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Overview

My research will investigate the network of chemical and physical processes that are
combined in the prokaryotic cell division cycle. These processes are remarkably rich, involving
spatial organization of cells, bacterial decision-making about when to divide and about where the
division plane should be, and the mechanical processes of annulus formation and contraction.

This project is at the core of fundamental biology since it connects inanimate physical
processes to biological reproduction. However, it is not just academic. Bacteria comprise roughly
50% of the Earth’s biomass'. cause about 10% of human deaths, play a major role in the global
climate, and degrade a large fraction of our pollution. Improved knowledge of bacterial cell
division will provide targets for better antibiotics and will allow us to engineer bacteria in ways
that help society. Also, prokaryotes are often excellent models for eukaryotes. Discoveries with
these simpler prokaryotes are likely to speed up discoveries for eukaryotes. eventually leading to
better health care and sustainable agriculture.

My initial work will be on the Escherichia coli Min system, which is involved in
determining the site for cell division. It is comprised of only the proteins MinC, MinD. and MinE
and yet it exhibits intriguing oscillations in which a polymer filament is alternately assembled and
disassembled at opposite ends of the cell. The methods of my research will include
computational modeling. in vitro and in vivo microscopy, and experimental physical chemistry.
As we develop a better understanding of the E. coli Min system, I plan to expand the scope of my
research to explore more of the E. coli cell division cycle. I also plan to investigate cell division
in other bacteria, partly to allow comparisons with E. coli, and partly to examine behaviors that E.
coli do not exhibit, such as sporulation. A tremendous amount remains to be discovered in
prokaryotic cell division so it is nearly certain that we will stumble upon completely unexpected
phenomena: these, of course, will help guide the research direction as well.

Summary of Research Accomplishments

Undergraduate and pre-doctoral research

As an undergraduate at Dartmouth College. I studied the statistical mechanics of polymer
melts’, quantified the degree to which polymers that fold in constricted spaces naturally form o-
helices and B-sheets. and derived the properties of a worm-like chain®. These were excellent
training for my current work on membrane-bound protein polymers®. After college. I showed that
ultraviolet solar irradiation is a dominant influence in the marine carbon cycle™®: it breaks down
organic carbon from terrestrial sources, which cannot be used by most marine life, into forms that
are biologically labile.

Doctoral research

In Steven Boxer’s laboratory, I studied the effects of electric fields on molecular vibrations.
called vibrational Stark effects’. These are exceedingly small: a 5000 kilovolt per centimeter
electric field. which is the largest field that can be reliably applied to a condensed phase sample.
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changes both vibrational frequencies and infrared absorption intensities by less than one part in
10* for most molecules®®. No one had quantified vibrational Stark effects before, so I designed
the necessary instrumentation'’, electronics'!, and data analysis software'*. Using these, Eunice
Park and I showed that vibrational Stark effects can be used to directly measure electric fields on
very small scales, including inside proteins. Using a carbon monoxide molecule as the world’s
smallest electric field sensor, we determined that the electric field inside a myoglobin protein
changes by 8 MV/cm when histidine-64 is protonated’ (figure 1). Several graduate students have
worked, and are working, on research that lead directly from my initial explorations'>". I also
derived the quantum mechanical theory of vibrational Stark effects'®: for nitriles, frequency
changes arise from nearly equal contributions of mechanical anharmonicity of chemical bonds
and electronic perturbations of the bond strengths.

With the same methods, I measured the effect of an electric field on a mixed-valence
electronic transition of the bacterial photosynthetic reaction center'’, which was the first
measurement of its kind. It was used to show that the radical electron is delocalized over two
bacteriochlorophylls and that there is significant coupling between this and other transitions.

Figure 1. Diagram of carbon monoxide (center rod-shaped molecule) bound to the heme iron
in myoglobin and nearby amino acids’. The frequency of the carbon monoxide stretching
vibration is affected by the local electric field, which is strongly influenced by charged atoms
on nearby residues. Detection with infrared spectroscopy and calibration with externally
applied electric fields allowed us to quantify the internal electric fields that are produced by
pH changes or mutations.

Post-doctoral research

[ switched research fields from chemical physics to systems biology, so I chose to take two
post-doctoral positions to gain a broader range of experiences. The first was at the University of
Cambridge with Dennis Bray and the other at the Lawrence Berkeley National Laboratory with
Adam Arkin. This may not have been a wise career choice because I devoted a relatively large
amount of time to identifying interesting projects and to learning about the research topics in each
laboratory and not enough to creating new research results. Nevertheless, I believe that these
experiences will prove to be beneficial in the long run.

My initial project was to develop a computational model of the E. coli chemotaxis signaling
network that accounted for both three-dimensional space and single molecules, which was an
extension of current laboratory work'®. However, neither software programs nor computer
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algorithms existed that could accurately and efficiently simulate chemical reactions between
individual molecules in solution. Thus, I designed the necessary algorithms (figure 2) and
incorporated them in a general purpose program called Smoldyn® (short for Smoluchowski
dynamics). Results have been popular: during 2004, the number of downloads of my publication
that describes the algorithm® was in the top 10% of those for all articles published by the Institute
of Physics and in the top 10 of articles published by Physical Biology; Smoldyn is used in several
laboratories in the U.S.*', Britain. India, Japan, and the Netherlands; Smoldyn was a focus of two
summer classes taught at the Marine Biological Laboratories; and my algorithms are being
implemented in ChemCell, which is a simulation tool in development at Sandia National
Laboratory™.

Forward reaction: A+ B = C

Figure 2. Algorithm for simulating forward and back bimolecular reactions used in Smoldyn,
shown in the reference frame of an ‘A’ molecule™. A forward reaction occurs when the
centers of an A and a B molecule (black dots) diffuse to a separation that is equal to the
binding radius. g, (circle with selid line), forming a C molecule. When a back reaction
occurs. the A and B products are initially separated by the unbinding radius. g, (circle with
dashed line), which is made larger than the binding radius so as to prevent the instant
recombination of the products. For computational efficiency, diffusion is simulated with
relatively long steps and the sizes of the binding and unbinding radii are modified to yield
quantitatively accurate reaction rates.

The computational model of E. coli chemotaxis was completed in collaboration with Karen
Lipkow (figure 3). We found that diffusion produces a significant signaling delay between the
chemotaxis receptors and the flagellar motors and that it varies for different motors™**; the
nucleoid or large protein complexes provide obstructions that enhance these effects. I also
investigated the serial rebindings of a single ligand molecule to a cluster of receptors™. Receptor
clustering does not affect the overall level of the signal that is received. but instead leads to
temporally and spatially correlated binding events. This increases the signaling noise which may
allow a signal to be sensed above background noise.



Figure 3. Sample output from the Smoldyn program showing individual chemotaxis proteins
in an E. coli cell®. Color codes: gray, inactive CheA; orange, active CheA; yellow,
phosphorylated CheA; green, CheZ; dark brown, CheY; red, CheYp; blue, FliM; cyan, FliM-
CheYp. The cell is shown 0.1 s after addition of a saturating repellent stimulus. Not shown
are obstructions to diffusion, which were shown to have a significant effect on signaling
delays.

Next, I decided to investigate the evolution of biochemical reaction networks. Simulated
bacteria were defined with various metabolic networks which obeyed all physical laws. They
competed and evolved in a simulated chemostat. I found that different environments favored
different metabolic networks: low chemostat dilution rates caused evolution towards small
metabolic networks, multiple co-existing bacterial strains, and strategies that favored
specialization on a single substrate; high dilution rates produced opposite effects’*". In the
former case, only those individuals that used all available resources were able to grow fast
enough to avoid being washed out of the chemostat; in the latter, the low resource availability
meant that a metabolic cost that was imposed on generalists became unaffordable.

While fascinating, the evolution research was a departure from my interests in physical
biology, so I refocused on the E. coli Min system (figure 4) and built the foundation of the work
that I'm planning for the next several years. My initial computational models™ highlighted key
aspects of the system that were not understood: i. what determines the shape of the MinD
polymer? ii. why is there one MinD polymer rather than many? and ifi. what are the MinD
polymerization rates and dynamics? In addressing the first question, I suspected that the helical
shape arises because it is the lowest energy conformation of a stiff polymer that is bound to a rod-
shaped membrane. To investigate this, I derived a theory of polymer shapes on curved surfaces®
and found that not only does this hypothesis explain the MinD shape, but it can also explain the
shapes of several other cytoskeletal polymers (figure 5). Furthermore, it provides a simple
explanation for remarkable dynamics that are observed with the septum-determining Z-ring in
sporulating B. subrilis*: a ring forms at the mid-cell, transforms to a helix, transforms again into
two polar rings, and finally a polar ring constricts to separate the mother cell from the spore.
Minor changes in the Z-ring composition are sufficient to produce these dynamics.

To investigate the third question posed above, I needed biology laboratory experience. So,
1 took the Cold Springs Harbor Laboratory summer course in Advanced Bacterial Genetics,
formed collaborations with the Rothfield and King labs (both at the University of Connecticut
Health Center), and changed my post-doc appointment such that I am now co-advised by both
Adam Arkin and Jay Groves. In collaboration with Jeff Nye, we are working to image
fluorophore-labeled MinD polymer filaments on in vitro bilayers. This work is described below.
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Figure 4. A. Dynamics of the Min system (figure is from Gitai and Shapiro™). MinD (blue
lines) forms a helical polymer that extends the length of the bacterium but is primarily at one
cell pole. MinE (red) binds to MinD and disassembles the polymer with migration towards a
cell pole. The MinD polymer reassembles at the far pole, leading to more disassembly by
MinE. The system oscillates with a period of about 40 seconds. B. A nearly complete set of
reactions in the Min system, assembled from the literature. 1. Transfer of nucleotide bound to
MinD*'*. 2. Hydrolysis of ATP by cytoplasmic MinD*'***, 3, Dimerization of MinD***",
4. Interaction of MinD-ADP with membrane™. 3. Binding of MinD dimer to membrane with
amphipathic helices of both monomers™***", 6. Polymerization of MinD on the
membrane®>**, 7. Hydrolysis of ATP by unactivated membrane-bound MinD*3+*7%_ 8.
Dimerization of MinC**. 9, Binding of MinC to membrane-bound MinD*"*, 10.
Displacement of MinC by MinE***®, 11. Hydrolysis of ATP by MinD, activated by MinE,
leading to depolymerization and, possibly, retraction of the lipid-binding helices™***"*°, 12.
Release of MinE from MinD and MinD from the membrane®~**, 13. Dimerization of
MinE™.

Systems Biology of Prokaryotic Cell Division

Prokaryotic cell division involves several linked components™: /. replication and
segregation of the chromosome, ii. segregation of any plasmids into the two halves of the cell, iii.
placement and assembly of a central protein ring. called the Z-ring, and iv. contraction of the Z-
ring, followed by re-arrangement of the cell walls at the new poles.

As the chromosome is replicated, the origin regions move rapidly apart, but only migrate
part of the way towards opposite cell poles. An exception includes sporulating B. subrilis, in
which the chromosomes move to the extreme poles. It is likely that the chromosomes are actively
moved along an intra-cellular helical track comprised of the actin-analog MreB**°, The
components that attach the chromosome to the MreB cables remain unknown, as do the
mechanisms that provide motion.

Plasmids appear to replicate randomly over time, although their segregation is still highly
orchestrated. Low-copy-number plasmids include the ParA and ParB proteins and are moved
from the mid-cell position to the quarter-cell positions, or they include ParM and ParR and are



localized near the cell poles®'. In the former case, ParA forms a helical filament on the surface of
the nucleoid which, somehow, pushes the plasmids to the correct locations™. ParM forms a
double stranded polymer filament that is capped on both ends by ParR*; ParR is bound to the
plasmids, so extension of ParM through polymerization pushes the plasmids apart and towards
the cell poles. High-copy number plasmids do not encode partitioning systems but form isolated
plasmids and clusters that move around the cell with unknown mechanisms®'.

Figure 5. Diagrams of how monomer shape parameters affect the conformations of polymers
that are bound to cell membranes. Monomer shapes are defined by yaw (¢°, two panels),
pitch (6°. horizontal axis), and roll (y°, vertical axis). Resulting polymer morphologies are:
rings (heavy line; image shows FtsZ*>), right-handed helices (green region; image shows
MbI>), left-handed helices (red region; image shows MreB*'), lines (dashed line; no
biological example known), polar-targeted polymers (orange region; image shows MinD*"),
and loops (green region; image shows MinD on a spherical cell®). Illustrations of polymers
on a rod-shape were generated by a computational model for the theory that I developed on
this topic. The phase diagram for ¢°>0 is not exact but estimated; the light black lines shown
here are a feature of Microsoft Word and not of the model. Each tick mark on the axes
represents a bending angle of L/2R, where L is the length of a monomer and R is the radius of
the bacterium.

Concurrent with DNA segregation, the Z-ring is assembled around the cell center, mostly
from mostly the tubulin-analog FtsZ”'. It is placed at mid-cell by a combination of two negative
regulatory systems. In nucleoid occlusion, Z-ring formation is inhibited around either of the two
daughter chromosomes®. The Min system, mentioned above, provides a static inhibition near
the poles in B. subtilis* and a remarkable dynamic inhibition in E. coli®® (figure 4). Here, MinD
polymerizes on the inside of the cell membrane as a helical filament that extends from one pole of
the cell towards the other®. It is then disassembled by MinE, reforms at the opposite pole, is
disassembled, and so on, with a roughly 40 second oscillation period. FtsZ polymerization is
inhibited by MinC, which binds to and colocalizes with MinD. MinC is rarely at the mid-cell
because of the MinD/MinE oscillation, thus allowing Z-ring formation only at the mid-cell.



Finally, the Z-ring constricts to divide the cell in half. The control system that regulates the
timing of division for E. coli and B. subtilis is unknown™, as is the mechanism of Z-ring
constriction’™®!. As mentioned above though, my theory on polymer conformations suggests that
constriction could occur through a minor change in the Z-ring composition.

It is interesting to note that nearly every process in the prokaryotic cell division cycle is
highly spatially organized, involves rapid dynamics, and relies on polymerized protein filaments.
Also, few of these processes occur in either the cytoplasm or a membrane alone, but, instead. they
involve constant exchanges between the cytoplasm and membrane. Finally, some of the proteins
(MreB*, FtsZ®, and possibly others) are involved both in cell division and in determining the cell
shape.



Research Plans

My research will build a detailed understanding of the E. coli Min system, followed by a
detailed understanding of prokaryotic cell division. This is an exploration into how one of the
most fundamental aspects of life arises from a network of inanimate physical processes. The
focus is on prokaryotic cell division but the tools that we will develop will be broadly useful. My
computational methods are able to simulate biochemical networks at a much higher level of detail
than had been available before. In the laboratory, I will image the dynamics of protein polymers
that are bound to supported lipid bilayers, which combines the precision of in vitro experiments
with the natural interactions between protein and membrane; these experiments are completely
new as well. Together, these methods will help open a new field of systems biology in which
complex biological processes are examined with a greater degree of detail and rigor than are
currently available.

Theoretical investigations of cell division

I plan to create a detailed computational model of the E. coli Min system. This is essential
because the creation of the model will guide attention towards the critical components, the model
will make predictions that will direct experiments, and a quantitative computational model is the
only way to thoroughly verify a conceptual picture. Current computational models of the Min
system®™*® are inadequate because none simulate three-dimensional diffusion, polymerization,
and the set of experimentally verified reactions. Instead, they choose a sub-set of these processes
with the result that each agrees with only certain aspects of experiments. For example, the model
by Huang, Meir, and Wingreen® treats membrane-localized MinD using continuously variable
concentrations. The model does an excellent job of demonstrating how oscillations can arise in
such a system, but the fact is that the MinD polymer terminus either is or is not at a certain point,
and cannot be meaningfully described by a concentration. As a result, their model does not
capture polymerization of MinD. Perhaps because of the same approximations, the model does
not display oscillations unless several model reaction rate constants and protein concentrations
differ by more than an order of magnitude from experimental values.

The detailed model that I am building treats each protein individually, thus capturing
polymerization dynamics with physical accuracy, as well as capturing stochasticity and
correlations between reactions. The following simulation cdpabilities are needed: 7. diffusion of
individual molecules in the cytoplasm and on the membrane, ii. reactions between individual
molecules in the cytoplasm, #ii. polymerization reactions on the inner membrane surface, and iv.
polymer relaxation and thermal motion on the membrane. I have derived the theory for and
written most of these modules****, although more work is needed for diffusion and reactions on
membranes. Using similar methods as the ones that I developed for simulating reactions in 3-
dimensional space, I plan to develop the theory and methods for accurately simulating
bimolecular reactions on a membrane. Once completed, these modules will be linked together.

It appears that all of the protein polymers involved in cell division polymerize
cooperatively”™ "’ meaning that the polymerization rate is slower for very short polymers than
for longer ones. Signs of cooperative polymerization include: there is a minimum concentration



of monomers for polymerization to occur, polymers are multi-stranded, and there are relatively
few short polymers. MinD shows all of these signs: it does not polymerize when its
concentration is below 2 to 3 uM*, MinD forms filament bundles in vitro™, and only a single
MinD polymer is observed in each cell*’. Most theoretical studies on cooperative polymerization
are for the solution phase and ignore stochastic influences™’". I plan to revisit this topic using a
microscopic physical description to improve our understanding of MinD and other cell-division
polymers. A solution to this problem will solve the question posed above of why only a single
MinD polymer is observed, and will enable our simulations to match reality in this respect.

Macromolecular crowding may be essential for the Min system to work. It is known to
have a large effect on diffusion™">", it can speed up bimolecular reactions by an order of
magnitude or more™”, and it channels metabolites™®. Using Smoldyn and other detailed
simulation tools, I plan to investigate its role in the Min system and, more generally. in

polymerization at cell membranes.

The same simulation tools that I am developing for the Min system can be used for a wide
variety of other systems. As time permits, I plan to use them to model Z-ring dynamics, plasmid
partitioning. chromosome segregation, and cell division processes in other species. My ultimate
goal is to quantitatively simulate cell division from start to finish, for both wild-type and mutant
cells. This landmark accomplishment would signify that cell division is reasonably well
understood.

Experimental research — in vifro experiments

Quantitative results for the E. coli Min system, as with all the other cell division reaction
networks, are best determined using in vitro experiments. Here, the experimental system is fully
characterized and is easy to manipulate. It is simple to vary protein concentrations at will. use
inorganic fluorescent probes that are relatively stable to photobleaching, and to choose various
experimental geometries.

Based on my experience of modeling the Min system, it appears that the dynamics of MinD
polymerization are particularly complex, and particularly poorly understood. How many strands
wide is the polymer? Are new proteins added to the polymer as monomers, dimers, or larger
oligomers? Are new proteins added directly from the cytoplasm, or do they bind to the
membrane first and then diffuse along the membrane? Do polymers display interesting assembly
or disassembly dynamics? What happens when one membrane-bound polymer crosses another?
None of these answers are known for MinD. and few are known for any of the other cell-division
polymers. I plan to answer these questions for MinD initially and. afterwards, for other cell-
division polymers. This knowledge will enable modeling and, more importantly, will bring us
closer to our goal of understanding cell division.

Recent developments in fluorescence microscopy have made this an extremely powerful
tool, as well as the best current method for investigating polymerization dynamics’’. A veritable
alphabet soup of new techniques include: FRAP (fluorescence recovery after photobleaching),
FRET (fluorescence resonance energy transfer), TIRF (total internal reflection fluorescence
microscopy), FCS (fluorescence correlation spectroscopy), and FLIM (fluorescence lifetime
imaging microscopy). These powerful methods are relatively straight-forward to use.
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To start to address the questions on MinD polymerization, I am working with a student
named Jeff Nye to image MinD polymers on lipid bilayers, as mentioned above. The basis of our
experimental system is a lipid bilayer that is supported on a glass substrate. The lipids are
synthetic, which provides a much better defined system than is available with biological extracts.
It also allows us to choose the bilayer composition, which is important because it was observed
that MinD binds more tightly to anionic lipids than to neutral ones”. There is a roughly 1 nm
thick film of water between the glass substrate and the bilayer which makes both leaflets of the
bilayer fluid and makes the bilayer mechanically similar to biological ones. Two percent of the
lipids in the bilayer include a fluorescent probe, which does not appear to affect function, but
allows the bilayer to be imaged and visually assessed for quality. Once the bilayer is formed, we
add purified fluorescently-labeled MinD protein which polymerizes on the bilayer and is then
imaged with an inverted microscope. I plan to use this method extensively during the next
several years.

Relatively simple techniques with polymer imaging can reveal remarkable details about the
polymerization process. The simple steady-state distribution of lengths of MinD polymers can be
used to quantify the rate at which two filaments bind together, end-to-end, in a process called
annealing®. The assembly and disassembly rates of these filaments yield information about
polymerization rates and binding constants”’. Combined with concentration-dependent
information, they can also be analyzed to determine whether polymer growth occurs by
monomer, dimer, or larger oligomer addition®. We may see dyna%nic instability, in which a
polymer stochastically switches between either an elongation mode or a rapid disassembly
mode®. By using a mixture of fluorescently labeled and unlabeled MinD proteins, we expect to
observe speckled polymers. The speckling density can be used to determine the number of
strands that comprise a polymer. Meanwhile, apparent motion of the speckles along the polymer
indicates treadmilling, in which proteins are added to one end of the polymer and simultaneously
removed from the other. By patterning the supported bilayer into a checkerboard pattern of
separate bilayer squares™, the surface diffusion of MinD will be reduced; changes in the
distribution of polymer lengths can be used to show whether MinD monomers are added directly
from solution or after initially binding to the membrane.

Addition of purified MinE to the in vitro system will allow us to explore even more. First
of all, the oscillatory dynamics of the E. coli Min system arise solely from MinD and MinE, so it
is likely that we will observe periodic dynamics on the supported bilayer. The model of Huang,
Meir, and Wingreen appears to be moderately accurate for the overall Min dynamics, despite its
lack of a precise physical basis, so I used it to predict the dynamics of MinD and MinE on a
supported bilayer (figure 6). The prediction shows rapid symmetry-breaking of the initial
uniform protein coverage into small domains with and without MinD; this is followed by
oscillations and gradual expansions of the domains. The experiment will show if this prediction
is accurate and thus test the proposed model. Even without oscillatory dynamics, the combination
of labeled MinD and MinE will show if MinE is a capping protein® and the extent to which MinE
affects the depolymerization rate.

Another extension of essentially the same system is to replace the flat supported bilayer
with a ruffled one that was recently engineered™. The theory that I developed on the
conformations of membrane-bound polymers predicts that MinD, and several other membrane-
bound polymers, will preferentially locate to regions with concave curvature. It also predicts that

11



polymer growth and disassembly rates will depend on the local membrane curvature. It will be
exciting to see if these predictions are accurate.

Other techniques will be carried out as well. Measurements of MinD ATPase
activity'#***% will yield several parameters that are required for modeling but are not currently
known. These include the MinD nucleotide transfer rate, the dimerization constant for MinD, and
the ratio of ATP hydrolysis to the number of MinD proteins released from a membrane. Also,
dynamic light scattering has proven useful for rapidly assessing the binding of MinD to lipid
vesicles and so may be a good way to measure binding affinities and rates. Finally, atomic force
microscopy (AFM) can yield much higher resolution than light microscopy and has been useful
for visualizing filaments of FtsZ*. I plan to use AFM to investigate MinD polymers as well,
hopefully while they are on a supported lipid bilayer to yield biologically meaningful results.

A B C

Figure 6. Dynamics of MinD and MinE on a planar supported lipid bilayer as predicted by
the Huang-Meir-Wingreen model®. Panels are 2 microns deeps and 20 microns square with
periodic boundary conditions. Only MinD and MinD-MinE that are bound to the membrane
surface are shown: blue is MinD, red is MinD-MinE, black is neither, and pink is a mixture.
The system is started (panel A) with a mixture of MinD and MinD-MinE that is uniform
except for the variation that arises from the discreteness of the proteins. The system oscillates
and develops structure: Panel B shows the system at 3 minutes and panel C shows the system
at 7.7 minutes. [n vitro microscopy experiments will be used to investigate this prediction.

Experimental research — irn vivo experiments

The theoretical research and the in virro experiments that I described have one primary
purpose: to develop a better understanding of how the bacterial cell-division cycle works. The
ultimate test for their predictions is, of course, in living cells. I plan to carry out in vivo
experiments to firmly anchor my research program in real biology. Also, biology appears to have
an endless supply of surprises which are only revealed with research on complete living systems.
As with the in vitro work. I plan to use fluorescence microscopy as a primary research tool for
studying living cells. Extensive work has been done on imaging the individual components of the
Min system as well as other components of the cell-division cycle. However, much more remains
to be done.

Using FRAP techniques and GFP-labeled FtsZ, it was shown that there is a high turnover
of proteins in the polymer®. I plan to carry out essentially the same experiment with GFP-labeled



MinD, which would address questions about monomer-monomer and monomer-membrane
binding energies.

FRET techniques have proven to be quite useful for investigating co-localization of
proteins in chemotaxis®. I plan to apply them to several cell-division proteins. FRET between
MinD and MinE will show if MinE is a capping protein, and if it binds to MinD for a prolonged
period of time. FRET between MinD and MreB will show if these polymers are completely
independent, which will address an on-going debate about whether the MreB coils are partially
responsible for positioning the MinD coils. FRET between MinD and FtsZ will address what
appears to be a paradox currently: low-resolution images show that MinD occupies the cell ends
but never the middle, whereas high resolution images show that MinD is a polymer that extends
from one pole to the other. Furthermore, it is not clear how the helical MinD polymer (with
MinC bound to it), inhibits formation of the Z-ring.

Because of my minimal experience with imaging live cells, I will seek help from current
and new collaborators. I plan to maintain my connections with the Groves lab. The Rothfield
and King labs (both at the University of Connecticut Health Center) have offered E. coli strains
with GFP-labeled Min proteins and microscopy assistance. Also, Howard Berg (Harvard) and
Dyche Mullins (UCSF) have offered assistance.

Summary

I plan to study prokaryotic cell division by initially focusing on the E. coli Min system and
gradually broadening my research scope to other E. coli processes and to cell division in other
organisms. This system is at the heart of fundamental physical biology because it connects the
physical worlds of chemistry and physics with the biological process of reproduction. Along with
using cutting-edge computational and experimental methods, we will develop new ones that will
help propel systems biology towards new levels of precision and rigor. The focus is not on
applications but they are not far away: bacterial cell division is an obvious target for antibiotics
and for bioengineering. This research program is an excellent topic for an academic laboratory
because it is sufficiently focused to lend cohesion to a research group while also being rich
enough to allow a variety of interesting research projects. I believe that my physical chemistry
approach is ideally suited for researching these questions about organization and dynamics in
bacteria.
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Teaching Experience and Interests

Teaching is the primary reason that I am applying for a faculty position rather than for a
position in industry or at a national or private laboratory. I have found teaching to be quite
rewarding personally and I also believe that it is one of the greatest contributions that I can make
to society.

Systems biology is a new interdisciplinary subject without a dedicated department. and
very few dedicated classes. While many students have managed the transition to systems biology
from either the physical or life sciences, I think that the lack of direct focus is a deficiency in
modern science curricula. Meanwhile, the field is expanding rapidly. I would be excited to help
fill the void by teaching undergraduate and graduate classes in systems biology. and by advising
undergraduate and graduate research.

There is no shortage of topics; a few include: metabolic control analysis, allosteric
interactions in multi-protein complexes, mechanics of bio-polymers and membranes, network
properties of biochemical reaction networks, biological feedback control, stochastic decision-
making, and systems biology software tools. I would structure an advanced course by surveying
these and other topics. However, for a student to achieve a thorough introduction to systems
biology, a rigorous physical and mathematical foundation is required. For this, I would suggest
new courses that teach the physical concepts of thermodynamics, statistical mechanics, and
mechanical engineering, all with a focus on systems biology. For example, the important topic of
phase transitions could be taught with examples from lipid membranes.

Naturally, many students have other interests. I would also enjoy teaching them more
traditional chemistry, physics, or biology, or other interdisciplinary topics.

Regardless of the subject, I consciously teach to several levels at once. I help students: i.
attain course-specific knowledge for exam or real-life problems, #i. learn the general principles of
the class material to achieve a scientific intuition. iii. develop scientific problem-solving skills,
such as looking for characteristic time scales. and /v. mature as a person with hands-on laboratory
work. collaborative group work. writing assignments. oral presentations. and original research. 1
have applied these goals to many teaching situations including ecology education for upper-
elementary school children, work as a teaching assistant in university chemistry classes,
mountaineering instruction for undergraduates, and the mentoring of graduate students in systems
biology.

I see my role as a professor as to motivate, inspire, emphasize the important points, clarify
confusing issues, and integrate the course material into the departmental program. In my
experience, a good class has regular problem sets, two or three exams, and one or two major
projects; these projects may include group work, laboratory work. a term paper. and/or an oral
presentation. Projects are important for providing motivation and for giving students a deeper
understanding of the material, as well as for teaching a heterogeneous group of students who have
differing amounts of preparation. This curriculum is conventional but not complacent: the
difference between a well-taught class and a poorly taught one lies in the planning of the lectures.
the choice of the textbook, and the selection of problems and project topics. For evaluating the
success of a class, I have found evaluation forms to be helpful for specific topics such as the
choice of class material, although the observation and critiquing of my classes by fellow
instructors has often been more useful. Ultimately though, there is no substitute for interacting
with students on an individual basis, whether during office hours or in a laboratory.
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Abstract

Serial ligation is the repeated reversible binding of a ligand to one receptor after another. Itis a
widespread phenomenon throughout biochemical systems, occurring anytime receptors are
clustered together and ligand binding is reversible. Computer simulations are used in this work
1o investigate a representative example, which is the serial ligation of an extracellular aspartate
molecule to the membrane-bound chemotaxis receptors of an Escherichia coli bacterium. It is
found that the initial binding site of a ligand to a cluster of receptors is more likely to be near
the edge of the cluster than near the middle, although there is no overall bias when all
rebindings are considered. Serial ligation does not lead directly to signal amplification or
attenuation but instead causes binding events to be correlated in both space and time: a ligand
is likely to bind many times in rapid succession in a small region of the receptor cluster, but
there can also be long intervals between bindings. This leads to an increased level of noise in
the received signal but may allow a single ligand to be sensed above a uniform level of
background noise. The focus of this paper is on the interpretation of simulation results so they
can be generalized to a wide variety of other systems and to allow the identification of systems
in which serial ligation is likely to be important. In the process, several characteristic times are
identified, as are scaling laws for the spatial and temporal dynamics.

Nomenclature

Roman symbols

D diffusion coefficient

d average separation between receptors

ky binding rate constant

k, unbinding rate constant

N expected number of different receptors that one ligand
binds to

R radius of receptor cluster, or of sphere for unclustered
receptors

h time

% simulation volume

Greek symbols

o] probability of geminate recombination

1478-3975/05/020111+12530.00 © 2005 IOP Publishing Ltd

o} binding radius

oy unbinding radius

Teem.  Characteristic time for geminate rebinding

Tng characteristic time for non-geminate rebinding

Teer. characteristic time for termination of rebinding
Twm  typical duration of influence for one ligand
Ty characteristic time for unbinding

1. Introduction

Escherichia coli bacteria have a cluster of chemotaxis
receptors localized to one pole of the bacterium, which are
used to detect attractant and repellent molecules. There
is increasing evidence that the receptors are clustered, and
are coupled with several intracellular proteins, to create a
highly interconnected signaling module which can respond
to chemoattractants over a very wide range of concentrations
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Figure 1. The model system with clustered receptors. shown as

(A) the entire system and (B) a close-up view of the receptor cluster.
The 1.5 um diameter sphere represents an E. coli bacterium. At the
top of the sphere. there are about 3000 receptors clustered together
in a 450 nm diameter patch. although only 1000 receptors are shown
in this figure for clarity. The Brownian motion trajectory of a single
ligand is shown starting on the top left of the figure, binding to
several receptors sequentially, and ending at the bottom right of the
figure. Binding sites are shown in (B) with red dots.

[1]. Because ligand binding is reversible, another outcome of
the receptors being clustered is that a single ligand molecule
is likely to bind to several receptors sequentially (figure 1).
This phenomenon. in which a molecule binds to one receptor,
and then another, and another and so on, is called either ligand
rebinding or serial ligation. The repeated binding of a ligand
to the same receptor is called geminate recombination [2].
These phenomena lead to spatially and temporally correlated
chemical reactions. Downstream in the signaling network, the
correlated bindings may produce intermittent bursts of activity.

Correlated reactions are an important source of
intracellular noise in gene expression. where the correlations
arise from the sequential transcription and translation of
DNA to mRNA to protein, and from sequential regulatory
steps [3]. These yield short bursts of protein synthesis that

112

can be harmful for some cellular processes, such as circadian
clocks [4], or can be beneficial for providing non-genetic
individuality [5]. The ultimate origin of gene expression noise
is from the discreteness of molecules, because there tend to be
large relative fluctuations for molecules that are produced with
low copy numbers. Serial ligation is fundamentally different:
it is still the case that the noise is largest when there are few
molecules and that there is stochasticity that arises from the
discreteness of molecules, but now additional stochasticity
arises from Brownian motion. Little work has been done
to quantify the correlations produced by serial ligation or to
determine the situations in which it is likely to be biologically
important. Stochasticity and reaction correlations that arise
from spatial processes are ignored by nearly all simulation
algorithms, including those that are called exact [6. 7).

Most prior work on serial ligation has focused on the
rebinding of ligands to an infinite planar surface that is
uniformly covered with a continuous density of binding sites,
leading to results that are particularly useful for surface-based
experiments such as surface plasmon resonance and total
internal reflection microscopy [8-12]. Other work has studied
geminate recombination in detail for isolated receptor-ligand
pairs [13, 14] and time-averaged binding rates for reactive
patches on spheres [15-17]. The application of these studies to
biological systems and to biological modeling can be unclear.
More specialized studies have investigated serial ligation to
T-cell receptors [18. 19] and signaling in a synaptic cleft using
many ligands {20, 21].

This paper explores serial ligation for a model system that
is loosely based on the E. coli receptor cluster, focusing on the
general consequences of serial ligation and the situations in
which it is likely to be biologically significant. Spatial binding
patterns and temporal correlations of bindings are investigated.

2. The model system

Most of the £. coli chemotactic receptors are localized to a
patch at a cell pole that is about 450 nm in diameter {22, 23].
The cluster contains several types of transmembrane receptors
which are probably randomly mixed [24, 25] and spaced about
7.5 nm apart from each other [26, 27]. The extracellular
domains of the receptors are in a densely packed 10 nm thick
region between the inner and outer cell membranes called
the periplasm. where they encounter attractant and repellent
molecules that diffuse in from the surrounding medium. Some
of these molecules. such as serine and aspartate, diffuse
rapidly into the periplasm through large channels in the outer
membrane while others. such as maltose and nickel ions,
encounter specific binding proteins in the periplasm and then
bind to receptors in this form [28].

In the model investigated here, the ordinarily rod-shaped
bacterium with hemispherical ends is simplified to a 1.5 um
diameter sphere (figure 1). Receptors are arranged in either
a 450 nm diameter cluster or are evenly distributed over the
whole sphere to provide an unclustered reference system: the
cluster radius is denoted as R. Receptors are spaced evenly
along ‘latitude’ lines, where the distance between receptors
on a line is equal to the distance between lines. Because
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Figure 2. Details of ligand binding to a single receptor. The
physical system includes the lipid bilayer and a transmembrane
receptor. Heavier lines show its computational representation,
comprising a smooth surface to represent the outside of the
membrane and hemispheres to mark the binding and unbinding radii.
A ligand binds to the receptor when it first crosses the spherical
shell with radius o;. Subsequent unbinding is carried out by placing
the ligand at distance o, away from the membrane surface.

of discretization effects, the receptor lattice cannot be made
uniform with 3000 receptors, but instead, 3192 receptors
are used for the clustered case and 3029 receptors for the
unclustered case. The distance between nearest neighboring
receptors (d) is about 7.2 nm and 48.1 nm, for the respective
systems. Away from receptors, the surface of the sphere is
a simple impermeable surface. The cell periplasm is not
included in the model because preliminary results showed
that it has a minimal effect on rebinding phenomena, while
simultaneously complicating the discussion and reducing the
generality of results.

Only a single ligand is considered at a time, both to
simplify the analysis and because rebinding is likely to be
most biologically significant with low ligand concentrations.
Clearly, if some receptors are already occupied, then the
possible consequences of the rebinding of any individual
ligand will be decreased and the number of rebindings is likely
to be reduced due to competition from other ligand molecuies.
This ligand is treated as a point-like particle with continuously
variable x, y and z coordinates, which diffuses throughout the
extracellular environment by simple Brownian motion. The
ligand binds to a receptor at the first moment that it diffuses to
within the binding radius (o) of the receptor’s center {29, 30}
(figure 2). When it is subsequently released from the receptor,
it is released in the direction perpendicular to the plane of
the membrane, at a distance called the unbinding radius (o,,),
which is larger than the binding radius. These radii are derived
and justified below.

All of the receptors in this model are based on the E. coli
Tar protein and the ligand is based on aspartate, because
this receptor-ligand pair has been studied thoroughly. The
diffusion coefficient of aspartate (D ) is about 5 x 1076 cm?s™!
[15]. Receptors are treated as though they are immobile,
at least on the timescale of a simulation. The binding rate
constant for aspartate to Tar (k) is about 10° M~} 57! [31]
and the dissociation rate (k,) is about 10> s~! [31, 32]. These
parameters are used in all simulation results presented here.
The more general conclusions that are presented below were
also verified using several different sets of parameters.
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Figure 3. Interpretation of binding and unbinding radii.

(A) Potential energy as a function of the distance between the
receptor’s active site and the center of the ligand. A ligand is
considered to bind when it crosses the inner boundary and unbind
when it crosses the outer boundary. (B) Simplified interaction
region used in this paper. This is easy to simulate and analyze,
while behaving nearly identically to the more accurate version.
Binding and unbinding radii are shown with the values chosen in the
main text.

3. Binding and unbinding radii, and
geminate rebinding

An accurate treatment of receptor-ligand interactions would
account for all the interactions that occur at short distances,
such as electrostatic forces, bonding interactions and solvation
effects, many of which depend on the ligand’s orientation. Itis
conventional to simplify these to a potential energy function of
a one-dimensional reaction coordinate, where this coordinate
is essentially the distance between the receptor’s active site
and the center of the ligand (figure 3(A)) [33]. The steady-
state binding reaction rate depends primarily on the height and
position of the potential barrier, where the latter dependence
arises from the higher probability of a ligand colliding with a
large active site than with a small one. While it is tempting
to use the peak of the potential energy curve to discriminate
between a ligand-bound state and a ligand-unbound state, this
is unsatisfactory: because the ligand moves by Brownian
motion, this separation, or any other separation, is recrossed
many times whenever the ligand gets close to it [34]. Instead,
it is preferable to introduce bistability by not considering the
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ligand to bind until it crosses a boundary on the inside of the
potential barrier and then not considering it to unbind until it
crosses a different boundary on the outside of the barrier. The
outer boundary is the physical distance between the ligand and
the active site of the receptor outside of which interactions are
negligible, making it somewhat larger than a ligand radius.
Once a ligand unbinds, it might rebind to the same receptor
to yield a geminate recombination or it might diffuse away
permanently. The probability of geminate recombination (¢)
is clearly greater if the potential barrier is low.

The source of the reaction inhibition is simplified by
eliminating the potential energy barrier and using a smaller
inner boundary instead, now called the binding radius
(figure 3(B)). This radius is chosen so as not to affect the
steady-state binding reaction rate, which means that the
probability of geminate recombination is also unchanged (both
processes depend on the probability of a ligand getting from
the outer boundary to the inner boundary). While the detailed
dynamics on size scales smaller than the unbinding radius
are affected by this substitution, it does not matter because
we are only concerned with dynamics on larger distance
scales, and on time scales that are longer than the time that
it takes a ligand to diffuse from o, to o} (quantified below).
These larger scale dynamics are essentially indistinguishable
between the two models [29]. This simplification is superior
to the frequently used Collins and Kimball model [13, 35, 36],
in which the full potential energy barrier is replaced with an
infinitesimally narrow barrier, because it is conceptually and
mathematically simpler and much easier to simulate, while
still yielding essentially the same results on the length and
time scales that are of interest [29].

If receptor-ligand interactions occurred far from a
membrane, the binding radius would be [29]

Op = m(l 9). 0

However, receptors in the model are considered to be precisely

at the surface of the membrane (figure 2), making only half

of each receptor’s binding surface accessible to a ligand. This

leads to fewer receptor-ligand collisions by a factor of 2,

leading to a corrected equation for membrane-bound receptors,

kb
op = 1—-¢). 2)
b= D( ¢ (

Because of spatial symmetry, this correction does not affect

the probability of geminate recombination, which is [29]
b
¢ =—. ©)

Gll

As neither o, nor ¢ are known, they need to be estimated.
Using physical arguments, it was stated that o, should be
somewhat larger than the ligand radius (about 0.3 nm for
aspartate); also, the binding of aspartate to Tar receptors has
been described as nearly diffusion limited [31], implying that
the potential energy barrier is low and thus the probability
of geminate recombination is high. Consistent with this
information, as well as the experimental reaction rates and
diffusion coefficient listed above, the binding radius is taken
to be 0.26 nm, the unbinding radius to be 0.53 nm and the
probability of geminate recombination is ¢ = 0.5.
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The binding radius is an artificial concept, but is still
meaningful: its size is a measure of the intrinsic reactivity [37]
of a receptor-ligand pair, analogous to a gas-phase collision
cross-section [33]. Also, it provides a characteristic distance
scale for receptor-ligand reactivity, which is not provided
by the reaction rate constant, but which will prove to be an
important parameter for assessing serial ligation.

4. Simulation methods

Simulations were performed with a C language computer
program that uses several Brownian dynamics algorithms
described previously [29]. Because only one ligand is
considered at a time, the program could be made both fast
and accurate by using adaptive time steps [38]: steps are small
when a ligand is close to a receptor or the sphere surface,
and large when it is far away. To yield high accuracy, the
expectation displacement of the smallest diffusive steps is
equal to 1% of the binding radius. Each ligand is started at a
random point on a spherical shell that is just outside the surface
of the sphere (plus the binding radius) because this eliminates
the need to simulate the initial approach, without affecting
results. A ligand escapes the system when it is 1000 sphere
radii away from the sphere center, which is when its probability
of ever contacting the sphere again is less than 0.1% [39]
and the probability of its binding to another receptor is even
lower. Collisions between the diffusing ligand and the sphere
are treated with ballistic type reflections because, despite the
different physical picture, this method treats Brownian motion
accurately [29, 40]. Ligand unbinding is simulated using a
single time step, where the length of the step is an exponentially
distributed random number [41] with mean value equal to the
dissociation time constant. The simulation source code can be
downloaded from the World Wide Web [42].

5. Average properties and consistency checks

The chemical reaction considered here is simply

ke
R+L k:zb RL )
where R is a receptor and L is a ligand. As usual, the
equilibrium constant is
Key = 2 = o 3)
¥k, IRIML
This can be interpreted as the equilibrium concentration ratio
for many ligands, or as the time average behavior for one
ligand. In either case, the system needs to be confined to
a finite volume (V') so the ligands do not escape; also, it is
independent of the physical locations of the receptors. Using
the latter interpretation, equation (5) is rearranged to yield the
ratio of time that a single ligand spends bound to a receptor, to
the time that it is free,
time bound _n rky 6
time free VK&, ©)
where ng is the number of receptors on the cell. Using the
parameters listed above, along with a volume of 9.62 um?,
the ratio is calculated to be 0.518. In a simulation that ran for
100 s of simulated time and that used the same parameters,
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the ligand bound to receptors 33 837 times for a total duration
of 34.1 s while it freely diffused for the other 65.9 s, which
is a ratio of 0.517. In a separate simulation with unclustered
receptors, the ratio was 0.512. Both ratios are within statistical
error of the theoretical result.

In a separate simulation, now without a volume constraint,
the probability of geminate recombination was investigated
(equation (3)). Receptors were unclustered and a ligand was
started at a random receptor’s unbinding radius. Of 10° trials,
4.98 x 10* ligands underwent geminate recombination, which
is a ratio of 0.498 and within statistical error of-the theoretical
answer of 0.5.

These results lend additional confidence in both the
simulation program and in the logic used to derive
equations (1)—3).

6. Spatial dynamics

6.1. Initial and final binding locations

Suppose a ligand starts so far from a cell that it is equally likely
to approach the cell from any direction. To which receptor is
it most likely to bind first? In the unclustered model system
where receptors are uniformly distributed over the surface of
a sphere, all receptors are equivalent and the initial binding
site of a diffusing ligand is as likely to be at one receptor as
at another. On the other hand, there is a strong bias when
the receptors are clustered (figure 4(A)). This arises from the
simple fact that the middle of the receptor cluster is surrounded
by the edge of the cluster, so a randomly moving ligand is likely
to strike the edge before the middle.

Two analytical solutions for the initial binding site
statistics are informative. If g}, is very small relative to d,
then the cluster is fairly open and the middle of the cluster is
minimally ‘guarded’ by the edge, leading to a minimal edge
effect. Alternatively, if ;,/d is large (it can be as large as 1/2
without the binding radii overlapping), the receptors behave
as a uniform disk that binds a ligand on the first contact.
Solving the diffusion equation for this absorbing disk boundary
condition [43, 44] leads to the result that the probabiliry density
(probability per area unit) for the initial binding position in the
cluster is

1

P 27 RV/R* - r?
where r is the radius of initial binding location relative to the
center of the cluster. The model situation is in between these
limits since o3,/d is equal to 0.04. From simulation data, about
119% of the initial bindings were to a receptor on the edge of the
cluster and about 82% of them were to a receptor in the outside
half of the cluster (as a comparison, 6% of the receptors are
on the edge and 75% are in the outside half).

Because a ligand’s trajectory is simply a random walk,
it is possible to consider it in the reverse direction as well,
with the result that the final binding location follows the same
probability density as the initial binding location. Thus, even
if all receptors in a cluster were chemically identical, their
relative locations would cause them to differ functionally: on
average, the edge region is both the first and last part of the
receptor cluster to bind a ligand.
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Figure 4. Spatial aspects of serial ligation with clustered receptors.
In all cases, dots represent simulation data using 10° simulated
bindings and the plots show the probability that a ligand binds to a
specific receptor as a function of its distance from the center of the
receptor cluster. (4) Probabilities for the initial binding site of a
ligand; the solid line is the theoretical result from equation (7) for
the limit of a dense receptor cluster and the dashed line is the
theoretical result for a sparse receptor cluster. Integrals under all
curves are 1 (including a factor of 277r to account for the circular
cluster). (8) Probabilities for every binding site of a ligand; the line
is the theoretical result that there is no positional bias, scaled to have
the same integrated area as the simulation result (average of 11 total
bindings per ligand). (C) Spatial correlation of bindings, shown as
probabilities of all binding events using a ligand started at the center
of the receptor cluster; the line is proportional to r~!, scaled to have
the same integrated area as the simulation result. The inset is
identical to panel C but shown with log-log axes.
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6.2. Locations of all bindings

Is there still a statistical bias towards the edge of a cluster when
every binding site is considered, rather than just the initial
one? Again, there is clearly no bias for unclustered receptors
because they are all equivalent. Using simulations, it is also
found that there is no statistically significant bias for clustered
receptors (figure 4(B)). The explanation is that binding to and
unbinding from a receptor occurs in nearly the same place, so
receptors have essentially no effect on the spatial trajectory of
the diffusing ligand, seen qualitatively in figure 1. Binding to
a receptor only delays the ligand, leaving the spatial trajectory
as a simple random walk near an impermeable surface.

An implication is that a cluster of receptors (that bind
reversibly) does not affect the probability of finding an
unbound ligand nearby. The same result, but for many
ligands, is that receptors do not affect the local concentration of
unbound ligands. Statistical mechanics provides an alternate
explanation for this result: the probability that a ligand is
in a particular region is proportional to exp(—gE), where §
is the Boltzmann factor and E is the potential energy [33];
outside of the receptors’ binding radii, the potential energy
is everywhere 0, so the unbound ligand concentration is
unaffected by the presence of receptors. A second implication
is that a ligand is equally likely to bind to a receptor on the
edge of a cluster, in the middle of a cluster or that is relatively
isolated. In this respect, all receptors in a cluster behave
equivalently. Finally, on average, a ligand spends the same
total amount of time bound to receptors if the receptors are
clustered as if they are unclustered, a result that was already
quantified in equation (6). In biology, this means that the
mere clustering of receptors, without allosteric interactions,
can neither amplify nor attenuate a signal that is transmitted
by diffusing molecules.

6.3. Total number of bindings

Perhaps the best way to quantify the extent of serial ligation is
to find the total number of receptors to which a ligand binds,
on average. This is found with the integral of the simulation
data in figure 4(B), including a factor of 27 r to account for the
circular receptor cluster, which yields the result that ligands
that bind at least once end up binding an average of about
11 total times before diffusing away permanently. Half of
these are geminate rebindings because of our choice of ¢.
Removing this contribution, each ligand that binds once, binds
to an average of about six different receptors over the course
of its time spent in the vicinity of the cell. In contrast, it
was found that ligands that bound to unclustered receptors
only bound an average of three times, of which 1.5 were
to different receptors. Thus, when receptors are clustered,
there is an increased probability that ligands will bind multiple
times; in this case, the expected number of bindings is about
four times larger. Reconciling this with the prior result that
receptor clustering does not affect the total number of bindings,
on average, implies that four times more ligands are detected
with unclustered receptors. In other words, clustered receptors
lead to fewer ligands being detected and proportionately more
bindings for those that are detected.
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A quick calculation yields an estimate for the average
total number of receptors to which a ligand binds. Starting
at the center receptor and not counting geminate rebindings,
the probability that a ligand ever binds to a specific nearest
neighbor receptor is about op/d. Considering receptors
arrayed around the center one in rings that are spaced d units
apart, the probability of binding to a receptor on the jth ring
is about 05, /(jd), and this ring has about 27 receptors. For a
radius R cluster, there are about R/d rings of receptors. The
expectation number of different receptors that a ligand binds to
(N) is 1 for the first binding, plus the sum of the probabilities
of binding to other receptors:

Jra

o] 27 Ro,
Nzl+227rj~%z1+ b
j=1 J

42

®

If a ligand binds to receptor ‘A’, then receptor ‘B’ and then ‘A’
again, the bindings are treated here as three separate receptors,
rather than as a geminate recombination. Because the initial
binding is unlikely to be at the center of the cluster, this
calculation overestimates the extent of serial ligation but still
provides a useful estimate. Inserting the parameters used in
the simulation yields about 8 and 1.5 different receptors for the
clustered and unclustered cases, respectively (for the latter, the
sphere radius is used for R). These are close to the simulation
results of 6 and 1.5; calculated values are also in reasonable
agreement with simulation results that use other values of oy,

Thus, the extent of serial ligation can be quantified as the
expectation number of different receptors to which a ligand
binds, assuming it binds at all. It depends on two unitless
parameters: o3, /d, which is the probability that a ligand hops
from a receptor to its neighbor, and R/d, which is a measure
of the size of the receptor cluster.

6.4. Spatial correlation

Given that a ligand binds to a specific receptor, where is it
likely to bind in the future? Clearly, at each rebinding, it is
more likely to bind to a receptor that is nearby than to one that
is far away. The simulation result shown in figure 4(C) was
created by starting many ligands, sequentially, at the center of
the receptor cluster and recording the locations of subsequent
bindings. These data have a profile that is slightly steeper than
a curve proportional to #~!, where r is the distance from the
initial binding site. In a control simulation that modeled a
cluster of receptors on a flat surface, the data exactly matched
a slope of r~!, to within statistical error, showing that the
additional slope in figure 3(C) arises from the spherical surface
of the modeled cell.

The r~! power law can be understood by contrasting the
scaling properties of ballistic motion and Brownian motion. In
unrestricted three-dimensional space, consider a set of objects
that start at the origin, and that move away with a constant
velocity. If they produce a fixed ‘mass’ of trajectory behind
them during each time unit, the total mass in each spherical
shell about the origin is equal and, because the volume of
a spherical shell is proportional to 2, the mass density falls
off as r=>. In contrast, if they move by Brownian motion,
like the ligands considered here, the objects move away from
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Figure 5. Ligand binding as a function of time for unclustered and clustered receptors to represent the signal that is detected by the cell.
Each horizontal line represents a separate trial with time 0 defined as the moment that the ligand first binds to a receptor. Black bars
represent times when the ligand is bound and gray gaps represent times when it is freely diffusing. To allow both the bound and unbound
times to be seen on the same figure, the dissociation time constant was reduced from 1000 us to 1 us; despite this, most geminate rebindings

occurred too quickly to be resolved here.

the origin at a rate proportional to r'/? rather than ¢ [45] so
the mass density falls off as the square root of the previous
value—now, it falls off as r~!. This is unaffected by the
presence of an impermeable planar membrane that includes
the origin, due to symmetry. Thus, a receptor at distance r
from the origin (whether it is on the membrane or not) has a
probability proportional to r~! of having some of the Brownian
motion trajectory within its binding radius.

Restating this result for the biochemical sitvation, the
average density of ligand bindings with receptors on a planar
membrane will decrease away from the initial binding site as
L

6.5. Domain of influence

Is there a characteristic length scale such that one can say
with reasonable confidence that most bindings are within that
distance of the initial binding site? For a ligand that starts at
the center of the receptor cluster, the mean distance between
the initial binding site and subsequent binding sites is

R
(r) .—./ 2xrp(r)dr. ()
0

The factor of 271 accounts for the increasing circumference
at larger radii and p(r) is the density of rebindings. It was just
shown that this density is proportional to r~ (the relatively
small effect of the curved cell surface is ignored) so the
integrand is a constant and the solution is proportional to R.
Although the upper limit of the integral is more complicated
for ligands that start elsewhere, the result is still proportional
to R. Rebindings are not localized just to the region of the first
binding but are spread over the entire receptor cluster.
Alternatively, the domain of influence of a ligand could
be defined as the median radius of binding, which is the
radius for which half of the bindings are inside and half are
outside. Again, this is found to be proportional to R. Thus,
there is no characteristic length scale for rebinding: while
most rebindings occur close together, enough are far apart that
the spatial domain is limited only by the size of the receptor

cluster. The domain of influence of a ligand is the entire
receptor cluster.

7. Temporal dynamics

7.1. Qualitative results

In the two state model of receptor activation, a receptor is ‘on’
if a ligand is bound to it or ‘off’ when no ligand is bound
[46]. Suppose the bacterial chemotaxis biochemistry depends
only on the cumulative signal, which is defined as the sum of
the states of all receptors. Examples of this signal are shown
in figure 5 using a single ligand, where a black bar indicates
that the ligand is bound and a gray interval indicates that it
is freely diffusing. For presentation purposes in just figure 5,
k, was increased from 10° s~! to 10° s~! to make the black
bars a factor of 1000 shorter than they should be. In reality,
an aspartate molecule spends a relatively long time bound to
several Tar receptors, separated by rapid hops from one to the
next.

It is seen that receptor clustering influences the number
of bindings for a ligand and their relative timings. In the
unclustered case, most ligands only bind once. With clustered
receptors, ligands are likely to rebind quickly after each
unbinding, leading to short gaps in a series of bindings. At
other times, these ligands are relatively far from all receptors,
leading to long gaps.

7.2. Distributions of bound and unbound time intervals

Figure 5 is interpreted by investigating the distributions of
the lengths of the black bars and gray intervals. For the
former distribution, unbinding follows first-order kinetics so
the probability that the ligand unbinds during a short time
interval is high initially and decreases exponentially. The time
constant of unbinding is the inverse of the dissociation rate
constant:

7 = k7L, (10
From the properties of an exponential, the average amount of
time that a ligand spends bound to one receptor is 7, and it is
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Figure 6. Temporal correlations arising from serial ligation. A
ligand is released from the first receptor to which it bound at time 0
and then may rebind to the same or a different receptor at a later
time. Shown is the probability density for this rebinding as a
function of time for (A) unclustered and (B) clustered receptors,
along with the relevant characteristic times that are discussed in the
text. Open circles represent simulation data for the first rebinding
and filled circles are simulation data for all rebindings. The solid
lines shown in the early, intermediate and late portions of each panel
are the theoretical probability density for geminate rebinding. a line
with a time dependence of r~"/* and a line with time dependence
proportional to r~*/2, respectively. As the solid circles show the
probability density of a rebinding occurring as a function of time,
the integral under them is the expectation number of rebindings,
which are about 2 and 10 for the unclustered and clustered cases,
respectively.

rare for a single binding event to last more than several times
7. A disproportionate number of black bars in figure 5 appear
to be much longer than the 1 us value of t, that was used to
generate the figure simply because most geminate rebinding
intervals are too brief to be resolved by the printer.

The intervals between bindings are more complicated
because of the fractal nature of the ligand’s trajectory and
because there are several possible outcomes: a geminate
rebinding, a non-geminate rebinding or the ligand permanently
diffusing away. Also, the statistics of the intervals are slightly
different for ligands that start at the edge of the receptor cluster
from those that start in the middle. The distribution of intervals
between bindings is shown in figure 6.

Upon release from a receptor at time 0. a ligand is
distance o, from the geminate receptor. It cannot rebind at
this moment, although it is likely to rebind soon afterwards
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because the geminate receptor is only o, — o distance away,
which explains the initial peaks in both panels of figure 6.
This portion of the data agrees with analytical results derived
in the appendix (and provides an additional consistency check
between simulation and theory), where it is shown that
geminate rebinding is most probable at the characteristic time

an

With the usual parameters, Tgem = 0.02 ns for both the
clustered and unclustered models. This is meaningful for
the idealized system but not physically because the model is
highly simplified at these small size scales. Nevertheless, the
qualitative behavior is correct: the rebinding probability is
very high just after unbinding and decreases for long times
with a time dependence proportional to 1 =3/2,

After the initial peak, the rebinding probability decreases
rapidly until the ligand has had achance to diffuse to the nearest
neighboring receptors. Using the same analytical result from
the appendix, non-geminate rebinding is most probable at the
characteristic time

avZ

Thg = 6D
These times are 7, = 0.02 us and 0.8 us, for the clustered
and unclustered models, respectively. They describe how long
it takes a ligand to hop from receptor to receptor for a typical
rebinding. After 7, a ligand is typically far enough from
the geminate receptor that there is no longer a heightened
probability of binding there, but it also has not diffused far
enough for the edge of the receptor cluster or the sphere
curvature to be dominant influences. During this period, the
ligand's ‘view’ is of a very large array of receptors spread over
a nearly planar surface, a situation that has been investigated
previously [9-11, 47]. Here, the probability density of binding
decreases proportionally to £~!/? because it is the product of:
the probability that the ligand strikes the cell surface, called
a zero-crossing, and the probability that there is a receptor at
that site. The latter factor is a simple constant and the former
is proportional to r~!/? using the theory of Brownian motion
[45].

At even longer times, rebinding is terminated by the
diffusion of the ligand away from the receptor cluster, or from
the cell. The characteristic termination time is the average
time a ligand takes to diffuse a distance equal to the radius of
the receptor region,

(12

”

R..
EB.

For the clustered and unclustered models, 7, is about 51
wus and 560 ps, respectively; in the latter case, R is the sphere
radius, as usual. Finally, the slope of the binding probability
returns to ¢ ~%/2, which can again be understood by considering
the ligand’s ‘view’. After 7., the ligand is typically far from
the cell, so all the receptors together can be approximated as
a small absorbing patch that is far away, in a situation that
is analogous to the relationship between the ligand and the
geminate receptor during the interval between Tgem and 7.
This t~*/? dependence continues indefinitely after Ty

(13)
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The characteristic times are plainly evident in figure 6
and separate several temporal regions: before any rebinding,
primarily geminate rebinding, serial ligation on the whole
receptor cluster and rebinding is mostly complete. Because
the filled circles represent the probability density of a ligand
rebinding as a function of time, the integral under the data is
the expected total number of rebindings. In agreement with
the values presented above, these integrals, plus 1 for the initial
binding, are about 11 and 3 for the clustered and unclustered
models, respectively.

7.3. Duration of influence of one ligand

From the time that a ligand first binds to a receptor, for how
long does it stay around to exert an influence? This duration
is simply the time that it spends bound to receptors plus the
intervals between bindings, which is

(14)

Tioral = T T F Teer..
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With clustered receptors, a ligand spends about 11 ms in a
bound state and about 51 us diffusing in the vicinity of the
cluster, showing that the vast majority of time is spent with the
ligand bound. For unclustered receptors, the results are about
3 ms with the ligand bound and 0.6 ms with it diffusing.

8. Serial ligation of intracellular proteins

On the inside of the E. coli plasma membrane, the array of
chemotaxis receptors forms a relatively stable complex with
the downstream signaling proteins CheA and CheW. There
are also more transitory engagements with freely diffusing
proteins, such as the methylating and demethylating enzymes
CheR and CheB, which bind to individual receptors and then
detach after their catalytic action is complete. Is it possible
that these cytoplasmic proteins could undergo serial ligation
in an analogous fashion to that just described for aspartate on
the outside of the cell? This is addressed using CheR tolend a
context to work on CheR binding patterns [48] and to illustrate
another use of the parameters derived above.

The number of receptors and the size of the receptor
cluster is the same as before, but other parameters are quite
different. Rates of protein—protein association are likely to
be slower than the rate constant for aspartate binding by
about three orders of magnitude, with typical rates around
106 M~! s~! [49, 50]. Also, diffusion coefficients of
intracellular proteins are about 200 times slower, at around
2.5 x 1078 cm? s~! [51]. Experimental results do not help
with choosing either the unbinding radius or the probability of
geminate recombination, so, as a first guess, ¢ is set to 0.5, as
before. This implies that o3, is 0.027 nm and o, is 0.053 nm.
The latter parameter is ill-defined for protein—protein
interactions because of the strict orientational restrictions for
binding [50], but it nevertheless would be expected to be
larger than the length over which there are strong chemical
interactions (figure 3). In contrast, this calculated value is less
than half the length of a chemical bond, making it unlikely that
¢ is as high as 0.5. Instead, oy, is chosen to be 0.53 nm to make
it the same as it was for the previous discussion, and which is

physically reasonable, leading to values for o}, of 0.05 nm and
¢ of 0.09. Using these parameters, the ratio o;/d is 0.007,
which is only a one-fifth of what it was before, indicating that
there will be much less serial ligation.

The enhanced likelihood of a ligand (CheR) initially
binding to the edge of the cluster rather than the middle is
significantly reduced here, because of this lower value of
op/d, and because the system geometry is now the inside
of the cell membrane. Clearly, the edge only ‘guards’ the
middle when ligands approach from oblique angles, which is
made less likely due to the concave membrane curvature. As
before, CheR is equally likely to bind to any receptor when all
bindings are considered.

If CheR molecules were not confined to the cytoplasm,
each CheR would bind to an average of about 2.3 different
receptors, using equation (8), showing that the extent of serial
ligation would be minimal. However, CheR proteins are
indeed confined within the cell and consequently will return
an essentially infinite number of times to the receptor cluster,
limited only by the protein lifetime. Since a CheR is likely
to diffuse a long way between binding events, the position of
each binding site is largely independent of previous binding
locations.

Meaningful characteristic times for CheR bindings are
the unbinding time, 7,, which is 0.1 s (based on the binding
rate and the association constant of 0.09 uM~! [52]), the
non-geminate rebinding time, 7., of about 4 us and the
termination time, 7., of about 10 ms. Comparing 7, with
. Shows that, again, binding durations last very much longer
than the rapid hops that a ligand makes from one receptor to
another. The termination time indicates how long a CheR
spends diffusing near the receptor cluster during an average
encounter.

Thus, bindings of CheR to the inside of the receptor cluster
are temporally and spatially correlated due to serial ligation,
although not to a great extent and to a lesser degree than
for extracellular bindings of aspartate. The large differences
between the rates of aspartate-Tar interactions and CheR—
Tar interactions imply that it is very unlikely for there to be
feedback between the behaviors of specific aspartate molecules
and specific CheR proteins.

9. Discussion

How does serial ligation affect a transmitted signal? From very
general arguments, it was shown that receptor clustering does
not lead to a higher overall level of ligand binding. Instead,
some aspartate molecules are detected an average of about 11
times each, while others are completely ignored. In signal
processing terms, serial ligation does not amplify a signal, but
increases its contrast. This behavior makes the signal received
from the receptor cluster relatively noisy, which would seem to
be undesirable from an engineering standpoint, but may have
a biological benefit.

It has been observed in other signaling systems that the
actual duration of binding can have important effects [53].
For example, ligands with a high affinity often produce larger
effects than those with low affinity even when the two are
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present at the same net receptor occupancy [54]. In this case,
a prolonged signal generated by the rebinding of a ligand at
a cluster of receptors might generate a signal large enough to
switch the state of a flagellar motor [55], allowing a single
ligand to be detected over stochastic noise in the signaling
system.

While serial ligation undoubtedly occurs for bacterial
chemotaxis, further calculations show that it is unlikely to play
a significant role. There is negligible receptor sensitivity to
aspartate concentrations that are below 3 x 10~8 M [56]. This
corresponds to 3% of the receptors being occupied by ligands,
using the experimental dissociation constant of about 1076 M
[31], implying that about 90 different receptors are bound to
aspartate at any time (using 3000 Tar receptors). This number
is sufficiently large that correlations between binding times
that arise from serial ligation will be minimal. Secondly,
serial ligation effects are likely to be overwhelmed by the
large allosteric effects that are enabled by receptor clustering
[57, 1]. Nevertheless, in small regions of the receptor cluster,
serial ligation may act in concert with allostery to yield
noticeable effects: if so, this would most likely produce an
evolutionary selection pressure.

Several experiments can be imagined that could
investigate serial ligation for a system analogous to the
one presented here. A conceptually simple one is a
FRET measurement (fluorescence resonance energy transfer)
with green fluorophore tagged chemotaxis receptors and red
fluorophore tagged aspartate molecules. If the receptors were
excited with blue light, the energy would be absorbed and
then transferred to any bound ligands, which would emit
in the red. As red emission would indicate a bound ligand, the
time correlation function for red emission should be similar to
the prediction shown in figure 6.

10. Conclusions and outlook

The dynamics of serial ligation were explored using a simple
model system that is based on the binding of extracellular
aspartate to the E. coli chemotaxis receptor cluster, which
is likely to be representative of a wide variety of systems.
It was found that receptor clustering, which promotes serial
ligation, does not affect overall averages: a receptor is equally
likely to bind a ligand if it is in a cluster or not, receptor
clustering cannot lead directly to signal amplification or
attenuation and clustering does not affect the concentration
of free ligands in solution. Instead, serial ligation leads to
binding events that are correlated in both time and space.
Because of it, ligand bindings do not occur randomly, but
an initial binding is likely to lead to a rapid succession of
rebindings in the same region of the receptor cluster. The
spatial correlation is described with a power law that is nearly
proportional to »~! (the minor deviation arises from the curved
cell surface), which is a sufficiently broad distribution that
the spatial extent of rebinding is limited only by the size of
the receptor cluster. Temporal correlations are more complex,
with separate characteristic times for geminate rebinding, non-
geminate rebinding and the termination of rebinding. Between
these characteristic times, the probability of ligand rebinding
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is described well with power laws, with the probability
decreasing as either t~!/2 or =32, depending on the time
period. As with the spatial correlation, the total time over
which a ligand is likely to be detected is limited only by
the size of the receptor cluster. Serial ligation increases in
importance as the ratio of the binding radius to the separation
between receptors increases, and as the size of the receptor
cluster increases.

Several biological benefits have been studied for receptor
clustering, such as allosteric interactions between receptors
[1, 57}, the enabling of molecular brachiation [48] and the
reduction of cross-talk between different cell functions. All
of these studies have ignored the effects of serial ligation,
despite the fact that it is certain to occur in any biochemical
system that includes reversible ligand binding. In many cases,
including the chemotaxis example chosen, serial ligation is
likely to play a minor role in the biochemical signal processing,
although there are also situations where it could be important.
If the noise in a signaling system is dominated by the statistics
of receptor-ligand interactions, then serial ligation will lead
to more noise in the system. On the other hand, if the
dominant noise source is downstream of the receptor cluster,
then the multiple bindings inherent to serial ligation can allow
single ligands to be detected above the background level
of noise.

In this work, serial ligation was simulated using a
full three-dimensional model of the system which was
computationally efficient because it treated only a single ligand
at a time. However, this is not generally applicable so a
challenge for theorists is to include the spatial and temporal
correlations that arise from serial ligation in stochastic analyses
of chemical networks, as well as in stochastic simulation
algorithms.  In their absence, even the so-called exact
treatments are significantly in error.

This study on serial ligation is but one aspect of a
growing awareness of stochastic effects in biochemistry. '
It is true that, on average, biology and chemistry behave
according to analytically calculable averages, found from
continuous chemical concentrations, reaction rate constants,
dissociation constants and so on. However, specific systems
at specific times are almost never average: a receptor is either
active or inactive, a molecule is at one location and is not
somewhere else and a membrane collision either did or did
not happen. Biology evolves and operates in this real world of
stochastic phenomena, making their understanding essential to
an understanding of biology. These phenomena also introduce
new challenges for scientists, requiring experimental methods
that are not only more sensitive but that can also identify
correlated events and computer programs that can efficiently
handle the additional complexity.
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Appendix. Probability density for geminate
rebinding

An analytic solution cannot be found for the complete temporal
dynamics of serial ligation that are shown in figure 6. Instead,
an exact solution for the geminate portion is calculated here,
which also yields the characteristic times for geminate and
non-geminate rebinding and the scaling laws for the temporal
dynamics. It is found by: (i) deriving the probability density
for irreversible binding to an infinite plane, and (ii) converting
the result to the desired spherical system. It can also be derived
from equations presented in [58].

For the planar problem, there is an infinite absorbing plane
perpendicular to the x-axis at position x = 0. A single ligand,
with diffusion coefficient D, is located on the x-axis at position
X = g, with the time started at 7 = 0. What is the probability
density of the ligand’s binding to the plane as a function of
time? The result will be given as by (1), where the subscript
reflects the planar system. As there are no boundaries to the
ligand’s diffusion in the y or z directions, these components of
the ligand’s position do not influence binding to the plane and
can be ignored. The spatial probability density of the ligand
along the x direction is denoted by pp (x, 1), which follows the
boundary conditions and diffusion equation:

pp].(-", 0) =8(x —oy) (AD)
pp(0,1) =0 (A2)

a 8?
2 pp (. 1) = D pp (1. 1). (A3)

ot ax?

Equation (A1) expresses the known starting position of the
ligand using a Dirac delta function (§(x) equals infinity at
x = 0 and 0 elsewhere, and has unit area) and equation (A2)
expresses the fact that the plane absorbs any ligand that
contacts it. The probability density pp(x, #) is undefined
for negative x values because the ligand starts with a positive
x value and cannot cross x = 0. This presents an opportunity
for addressing the second boundary condition by changing
the problem definition slightly to use the method of images
[43, 38]: the absorbing plane is removed, py(x, 7) is now
defined for negative x values although it is not required to
be physically meaningful there and a negative delta function
is added to pp(x,0) at the mirror image of the positive delta
function:

ppl.(—\'v 0) = 8(x —0y) — 8(x +0y). (A4)

This new initial condition still satisfies the first boundary
condition given above for all physically meaningful x values.
The symmetry of the initial condition and the lack of
directional bias during diffusion implies that pp (0, 1} = 0
at all times, meaning that the second boundary condition is
satisfied as well, without requiring it as a separate constraint.
The solution is now trivial: each delta function diffuses over
time to become a Gaussian [39]:

por(x, 1) = Gs(x — 0y) — Gs(x +0y) (AS)
Gy(x) = e (A6)

s/ 2
s=+2Dr. (A7)

The probability density that a ligand binds to the absorbing
plane at some time is given by the flux of pp(x, /) into the
plane:

(A8)

a Ou
bpl.(’) = Dé}'ppl.(-\'v 1) = TGS(UU)~

x=0

This result is converted for the case of a spherical absorber.
Now, there is an absorbing sphere centered at the origin
with radius o3 and a ligand on the x-axis at x = o, at time
t = 0. Motion tangential to the sphere surface does not affect
the solution, so the problem is made rotationally symmetric
by changing the initial probability density for the ligand to
a uniform spherical shell, still at radius o,,. Using r as the
distance from the origin and p(r, f) as the spatial probability
density of the ligand, the boundary conditions are

p(0) = ——8(r — ) (A9)
47(0,;
plop, 1) = 0. (A10)

Because the problem is rotationally symmetric, the diffusion
equation is [43]
2

% (rptr, 0] = Dslrp(r, D]
E[’P("J)]— a—rglp(fy .

Using the substitution pp (1, £) = rp(r, 1), this is identical to
equation (A3), allowing us to use the solution in equation (A4),
along with the new boundary conditions, to yield

(All)

1
rp(r 1) = —?‘[Gs(" —oy) — G, (r — 20y +0)].
dmo;

The probability density flux into the sphere yields the desired
result:

(A12)

-~ 0p)

G Goton — o)

J[)(Uu
b(t) = 4o, D 3 =
r

ot

r=a,
(A13)
The time dependence is made clearer by expanding the

Gaussian term:
0 (0 — 0p) 1737 exp [_(a“ - ab)zjl o
Zg‘lm 4Dt

This probability density for binding is plotted in both
panels of figure 5, where it is seen to be in excellent agreement
with simulation data. It also yields some useful analytical
results. At long times, the binding probability decreases with
a dependence that is proportional to =3/, which explains the
scaling of the simulation data both for the time shortly before
Tag and the time after 7y Differentiating equation (Al4)
with respect to time shows that the most probable time for
binding is at

b(r) =

. (Gll "' O'b)2 (AIS)
=5

This equation is used to define Tgm. For the binding of a
ligand to the nearest neighbor receptor, the most probable
time for binding can again be found from equation (A15), but
now the initial separation is the receptor spacing. This yields
the T, definition given in the main text. A final property of
equation (A 14) is that the integral of b(¢) over all time yields the
total probability that a ligand is absorbed by the sphere rather
than diffusing away permanently; the result is ¢ = o3 /0, as
stated in equation (3).

Tgem.
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Glossary

Binding radius. The separation at which a pair of reactant
molecules react with each other.

Brownian dynamics. A simulation method for molecular
diffusion in which each molecule takes a step chosen from a
Gaussian distribution, at each time step.

Brownian motion. Diffusive motion of a molecule that has
been idealized to obey Fick's laws at all size and time scales,
leading to an infinitely detailed trajectory.

Diffusion limited. Chemical reactions in which reactant
diffusion is so slow that it completely determines the reaction
rate.

Geminate recombination. The reaction between a pair of
product molecules that arose from the same reactant
molecule, back to yield a reactant. Here, it is the binding of a
ligand to the same receptor from which it just dissociated.

Ligand rebinding. Synonymous with serial ligation.

Probability density. A distribution of a probability over
space or time. The probability that a random variable falls
within a small interval is the product of the probability
density for that region and the width of the interval.

Serial ligation. A phenomenon in which a ligand
sequentially binds and unbinds to many different receptors.

Unbinding radius. The initial separation between the
products of a reversible reaction. It is also the physical
distance between reactants outside of which interactions are
negligible.

Zero-crossing.
plane at z = 0.

A point where a random walk crosses the
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Abstract

Methods are presented for simulating chemical reaction networks with a spatial resolution that
is accurate to nearly the size scale of individual molecules. Using an intuitive picture of
chemical reaction systems, each molecule is treated as a point-like particle that diffuses freely
in three-dimensional space. When a pair of reactive molecules collide, such as an enzyme and
its substrate, a reaction occurs and the simulated reactants are replaced by products. Achieving
accurate bimolecular reaction kinetics is surprisingly difficult, requiring a careful consideration
of reaction processes that are often overlooked. This includes whether the rate of a reaction is
at steady-state and the probability that multiple reaction products collide with each other to
vield a back reaction. Inputs to the simulation are experimental reaction rates, diffusion
coefficients and the simulation time step. From these are calculated the simulation parameters,
including the ‘binding radius’ and the ‘unbinding radius’, where the former defines the
separation for a molecular collision and the latter is the initial separation between a pair of
reaction products. Analytic solutions are presented for some simulation parameters while
others are calculated using look-up tables. Capabilities of these methods are demonstrated
with simulations of a simple bimolecular reaction and the Lotka—Volterra system.

This article has associated online supplementary data files

(Some figures in this article are in colour only in the electronic version)

Nomenclature

Abbreviations

RDF radial distribution function (see glossary)

ms root mean square (see glossary)

Roman symbols

D mutual diffusion coefficient

Dg diffusion coefficient for a B molecule
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CA 94720, USA.
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Gaussian with area of 1, mean of 0 and
standard deviation of s

radial distribution function

Green's function for diffusion in a radially
symmetric system

flux of B molecules at position r and time ¢
rate constant for a zeroth-order reaction

rate constant for a unimolecular reaction

rate constant for the ith unimolecular reaction
of a single species

rate constant for a bimolecular reaction

initial distance of a molecule from a surface
final distance of a molecule from a surface
probability
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prob(...) probability density

pe(r, 1) spatial probability density of a single B
molecule at position r and time ¢

s standard deviation of a Gaussian, or a mutual
mms step length

SB rms step length of a B molecule

At time step for simulation

Greek symbols

Y boundary condition coefficient for the Collins
and Kimball model

o] probability of geminate recombination

pe(T, 1) numnber concentration of B molecules at
position r and time ¢

Op binding radius

Tu unbinding radius

Subscripts

C Collins and Kimball model

N Numerical algorithm

S Smoluchowski model, which is also the
continuous time model system

a activation limited

i irreversible bimolecular reaction

r reversible bimolecular reaction

1. Introduction

Computer simulations can be valuable tools for investigating
chemical reaction networks, such as the complex biochemical
networks that make up living systems [1-3]. They are best
seen as aids to intuition, allowing one to explore the complex
dynamics of reaction networks with relative ease. An aspect
of this is that a simulation can rigorously determine if a
proposed reaction mechanism is consistent with observed
results. To mention a few examples, simulations of the
Escherichia coli chemotaxis signaling network have yielded
insights into biological robustness [4], bacterial individuality
[5] and protein allostery [6].

Reaction network simulations can be classified by (i)
whether they account for spatial information and (ii) whether
they include the stochasticity that arises from discrete
molecules rather than continuous chemical concentrations.
With greater levels of detail, the results become more
accurate but the simulations take longer to execute and require
more experimental parameters. The algorithms presented
in this work are in the most detailed category of this
classification scheme, accounting for both stochastic and
spatial information. This high level of accuracy is applicable
to a wide range of systems but is especially useful for biology,
where there can be a high degree of spatial organization [7, 8]
and key molecular species often exist with low copy numbers
[5, 9]. As an example, a reaction network that includes
membrane ion channels is highly sensitive to the stochasticity
that arises from individual molecules and spatial influences.
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The drawbacks of the high level of detail were reduced as much
as possible by designing the algorithms to be computationally
efficient and to require few parameters.

The fundamental processes for which algorithms are
presented are as follows: molecular diffusion, interactions of
molecules with surfaces, zeroth-order chemical reactions (the
spontaneous introduction of new molecules into the system,
which is physically impossible but computationally useful),
unimolecular chemical reactions and bimolecular chemical
reactions. In all but the last case, the algorithms yield
results that are in exact accord with those of a simplified
model system. However, achieving the same accuracy for
bimolecular reactions would make a simulation too slow to be
useful. Instead, we present a fast alternative method and show
that it yields results in good agreement with analytical models.

Our algorithms have been implemented in a C language
computer program called Smoldyn (for Smoluchowski
dynamics) which may be downloaded from the World Wide
Web. Another publicly available computer program that works
at a similar level of detail is MCell, which was originally
developed to model signaling in neuromuscular junctions [10],
although it works at a lower level of spatial resolution and it has
the limitation that bimolecular reactions can only be simulated
at surfaces.

2. The model system

In this section, real chemical processes are simplified to a
precisely defined model system. Our model is an extension
of the Smoluchowski model for diffusion-influenced systems
[11], which is presented here as well.

In the model, time increases continuously, as it does in
nature, butin contrast to the finite time steps that are introduced
in the next section for the simulation algorithms. Each
molecule is treated as a point-like particle that diffuses freely
in space with continuously variable x, y and z coordinates,
quantified with Fick’s laws [12]:

Ja(r.1) = —~DgVpg(r.1) (1)
pa(r. 1) = DgV2pg(r. 1). )

B is some generic chemical species, Jg(r. ) is the flux of
B molecules at position r and time ¢, pg(r.t) is the local
number concentration of B molecules, and Dy is the diffusion
coefficient for B [13]. The coordinates of a molecule are
its center of mass. The Smoluchowski description also
accounts for external and long-range forces (such as between
ionic species [14]) but we ignore them because they have
minimal influence in a typical biochemical system and they
are computationally expensive to simulate. To allow the use
of Fick's laws on small size scales as well as large ones,
the dynamics of the solvent and other unreactive species are
ignored [15], leading to infinitely detailed Brownian motion of
the reactive molecules. This approximation makes the results
only accurate on size scales that are somewhat larger than
those of individual molecules. Similarly, steric interactions
are ignored between molecules that do not react with each
other, which is valid for dilute solutions. Molecular spatial
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Forward reaction: A+ B — C

Figure 1. Forward and back reactions in the physical model for the
reaction A + B < C, shown from the standpoint of an A molecule.
A forward reaction occurs when the centers of an A and a B
molecule (black dots) diffuse to a separation that is equal to the
binding radius, g, (circle with solid line), forming a C molecule.
When a back reaction occurs, the A and B products are initially
separated by the unbinding radius, o, (circle with dashed line),
which is made larger than the binding radius so as to prevent the
instant recombination of the products. The angular location of B is
random due to rotational diffusion. The same method is used for the
numerical algorithms presented in this paper although, for
computational efficiency, diffusion is simulated with relatively long
steps and the sizes of the binding and unbinding radii are modified
50 as to yield quantitatively accurate reaction rates.

orientations and internal energy levels typically fluctuate on
time scales that are faster than the diffusive and reactive
processes that are of interest [14, 16], allowing them to
be ignored as well. Because of these approximations, the
complete time-dependent state of the model is fully specified
by a list of the molecular positions.

By definition, a diffusion-limited bimolecular reaction
occurs very rapidly once two reactive molecules come into
contact, which happens when the molecular centers are
separated by a distance equal to the sum of the molecular radii.
This description is used for the Smoluchowski model in which
abimolecular reaction occurs at the moment when two reactive
molecules collide with each other. Smoluchowski derived
the steady-state reaction rate for this physical description,
in terms of the molecular radii and the diffusion coefficients
[11]. However, most reactions occur at a slower rate because
of a reaction activation energy. This is addressed in the
Smoluchowski model by replacing the sum of the molecular
radii with a smaller effective binding radius (a;), thus yielding
the correct steady-state reaction rate for all bimolecular
reactions, regardless of the reaction mechanism (see figure 1).
This binding radius is derived below.

Reversible reactions, such as the generic reaction
A + B « C, pose a problem. If the A and B products of the

backward reaction are initially separated by the binding radius,
which is the obvious separation, then the ensuing Brownian
motion of A and B makes them almost certain to collide
again. This leads to a nearly instantaneous reaction back
to C, which is clearly not acceptable. (The terms ‘almost’
and ‘nearly’ are understatements since the actual probability
for recollision is 1 and the expected time that elapses before
reacting is 0 [17]. Qualitatively, an initial separation of o}
implies that any net motion of the molecules towards each
other yields a reaction, which is nearly certain because true
Brownian motion has an infinite number of random walk steps
in a finite time period; all but a vanishingly small portion of
the possible random walks include at least a little net motion of
the molecules towards each other.) This recollision problem
is not addressed in the Smotuchowski model because it does
not consider reversible reactions. The related Collins and
Kimball model solves the problem by replacing the rule that
reactions always occur upon collision with one in which there
is a certain probability of a reaction at each collision {17, 18].
While useful mathematicaily, this confuses the physical picture
because a single collision almost certainly leads to infinitely
more collisions, implying that the probability of reaction at
each collision must be infinitesimal. For ease of simulation,
our scheme is closer to the spirit of the Smoluchowski model:
the A and B dissociation products are initially separated by a
fixed distance which is larger than oy, called the unbinding
radius (o) {19]. Using this rule, neither inter-molecular
forces nor reaction probabilities need to be introduced, leaving
diffusion as the sole fundamental process. After unbinding,
the A and B product molecules may diffuse away from each
other or they may diffuse together again and rebind, called a
geminate recombination {14, 20].

An unbinding radius is an artificial concept but its use
can be justified. Physically, a C molecule is an A-B complex,
for which the interaction potential energy is a function of
the A-B separation, typically with an activation barrier [21].
If diffusion influences the system even a small amount, any
boundary between reactants and products may be crossed
many times. To prevent this, it is helpful to introduce
bistability by defining a boundary on each side of the activation
barrier: a forward reaction occurs when the A-B separation
is less than the inner boundary and a reverse reaction occurs
when it is greater than the outer boundary [22]. The model
defined here does not have an activation barrier, although we
retain the two boundaries.

Most aspects of this model on size scales of individual
molecules or smaller are incorrect, such as infinitely detailed
Brownian motion, the assumption that molecules do not have
excluded volume, and reaction dynarnics with fixed binding
and unbinding radii. However, all aspects of the model are
qualitatively correct on larger size scales because macroscopic
diffusion does follow Fick’s laws and reactions only occur
between physically proximate molecules. It becomes
quantitatively accurate when the model is supplemented
with experimental data, including diffusion coefficients and
reaction rates.
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Figure 2. Flowchart for our simulation program Smoldyn.
Alternating diffusion and bimolecular reactions are an essential
aspect of the bimolecular reaction algorithm.

3. Simulation algorithms

In this section, the model is converted from a simplified
description of physical processes to numerical algorithms. To
do this, the continuous time of the model is replaced with
steps of length Ar, which can be kept constant throughout the
simulation {23] (which is done in Smoldyn) or made adaptive
so as to focus computational effort on important time segments
[24]. Either way, it is helpful to think of the end of each step as
an observation of a virtual system that evolves continuously.
In particular, molecules are considered to move with infinitely
detailed Brownian motion, even though the detail is neither
explicitly simulated nor observable. Using this interpretation,
these algorithms are designed to yield observable results that
are as close as possible to the analytically derived dynamics
of the model system. The simulation errors can be made
arbitrarily small because the simulated dynamics become
identical to those of the model in the limit of small time steps.
Except for the bimolecular reaction one, each algorithm can be
called ‘exact’ because the simulated results are also identical
to those of the model for arbitrarily long time steps in the
absence of coupling with other processes.

A conventional program framework is used here, in which
the program has some initialization procedures and then runs
a loop over time steps (figure 2). During each iteration of the
loop, several processes are simulated independently, described
below in turn. See appendix A forimplementation details.

3.1. Molecular diffusion

Because the model considers individual molecules rather than
concentrations, Fick’s second law (equation (2)) is rewritten
as a master equation by replacing the number density of B
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molecules with the spatial probability density for a single
molecule:

pa(r.1) = DgV3pg(r.1) 3)

The product pg(r,t)dr is the probability that a specific B
molecule is within volume dr about position r at time 7. Ina
simulation, a molecule starts at a known position and diffuses
over the course of a time step. Solving equation (3) for this
initial condition shows that the probability density for the
displacement of a molecule after a time step has a Gaussian
profile on each Cartesian coordinate [12, 25]:

per+ AT 1+ A1) = Gy (Ax) G (Ay) Gy (A2) )

Ga(Ax) = — ex Ax? )
FATA S ~S o Xp 542

Sg = \/EB—};A—I: (6)

where Ax, Ay and Az are the Cartesian displacements,
G{Ax) is a normalized Gaussian with mean 0 and standard
deviation equal to s, and sg is the root mean square (rms)
step length of species B. These results form the basis of
a simulation method called Brownian dynamics {26, 27] in
which diffusion is simulated by picking a normally distributed
random displacemnent for each molecule at each time step.

3.2. Treatment of surfaces

Nearly all physical reaction systems are confined to a finite
volume, making it necessary to simulate surface interactions.
Surfaces are most easily treated as arrays of flat panels which
might be as simple as the square walls of a cubical reaction
volume or as complex as the membranes of a neuromuscular
junction [10]. From a computational viewpoint, surface types
include the following: inert impermeable surfaces, which
prevent molecules from passing from one side to the other;
periodic boundaries of the simulation volume (also called
toroidal boundaries), which do not exist physically but are
useful for the simulation of systems with effectively infinite
extent; and absorbing surfaces, which irreversibly capture all
molecules that diffuse into them. In each case, the algorithm
has to determine whether each molecule interacted with each
panel of the surface during the previous time step using the
standard criterion that all observable dynamics should be
indistinguishable from those of the model.

Impermeable surfaces are considered first.  Solving
equation (3) with an impermeable plane as a boundary
condition shows that the spatial probability density, pg(r, 0,
reflects off the surface like light from a mirror [25]. Thus,
even though molecules are assumed to move exclusively by
Brownian motion over the course of a time step and the surface
may be quite rough on a microscopic scale, diffusion in the
presence of inert impermeable surfaces is accurately simulated
using ballistic-type reflections [26]. In the algorithm,
each molecule is propagated forward over Af according to
equation (4); then, the straight line path of the molecule is
reflected off any surface that it crosses.

Periodic boundaries are similar. Because equation (4)
is correct in the absence of surfaces, it is also correct for
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periodic boundaries, provided that any probability density that
escapes the system is translated across the simulation volume.
In the algorithm, any molecule that diffuses past a boundary
is transferred across the system as though it had followed a
straight line over the course of the time step.

An absorbing surface is treated by temporarily
considering it to be permeable and asking the question: what
is the probability that a specific molecule crossed the surface
during the time step? If the molecule started on the inside and
diffused to the outside, then it obviously crossed the surface
and should be absorbed. It could also start and end on the
inside but have crossed the surface during the time step, the
probability of which can be found using the initial and final
perpendicular distances to the surface, denoted by /; and I,
respectively (these are positive if the molecule is inside and
negative if it is outside). The probability that the molecule
crossed the surface at least once, starting from distance /;,
conditioned with the additional knowledge of /¢, is

Prob(cross|/;) = 1 — Prob(no cross|/s)
prob(no cross, [y)

prob(ls)

Prob() is a probability, prob() is a probability density, a vertical
line indicates a conditional probability, and a comma indicates
a joint probability [28]. For example, Prob(cross|/y) is the
probability that the boundary is crossed, given a knowledge
of /7, and prob(no cross, /;)dl is the probability that the
boundary is not crossed and the final distance is between /;
and /5 + dI. The densities are found with equation (3) and
the initial condition that the molecule starts at /; away from a
surface [25]. For the joint density, a boundary condition is that
the probability that the molecule is at the surface is 0. Results
are

=1- N

prob(no cross. I¢) = Gy, Iy — ;) — G (ly +11) 8)

prob(ls) = G, (5 — I). )
Substituting these into equation (7) yields the desired answer:
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Prob(cross|/;) = exp (— P > . (10)
B
Thus, the algorithm for absorbing surfaces is that a molecule
should be absorbed if it ends up on the far side of the surface
at the end of a time step or if a random number with a uniform
distribution between O and 1 is less than exp (—2/;/5 /s3).

All of these methods are exact for planar surfaces but are
in error for curved surfaces or near junctions of flat surface
panels. An example is a pore in a membrane (figure 3): using
the continuous time model, a molecule might curve around
after going through the pore, but the diffusion algorithm only
allows molecules to travel in straight lines during time steps. In
general, the spatial resolution is approximately the molecular
rms step length.

3.3. Zeroth-order reactions

A zeroth-order reaction progresses at a rate that is
independent of all chemical concentrations, implying that
product molecules are formed spontaneously. While
unphysical, zeroth-order reactions can be useful components

Model: detail is infinite

Simulated: detail ~ rms step length

Figure 3. Example of limited spatial resolution in the simulation.
The top panel shows diffusion through a pore in a membrane (gap in
black bar) using the model system. The molecule starts above the
pore. The thin black line shows a representative molecule trajectory
and the shading represents the probability that the particle ends at
each location. The lower panel presents the same information for the
simulation, where it is seen that the probability density below the
pore is incorrect due to the use of finite length time steps and straight
line trajectories. Accurate results would require a shorter time step.

of simulations because they can provide chemical inputs to the
simulated system without requiring a complete treatment of
the input mechanism. For example, a chemical reactor might
have an input port that continuously adds a chemical, or a
biological cell may include a protein that is synthesized by
biosynthetic pathways that are not of immediate interest. In
both cases, these could be treated explicitly, or they could be
simulated using a zeroth-order reaction to produce exactly the
same result.

If the product of the reaction is A and kg is the rate constant,
the zeroth-order mass-action rate law is

On average, kAt product molecules are formed during each

time step. However, this has some stochastic variation, which
is given with a Poisson distribution [28].

3.4, Unimolecular reactions

Unimolecular reactions are described by the generic equation
A — products. This might describe a true unimolecular
reaction, such as a molecular dissociation, or a bimolecular
reaction between an A molecule and an abundant species that
is not explicitly simulated. The kinetics are typically of first-
order:

Pa = —kipa (12)

where 4, is the first-order rate constant. Upon integration, the
probability that a specific A molecule reacts during Az is

Prob(reaction) = | — exp(—k; Ar). (13)
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If an A molecule can react via multiple first-order
pathways, a sequential application of equation (13) leads to
a bias towards the first pathway that is attempted. Instead,
solution of a collection of equations like equation (12), where
the ith reaction has a first-order rate constant Ky ;, leads to the
reaction probabilities [10]:

Prob(reaction i) = 1 —exp| —At Zkl_j

1.i
2k ;
(14

The efficient simulation of these equations is discussed in
appendix A.

3.5. Bimolecular reactions

Bimolecular reactions, described by the generic equation A +
B — C, have the steady-state reaction rate:

(13)
where k» is the second-order rate constant, from which it
is possible to find the binding radius of the model. An
exact algorithm would be based on a question similar to that
posed above for absorbing surfaces: given the positions of
molecules A and B before and after a time step, what is the
probability that the distance between them was less than the
binding radius at some point during the time step? Equations
analogous to equations (7) to (10) can be written and solved
for this situation (they are derivable from equations presented
in chapter 14 of {29]). However, the most simplified result still
requires a numerical integral, making it too computationally
expensive for simulations. Even a transcription of the
result to a look-up table requires a very large table, four-
dimensional interpolation (initial separation, final separation,
interior angle and binding radius), and still requires many
calculations for every potential collision at every time step.
Unlike the other algorithms, an exact solution for bimolecular
reactions is not practical. However, there may be reasonably
efficient simulation methods if one abandons the intuitive
representation presented here, along with the option of using
constant size time steps [30. 31].

Because of these difficulties, we temporarily ignore the
theory and choose an algorithm that is intuitive, simple and
very fast: two molecules always react if they end up within
op(Al) at the end of a time step and never react if the final
separation is greater than that. For reversible reactions,
dissociation products are initially separated by o, (Af). These
parameters are analogous to the binding and unbinding radii of
the model system (figure 1) and approach them in the limit of
small time steps. They are derived in the next section and the
resulting dynamics are investigated in the following section.

pc = kapaps

4. Bimolecular reaction parameters

The correct binding radius for the simulation is, quite simply,
that value which makes the simulated bimolecular reaction rate
equal the experimental rate. The latter is presumed known, so
we derive the simulated reaction rate in terms of the binding
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radius, equate it to the experimental rate constant, and invert
the result to yield the binding radius. Unfortunately, the
derivation is comnplicated.

The first complication occurs in deciding which
experimental reaction rate to use. As usual, the chemical
equation is A + B — C. Suppose we start with a well-mixed
distribution of reactants, which is one in which the molecules
have random positions but with the constraint that no A-B
pairs are allowed to be closer than a binding radius of each
other. As we observe the subsequent reactions, we see that the
reaction rate ‘constant’ given in equation (15) is not actually
constant but is extremely high initially, because of A-B pairs
that happen to start close to each other, and then decreases
and approaches a sready-state value [11, 14, 32]. This steady-
state value is nearly always the one that is reported as the
experimental reaction rate. Thus, our approach is to find the
binding radius which makes the simulation, using a steady-
state distribution of A and B molecules, reproduce the reported
reaction rate. The resulting binding radius is a parameter of
the model, so it is equally applicable at steady-state and away
from steady-state.

In these derivations, separate equations are found for (i)
the dynamics that arise from the analytical model that was
defined in the section 2 and which is based on Smoluchowski
dynamics and (i) those that arise from the numerical
algorithms. In cases where equations differ between the
Smoluchowski based model and the numerical algorithm,
they are labeled with subscripts ‘S’ and ‘N’, respectively.
Additionally, the subscripts ‘i” and ‘r’ are used to distinguish
results for irreversible and reversible reactions. Look-up tables
and source code are available as supplementary information?,
as described at the end of the text.

4.1. Irreversible reactions, Smoluchowski model

The radial distribution funcrion [33] (RDF, g(r)) between
A and B molecules is the average distribution of distances
between A and B molecules. More precisely, pgg(r) dr is the
probability that there is a B molecule within a small volume
element dr at distance r from any specific A molecule, where
pg is the overall number density of B. Because A and B
molecules react when they collide, g(r) equals O for r < oy.
Any influence between A and B molecules diminishes for large
separations, so g(r) approaches 1 as r tends to infinity. While
it is conceptually possible to start a chemical system with
nearly any shape RDF, the Smoluchowski RDF for irreversible
reactions always approaches the steady-state solution [14]
(figure 4(A)):

gsi(r) = 1— -‘j—’ r > op. (16)

The depletion of B molecules around A molecules arises not
from any long-range interaction, but because reactive species
that are close together are likely to react, which excludes them
from the average [17].

The reaction rate is the net flux of B molecules towards
A molecules, which is calculated using equation (3) and the

3 Supplementary data files are available from stacks.iop.org/PhysBio/
1/3/001.
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Figure 4. Radial diffusion functions (RDFs) for bimolecular
reactions at steady-state with various models. Diffusion coefficients
are 1073 cm® s~! for each reactant and rate constants are 108 M~ s~!
for irreversible reactions. For reversible reactions, geminate
recombination probabilities are 0.25 and rate constants are increased
to 1.3 x 108 M~ 57! 10 account for geminate reactions

(equation (28)). (A) Smoluchowski model (equation (16))

with g, = 0.066 nm. (B) Smoluchowski model (equation (29)) with
o, = 0.066 nm and o, = 0.264 nm. (C) Numerical algorithm with
oy = 0.075 nm, s = 0.049 nm, ky, =2 x 10°M~'s™ and Ar =
0.61 ns for the solid line; other lines use time steps that are 0.061
and 6.1 ns, shown with short and long dashes, respectively.

(D) Lines are the same as those in (C) but for reversible reactions;
for the solid line, o, = 0.264 nm. Arrows represent Dirac delta
functions at the unbinding radii. (£) Collins and Kimball model
(equation (33)) with k¢, = 2 x 10M~' s~! and 6, = 0.132 nm.

(F) Collins and Kimball model (equation (35)) with k¢, =

2 x 108M™!s, g, = 0.132 nm and o, = 0.264 nm. Note that the
RDF for the numerical algorithm approaches the Smoluchowski
RDF for short time steps, a well-mixed RDF (a step function) for
long time steps, and is qualitatively similar to that of the Collins and
Kimball model.

definition of the RDF. The general reaction rate for models
in which time is treated continuously and its solution for the
Smoluchowski model at steady-state are, respectively,

ag(r)
ar

Op

pc = 4m0; Dpaps 17

pc = 4w Doppaps (18)

Here D is the mutual diffusion coefficient [34], defined as
D4 + Dg. The proportionality of the reaction rates to p5 and
pp is the same as in the second-order rate equation, leading
to the well-known solution of the rate constant for irreversible
reactions according to the Smoluchowski model [11]:

ks; = 47 Doy, (19)

This rate is limited only by diffusion, so &g; is the diffusion-
limited rate constant.

4.2. Irreversible reacrions, numerical algorithm

In the limit of short simulation time steps, the diffusion
simulated by Brownian dynamics approaches the infinitely
detailed Brownian motion that the model assumes. Thus,
in this limit, the numerical reaction rate constant, ky;, is
equal to the Smoluchowski result in equation (19). Solving
the equation for o3, which is the only necessary simulation
parameter (the notation o,(Ar) was simplified to just op),
yields a solution that is valid whenever the mutual rms step
lengrh is much smaller than the binding radius; the mutual
rms step length is defined as s = (2DANY2 = (s3 +52)"°.
It is instructive to see when this solution can be used. A
typical reaction rate for proteins is 106 M~! s™! and protein
diffusion constants are typically at least 1078 cm® s™!. These
are substituted into equation (19), and then equation (6) is
solved for Arto yield Ar « 1 ns. A simulation time step of
a nanosecond or longer would not just limit spatial resolution,
but would produce a simulation with the incorrect reaction
rate. On the other hand, the use of a sufficiently short time
step would make most simulations run much too slowly to be
useful.

Next, we tumn to the long time step limit, given by the
condition s 3> 0, Now, any correlations between the positions
of reactants are eliminated after the simulation executes one
iteration of the diffusion algorithm, so the probability that
a certain A will react with a certain B is just the ratio of
the volume of a sphere of radius o to the total system
volume. Multiplying by the numbers of A and B molecules and
changing to concentrations yields the numerical rate constant
for the long time step limit:

k,\',' = %IUIfAI,
Using the same reaction rate and diffusion coefficients as
above, this equation is not valid until the mutual rms step
length is greater than around 100 nm (using 5 = 1003). A step
length this long precludes the possibility of attaining spatial
resolution anywhere near the sizes of molecules, making it not
generally useful either.

Between these limits, ky; cannot be solved analytically, so
it was calculated numerically to create a look-up table for later
use (available as supplementary information). The number of
variables was minimized by dividing all lengths by the binding
radius, leading to unitless variables: ky; At /a7 is the reduced
reaction rate, s = s/op is the reduced rms step length, and
ap/oy = 1 is the reduced binding radius. To perform the
calculation, a tabulated RDF (500 equally spaced data points,
with reduced radii from 0 to 10) was evolved over time exactly
as it would evolve in the simulation algorithm, by alternating

At = 0. 20)
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Figure 5. Method used for calculating the reduced bimolecular
reaction rate, ky; At /a,f, for irreversible reactions. A tabulated RDF
was alternately integrated with Green’s function to simulate
diffusion and set to O between r = 0 and r = [ to simulate reactions.
After steady-state was reached. the RDF after diffusion (diamonds
and dashed line) and the RDF after absorption (squares and solid
line) were saved and the area between r = 0 and r = 1 of the former
function was integrated to find the reduced reaction rate. Tabulated
RDFs for irreversible reactions extended to a reduced radius of 10,
while those for irreversible reactions extended to o, + 3; all RDFs
used 500 data points (for clarity, only every fifth data point is
shown).

diffusion steps and irreversible reaction steps. The calculation
began with either the RDF in equation (16) or with g(r) = 1
for all r > 1 and was continued until the RDF converged to a
steady-state result (figure 5).

Conceptually, diffusion of an RDF from an initial state
to its state after time Ar is computed by convolving the
three-dimensional radial distribution function with a three-
dimensional Gaussian with standard deviation s’ (analogous
to equation (4)). Because of rotational symmetry, this
convolution simplifies to the integral of the product of the
RDF and the appropriate Green’s function [14, 29], given as
gm(r. r', s):

oc
gNi.ﬁnal(r)=/ drrlam(r, ', $)gniimca(r) dr’ 1)
0

gm(r,r',s) = Z;Ir—r,[G,(r —r'y = G(r+r)]. (22)

Most of the integral in equation (21) was calculated
numerically using the tabulated RDF and the trapezoid method
[35]. The rest of the integral, from the end of the tabulated
RDF to infinity, was calculated by extrapolating the RDF with
a function of the form 1 + a/r which is the general solution
of equation (3) with the boundary condition that gy;(r) tends
to 1 for large r; a is a fitting parameter that was found using
the final 10% of the tabulated RDF. The analytic integral for
the extrapolated portion, which was then combined with the
numerical integral, is

% a
f 4arem rr',s) (1+5)
r

Ty

1
= 47r52r1 egm(r,r.s) + ;(e_ +e)+ ;—(e- —e.) (23)
2 2r
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Figure 6. The reaction rate for the numerical algorithm as a
function of the algorithm parameters, which are the rms step length
and binding and unbinding radii. The bold line (lowest line)
represents irreversible reactions. From top to bottom, the other lines
are for reversible reactions with reduced unbinding radii that are 0,
0.5. 0.7, 0.8. 0.9, 1.0 (dashed line), 1.6, 2.5, 4.0, 6.3 and 10.0.
Shown are interpolations and extrapolations from tabulated data.
extended with analytical solutions where available.
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After a diffusion step, the reduced reaction rate was
computed by numerically integrating the tabulated RDF from
0 to the reduced binding radius (figure 5):

e- = erfc

kyiAr

1
= f A rigni(r) dr. (25)
0

3
9

Afterwards, these values of gu;(r) were set to 0 to mimic the
reaction portion of the simulation algorithm. The RDF was
considered to have achieved steady-state when the reduced
rate constant varied by less than 1 part in 10° over sequential
iterations (figure 4(C)).

To improve accuracy and provide an error estimate, the
calculation was run in two directions: starting with long rms
step lengths, leading to reduced rate constants that decreased
asymptotically as steady-state was approached, and vice versa.
These results were averaged to yield best estimates for the
reduced rate constants. The difference between results was
never greater than 5%, implying that calculation errors due
to the RDF not being at steady-state are likely to be less than
2.5%. Other potential errors were minimized by increasing the
density of data points and the maximum tabulated radius until
changes in results were much less than the errors quoted above.
Also, it was confirmed that the RDF approached equation (16)
for short time steps and a step function for long time steps.

The result of these calculations is the bold line at the
bottom of figure 6, produced with a smooth interpolation
of the calculated rates. Although the figure is shown with
reduced units, this line represents ky; as a function of o,
and Ar, making it the equivalent of equation (19), but for
the numerical algorithm. The ends of the curve conform to
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the limits in equations (19) and (20), which are rewritten in
reduced form:

kyiAt
‘\‘3 = 2752, At — 0 (26)
%
kv A 47
NorL_ At — oo @7
o, 3

Thus, we have solved the forward problem, which is the
solution of the rate constant that is actually simulated in
terms of the simulation parameters. Since what is needed
is a solution to the inverse problem, which is the binding
radius that the simulation needs to use in order to reproduce a
known reaction rate, an iterative search routine was written to
invert the interpolated function. Using our Smoldyn program,
we verified that irreversible bimolecular reaction rates are
accurately simulated using a wide range of time steps.

4.3. Reversible reactions

The reversible reaction A + B <« C has the additional
complication of geminate recombinations. This topic is
addressed on a general level before we derive reversible
reaction rates for the Smoluchowski mode! and the numerical
algorithm.

The probability of a geminate recombination is denoted
by ¢. Of all the forward reactions that occur when the system
is at equilibrium, which occur with reaction rate &, a fraction
1 — ¢ are non-geminate reactions. This portion of the reactants
does not share a common history so all of their dynamics,
including the rate at which they react (k;), are completely
equivalent to the irreversible situation considered previously.
This leads to a general relationship between the irreversible
and reversible rate constants at equilibrium (true for the model,
simulations and all physical systems):

ki = (1 — @)k;. (28)

We are not suggesting that & is larger than &; because of
the physically unreasonable idea that reaction reversibility
somehow makes molecules more reactive. Instead, if a
reaction is reversible, the reactants are generated in close
proximity to each other by the back reaction, which leads
to faster reactant encounters and a higher reaction rate. The
correct value for ‘the forward reaction rate constant’ depends
on the conditions under which it was measured. If the
experimental system was at equilibrium, then there must have
been geminate reactions as well as non-geminate reactions,
leading to the measurement of the larger reaction rate constant,
ky. On the other hand, if the product was removed as fast as it
was formed, then there were no geminate reactions, leading to
the measurement of the smaller irreversible rate constant, &;.
Below, we derive results for the equilibrium situation.

4.4. Reversible reactions, Smoluchowski model

At equilibrium, the same number of A and B molecules are
produced in back reactions as are lost in forward reactions,
implying that the source of B molecules at o, exactly matches
the sink at o,. This implies that there is no net flux of B towards

A molecules outside a distance o, and, to be consistent with
zero flux and the boundary condition that g(co) = 1, the RDF
must equal 1 for all » > o,. Equation (3) was solved using
this modified boundary condition to yield the RDF for the
Smoluchowski model for reversible reactions (figure 4(B)):

op(oy ~ 1)

gsr(r)=1— Oy <1 < 0y 29)

r(oy = op)’
As before, equation (17) yields the equilibrium rate constant.
Combing the result with equation (28) yields the reversible
reaction rate and the probability of geminate recombination:

ksi

ks = 30

s 1= s )
UI

s = — 31)
Oy

The latter result [12] confirms the statement made earlier that
geminate rebinding in the model system becomes certain as
o, is decreased 10 0. It also has the intuitively reasonable
property that ¢s decreases to zero as gy, is increased to infinity.

4.5. Reversible reactions, numerical algorithm

The reaction rate for simulated reversible reactions was
computed numerically in nearly the same manner as for
irreversible reactions, although now for a series of o
values, where o, = o,/0,. While the unbinding radius
cannot be less than the binding radius in the model system,
there is no such restriction for the numerical algorithm, so
these reduced reaction rates were computed as well. Back
reactions were included in the rate computation by evaluating
the flux of the RDF into the reduced binding radius with
equation (23), and transferring it to the RDF at the reduced
unbinding radius (figure 4(D)). Conceptually, this transferred
flux forms a Dirac delta function at o, after a reaction step. To
improve numerical accuracy, the delta function was diffused
separately and then added to the RDF one step later; a diffused
delta function is simply gm(r, o, s). The reduced reaction
rates are shown with light lines in figure 6. They represent
kyr as functions of o3, o, and s, making them the numerical
algorithm equivalent of equation (30). Using an iterative
search routine, the function was inverted to solve for the
simulation parameters o}, and o, from the experimentally
known values &, and ¢.

Errors in these data are estimated to be less than 2.1%.
The numerical RDFs approached the analytical RDF in
equation (29) for short time steps and the ends of the curves
in figure 6 approach the limits found with equations (27)
and (30).

4.6. Bimolecular reactions with identical reactants

A final subtle point concerns the calculation of simulation
parameters for reactions with the form A + A — C. Using
the methods given above, the simulated reaction rate turns out
to be half as large as expected. The reason is that there are
nang possible distinct collisions for the reaction A + B — C,
whereas there are only na(na — 1)/2 distinct A-A collisions
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for A+ A — C [36], where ny and ng are the total numbers
of A and B molecules. Assuming the experimental reaction
rate was measured with many reactant molecules, the factor
na — 1 simplifies to just 4. leading to the factor of 2 of over-
counting. The easiest correction method is to simply double
all experimental rate constants for reactions with identical
reactants before calculating simulation parameters.

5. Analysis of simulated dynamics

Using the binding and unbinding radii derived above, reaction
rates with the bimolecular reaction algorithm will match
experimentally determined reaction rates for any system at
steady-state and using any length simulation time step. If
the geminate recombination probabilities are known or can
be guessed, simulation results will agree with them as well.
However, away from steady-state, reaction rates differ slightly
between reality and the model (the model treats all reactions
as though they are diffusion limited) and between the model
and the simulation. These issues are investigated here. It is
shown that the errors frequently offset each other such that
simulation results are actually closer to reality than the model
is. We also find a way to estimate the geminate recombination
probability from the reaction activation energy.

As seen in figure 4, the numerical RDF is discontinuous
at the binding radius, unlike the model result, but suggestive
of the RDF for the Collins and Kimball model [14, 17, 37].
This differs from the Smoluchowski model in that a reaction
does not always occur when reactants collide, but occurs at
a maximum reaction rate, as would arise from an activation
barrier at the binding radius. To accomplish this, the statement
that gs(r) = 0 at r = o}, is replaced with the condition [29]:

dgc(r)
ar

_ 8clop)

a Y
The new subscript ‘C” is used for the Collins and Kimball
model; to be rigorous, both sides of the equation are evaluated
at the limit of » — o¢;. As mentioned previously, the
physical picture is complicated because each A-B pair that
collides once will almost certainly collide an infinite number of
times, implying that the reaction probability at each individual
collision is infinitesimal. Despite this, equation (3) can be
solved with the new boundary condition to yield the steady-
state RDF (figures 4(E) and (F)), the reaction rate constant for
irreversible [14] and reversible reactions, and the probability
of geminate recombination for reversible reactions:

(32)

-

o2
r=1-—t r b 33
gci(r) Hop+7) > 0) (33)
470D
kei = A e 34)
ap+y
gor(r) =1~ 2% =D o <1 <0, (35)

r(ally +0p0, — 0'13') '

47020, D
kep = ——22—— (36)
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The RDFs for the numerical algorithm are seen to be similar
to those of the Collins and Kimball model (figure 4).

Suppose the reactants are maintained in a well-mixed
state. This removes all diffusion effects from the reaction
rate, making it limited only by the activation energy. In the
Smoluchowski model, the discontinuity of this well-mixed
RDF at o3, implies an infinite slope at 03, and an infinite reaction
rate (using equation (17)). In contrast, the boundary condition
of the Collins and Kimball model enforces a slope of 1/y at g,
and thence the acrivation-limited rate constant for the Collins
and Kimball model,

ke = dmo} Dy~ (38)

This rate constant is also called the intrinsic rate constant [37],
with the loose interpretation that it is the reaction rate for a
pair of molecules that are already in contact. Equations (36)
and (38) are simplified to highlight the relationship between
the Smoluchowski and Collins and Kimball models:

= kg + k] (39)

ki
ke = kg +ke,. (40)
Along with the rest of the Collins and Kimball model,
these reaction rates vary smoothly between the Smoluchowski
description when y — 0 and k¢, — oo, to a well-mixed
system when y — oo and k¢, — 0. The Collins and Kimball
model is a significant improvement to the Smoluchowski
model because it can capture a whole range of reaction types,
from diffusion limited to activation limited, while remaining
fundamentally simple.

An analogous activation-limited rate constant is calculated
for the numerical algorithm. A well-mixed RDF is diffused
over one simulation time step with equation (21) and the
reaction rate is found with equation (25) to yield

kyoAt 4w vio,[2
— = — | erfc— + 5",/ —
o; 3 s’ T

24/2

+ (s = (e —1).

@“n

This result approaches infinity as At is reduced to zero and
the simulation approaches the Smoluchowski model, while
it becomes rate limiting with long time steps. Thus, Aris a
parameter in the numerical algorithm that adjusts the simulated
dynamics from diffusion limited to activation limited, much
as y is a tunable parameter in the Collins and Kimball model.

The probabilities of geminate recombination form yet
another similarity.  From equation (37) and the model
constraint that o, 2 oy, ¢¢c can decrease towards zero but
cannot exceed o,/(op + y). Similarly, ¢y can be made
arbitrarily small by using a large unbinding radius but it has a
maximum value because the simulation ¢, cannot be decreased
below zero. As with the activation-limited rate constants, the
maximum ¢ values depend on y for the Collins and Kimball
model and A¢ for the numerical algorithm.



Stochastic simulation of chemical reactions with spatial resolution and single molecule detail

The upper limit on ¢¢ can be used to address an issue
that has been largely ignored up to this point: how is one
supposed to choose the unbinding radius for a simulation?
Using equation (28) and the curves in figure 6, it is possible
to calculate the simulation parameters o, and o, from
experimentally measured k. and ¢ values, provided that
geminate recombination data can be found. Unfortunately,
these data are nearly non-existent. A solution comes from
the Collins and Kimball model in which it is physically most
reasonable to set o, equal to o}, and to limit the rate of geminate
reactions with an activation barrier:

oc

. kCa

kca +ksi
The *C’ subscripts are retained here because the equation is
only strictly accurate with the approximations of the Collins
and Kimball model. However, the model is often a good
description of physical systems, so the relationship is also
likely to be reasonably accurate experimentally. If the
activation-limited rate constant can be estimated, equation (42)
yields ¢, which can then be used to find o, for a simulation.

Recall that a simulation can be interpreted as periodic

observations of a virtual system that evolves continuously.
Also, an exact bimolecular reaction algorithm would use the
binding radius from the Smoluchowski model and would
consider a reaction as having occurred between a pair of
molecules if they had come closer than o during a time step.
Analogous exact algorithms can be imagined for the Collins
and Kimball model or for any of several further improvements
to these classic models [18, 34, 38, 39]. While the simulation
does not reproduce any of them exactly, similarities with
the Collins and Kimball model include the profile of the
RDF. the activation energy and the geminate recombination
probability.  This suggests that the simulated dynamics,
whether at steady-state or not, are likely to be reasonably
consistent with the behavior that would be observed with
the Collins and Kimball model. Of course, the simulation
time step applies to every reaction in a simulated reaction
network, so one cannot independently control the dynamics of
multiple reactions. However, this is unlikely to have practical
consequences because differences between steady-state and
non-steady-state reaction rates are so small that they are very
difficult to measure experimentally [32, 40].

Oy = Op. (42)

6. Examples

6.1. Irreversible reaction

Our first example demonstrates that the algorithms can
accurately simulate bimolecular reactions at and away from
steady-state, using either diffusion-limited or activation-
limited dynamics. It is based on a recent experiment on the
kinetics of an acid-base reaction [32]. Starting with well-
mixed acid (AH) and base (B) molecules, the experiment was
initiated by photo-exciting the acid with a fast laser pulse.
An irreversible proton transfer occurred when an excited acid
molecule contacted a base molecule, with the reaction AH +
B — A + BH. Using transient fluorescence measurements
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Figure 7. Progress of a bimolecular acid-base reaction that starts as
a well-mixed system and approaches steady-state. The lower line is
the non-exponential Smoluchowski solution for diffusion-limited
dynamics (equation (43)) and the nearby solid circles are from a
diffusion-limited simulation. Parameters: Day = 1073 cm?s™,

Dg = 0, volume == 10° nm?, [AH]y = 3.3 x 1077 M (2000
molecules), [Blo == 0.2 M (120000 molecules), &; = 5.3 x

10°M~t s~ k= 5.1 x 10° M5~} g, = 0.73 nm, 5 = 0.063 nm,
and Ar = 0.002 ns (only every 20th point is shown for clarity);
runtime was 12 min on a Macintosh G4 laptop. The upper line is the
exponential solution for activation-limited reactions (equation (44))
and the nearby solid squares are from a more nearly activation-
limited simulation. Parameters are the same as before except &, =
6.5 x 10°M~'s™2, &, = 1.81 nm, s = 2.0 nm, and A7 = 2 ns;
runtime was 4 s.

of the acid, the authors showed that the reaction progress
was in close agreement with Smoluchowski dynamics (they
included the Debye-Hiikel corrections that are required for
ionic species, although these had minimal effect due to high
salt concentrations). Using similar parameters as those in
the experiment, the lower line in figure 7 represents the
analytically derivable Smoluchowski result {14]:

2
[AH]:[AH]Oexpl:—4ncrbD[B]0(1+ %)z] (43)

The curve has a very steep slope initially because the reactants
start well-mixed; then, it flattens out to a straight line on the
log-linear coordinates, as the system approaches steady-state.
Using the same diffusion coefficients and steady-state reaction
rate, the reaction was simulated with a very short time step to
make the simulated dynamics diffusion limited. Agreement
between theory and simulation is seen to be excellent at all
times, although stochastic effects become apparent when there
are few molecules.

The upper curve in figure 7 represents the theoretical
behavior for an activation-limited reaction, using the same
steady-state rate constant as before:

[AH] = [AH]p exp(—k[Blo?). (44)

Using a long time step, the same simulation algorithm
accurately reproduced these - activation-limited reaction
dynamics as well.
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Note that there are no adjustable parameters in either
comparison.  While it might be desirable to lower the
time resolution of the former simulation and raise it for the
latter one, this is impossible, because the length of the time
step determines whether simulated dynamics are diffusion or
activation limited. The diffusion-limited results satisfy the
stated goal, which was that the observable simulation dynamics
be as close as possible to the analytically derivable dynamics
of the model system. while the activation-limited dynamics go
an additional step. showing that it is also possible to simulate
reactions that are not described by the Smoluchowski model.

6.2. Lotka—Volterra system

To demonstrate the value of stochastic spatial simulations, we
turn to the canonical Lotka—-Volterra system, which is a simple
scheme that yields interesting dynamics. The reactions are
[36]

X+Y, = 2Y,

Y, +Ys —> 2Y> 45)

Y, -5 Z.

The bar over the X indicates that its concentration is held
constant. The system was introduced independently by Lotka
and Volterra as ecological models [41]: Y, is a prey species
that multiplies after feeding on X, and Y is a predator species
that multiplies after feeding on the prey Y. Analysis reveals
stable oscillations in the concentrations of Y, and Y, as well
as a neutrally stable stationary solution:

C[X
Yy = —.
[55:) (o5

€3

Y, = (46)
Using a simulation method that accounts for stochastic effects
but not space, Gillespie showed that the stochastic behavior
of these reactions is quite different from deterministic results
[36]. In particular, the system does not remain at the stationary
point, but develops regular oscillations with a widely varying
amplitude (dashed lines in figure 8(4)).

These reactions were simulated with the algorithms
presented here using the same rate constants and initial
condition, and with the Y; and Y, molecules distributed
randomly imitially.  Rather than including X molecules
explicitly, the first reaction was simulated as a unimolecular
reaction with a rate constant ¢;X = 10. Spontaneous
pattern formation emerged just after the simulation began, one
snapshot of which is shown in figure 8(B). This led to dynamics
that are markedly different from those found with either
deterministic results or the Gillespie algorithm. In the spatial
simulation, the oscillations are less regular, transitions are
sharper, and there are occasional extreme deviations away from
the steady-state solution. Many of these behaviors have been
seen before, although most prior results used continuously
variable reactant concentrations and/or a discrete spatial lattice
[42-44]. Thus. with each level of detail that is added to a
simulation. including first stochastics and then space, there
can be large effects on the resulting dynamics of the system as
a whole.
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Figure 8. Dynamics of a Lotka~Volterra sysiem. (4) Time course of
the number of Y| molecules shown with three different models. The
black line at Yy = 1000 is the deterministic solution for the neutrally
stable stationary point; the green dashed line, created with the
Gillespie algorithm. includes stochasticity but no spatial
information; the red solid line. created with the algorithms presented
here, includes both stochasticity and spatial detail. Note that the
behaviors are quite different for the three models, demonsirating the
value of the higher level of detail. Inset: a phase space portrait of
the data shown in the time series using the same line styles; the
deterministic solution is a point at Y, = Y1 == 1000. (B) A snapshot
of the spatial simulation shown in the previous panels, with blue
dots for Y, molecules and green ‘+° symbols for Y,. This image was
taken at time 2.6, which was during a sharp decline of Y, and a
growth of Y,, where most of this activity i$ occurring in the upper
left corner of the image. The high degree of pattern formation
emerged spontaneously from a nearly homogeneous initial state and
was very transient. Reaction parameters: X = 10%, ¢; = 0.0001,

¢2 = 0.01, ¢3 = 10, and initial values are Y, = Y, = 1000.
Simulation parameters: volume dimensions are 200 on x and y,

and 20 on z, with periodic boundaries, 10 units of time were
simulated in steps of 0.001 time units, and diffusion constants are
100 for each Y| and Y,. leading to rms step lengths of 0.447.

The Y, + Y, reaction was simulated with o, = 3.55. Runtime

was 70 s.
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7. Conclusions and outlook

The algorithms presented here allow the accurate simulation
of reaction networks with the inclusion of the stochasticity
that arises from the discreteness of molecules and with spatial
detail that can be accurate down to near the size scale of
individual molecules. Simulation algorithms for diffusion,
surface interactions and zeroth- and first-order reactions could
be made exact, meaning that simulation results were shown to
match the analytical results of an idealized model system using
any length simulation time step. However, long time steps
lead to discrepancies when different processes are coupled
together. Bimolecular reactions were made as efficient as
possible using the rule that two molecules react whenever they
are found to be within their binding radius at the end of a
time step. This parameter is calculated from the steady-state
reaction rate constant and the simulation time step using the
data in figure 6, yielding reaction rates that are exact when the
system is at steady-state and are reasonably accurate at other
times. The simulated reaction dynamics are similar to those
of a Collins and Kimball type model and, likewise, can be
characterized as diffusion or activation limited.

The examples demonstrate that these simulation
algorithms work well in practice. Bimolecular reaction rates
are simulated accurately at and away from steady-state with
either activation- or diffusion-limited dynamics. Various
levels of simulation detail with the Lotka—Volterra reactions
demonstrate that the overall dynamics of a system of coupled
reactions can be sensitive to stochastic and spatial effects.
The algorithms run quickly enough that these examples were
simulated on a laptop computer in several minutes.

These algorithms open up new avenues of research,
allowing simulation detail at a level that was previously
unattainable. They fill a gap between the more accuraie
and very computationally intensive molecular dynamics
calculations, and the much coarser differential equation based
reaction—diffusion methods. They are likely to be most useful
for systems with several thousand molecules and with complex
spatial constraints. For example, our Smoldyn program is
currently being used to examine the diffusion and reaction
of signaling molecules in the E. coli chemotaxis pathway,
including effects from intracellular macromolecular crowding
[23]. We also used these methods to investigate the repeated
bindings of a single ligand to a cluster of receptors [24].

An additional algorithm that would be useful is one for
simulations of molecule—fiber interactions, because that would
allow studies of polymer growth, microtubule dynamics, DNA
transcription and RNA translation, to name but a few examples.
With this addition, and perhaps a few others, it should be
possible to simulate essentially any biochemical process using
individual molecules and a high level of spatial resolution. At
that point, the hurdles to simulating an entire bacterium are
computational power and experimentally determined inputs
for the simulation.

Supporting information.  Implementation of the bimolecular reaction
algorithm presented here requires a look-up table for the data shown in
figure 6. These data are available via the Internet at the Physical Biology
website at hup://www.iop.org/El/journal/physbio. They are presented in
tabular form and in the code of several C language routines. The routines

execute data interpolation, extrapolation and tabular inversion so as to yield
simulation parameters from experimental values. The C code that was used to
generate the data table is included as well. The Smoldyn executable program,
source code, and sample input files are available at the author’s website:
http://sahara.lbl.gov/~sandrews/software.html.
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Appendix. Implementation details

A.l. Diffusion

In the diffusion algorithm, a uniformly distributed random
number is converted to a normally distributed number for each
spatial dimension, for each molecule, and at every time step.
The Box—Muller transformation [35] is easy to implement but
the required trigonometric calculations make this heavily used
algorithm run slowly. Instead, the use of a look-up table is
nearly as accurate and runs much faster. To create an n element
look-up table, indexed from 0 to # — 1, the ith element is

o
X; = V3er! ("“ —1>.

n

(AD)

If i is a random integer between 0 and n—1, X; is a normally
distributed random variable with standard deviation 1, and
oX; is the desired normal deviate with mean O and standard
deviation o. This equation is derived by integrating a Gaussian
probability density with unit variance to yield an error function
and then inverting the result [35]. A table is not quite as
accurate as an analytical transformation because there are
typically fewer table entries than available random numbers
although this is not a significant constraint for Brownian
dynamics because the number of possible displacements for
each molecule is the cube of the number of table entries for
a three-dimensional system with one time step, and increases
exponentially with additional time steps.

A.2. Surface interactions

Surface interactions are sufficiently easy to simulate that they
are described in the main text. The one exception is that
spatial partitions, described below, can be used to minimize
the number of molecule—surface interactions that need to be
checked.

A.3. Zeroth-order reactions

During one time step, the probability that exactly j molecules
of type A are produced is given with a Poisson distribution
[28]:

(kg A1) exp(—koAr)

Prob(j) = -
jt

(A2)
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This can be computed easily with a rejection method [35].
Some computational efficiency can be gained by calculating
the required probabilities during program initialization and
storing them in look-up tables (one for each zeroth-order
reaction). However, the overall improvement in speed is
typically negligible because only one Poisson deviate is
required for each zeroth-order reaction at each time step.

AA4. Unimolecular reactions

Rather than re-calculating the reaction probabilities given in
equation (14) at each time step, it is faster to calculate them just
once for each possible unimolecular reaction during program
initialization. Additional computational efficiency is gained
by summing these probabilities. Using i as an index for a
pathway by which a molecule can undergo a unimolecular
reaction, the reaction probabilities for pathway 1 to i are
summed to form a list of cumulative reaction probabilities. At
each time step during the simulation, a specific molecule reacts
by pathway i if a uniform deviate is less than the ith stored
cumulative probability value and greater than the preceding
value.

A.5. Bimolecular reactions

Although it complicates the implementation, spatially
partitioning the simulation volume [10, 45] is essential to
reduce the proportionality of the runtime for bimolecular
reactions from second order in the total number of molecules
to first order. To do this, the program maintains a separate
list of the molecules for each region. When checking for
bimolecular reactions, the program only needs to investigate
pairs of molecules that are in the same or neighboring regions.
In the same way, partitions also speed up the simulation of
surface interactions.

A.6. Simulation time step

Discrepancies between the simulated dynamics and those of
the model system arise from the following: spatial resolution
that cannot exceed the rms step length (figure 1). bimolecular
reaction dynamics that are closer to the Collins and Kimball
model than the Smoluchowski model, and the coupling of
molecular processes. The last error is very difficult to
analyze, so we present a practical rule-of-thumb instead. A
simulation is run with a trial time step that is short enough
to yield the needed spatial resolution and again with a time
step that is half as long. The longer time step is short
enough if the results between the two runs are essentially
the same (recalling that they will always differ somewhat due
to stochasticity); otherwise, the time step needs to be reduced.
This works because all errors decrease monotonically with
smaller simulation time steps.

Glossary

Activation limited. Chemical reactions in which the reaction
rate is fully determined by an activation energy barrier,
making the reactant diffusion coefficients unimportant.
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Binding radius. The separation at which a pair of reactant
molecules react.

Brownian dynamics. A simulation method for molecular
diffusion in which each molecule takes a step chosen from a
Gaussian distribution, at each time step.

Brownian motion. Diffusive motion of a molecule that has
been idealized to obey Fick’s laws at all size and time scales,
leading to an infinitely detailed trajectory.

Collins and Kimball model. An extension of the
Smoluchowski model that includes an activation energy
barrier for bimolecular reactions.

Diffusion influenced. Chemical reactions in which reactant
diffusion is slow enough to influence the reaction rate.

Diffusion limited. Chemical reactions in which reactant
diffusion is so slow that it completely determines the reaction
rate.

Geminate recombination. The reaction of a pair of product
molecules that were created from the same reactant molecule,
back to yield a reactant.

Mutual diffusion coefficient. The sum of the diffusion
coefficients for two reactants.

Mutual rms step length. The rms step length that is
calculated from a mutual diffusion coefficient.

Radial distribution function (RDF). The distribution of
distances between individual molecules of one type and those
of another type, averaged over every pair of molecules.

Root mean square (rms) step length. The average length of a
step for a molecule in a Brownian dynamics simulation.

Smoldyn. A general purpose stochastic spatial simulation
program that incorporates all the algorithms described here.

Smoluchowski model. An analytical model of chemical
reactions in which spherical molecules react upon collision.

Steady-state. A situation in which neither the spatial
correlation of reactants nor the bimolecular reaction rate
constant changes over time.

Unbinding radius. The initial separation between a pair of
products of a reversible reaction, introduced to reduce the
probability of back reactions.

Well mixed. A situation in which reactant molecules are
mixed uniformly throughout the simulation volume; the only
spatial correlation is that reactants do not overlap each other.
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