on structural neighbors of vanA (1iow) suggest that the “new” function of
adding a D-Lactate moiety is not too far diverged from the functions of its structural and sequence
neighbors. Almost half of the sequence neighbors are implicated in D-ala-D-ala ligation while, the other
half is implicated in ligating D-ala-D-lac moieties. Furthermore, there are five known non-redundant
domain structures that are topologically similar to the template of vanA. The functional fingerprints of
these templates (See C.2.2) are similar to vanA.

This system represents a unique model for study because the evolution of the resistance network is
very recent and the divergence from ancestor proteins is relatively small. In order to assess the evolutionary
path, we will use our understanding of the dynamics of divergence of structure and function (See C.2.1 and
[75, 76]) to find the closest homologous proteins for the ones involved in vancomycin resistance. We can

use value decomposition methods to assess which characteristics (evolutionary pressures) are most likely



responsible for the novel function of the VanA gene as well as the conglomeration of the five genes into a
pathway responsible for vancomycin resistance.

C.2.6 Conclusion and Outlook: —
Structure-function relationships are inherently contextual and must be understood in terms of

evolutionary pressures acting on the divergence of the domain or protein. PDUG is a powerful tool for
studying the correlated evolution of structure and function (See C.2.1). Furthermore, the simple graph
representation may be extended to a hypergraph [69] to include other pressures e.g. phylogenetic or
metabolic (See C.2.3). This approach has already yielded a number of insights into the relationship
between structure and function and the origins of functional fingerprints of folds (See C.2.2). This new
paradigm of looking at protein domain universe can be used in many ways, from increasing the sensitivity
and specificity of homology based annotation [76] to understanding the range of functions possible for a
given structure. (See C.2.2) Furthermore, it significantly simplifies formulation of problems and
investigations into evolutionary dynamics governing structural divergence e.g. pressures needed to evolve
the domain from one function to another (See C.2.5). Finally, our proposed quantification of distance in
function space will provide an invaluable tool applicable to many areas of computational biology research(
See C.2.4) We believe that our approach along with parallel research outlined in this proposal will, for the
first time provide a comprehensive and quantitative theory of structure-function relationship in proteins, in

evolutionary prospective.

31



C.3 High-performance Computational Approaches to Transcription Factor
Binding Site Discovery

The DNA sequence upstream from the gene consists of a transcription start site and two regulatgy
regions: a core promoter that is located within about 40 bp of the start site and an "upstream” regulatory
region, extending over as many as 1kbp farther upstream, that transduces core promoter binding events
into stable interactions that alter gene transcription[125-127]. Additional sites involved in enhancing and
silencing expression may extend up to 10kb upstream of the transcription start site, especially in genomes
of more complex eukaryotic species such as Drosophila and H.Sapiens[128-130].

Computational methods for recognizing binding sites, have performance limits that seriously impair
their potential. The obstacles to identifying functional sites with high fidelity are both biological and
algorithmic in nature. For example:

(i)  Multiple transcription factors often play a key role in the regulation of a single gene. Thus an
algorithm has to choose between many quantitatively “equally good” solutions.

(ii) A single factor may display significant variability in both the width and composition of the
binding sequence, while the makeup of the allowable variations is not well understood.

(1)  TFBS may be located quite far from the coding region they control, either upstream or
downstream or in the introns.

(iv)  Other highly conserved DNA sequences such as transcription start sites, transposable elements,
LINEs, SINEs, RNAIi and tandem repeat elements serve to obscure the identification of TFBS
due to their widespread presence and conservation.

When trying to identify binding positions in the upstream regions of functionally related genes, the
input is the set of hypothetically co-regulated genes[131]. The necessary data often comes from chromatin
immunoprecipitation (ChIP)[13-15]. Most recently, ChIP has been combined with microarray based
expression analysis (ChIP-Chip) to associate some 206 yeast TFs to the genes they modulate[13, 15].
However, Young and colleagues report statistically significant binding for just over 50% of the genes in the

genome. At the same time, they were able to identify binding specificity for only 65 of the 206 TFs[13].



The relatively poor coverage for both the identification of binding positions and mapping between TFs and
genes, underlines the need for a more sophisticated approach at computational identification of functional
sites in upstream regions. -~

We propose an algorithm that solves many of the issues outlined above. First, using functional
comparison methods (See C.2.4) and gene family identification (See C.1.0), we can use computational
approaches instead of CHIP-Chip to identify potentially co-regulated sets of genes thus improving
coverage. In the tests we have run, the GibTig algorithm performs significantly better than competing
approaches. In fact the level of false-positives is low enough that we hope to create a de-novo TFBS map
for the whole Yeast genome using this algorithm (See C.4.1).

C.3.1 Background: Description of the GibTig algorithm
Gibbs sampling and other algorithmic approaches to motif detection follow two strategies to

discover repeating sequence patterns in DNA: enumeration[132] and probabilistic sequence modeling.
Enumeration strategies rely on sequence counting to find over-represented w-mers/133]. Model-based
methods represent a set of w-mers as a position weight matrix(PWM). The PWM describes nucleotide base
multinomial probabilities for each position. The statistical significance of the PWM is evaluated with
respect to background frequencies of nucleotides in sequences outside the ones used to build the PWM. The
algorithm tries to maximize the difference between the PWM and the background model using Monte Carlo
or Gibbs sampling[131, 134, 135].

In order to improve on the false positive rate currently plaguing transcription factor identification
algorithms[136], we developed a different algorithm called GibTigs. The inspiration for the algorithm
comes from the hypothesis that binding between the TF and the binding site imposes spatial constraints
related to the polymerase assembly and looping. Thus, we impose an additional requirement of
conservation in position when searching for functional TFBS by Gibbs sampling. This enables
identification of “peaks” (GigHits) that correspond to functional TFBS (Fig 5). Briefly, we consolidate

sampling runs analogously to a shotgun sequencing approach. At every position, we calculate the
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distribution of frequencies where sampling converged on

that nucleotide position. We then build consensus matrices

from the conglomeration of runs (Fig 5). -

Fig 5. A cartoon illustration of 3 GibTigs and accompanying GibHits.

Each line represents an upstream region from a gene. The transcription

start site is represented with an arrow. The Y-axis over the upsteram
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We conglomerate all the GibHits into a single PWM
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C.3.2 Background: Predictions in Yeast: Comparison of GibTigs with existing algorithms.
In this section, we outline a comparison between our current implementation of GibTigs and the

state-of-the-art TFBS identification algorithms using a set of upstream regions shown to bind STE12 from
CHIP-Chip data[15]. We quantify false positive results by comparing to a random set of upstream regions
from the yeast genome. We report the results of GibTigs as compared to the most commonly used
algorithm: BioPropsector by Lawrence, Liu et. al. [12, 131]. While we report our results with respect to
BioProspector, we found that in accordance to previously published comparisons[12, 136, 137]
BioProspector performs superior to most other TFBS identification algorithms (data not shown).

To evaluate the performance of both algorithms with minimal bias, we require a scoring scheme
capable of quantifying the “right answer.” We use an algorithm originally developed by Pietrokovski[ 138]
in the context of aligning amino acid motifs, and later adapted to nucleotide PWMs by Hughes et al.[20].
We use the PWMs generated from GibHits and BioProspector runs and compare those to the
experimentally defined STE12 and TEC! binding profiles. Our scoring scheme will identify the percentage
of computationally defined motifs comparable to the experimentally defined STE12 PWM[139, 140].

Using the 49 intergenic regions shown to bind to STE12 by Chip-Chip we increase the percentage
of reported sites matching the STE12 PWM from 68% using Bioprospector to 94% using the GibTig
algorithm. Furthermore, we decrease the probability of getting a spurious PWM that matches STE12 from
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Porcont of positive matchos toSTEtZ PWM

14

Porcont of positive matchos toSTE12 PWM

o

random upstream sequences from 12% to 2%. We also compared our results to the TEC1 PWM TEC].

TECI is a protein known to be involved in regulation of some of the same genes. Using intergenic regions

as the input set, the number of reported GibHits with similarity to the TEC1 PWM falls from 7% (reported

by Bioprospector) to 0% and the number expected at random using a sampling of intergenic regions as

input is also 0%. Thus, using Gibtigs we can significantly increase the number of true positives and

decrease the number of false positives in this input set. (Fig 6 A,B)

However, we glean the results most illuminating of the improvements from the GibTig method

when we disregard the transcription start sites of the upstream ORF. In this experiment, we implicitly

assume that binding sites can occur in the upstream open reading frame. From this input set, the number of

TECI1 matching GibTigs rises from 0% (found using the intergenic set) to 56% with 0% expected from

random intergenic sequences. The reason for this becomes clear as an afterthought when we observe that
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Fig6 A Comparison between
BioPropsector[131, 137] results and GibTig
generated GibHits matching the STE12
PWM. Black lines are the percentage of
BioProspector runs that returned matrices
that match the STE12 PWM. The other lines
are percentage of GibTigs matching STE12.
Solid lines are runs done on the input set

containing the 49 upstream promoters known

to bind STE 12 from ChIP-chip data, dashed lines are the results using 49 upstream regions drawn randomly from the yeast

genome. X axes count over the addition random sequences B. The same as A above except both the BioProspector and GibTig

results were compared to the Tec] PWM. C,D The same as A except the analysis was performed using equal sized upstream

regions of 1kb. The percentage of Tecl matching GibHits rises 5 fold to 56%. The number of GibHits that generated from the

random set of upstream regions decreases to 0% with respect to matching to either STE12 or TEC] PWM.
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In summary, our GibTig algorithm reduces the chance for a false positive hit by decreasing positive
matches to the PWM from random upstream sequences. At the same time, we report significantly improved
percentages of true-positive hits. Perhaps, most important, is our ability to handle longer upstream regiess.
In this case, this ability yields a new biological hypothesis e.g. that TEC1 binds 40% of the time in the
ORFs of the upstream genes. This hypothesis was later, independently verified by R. Young (Personal
communication and [141]

C.3.3 Proposed Research: Future Development of GibTigs
Unlike solutions proposed previously[136], the GibTig algorithm (See C.3.1) with improvements

proposed in this section is explicitly targeted at whole genome transcription factor binding site (TFBS)
identification and elucidation of complex regulatory networks(See C.3.4-5)[12, 15, 142-144]. Our
philosophy is, whenever necessary, sacrifice computational speed for a dramatic increase in sensitivity and
specificity. We recognize that biological experiments are en-masse more time-consuming and, computer
speeds continue to increase extremely rapidly—what’s computationally demanding today becomes routine
tomorrow. Thus, we assume a multi-pronged approach meant to maximize applicability and ease of
verification by wet-bench biology. We have shown in C.3.2 that our GibTig approach works better than
existing methods at identifying known TFBS in yeast. In later sections, we also show experimental
validation of novel binding sites in human GABA receptors(See C.3.4-5).

While already a useable tool, the GibTig algorithm represents an ongoing research project. In this
section, we present some ideas for improving the algorithm. First, the current implementation is very CPU
intensive, we need to improve convergence speed and create a fully functional implementation for use in
specialized and highly distributed environments. Secondly, we are interested in developing a more robust
statistical framework. This framework will enable us to compare various parameter scenarios to each other
with greater accuracy. (See C.3.3.1) Thirdly, the current algorithm is clumsy with respect to handling sets
of orthologous upstream sequences. However, it is clear that phylogenetic footprinting is a growing asset in
the field and should be incorporated. Finally, the model does not currently support a-priori known physical

information on the various types of binding models. Recent research has shown that incorporation of
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physical models of protein:dna binding aids significantly in TFBS detection.[145, 146] Thus, we propose
some additions and future research aimed at capitalizing on the strengths of the GibTig algorithm while
trying to significantly improve performance. Due to space constraints, I only outline a subset of proposed
improvements in sections C.3.3.1-3.

C.3.3.1 Proposed Research: Improving the statistical framework

The most widely known and utilized statistical model in computational biology (theKarlin-Altschul
statistic) has transformed sequence alignment by creating a ubiquitous measure of significance used to
compare different alignments[147] and even different algorithms[148-150]. Our aim is to create an
analogous unified statistic for TFBS identification. Current algorithms use either a heuristically derived
statistic based on a reshuffling the null model[12, 131, 137] or a simple maximum a posteriori (MAP)
score.[136] An analytical, uniform scoring scheme would increase accuracy and provide an ability to
compare predictions of TFBS from different input sets and for different parameter values e.g. different
widths. (See B.1.1)

We will verify the performance of our statistical formulation using simulations with random
sequences and real intergenic sequences enriched with a motif. We can compare distributions of the
developed scoring functions from sequences enriched with a known TFBS to those from random sets of
genes akin to the approach taken in C.3.2. Finally, we can use a uniform statistic to quantify improvement
to the robustness of the algorithm with addition of random sequence. We hope that this methodology will
set a uniform standard of significance that will enable quantitative comparison of TFBS predictions with
different numbers of upstream regions, various lengths and widths.

C.3.3.2 Proposed Research: Separating Functional from Conserved Sites Using KL Divergence

One of the challenges in creating a robust TFBS identification algorithm is separating functional
from simply conserved sequences. Conserved w-mers can occur for a variety of reasons such as the
presence of repeat elements: SINEs and LINEs[80, 151, 152] or euchromatin binding regions[15, 153] or

simply due to a random fluctuations in the presence of a random motif (data not shown or see B.1.1).
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We empirically observed that functional TFBS conserve position in the upstream region. (See
C.3.1-2) Furthermore, there are underlying biological reasons for why the distributions of TFBS and other
conserved DNA elements across upstream regions would differ. Fig 7 Since TFs operate by transducing-the
polymerase assembly, proper functionality is sensitive to concentration effects[12, 154-157]. To ensure
expression of the downstream gene at the proper rate yielding correct mRNA levels, the sum of the
TF:DNA binding affinities has to be conserved[12, 154-157]. Some researchers theorize that there is an
inherent tradeoff between the variability in the PWM and the compensating increase in their number[12,
154-157]. Current measures of statistical over-representation are not necessarily sensitive enough to
distinguish between classes of conserved w-mers.

Fig 7 An illustration of conservation of position for functional TFBS versus other repeat elements
such as “sines”. Functional TFBS are under
stoichiometric constraints where binding of TF to
genes results in different transcription levels. Non-
functional elements can mutate with no
evolutionary constraint allowing for many
combinations of positions yielding similar

+ 4+ + estimation of statistical over-representation

Every nucleotide position in each GibHit maps
a set of related positions in the input regions p, —{p";i=1...L;;n=1..N} specified by repeated local

convergences of the Gibbs sampler (See C.3.1) and used to construct the PWM from that collection of

GibHits. We can calculate the Kullback-Leibler divergence on this set defined by
D= Z f"Log [—g’—;} where /" is the frequency of p in the GibHit, and 5 is the background distribution

generated from random sequences with the same average length. Thus, GibHits that have a unique mapping

of positions different from the background distribution of other conserved w-mers will have high D scores.



While GibHits that show no preference in position across any of the upstream regions will show low D
scores. If the D scores prove useful, we will incorporate those into the uniform statistic proposed in C.3.3.1.
C.3.3.3 Conclusions

The improvements to the GibTig algorithm outlined in the sections above represent a small subset
of a number of ideas that have potential not only to advance the field of TFBS identification, but also
significantly improve our ability to elucidate mechanisms of transcriptional regulation. There are a number
of other ideas which had to be excluded due to space constraints including building multithreading support,
faster convergence through conservation of momentum and a more sophisticated inclusion of orthologous
upstream regions through markov-modelling of di- tri- and quad nucleotides in collaboration with S.
Sunyaev[94]. One of the strengths inherent in this methodology is the development and implementation of
a systematic null-model framework (see C.3.3.1) for quantifiable assessment of improvements introduced
by each proposed modification. Through close collaborations with high-performance computational
facilities and with experimental scientists, we are in a unique position to further develop and improve on an
already strong computational framework for identifying functional sites in upstream promoter regions.

C.3.4 Preliminary Evidence: Application of GibTigs to TFBS identification in GABA receptors
GABA is the major neurotransmitter in the central nervous system (CNS) and its regulated release is

controlled by the activity of distinct cells, referred to as GABAergic neurons[158]. The axonal processes of
these neurons are situated close (opposite the synaptic cleft that separates them) to the dendritic processes
or cell bodies of neighboring neurons that contain GABA receptors (GABA,, the integral chloride ion
channels[159]; GABAg, the seven-transmembrane spanning heteromeric receptors that are G-protein
coupled to various effectors such as GIRK K™ channels)[160]. Over 19 different genes (GABRS) code for
the pentameric GABA 4 receptor and there are pharmacologically distinct forms of receptors that change
their expression levels either during development or disease.

First, we used the GibTig algorithm to identify conserved motifs in the intergenic regions. We classified
significantly scoring GibHits as TFBS. In total, we predicted 15 TFBS distributed across 7 intergenic

sequences. Out of 15 predicted TEBS, 50% were previously characterized motifs, as determined by
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matching the sequences to PWMs of known human transcription factors from TRANSFAC[140]. The other
50% represented TFBS hypothesized to bind to uncharacterized TF. We used EMSA to test predicted
sequences for binding by proteins present in neuronal nuclear extracts. To date, we attempted validation-for
6 of the 15 predicted TFBS, including both previously characterized and putatively novel predictions.

C.3.5 Preliminary Evidence: Experimental Validation of GABA Predictions (collaboration with
Prof. Shelley Russek)

As a first step to determine the applicability of GibTig analysis to identify novel TFBS in GABRs, we
tested the ability of several radiolabeled oligonucleotides containing GibTig sequences to specifically bind
nuclear extracts of neocortical neurons or fibroblasts. As shown in (Figs 8,9) below, using electromobility
shift assays (EMSA), to our surprise 6/6 GibTigs predicted oligos examined displayed specific binding as
measured by cold competition. In addition to specific binding, using fibroblast extracts for comparison, a

GibTig in GABRA4 (Figure 9A) displays neural specific binding, of especial interest given that expression

of GABREs is restricted to the nervous system. oo PR G

Fig 8. Three putative transcription factor binding sites form DNA-protein
complexes in neocortical nuclear extracts. Neocortical nuclear extracts from
E18 rat embryos were incubated with three P radiolabeled probes from
human GABRBI, GABRD and GABRB3. Cold wildtvpe oligonucleotides were
used to define specificity through competition. Cold oligonucleotides were
added at 100-fold excess over probe. The conditions for each lane are as
indicated. Specific binding complexes are shown with a (*). The probe
sequences are as follows: A) GABRBI: AATACGGTCCCTACT, B) GABRD:
ACTTAATTTGATTCCAT and C) GABRB3: CGTGCCGGGGCGCGGCGGA.

Competiter - = + . = S e N
Estract

\ Fig 9. Another three putative transcription factor binding sites form
DNA-protein complexes in neocortical and fibroblast nuclear extracts.
Neocortical (CTX) and fibroblast (FIB) nuclear extracts from E18 rat
embryos were incubated with three °P radiolabeled probes from
human GABRA4 and GABRD. Cold wildtype oligonucleotides were
used to define specificity through competition. Cold oligonucleotides
were added at 100-fold excess over probe. The conditions for each
lane are as indicated. Specific binding complexes are shown with a
(*). The probe sequences are as follows: A)

— | GABRA4:AGCGCGGGCGAGTGTGAGCGCGAGTGTGCGCACGCC
GCGGG, B) GABRA4: GTGCACACACACGCCCACCGCGGCTCGGG, and C) GABRD: TGACCGTAGTAGA.

Because EMSA binding activity is measured in vitro, positive results in these assays do not always
correlate with function in living neurons. As a first step to determine whether GibTigs are functional in
living neurons, we exposed cortical cultures to decoys containing either the GibTig analyzed in Figure 10

or an unrelated regulatory sequence that contains the binding site for the cAMP regulatory element binding
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protein (CREB). As can be seen in Figure 10, application of the GibTig determined oligonucleotide

inhibited GABRA4 mRNA levels while the CRE control oligo exhibited no effect.

oas Fig 10. Decoy analysis of a GibTig in GABRA4. Primary cultures of rat neocortieal
neurons were treated with DOTAP (N-[1-(2,3-dioleoyloxy)propyl]-N, N,N-
trimethylammonium methylsulfate) alone (Mock) or with DOTAP and phosphothioate
oligonucleotides from either a cAMP response element (CRE Decoy) or a GibTig
sequence from the GABRA4 promoter (GABRA4 Decoy).
(GTGCACACACACGCCCACCGCGGCTCGGG). mRNA was harvested after 24 hr,
and real-time PCR was performed with GABRA4 specific primers. Data was
normalized to rRNA levels, and expressed as mRNA levels relative (GABRA4/TRNA).
Results are shown as mean = SD.

MRNA levels (GABRAG/TRNA)Y

=3

Motk CRE Decoy GABRAS Decoy

Taken together, these results suggest that even though the analysis was done on a small set of
predictions, GibTigs can be successfully applied to solving the problem of de-novo TFBS identification in
human upstream promoter regions. As we outline previously, the increased size of the human upstream
regions makes detection of TFBS difficult. Until now, this has been a very difficult problem, with no
known solution. Clearly, more work, has to be done in order to characterize the complex regulatory
machinery of GABA 4 receptors. However, these are very promising results suggestive of a capable and
robust framework with which to guide experimental research into the complex regulatory mechanisms of

GABR genes and other regulatory mechanisms in H. Sapiens.

C.3.6 Proposed Research: Extending Discovery of TFBS and Regulation Mechanisms to Other
Systems in the H. Sapiens

Since initial results from the GibTig analysis applied to the upstream regions of GABRs were very
encouraging (See C.3.5) we plan to expand this research to identifying regulation of sub-complexes, target
identification and tissue-specific regulation in GABA and other systems in the Human genome. The aim is
to improve sensitivity of the analysis and discover novel eukaryotic regulation models. For example, since
the GABA-A receptor exhibits tissue specific expression of sub-complexes of the heteromeric receptor, we
can use this system to develop a strategy for computational discovery of tissue-specific regulation

mechanisms. Next, we can test the system further by applying the same pipeline of tools to discover control

mechanisms in genes related to aging. (See C.3.7) [161, 162].

C.3.6.1 Proposed Research: GABA receptor pathways (with Shelley Russek)
First, we will test co-regulation of an exhaustive set of hypothetical sub-complexes. We plan to

supplement existing data with phylogenetic footprint information from orthologous genes in the chimp,
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baboon, mouse and rat genomes, if available. We have shown that putative TFBS for GABR genes are
conserved in other species. (See C.3.5) For each set of input genes, we will define TFBS using our GibTig
approach as described in detail in C.3.1-2. This analysis will result in a set of binding sites upstream of —
every gene included in the variant of the GABA receptor. Each TFBS can be mapped back to the variant
subsample that generated it. This procedure will identify mapping between the sub-complexes of GABA
genes and sets of TFBS that co-regulate coordinated expression of these sub-complexes. The predictions
can then be tested for both in-vitro and in-vivo activity as described in C.3.5
C.3.6.2 Proposed Research: Estimating the false-positive rate of TFBS predictions

To increase specificity and separate functional TFBS from other conserved elements (See C.3.3.2)
we plan to perform a set of control runs. Subsets of upstream regions from the human genome will be
chosen at random with size distributions matching those of the subsets discussed above. We will then
estimate the false-positive PWM identification from this random sampling of upstream regions. We can
compare each PWM originating from a subset of upstream regions of GABA genes to the expected
occurrence at background level from our random set of upstream regions. (See C.3.2-3). This procedure
will quantify the false-positive and true-positive rates of TFBS identification in the GABA genes.
Furthermore, PWM in common with random sets of upstream regions probably constitute repetitive
elements not specific for GABRSs or those that lack transcriptional functionality altogether. (See C.3.3.2)
C.3.6.3 Proposed Research: Predicting tissue-specific binding

To identify tissue specific regulation, we will perform the search using our GibTig strategy on sets
of upstream sequences from paralogous GABA genes. PWM that are common between GABA genes and
paralogs or those sharing a common phylogenetic profile[163] could potentially be TFBS that are not
specific to GABRs but regulate a large range of functions common to the “family” of ligand-gated ion
channel genes to which GABRs belong. We are particularly interested in identifying TFBS that are unique
to upstream regions of GABRs alone. Thus, by subtracting the set of positions identified in common with

paralogs and other members from the same gene family (See C.1.0), we hope to identify the TFBS that are
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functional only in the neo-cortical tissue. (See C.3.5) Unique TFBS not found in upstream regions of other
genes in the genome can be tested experimentally using cold-competition gel-shift assays and decoy
analysis in non neo-cortical tissues such as the fibroblast (See C.3.5). -
C.3.6.4 Proposed Research: Creating hypothetical mutation hypotheses

Finally, we plan to use the PWMs built from GibHits to create mutation hypotheses which will be
used to create decoy oligos (See C.3.5) for functional analysis. The identification of mutations predicted to
decrease the affinity of binding between the TF and the oligonucleotide will be estimated based on the
probabilities in the computationally-derived binding affinity matrix. (See C.3.1) Any change in the original
w-mer not matching the TFBS model identified by GibTIgs can be considered as a potential disruptive
mutation. We can then test the effectiveness of the predictions using decoy analysis outlined in C.3.5.

C.3.7 Proposed Research: Age related TFs (based on work by Stuart Kim)
Recent microarray experiments done in the lab of Stuart Kim [161, 162] have identified a set of

genes that change expression patterns in correlation with aging in human kidney and brain. While the
results were very interesting, no clear regulation mechanisms were proposed to explain the change in
transcriptional activity. We plan to take the set of genes identified in those studies and subject them to the
same pipeline of tools as described in C.3.6.

First, we will attempt to pick subsamples of the genes that show common TFBS in the upstream
regions identified by the GibTig algorithm. Next, we will compare the binding sites predicted to those
which would be expected if the sets of genes were picked randomly from the human genome. We will keep
only those predictions which would not be expected by chance from a random sample of equal length
upstream regions. The predicted w-mers would then be candidates for further testing and experimental

validation for binding and activity.



C.4 Defining System Level Organization of Regulatory Mechanisms
The combinatorial potential of subsets of TFs (Cis-Regulatory Modules, CRMs) controlling

correlated expression of subsets of genes is immense (See B.1.2). Clearly, performing experimental assays
aimed at validation of all combinations is impossible. However, recent experiments in S. Cerevisiae have
revealed the “parts-list” of this network by detailing the mapping between genes and the TF likely to bind
in the upstream region: location data. The results from these experiments have already expedited biological
insights through integrative treatment of location data with existing high-throughput expression and
annotation data.[15, 164, 165] However, a comprehensive picture defining CRMs and elucidating the
mechanisms of their collaborative control and regulation of sets of genes is still largely lacking.

Furthermore, there is a direct relationship between understanding regulation by CRMs and building
evolutionary models. Evolutionary pressure can be defined in terms of the consequence of mutation on the
organism. Understanding the complex interdependency of interactions between transcription factors and
genes is necessary for quantifying the strength of selection on mutations in upstream regions. (See B.1.2)
Thus, mapping the full regulatory network and understanding how sub-networks are selected by
environmental conditions[23, 126, 166, 167] is central not only to understanding the life-cycle of the
cell[17, 168-171] but also in modeling the effect of mutations in binding sites on the phenotype of the cell.

C.4.0 Background: Using neural nets to identify regulatory modules

The cellular control network describes subsets of transcription factors (TFs) acting together to
facilitate correlated binding, transduction and co-expression of subsets of genes[125-127]. We would like
to generalize the knowledge of the relationship between transcription factors and genes, into a higher-order
model describing the organization of the genome into pathways. We used a neural network based on
Adaptive Resonance Theory (ART) [31, 32] to classify genes into groups based on publicly available
location data (from CHIP-Chip[13]). Briefly, the 3-layer neural net works by assigning and separating sets
of feature vectors in multi-dimensional space. The algorithm proceeds by iteratively placing each vector

Vg into a long-term memory trace (LTM). The neural net can be influenced by modifying the sensitivity
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parameter p =[0,1]. At one extreme, when p =1, all LTMs are different e.g. genes will be clustered with
other genes that share exactly their unique feature vector, when p =0, all genes belong to one LTM.

We used the ART neural network to identify sets of TFs involved in co-regulation of sets of genes.
Since we can expect the co-regulated sets of genes to form pathways, we compare each subset of genes
defined by ART to current annotation of genes into pathways by KEGG [109, 172]. To assess the level of
similarity between sets of genes controlled by CRMs and those implicated in the same pathway by KEGG,
we use a modified multi-set Jaccard.[173] Partitioning of genes into identical subsets by KEGG and the
neural net will yield Jaccard =1. If the partitions do not overlap Jaccard = 0. To assess the statistical
significance of the overlaps, we convert Jaccard coefficients into normalized Z-scores using a permutation
test e.g. we create clusters in the null-model by randomly placing genes into sets with the same distribution
of sizes as KEGG pathways.
C.4.0.1 Background: Comparing ART?2 predicted CRMs to KEGG pathways

We report two results. First, classification of genes into modules by ART2 closely resembles the
partitioning of genes into KEGG, pathways (Fig 11). While the maximum raw Jaccard value is .375, the
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Fig 11 . Jaccard overlap values between

with respect to a permutation null-model with the Y axis on the right. Squares are real Jaccard values with the Y axis on the left.

Simulated random binding data shows no significant overlap with KEGG annotation (data not shown)
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C.4.0.2 Background: Coherence of expression in ART defined CRMs
Since genes in the same pathway are expected to share coherent expression patterns, we go on to

evaluate the homogeneity of expression inside ART-defined modules. We compare ART defined modules
based on location data alone to modules identified through clustering of expression data. We find that g;nes
inside CRM-controlled modules are very likely to be co-expressed[174, 175]. Furthermore, we find (Fig
12) that gene sets controlled by CRMs consisting of a larger number of TFs (e.g. learned by the neural net

at lower sensitivity threshold p ) are more similar to expression modules at higher expression cutoff.

Intuitively, this suggests that expression level is a function of the number of TFs in the CRM. The cellular
control network achieves higher
average expression of genes inside
the module by combining smaller
sets of TFs for additive effect on
gene expression. These results also
indicate that we may use this

technique to investigate the

Log-Expression Change in Module

hierarchy of control using ART

deveined CRMs.

0.756 0.80 0.85 0.90 0.95 1.00
rho Fig 12. The normalized

correlation landscape between CRM modules and expression modules. The X axis is the p sensitivity parameter used by the
neural net. Larger values of p describe more restrictive CRMs consisting of fewer TFs regulating smaller sets of genes. The Y

axis is the average over-expression Ec inside modules derived from expression data[174, 1753]. The color code is the standard

deviations away from random estimated by a permutation test. The line illustrates inverse dependency of over-expression and p .
An insight readily gleaned from this study, is that we can identify pathways and sets of transcription

factors used to regulate those pathways (CRMs) from mapping between transcription factors and genes

alone. Thus, we use these results to argue that our ability to determine a global map between TF and the

genes they control (See C.4.1) will also yield significant insights into the function of other genes in the

46



genome. By employing methods described here, we can use the relationships from whole genome TFBS
1dentification to identify and elucidate the genetic parts-lists of major metabolic and signaling pathways
(See C.4.2). As more location experiments are performed, or de-novo computational methods to predict—~
TFBS mature (See C.4.1), we can expect the same approach to yield more coverage and higher specificity
(See C.3).

C.4.1 Proposed Research: Whole-Genome identification of TFBS using GibTigs in yeast (with
the BlueGene Team from IBM)

Here, we outline an approach for the creation of a global “map” of TFBS upstream of all genes in
the S. Cerevisiae genome[176]. The first challenge in computationally determining TFBS upstream of
~6000 open reading frames (ORFs) is identifying the hypothetical sets of co-regulated genes used as input
into any TFBS identification algorithm (See C.3.1). Naive, exhaustive sampling of upstream regions to find
enriched sets that share common TFBS would not be productive. For example, the number of possible sets
of 5 genes including all subsets is on the order of 2*’. However, in C.3.2 we showed that CHIP-Chip data
provides reasonable hypotheses for choosing sets of co-regulated genes to use in computational TFBS
identification. We will combine our initial success at identifying potential co-regulated genes from CHIP-

Chip with computational methods e.g. clustering based on functional distance (See C.2.4) or gene family

identification (See C.1.0). These seeds would then be used to grow the whole-genome TFBS map.

C.4.1.1 Proposed Research: Using computational methods and high-throughput experimental data to
create sets of hypothetically co-regulated genes.

We start by iteratively building the sets of upstream regions from putatively co-regulated genes
using CHIP-Chip data[13, 15]. We will first create non-redundant sets where genes show binding to only
one transcription factor and then identify sets that share binding by more than one TF. First, we plan to take
all upstream regions for single-TF-bound gene sets (yielding 206 sets of upstream regions) and use these as
input into the GibTig (See C.3.1-3) algorithm to find TFBSs. We predict that this kind of filtering to
exclusion upstream sequences without extraneous motifs coupled with the increased sensitivity of the
GibTig algorithm will increase the identification of binding specificities to well above the 31% of TFs

currently reported by Young et al.[13] (see C.3) For example, when a similar filtering procedure was done
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to include only upstream regions that bind STE12, the recall (true positive matches to experimentally
defined STE12 PWM) increased from ~60% (See C.3.2) to 100%. (data not shown). Due to the high
computational complexity of the problem, we plan sequential deployment on BlueGene. Applying more~
computational power afforded by the IBM supercomputer can decrease the number of false-positives and
further refine the sensitivity of the predictions.

We plan to complement the high-throughput experimental techniques such as CHIP-Chip and
microarray experiments with computational approaches such as clustering based on the functional distance
measure developed m C.2.4 and paralogous gene families (See C.1.0). In both cases, we plan to leverage
the already developed graph-theoretic clustering techniques to find the most homogeneous set of upstream
regions(See C.2.1 and C.1.0). Briefly, we start by defining genes as nodes and edges weighed by the
computational distance metric (e.g. functional distance outlined in C.2.4). Then, using a clustering cutoff,
we will find all strongly connected components in the graph. The cutoff value will be defined by the phase
transition in the largest component [101]. These computational approaches are expected to yield TFBS for
well beyond the 50% of upstream regions currently achieved with high-throughput CHIP-Chip[13].
C.4.1.2 Proposed Research: Including longer upstream regions

In preliminary studies (See C.3.2), we find that TFBS occur not only in intergenic regions but also
inside ORFs upstream of the regulated gene. Furthermore, we can show that the ability to identify the
TFBS signal depends on the abundance and conservation of the conserved w-mer (data not shown). For
example, the strength of the signal for the TEC1 PWM grows three-fold when parts of the upstream ORF's
are included in the mput set into the GibTig algorithm (C.3.2). To increase the probability of finding TFBS
for as yet uncharacterized TFs and maximize the number of TFBS found for known TFs, we plan to include
upstream regions from .5kb to 2kb in increments of .5kb disregarding the start sites of the next ORF region.
This approach will ensure inclusion of TFBS that exist farther upstream or in ORFs such as those observed
for TEC1. These studies require ability to handle longer upstream regions and robustness to noise

demonstrated by our GibTig TFBS identification algorithm (See C.3.1-3).
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C.4.1.3 Proposed Research: Immediate implications for the data from whole-genome TFBS map in yeast
Using the global TFBS map in yeast, we can also start asking questions about distributions of TFs

that bind in ORFs. For example, we plan to undertake a study detailing the scatter in position of binding for
every TF[139]. Using the data from this analysis in combination with microarray studies[1, 2, 175, 177j
178], we also plan to compare regulation mechanisms for TFs that bind in ORFs versus ones that bind in
intergenic regions. However, the most important aspect of this research is that the resulting data will reveal
a much more comprehensive map of TFBS in the S. Cerevisiae genome that can be used in conjunction
with the planned database (See C.5.2) to identify targets for wet-lab experiments, create models of
regulation and elucidate cis-regulatory modules.(See C.5.3) We expect that this data will prove invaluable

to the scientific community.

C.4.2 Synthesis: Reconstruction of major pathways using the computationally derived TFBS Map
One obvious application of the whole-genome TFBS map derived in C.4.1 is prediction of

genes involved in common pathways. We show in C.4.0 that using the partial map of TFBS from CHIP-
Chip data, we were able to reconstruct KEGG pathways with significant precision. The accuracy of the
pathway prediction can be used for improving the Gibtig algorithm (See C.3.1-3). We plan to make the
pathway data available through our CRMer database (See C.5.3) and through our collaboration with Prof.
Minoru Kanehisa by supplementation of KEGG (See C.4.2.2).
C.4.2.1 Proposed Research: Using the ART neural net to predict pathways from whole-genome TFBS data

We start by defining TFBS profiles for each gene using data from C.4.1. The profile would describe
the set of predicted TFBS upstream of every ORF in the yeast genome. We can then turn these profiles into
vectors where the dimensions represent TFs (See C.4.0). Every ORF in the genome would have an
associated vector describing TFs that bind in the upstream region. Analogously to the p-value vector built
from CHIP-Chip (See C.4.0), we would use the statistical significance of the TFBS prediction (developed
in C.3.3.1) as the numerical approximation for the strength of binding.

Vectors from all genes would then be classified using the ART neural net. [31, 32] As shown in

C.4.0, the neural net divides vectors into sets using the long-term memory trace (LTM). The LTM
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describes the relative importance of each TF in controlling the CRM. Since data from C.4.1 is expected to
have more coverage and better accuracy than the one obtained from CHIP-Chip data, we hope that this
CRM prediction procedure will benefit from the increased quantity and quality of data. The predicted sets
of genes would be compared to existing databases of pathways to assess the overlap in annotation.

C.4.2.2 Proposed Research: Comparing to and extending existing pathway maps (with Minoru Kanehisa)

Results from the whole genome TFBS identification using computational seeds (See C.4.3.1) would
be compared with results from C.4.0. We can assess the improvement in coverage from building sets using
computational methods over high-throughput experimental techniques such as CHIP-Chip and microarrays
for building sets. However, since computational discovery of TFBS in Yeast is expected to yield a larger
number of predictions, we will need a more careful curation of predicted results. Dr Kanehisa’s group has
been spearheading the manual annotation of genes into pathways and depositing the results into KEGG
(Kyoto Encycplopedia of Genes and Genomes[109]). We plan to collaborate with Minoru Kanehisa’s
group in Kyoto University to assess the prospective value of our predicitons.

As a first pass, we can perform an automatic comparison of pathways predicted using ART and
those annotated in KEGG using the Jaccard coefficient (See C.4.0-1). Since the neural net predicts only
sets of genes, but does not describe the internal inter-relationship between members in those sets, we will
need to refine the annotation further using orthology or manual assignment. This would likely be
undertaken by professional curators at Kyoto. Results from this study would be deposited both in the
KEGG database as well as into our own CRMer database (See C.5.3). As we extend the GibTig
methodology to other, more complex eukaryotic organisms (See C.3.6), the same predictive procedure
could be used to determine pathways in Human, Fly, Worm and other eukaryotic genomes. Furthermore,
we can combine this technique with existing homology based methods (COG and KOG) to redefine protein

function (See C.4.3) and begin studying evolution of pathways and control mechanisms on a genome-wide

scale. (See C.1.1, B.1)
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C.4.3 Proposed Research: Redefining Gene Function using TFBS profiles
Gene function is a poorly defined concept (See B.3 and [75, 76]). On one hand, gene products are

often proteins that have several potential enzymatic or biochemical functions (See C.2.2). On the other, the
same gene is subject to transcriptional control which places function in context (See B.1.2 and C.2.3) e.;.
along with other proteins in the same pathway. Furthermore, expression controls not only concentrations of
partner proteins but also substrates needed for catalysis[179, 180]. At the same time, the protein is confined
to a specific cellular component which further complicates a generalizeable definition of function.
Currently, ontologies attempt to emphasize this point by dividing function into three parts: Biochemical,
Pathway and Cellular Localization based on experimental data[70]. However, this annotation is often effuse
especially for the “pathway” and “cellular localization” annotations.

Using data from our whole-genome TFBS map in S. Cerevisiae (See C.4.1), we will be in a position
to redefine gene function using TFBS profiles. The transcriptional control of a gene represents a
conglomeration of all aspects of its function: biochemical, pathway and cellular localization. We show in
C.4.0 that using a partial map based on CHIP-Chip derived TFBS-gene mapping, genes can be divided into
common pathways. We would like to extend this concept further by completely redefining gene function
with respect to elements controlling that gene’s transcription. The function of a gene would be redefined as

a unique fingerprint of TFBSs, strengths of binding and positions in the upstream region describing not

only control of the specific gene, but also implicating the gene in a pathway. (See C.4.2)

C.4.3.1 Proposed Research: Structure-Function relationship using TFBS profiles
Using the above redefinition of function in terms of TFBS profiles, we would like to re-explore the

relationship between structure and function. We show in preliminary evidence (See C.2.1-2 and [42]) that
structural similarity has a parallel in function space. Analogously, we could imagine that divergent
evolution on a smaller evolutionary time-scale due to duplication and divergence (See C.1.0) could result in
a similar correspondence between structural similarity and transcriptional control.

We will use the PDUG formalism (See C.2.1) and the recently published data from Skolnick et. al.

(Personal communication and [181, 182]) to describe the similarity in structure between all threaded ORFs
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in the Yeast genome. In parallel, we can use the ART neural net (See C.4.0) to describe distances between
TFBS profiles. Using this distance measure we will build the BPG (Binding Profile Graph). In both graphs
(PDUG and BPG) the open reading frames would represent nodes and edges would be weighted by ~— —~
structural similarity Z score[107] or distance between TFBS profiles (See C.4.0) . We will then proceed to
calculate the strongly connected components of both graphs at varying cutoffs analogously to [108].

The purpose of this study would be to determine the mapping between the structural classes such as
Family, Fold and Superfamily[76] and the binding profiles. Preliminary evidence shows that during
duplication and divergence of genes, the biochemical function is constrained by structural determinants
(See C.1.0). Alternatively, the pathway assignment is constrained by biochemical function. Finally,
evolution coordinates nearly simultaneous expression of a set of genes constituting a pathway by selecting
a common TFBS profile (See B.1.2) [1]. We would like to follow this line of logic to find the relationship
between constraint placed on biochemical function by structural determinants and the TFBS controlling
coordinated expression of paralogous genes (See C.1.0) involved in common pathways (See B.3.2).
C.4.3.2 Proposed Research: TFBS profiles in phylogenetic context

In [69] we saw that inclusion of genomic context improves the precision of structure-function
relationship when function is broadly defined as biochemical activity. Given that we find a corresponding
relationship between binding profiles and structural similarity from C.4.3.1, we would like to further
explore the relationships between phylogenetic context, structural similarity and transcriptional regulation.
If structure represents a coarse description of the potential of a gene, this potential may be fulfilled by
disparate TFBS profiles. However, each profile corresponds to a set of genes acting in unison along some
pathway. Genes in common pathways are well-known to travel together along the evolutionary tree. [77,
163, 183] Thus, if a set of proteins share a particular distribution on an evolutionary tree, they are more
likely to be involved in the same pathway, and therefore share a common TFBS profile.

First, we would develop a eukaryotic phylogenetic profile scheme analogous to one used in

prokaryotes[69] using the KOG database[184, 185]. We would then regress the structure-TFBS profile
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relationship along phylogenetic profiles. We hope that proteins occurring in similar set of genomes would
further improve the precision of the relationship between the new definition of function and structure
analogously to results reported in [69].One possible issue includes a limited number of genomes from —
which to draw phylogenetic profiles. However, we hope that with an ever-increasing compendium of
sequenced organisms, the number of genomes will be sufficient. Furthermore, we can use a stringent
threshold that minimizes the false-positive rate if the number of eukaryotic genomes remains too low for

predictive purposes[163].
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C.5 Publication of Data, Resources and Tools
The predictions and theoretical arguments resulting from the studies outlined in C.1-4 above have to

be made freely available to the outside world for maximum effect. I believe that presentation of the datais
often as important as the data itself. With hundreds of thousands of possible predictions, the usefulness of
the data hinges on proper organization and presentation. The data should be packaged into intelligent
databases allowing for dynamic querying and concise overview of the results. We plan to continue
providing and updating our successful ELISA database[102, 106] describing our results in structure-
function investigations.

C.5.1 ELISA : Database of Evolutionary functional Lineage Inferred from Structural Analysis.
ELISA stores information on all PDUG nodes(See C.2.1), their characteristics and connections to

other nodes. Each domain (node) has structure, sequence and taxonomic data recorded, as well as SCOP
fold name and PDUG cluster information. It also includes structure comparison and sequence comparison
data to other nodes. We allow searches using functional, sequence, structural and genomic information.

We provide a dynamic web interface for the underlying relational database. The web interfaée is
divided into three levels. The first level asks for the query protein sequence, function, taxonomy or fold
description. The function and fold description should match those used in GO and SCOP respectively. The
sequence query approach will perform a sequence alignment against the database to identify all domains
matching the query protein. For example, one of the possible queries at the first level could ask to see all
nodes are present in a specific genome. A whole neighborhood may also be delineated by common
taxonomic representation or common function and structure annotation.

In this way ELISA can be used to break new sequences into domains and identify structures and
possible functions of those domains. For example, let the query protein contain a domain that was labeled
as a tRNA ligase. Assume that the researcher would like to know of other ligases in humans with similar
structural characteristics. This could be useful in understanding possible interactions for a small molecules
or drug target. ELISA shows that there are close to forty domains that are involved in ligase activity in the

human. Not surprisingly, there is a large overlap between ligases and ATP binding proteins. What is
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somewhat surprising, is how few structures involved in ligase activity are recycled for other functions.
There are almost no other functions present in close structural proximity. Using ELISA, we can also say
something about the structure of human ligases, all human ligases are alpha and beta proteins. Thus, user
defined combinations of characteristics can limit the divergence of a protein set to describe related proteins
as in the example above. Through this logical “limitation of divergence”, the researcher can find the
prevailing pressures in the evolution of a protein family.

C.5.2 Publishing data from whole genome binding site mapping and CRM identification
To facilitate usage of our TFBS prediction data by biologists and other researchers, we plan to

develop a dynamic database using results from large-scale GibTig calculations done in high-performance
computing environments. The specific role of the GibTig Interface is twofold. First, the interface will act as
a browser for GibHit results from both whole genome yeast experiments (see C.4.1) and GABA receptor
experiments (see C.3.6). Second, we plan to incorporate our preliminary results with the ART neural
network (see C.4.0) to enable dynamic definition of cis-regulatory modules based on user-defined input
sets. The interface will provide an engine to generate regulation models involving sets of genes. The
interface and the underlying data will be freely available to the public on the world-wide-web.

At the core of the GibTig Interface is a relational database repository of GibHits either from
genome wide GibTig mapping of TEBS in yeast (See C.4.1) or from GABA4 receptor GibTig experiments
(See C.3.6). The database will use the model of the Ensembl repository of genomic information[186].
Briefly, Ensembl combines eukaryotic genomic sequence information with various genomic features such
as genes, pseudogenes, transcripts, exons, and introns in a single relational database. Moreover, Ensembl is
easily extended to combine additional relational tables with existing sequence and feature data. Ensembl is
therefore an ideal foundation upon which to build the GibTig Interface. However, Ensembl does not
maintain repositories for all sequenced genomes. Notable exceptions include all strains of yeast. In these
cases, it will be necessary to populate a minimal set of tables with genomic information prior to including

GibTig information.
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Fig 13: Schematic of GibTig Interface
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GibTigs. In particular, scientists will be able to use the interface to predict cis-regulatory motifs and TFBS
in the promoter regions of their favorite gene. (See C.4.1), Furthermore, they will be able to identify motifs
that correspond to known TFs, identify motifs for novel TFs, predict loss-of-function point mutations (See
C.3.6.4), and cis-regulatory modules (See C.4.2).

C.5.3 CRMer—Database of predicted Pathways and Control Structures in Yeast
The GibTig Interface will also couple the yeast and GABA predictions with our neural network

classifier (See C.4.0 and C.4.2) to help researchers generate regulation models describing sets of genes
controlled by sets of transcription factors (i.e. cis-regulatory modules, or CRMs). In preliminary evidence
(See C.4.0), we trained a neural network (ART) to identify biologically meaningful CRMs using ChIP-chip
profiles. Regulatory modules, termed GibModules, can be generated by researchers as needed in one of
three ways. Researchers interested in a set of potentially co-regulated genes will use the classifier to
identify sets of GibHits that describe common binding profiles of those genes. On the other hand,
researchers interested in set of PWMSs will use the classifier to identify a set of genes combinatorially
controlled by these GibHits. For example, researchers interested in CRMs involving STE12 could input a
gene set of interest e.g. a set of genes that are expressed during filamentous growth to the ART classifier.

ART would then find the most likely CRM for that input set e.g it would find that the genes are also
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regulated by TEC1. Then, the researcher could input STE12 and TEC1 PWMs to identify a larger module
of genes coordinately regulated by both STE12 and TECI.

Thus, a third approach is iterative generation of GibModules i.e. using a set of genes to predict a-set
of factors, and then using those factors to predict a new set of genes. Iterative application of the ART-2
GibTig Interface will generate larger GibModules that will put a gene or a set of genes in transcriptional
context. Using the previous example, an iterative approach might reveal genes controlled by both STE12
and TECI perform a specific set of functions that differ from genes regulated by STE12 alone or TEC1
alone. (See C.3.2)

Researchers can also use GibModules to predict functions for uncharacterized or incompletely
characterized genes. Since GibHits are generated independent of experimental conditions, GibModules can
reveal pathways and gene functions that are not observed with commonly assayed experimental conditions.
As an example, applying the classifier to GABA, related GibHits might reveal novel modes of co-
regulation within the GABA 4 receptor (See C.3.4-5). In some cases, those novel modes of regulation may
be predictive of a disease phenotype, such as complexes that are implicated with some forms of
epilepsy[187], and Alzheimer’s disease[188]. In the case of GABA4 receptors, understanding GibModules
connected to epilepsy can potentially identify a set of transcription factors that can be targeted to treat the

disease.
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