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The success of the human genome project has ushered in a new era that emphasizes
a systemic or integrated approach to ascertain the cellular behavior arising from complex
cellular networks. Scientists are now embarking on a quest to elucidate the organization
and control of cellular networks that underlie the phenotypic behavior of a cell; these are
the so-called “omics” such as genomics, transcriptomics, proteomics, metabolomics. Fueled
by recent advances in molecular biology providing high-throughput and in-depth data of
gene and protein interactions, it is increasingly clear that cell behaviors arise from complex
interactions among the genes and proteins through crossover and cascade regulations and
signal transductions, and thus can only be explained through a system-level understanding of
these interactions. This is the goal of systems biology, which involves application of systems
theoretic approaches and integration of experimental and computational research [1].

Control systems approaches have been instrumental in systems biology. Several
concepts from control engineering, in particular robustness, have been used to define many
characteristics of cellular behavior. Robustness refers to the ability of a cell to maintain its
functions (phenotype) under intrinsic and extraneous uncertainties [2]. In biological systems,
uncertainties can arise from the inherent stochastic nature of gene expression (intrinsic) [3]
or from variations in the nutrients and signals concentration (extraneous). There exists
a consensus in the literature that the complexity in the cellular network arises from the
regulation and control required to achieve such robust behaviors [4]. Also, one salient feature
of high robustness is the existence of fragility points in the cellular network to which a small
perturbation can lead to catastrophic consequences [5]. The understanding of robustness
and fragility trade-offs in biology can help elucidate disease development in healthy cells
and identify possible drug targets in diseased cells [6, 7]. My research focus is to ascertain
the underlying design principles of robustness in biology through model development and
analysis.

1 Reverse-engineering of Cellular Networks

A system-level understanding of the functioning behavior of a cell requires an ac-
curate representation of the underlying complex networks of gene and protein interactions.
Advances in molecular biology have provided a glimpse of such complexity through diverse
measurements of cellular activities. In systems biology, the goal of network inference or
reverse engineering is to reconstruct the complex network of regulatory interactions from
available measurements. Here, the reverse engineering effort faces two daunting problems:
network size and complexity, and incomplete and inaccurate measurements. In addition,



complete knowledge of a cellular network entails the identification of not only the network
architecture (topology) but also its dynamics. Indeed, implicit in the term “regulation” is
the importance of dynamics of these interactions. Network inference from experiments has
been extensively investigated in the field of engineering, which is known as system identi-
fication. In addition, many concepts in engineering, such as modularity, robustness, and
optimality, have been observed in many biological systems. For these reasons, engineering
approaches have been instrumental in the network inference of biological systems.

In practice, the reverse-engineering of a gene network should involve a careful design
of experiment. using prior knowledge of the system to obtain the most informative measure-
ments. Thus, this process should be iterative, in which the result from each trial is used to
better design the next experiment. Figure 1 shows one realization of this iterative process.
which includes four key steps: experiment, parameter estimation, model validation and op-
timal experiment design [8, 9]. Here, the parameter estimation from partial measurements
is decomposed into two parts: state estimator and parameter identification. The state esti-
mator involves an extension of the dynamic flux balance analysis [10] to obtain the fluxes
(reaction rates) and concentrations that minimize the rate of production and accumulation
of intermediates, called the State Regulator Problem (SRP) [11]. The availability of the full
concentration and reaction rate estimates decouples the identification of kinetic parameters
with respect to each reaction, which significantly reduces the complexity of the parameter
estimation problem. In addition, the parameter estimation follows a Bayesian formulation
for ease of additional data incorporation [12]. Model validity/invalidity is judged using
several different criteria such as model prediction error, confidence (uncertainty) region
of parameters, as well as existing biological information of the system such as robustness
to certain external/internal disturbances. If further experiments are necessary to improve
the model, model-based experiment design gives the optimal experimental conditions that
maximize the amount of information for the model identification. Here, a measure of infor-
mativeness of data, such as the Fisher information matrix, can help formulate the optimal
experiment design into an optimization problem. Application to the model development of
caspase-activated apoptosis highlighted the importance of experimental design step in the
reverse engineering of cellular systems [8].

2  System Analysis of Cellular Networks

The size and complexity of cellular networks prevent the deduction of robustness
and fragility based solely on intuition. Systems analysis can help unravel this complexity.
One such method is sensitivity analysis, in which linear sensitivities quantify how much
the system behavior changes as the parameters are varied [13]. In cellular networks, high
sensitivities point to the fragile links in the network on which cellular behavior strongly
depends. Sensitivity analysis traditionally applies to continuous systems, such as differen-
tial equations, as these models are the most common representation of engineered systems.
However, the characteristics of cellular processes, such as reactions involving low concen-
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Figure 1: Iterative reverse-engineering of biological networks.

tration of molecules (nanomolar), limit the application of classical sensitivity analysis and
thus require the development of new methodologies for analysis.

One focus in my research is the development of non-traditional sensitivity analysis
to investigate common systems in biology, in particular discrete stochastic systems and os-
cillatory behavior. In [14], sensitivity analysis for discrete stochastic systems was developed
in which the system dynamics are represented by the chemical master equation [15]. Here,
the chemical reactions occur as discrete events due to the low copy number of species in-
volved. Such behavior accurately describes many cellular processes such as gene expression
[3]. Application of traditional sensitivity analysis to continuum representations of these
systems can give incorrect results, in particular for systems with multiple steady states such
as a common gene switch [14]. The results also indicate that the design of gene network
in synthetic biology needs to address the stochastic behavior explicitly to capture in vivo
dynamics.

Another common behavior of biology is oscillatory dynamics, for example circadian
rhythm and cell cycle. In circadian rhythm, past sensitivity analyses have mainly focused
on the period and amplitude of the oscillations [16, 17, 18]. Unfortunately, there exists
very little work on the sensitivity analysis of the phase response, which underlies the syn-
chronization of circadian rhythm to environmental cues such as light. Here, I developed
the phase response analysis for oscillatory systems based on the concept of isochrons. An
isochron of a limit cycle contains all points that evolve to the same phase (phase level sets).
Different measures of phase sensitivity analysis can be derived from this approach including



the phase response curve, a common measure of transient phase response in chronobiology

19].

The application to Drosophila melanogaster (fruit fly) circadian model generated clas-

sifications in the gene regulation with respect to the period and phase modulations. The
mRNA transcriptions were found to preferentially regulate phase response, while the nuclear
translocations mostly affected the period modulation. Also, photic entrainment was found
to modulate both period and phase responses, in agreement with experimental evidence in
the literature [20].
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1 Scope and Significance of Research

The success of genome projects has ushered in a new era that emphasizes a systemic or
integrated approach, known as systems biology, to explain the overt cellular behavior based
on genes and proteins, and their complex interconnections [1]. In systems biology, the func-
tionality of a gene or protein is inferred from its (dynamical) interactions with other cellular
components. The complexity of cellular networks is akin to many man-made systems, for
example airplanes, internet networks, and integrated circuits, which result from one part de-
sign and one part evolution in technology (such as combining old modules with new parts).
Cellular networks evolve in a similar manner through gene mutations and transfers under
natural selection. Other similarities between cellular and well-engineered systems are their
modularity and hierarchy that allow high evolvability through inter- and intra-operability
among components in the networks, e.g., gene transfers within genomes and between or-
ganisms [2, 3]. Therefore, applications of methodologies from fields such as engineering,
computer science, and statistics, to problems in systems biology have been and will be
instrumental.

Systems biology lies at the interface of biology and systems theory including control
systems engineering. Control systems approaches have been instrumental in this relatively
new discipline, for example in the elucidation of chemotaxis adaptive mechanism [4], in the
identification of control motifs in regulatory networks [5], and in the unraveling of design
principles in circadian rhythm architecture [6]. Other than the familiar use of the word
“systems” as a designation for physical systems, the term here also refers to the study of
physical systems through modeling, formulation of mathematical descriptions, analysis, and
design [7]. Several concepts from control engineering, such as robustness, have diffused into
systems biology to define many characteristics of cellular behavior [2, 8]. Robustness de-
scribes the ability of a system to maintain the desired performance/behavior under intrinsic
and extraneous uncertainties [9]. Conversely, fragility represents the high sensitivity of sys-
tem behavior to a particular perturbation. In biological systems, the system uncertainties
can arise from the inherent stochastic nature of gene expression (intrinsic) [10] or variations
in the extracellular nutrient or signal concentration (extraneous). In fact, there appears to
be an intimate link between complexity and robustness in cellular functions [11]. Tools from
systems engineering, such as sensitivity, stability, and robustness analysis, have been applied
to quantify the robustness property of biological systems [6, 12]. The understanding of the
robustness and fragility properties in cellular behaviors have multiple applications, such as



the elucidation of the evolutionary design principles of cellular networks, the understanding
of disease development, and the identification of possible drug targets [2, 13].

This proposal outlines the research topics in the area of systems biology that I
will undertake. which encompass different aspects of systems approaches in biology includ-
ing system identification, analysis, and control. The research focuses on the implications
of stochastic noise and system interactions on cellular behavior, such as robustness and
fragility, using mathematical models of cellular processes and control system theory (sen-
sitivity analysis, robustness analysis, multiscale system analysis). The overarching goal is
to elucidate the causality in diseases and infections for better drug design and treatment
regimen with specific targets in the diseased cells and minimal complications to healthy
cells. New methodologies in systems theory will be developed to address problems that
are common in biology, such as stochastic and oscillatory behavior. The research appli-
cations include modeling and treatment of infections caused by quorum-sensing bacterial
populations, design of robust genetic switches, modeling and analysis of coupled oscillatory
biological systems (circadian rhythm, cell cycle, and metabolism), and model identification
of stochastic and oscillatory biological systems.

2 Modeling and Control of Bacterial Populations

In their natural environment, cells do not live independently, but rather they interact with
each other. In a bacterial colony, the survival of a single cell should become secondary to
that of the whole population. For example, cell-to-cell signalling, quorum sensing, is used
to maintain critical population density to overwhelm host defenses and to synchronize spe-
cific gene expression for the population to survive in a certain environmental niche, such as
biofilm formation and bacterial virulence [14, 15, 16]. In gram-negative bacteria, quorum
sensing (QS) is achieved by a small diffusible signal molecule N-acylhomoserine lactones
(AHLs) and a transcription factor with AHL-dependent activity. The same QS architecture
was used in creating E. coli with a built-in population control [17]. Figure 1 illustrates a
typical quorum sensing mechanism in gram-negative bacteria. Since the first discovery of
QS in V. fishert bioluminescence regulation [18], many more gram-negative bacteria were
identified to employ QS, of which several can cause infections in humans and animals, in-
cluding P. aeruginosa, Yersinia spp., and Aeromonas spp. [15]. In particular, P. aeruginosa
commonly causes acute infections in immunocompromised patients and respiratory tract in-
fections in cystic fibrosis patients [19]. Due to its importance, the P. aeruginosa QS system
has been completely characterized [20] and single-cell dynamical models of its virulence have
been created [21, 22, 23].

The goals of the research are to establish an accurate dynamical representation of
QS population, to understand the implications of QS on the sensitivity and robustness
properties of a single cell and the colony, and finally to identify the treatment options
and procedures for infection caused by QS bacteria. The focus model in this research is
P. aeruginosa virulence. The dynamics of the bacterial population will be represented
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Figure 1: A representative quorum sensing mechanism in gram-negative bacteria. Luxl
protein promotes the production of AHL signal molecules which are subsequently released
out of the cell. As the bacterial colony proliferates, the external AHL accumulates and
eventually activates LuxR-type transcription factors, which control many target genes such
as those for biofilm formation and virulence.

using a population balance equation [24], modeling the spatial dependence and the different
characteristics of the cells (level of transcription factors, protein, AHLs). Simulations of
such model will require the coupling of numerical algorithms for a hyperbolic integro-partial
differential equation [24, 25, 26] and computational fluid dynamics (such as finite volume
methods [27]). The modeling approach will also consider the inherent stochastic behavior
of cellular processes using a chemical master equation (CME) [28].

2.1  Robustness Analysis of Biological Systems

The size and complexity of cellular networks make the underlying mechanism for cellular
behavior difficult to ascertain. Systems analysis can help to unravel this complexity. One
such method is sensitivity analysis [29], in which linear sensitivities quantify how much the
system behavior changes as the parameters are varied. Apart from its traditional use in
analysis of differential equations, the sensitivity analysis has also been developed for biolog-
ically relevant systems such as stochastic [30] and oscillatory systems [31, 32, 33]. In cellular
networks, high sensitivities point to the interconnections in the system on which cellular
behavior strongly depends. Perturbations on these interconnections can potentially lead to
a large disruption in the network behavior, i.e., the network is fragile to the uncertainty in
these pathways.

Here, the system analysis will focus on the robustness-fragility consequences of quo-
rum sensing. A novel approach will be developed to characterize the global robustness



property based on the distance to bifurcation. The bifurcation distance characterizes the
smallest perturbation in parameter set that leads to a change in the behavior (for exam-
ple. from stable steady state to oscillations or chaos). Such distance is inversely correlated
with the robustness of the system behavior. A related approach using the stability mar-
gin of a linearized system has previously been utilized as a robustness measure [12], which
still represents a local analysis due to the linearization. The proposed robustness measure
will be of general applicability for use in other biological systems. The system analysis of
the QS population model will allow the investigation of robust and fragile points in the
biofilm formation and bacterial virulence behavior, which may give potential targets for
drug development.

2.2 Treatment of Quorum-Sensing Bacteria Infection

Finally, using the QS population model, the design of a bacterial infection treatment can
be posed as a control problem to maximize drug efficiency while minimizing the side effects
and/or the potential development of drug resistance. The quorum sensing molecule has
become a new target in treating infection by these bacteria [34]. Different drugs for such
infection, including AHL antagonists, common antibiotics, and possible new drug targets
based on the above system analysis, will be modeled as external input or perturbation to the
population. The control problem will then optimize the treatment regimen and determine
the maximum efficacy of each drug, under the consideration of host response, drug toxicity,
and possible emergence of resistance (especially, in antibiotic treatment).

3 Design of Genetic Switches

The understanding of design principles in biology can benefit from research efforts in the
creation of small functional gene networks. Advances in recombinant DNA technology have
allowed scientists to construct synthetic gene networks with specific functions such as a
repressilator [35] and a gene switch [36]. These techniques set the foundation for building
plug-and-play gene modules with predictable performance, which will make up a list of
standardized parts [37]. From these parts, one can construct a functional module that can
perform a specific task. Finally, the design effort in synthetic biology will become decoupled
from the fabrication, analogous to the manufacture of an integrated chip. Existing method-
ologies for designing the gene modules take different approaches, such as combinatorial
synthesis [38], design-then-mutate [39], and in-silico evolution [40]. However, none of these
approaches considers the stochastic nature of cellular processes explicitly. The inherent
stochastic noise can induce distinguishing behaviors that are not observable in continuum
models [30, 41]. Thus, these plug-and-play gene modules should be designed to robustly
perform under the stochastic noise in-vivo [42].

Gene switches represent a common building block in biological functions, for example
in lactose utilization pathways in E. coli [43], M-phage lysis-lysogeny decision [44], and

mitogen-activated protein (MAP) kinase cascades [45]. Although the network structures



that give rise to the switch-like behavior are multiple, one recurring characteristic in most
of these systems is multistability. These dynamics occurs when the system possesses more
than one possible stable steady state, depending on the initial conditions. The most telling
behavior of multistability is the hysteretic response around the switching point. From an
engineering design perspective, such response is undesirable and should be minimized in the
development of gene switches for synthetic biology. Although the proposed research will
focus on a bistable switch, the approach will be generalizable to the design of other gene
modules.

The quality of a gene switch is defined by its (i) fidelity and (i) robustness. Several
switch fidelity measures, such as sensitivity at the switch point (analogous to the Hill coef-
ficient) and size of the hysteresis region, can be defined. In a system with large stochastic
noise and/or two adjacent steady states, the cell dynamics can produce a flip-flop behavior
between “ON” and “OFF” [41]. In a novel application, the switch design will optimize the
dynamics of a gene switch to produce specific flip-flop frequencies. By combining this novel
design with a downstream signal transduction acting as a bandwith filter, the resulting net-
work can produce signal amplification only for very specific inputs that induce the switch
to flip-flop at a frequency within the bandwith. Classical control approaches, in particular
filter design, will contribute in the creation/selection of downstream signal transduction
networks.

Bifurcation analysis has been used to design a bistable gene switch based on a deter-
ministic model [46]. The bifurcation diagram maps the dynamical behavior of the system
as a function of the parameters [47]. The engineering of the switch then reduces to find-
ing the parameter combination that gives the desired switch response [43]. This approach
however does not consider the stochastic effects in gene expressions that affect the network.
The proposed methodology is to formulate the switch design in the framework of nonlinear
programming. The engineering of the gene switch will become a constrained optimization
problem. The stochastic effects will be directly coupled with the design using the stochastic
simulation algorithm [28]. The objective function will also incorporate a measure of ro-
bustness to the stochastic effects to ensure a good switch performance under noise. The
optimization framework presents a formal approach in engineering gene modules that also
allows explicit consideration of cellular dynamics, in particular stochastic behavior, to ensure
robust performance and cell viability. This formal approach will expedite the engineering
of different gene modules to achieve cell-by-design goal in synthetic biology.

4  Oscillatory Systems in Biology

Oscillatory behavior represents one common dynamics in biological systems and controls
many key cellular functions, such as cell cycle and circadian rhythm. Cell cycle regulates
a sequence of checkpoints by which a cell grows and divides into two daughter cells. On
the other hand, circadian rhythm regulates daily activities of most organisms on earth by
mimicking the 24-hour earth’s periodicity. Another system, though lesser known to oscil-



late, is the cellular metabolism, which produces reductive-oxidative cycles. Because of their
importance, each of these cycles has been the subject of intensive experimental and compu-
tational research, but only as individual systems. However, recent evidence gives support
to the existence of interactions among the systems [48, 49, 50]. For example, there exist
clinical evidence supporting the relationship between circadian rhythm and the efficacy and
toxicity of anti-tumor drugs (see [48] and references therein). The complete understanding
of organism-level regulation by circadian rhythm, metabolic and mitotic cycles necessitates
an integrative study of these systems as a whole [51]. Disturbances to the regulation of any
of these cycles have many important physiological impacts from cancer to sleep disorders.

Advances in molecular biology have made detailed mechanistic models of these
systems possible. The cell division cycle involves the regulation of several key proteins,
most notably the cyclins and cyclin-dependent kinases (CDKs) [52, 53|, with checkpoints
between the cell cycle phases (G1-S-G2-M). Models exist that describe the regulation
of cell cycle in eukaryotes (see for example [54, 55, 56]). On the other hand, the key
genes of circadian rhythm in numerous organisms, from neurospora to Drosophila to mam-
mals, have been identified [57]. For example, the mammalian circadian genes include
Per, Cry, Clock and Bmall [58]. There currently exist three models of varying detail
describing the mammalian circadian rhythm based on the knowledge of its molecular bi-
ology [59, 60]. Finally, the cellular metabolism is the most studied system among the
three for which public databases of models exist (for example, KEGG Pathway database at
http://www.genome.jp/kegg/pathway.html, MetaCyc database at http://metacyc.org/).

The modeling effort in this research concerns the integration of existing models for
each system based on evidence of interconnections in the literature. Several integrated
models will be developed based on varying details of the individual model representation
and their interconnections. The integrated model will be validated against experiments in
the literature [49, 50]. The complete model will allow the investigation of co-regulations
among the systems and responses to external inputs, as illustrated in Figure 2. The analysis
of each individual system and the integrated model using the approach developed in Section
2.1, will show how system interconnections affect the robustness properties. In addition,
the propagation of disturbances in a single system (such as those caused by diseases) to
the others can be quantified using numerical simulations, validated to known physiological
manifestations (e.g., cancer), and utilized in hypothesis generation.

5 Design of Optimal Experiments for Stochastic and Oscillatory Systems

One key aspect of systems biology is the identification of biological networks from experi-
mental data, which is known as reverse-engineering or network inference problem. The goals
of reverse engineering in systems biology are multiple: (i) understanding of cellular func-
tion, (ii) hypothesis generation, and (iii) design of experiment. Here, the challenges stem
from the high complexity of cellular networks and the lack of “quality” experimental data
(see [61] and references therein). The high complexity arises mainly from the large number
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Figure 2: Integration of oscillatory systems: circadian rhythm, metabolic and mitotic cycles.
Each cycle controls important functions in organisms, such as cell division, daily activity
cycle (sleep-wake) and energy supply. The cycles also take external inputs, for example
growth factors, light and meals.

of variables and their interconnections in a typical biological network (curse of dimension-
ality). The data quality issue relates to the identifiability problem in control theory [62],
which concerns the effective amount of information in experimental data for the network
identification. These two issues are coupled. The complexity of a network determines the
appropriate model structures that are suitable for numerical simulations [63, 64, 65, 66].
The model structure then determines the type of experimental data necessary for model
identification [63, 67]. Finally, the information contained in experimental data is limited by
measurement error (noise) and conditions (e.g., steady state measurements are of limited
use in the identification of kinetic parameters).

An efficient reverse-engineering should involve an iterative process in which the result
from each trial is used to iteratively improve the model identification [1, 61]. Figure 3 .
presents a diagram of such an iterative process. A similar procedure combining the dynamic
flux balance analysis [68] and a Bayesian parameter estimation [69] have been developed and
applied to the model identification of caspase-activated apoptosis [70]. The results of this
study, as well as other identifiability analysis, suggest that the experiment design strongly
determine the identifiability of a biological network [71].

The Fisher information matrix (FIM), arising from the field of information theory,
can serve as a measure of information content in given noisy experimental data for the
identification of system parameters [70, 72]. Experiments can then be designed to optimize
an objective function based on the Fisher information matrix, such as the determinant of
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Figure 3: Iterative reverse-engineering of biological networks. Existing models of the net-
work are used to design the next experiment to have the most informative data for pa-
rameter estimation and/or model discrimination. Model validation step uses independent
experimental data to (in)validate the model predictions. The iterative procedure stops when
a model of a desired predictive passes the model validation.

this matrix (as a representation of the volume of information). The optimization variables
typically consist of parameterizations of the experimental protocol, but can also include
the selection of key variables to be measured and the measurement frequency. Finally, the
limitations in the experimental conditions and apparatus are represented as constraints in
the optimization. The design of optimal experiment can be formulated as a constrained
(mixed-integer) nonlinear programming for which efficient numerical optimizations exist
(such as BARON [73] and MINOPT [74]).

The research focus in this area will be in the model-based optimal experiment design
for biologically relevant systems, in particular stochastic and oscillatory systems. The opti-
mization will utilize available knowledge of the system, represented by a model, to maximize
the data informativeness in the subsequent experiment of an iterative model identification.
These systems commonly arise in the modeling of biological systems, for example phage
Minfection in E. coli [44], circadian rhythms [75, 76], and cell cycle [77]. Biological rel-
evance of stochastic system comes from the nature of gene transcription and translation
which involve reactions with low copy number of molecules. At such low concentration,
the processes occur as discrete events which continuum modeling can not fully represent
[30, 41, 44]. Results from sensitivity analysis [30] give support to the heed for an explicit
accounting of stochastic effects in the design of optimal experiments. In addition, the in-
clusion of stochastic effects will allow the use of current distributive measurements of cells,
such as flow cytometry, to their full capability.



Similarly, oscillatory systems are commonly encountered in biology, as shown in
the previous section. The dynamic attributes of these systems, such as period and phase,
necessitate the development of specialized analysis [31, 32, 33]. Further, in circadian rhythm,
the most common experimental data are in the form of actographs or actograms [78], which
only contain relative phase information. Therefore, the design of experiments for oscillatory
systems needs to adopt a different methodology that is suited for the dynamics as well as
the available measurements. The proposed design of experiments will give an efficient and
accurate model identification of stochastic and oscillatory systems in biology, which also
matches the experimental procedures particular in each system.
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TEACHING INTERESTS

Rudiyanto Gunawan
Department of Chemical Engineering
University of California Santa Barbara

Santa Barbara, CA

I found my teaching experience at the University of Illinois to be enjoyable and
rewarding. I was given the opportunity to lecture the “Open-ended Experimental Design”
course (ChE469B) in the Fall of 2000, which was offered to master-level graduate students.
The course included both lecture and laboratory sections to teach how to efficiently bring
processes from design to production. The materials covered included data analysis, process
modeling and numerical simulations, model identification, design of experiments, and finally
process optimization. The course ended with capstone design projects that were carried out
in the laboratory, for example the control of crystal size distribution. At the University
of California Santa Barbara, I prepared and presented the tutorial for Bio-SPICE (a open-
source software that includes a suite of toolboxes for biological modeling, simulation and
analysis) as part of the systems biology course (ChE154) offered to undergraduates (junior
and senior) and graduate students. From my teaching experience, I learned that relevant
open-ended problems and case studies can serve as a powerful and effective teaching tool.

In the following, I outline the courses that I am interested and suited to teach with
a brief explanation of the course content and the textbooks to use.

1 Systems Biology

The exponential growth of biological data and the complexity cellular systems neces-
sitate the use of a systems perspective to fully understand how a cell accomplishes its myriad
functions. Systems biology emerged to answer this challenge by combining approaches from
science and engineering such as statistics, computer science, and systems engineering.

The systems biology course will teach students how to bring tools from mathematics,
statistics, and engineering to study biological systems. This course will explore different as-
pects of systems biology, including system modeling and analysis, data mining and network
inference, and experiment design in biology. In addition, the course will introduce various
numerical approaches (simulations, optimizations), which are required to solve problems
in systems biology. I will utilize case-studies taken from the literature, such as bacterial
chemotaxis [1], \-phage [2], circadian rhythm [3], and apoptosis [4], in which the students
will apply tools from the course and present the results as a capstone project. The course
will also incorporate hands-on experience in using available software for systems biology,
such as Bio-SPICE (http://www.biospice.org).



As systems biology is still in its infancy, there does not vet exist a textbook that
will sufficiently cover all the aspects of the course. Instead, the course will be based on
lecture notes and selected readings from the literature, such as the upcoming book System
Modeling in Cellular Biology [5]. This course will be offered to undergraduates with junior
and senior standings and graduate students.

2  Metabolic Engineering

Fueled by advances in genomics and proteomics, the understanding of cellular metabolism
enables the modification and optimization of cellular metabolic pathways, and even the in-
troduction of new pathways, to produce desired biochemical products. The aim of this
course is to introduce the basic principles and analytical methods in cellular metabolic engi-
neering. The course topics include an overview of cellular metabolism, model representation
and reverse engineering of metabolic networks, numerical optimization methods, metabolic
system analyses (metabolic control analysis and metabolic flux balance analysis), and finally
optimal design of metabolic networks. The course content will be based on the textbook by
Stephanopoulos et al. [6] with selected chapters from Voit [7] and Heinrich and Schuster [8].
The capstone project involves a critical reading of recent literature on the general subject
of metabolic engineering and a presentation by each student. The course will be open to
advanced undergraduate students and graduate students.

3  Model-Based Experiment Design

Modeling and experimental efforts form an integral approach in a hypothesis-driven
research in systems biology [9]. Mathematical models serve multiple uses in this approach
including hypothesis generation and testing, system analysis, and experiment design. The
aim of this course is to introduce different techniques in model-based experiment design.
The topics in the course include model development, simulation, and validation, system
analysis, data analysis, parameter identification, and optimal experiment design. Finally,
the course will include a capstone project in which the students apply the model-based
approach in wet-lab or in-silico experiments. The course materials are based on a textbook
on system identification by Ljung [10] and selected chapters from other textbooks by Beck
and Arnold [11] and Box et al. [12]. This course is appropriate for undergraduates with
senior standings and graduate students.

4  Other Courses

Aside from the courses listed above, I am willing to teach any undergraduate or grad-
uate courses with emphasis on applied mathematics, dynamical systems analysis, control,
and optimization, and computational approach in life science and engineering.
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