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Research Statement

My research is focused on the development of rigorous mathematical and practically feasible approaches,
algorithms and computational frameworks to analyze 1) the complexity observed in biology, 2) mathematical
models to explain details of the cellular behavior, and 3) raw data available from literature, databases and the
Web.

1. Modeling genome-scale metabolic networks

Metabolic reconstructions and stoichiometric matrices. This year the 50th anniversary of the discovery
of the double helix was celebrated and the Human Genome Project announced its completion of a “final draft”
of the DNA sequence for Homo Sapiens. In the future, the rapid accumulation of large amounts of genomic data
will persist and the analysis of genomes will continue to represent one of the most significant areas of science.

Given a particular sequenced organism, the organism’s metabolic reaction network can be reconstructed from
its annotated genome. The process of mapping genomes into metabolic networks is called metabolic reconstruction.
Metabolic reconstructions provide solid knowledge of the organisms’ reaction networks topology and stoichiometry.
The organism’s stoichiometry is represented in a stoichiometric matriz with matrix elements quantifying the
stoichiometric coefficients of the individual metabolites in each reaction.

Up to now hundreds of metabolic reconstructions have been generated and this process will exponentially
accelerate in academia and industry. Given the increasing volume of metabolic information, the following two
important questions arise: 1) Can stoichiometric matrices provide new insights into characterization of underlying
genomes? and 2) Can such matrices unravel novel knowledge of the cellular metabolism? Below I will address
these and other issues related to genome-scale stoichiometric modeling.

Genome-scale stoichiometric modeling. Kinetic modeling of the cellular metabolism has been successfully
used for a long period of time (Reich and Selkov, 1981). However elegant, kinetic modeling approaches do not
scale well to genome-scale models of complex microorganisms. The two fundamental obstacles are the lack of
kinetic data and the size of models. Indeed, values of thousands of kinetic constants are unknown. Besides, kinetic
mechanisms and regulation are also unknown for many enzymes. Even if all the data were known, additionally a
typical genome-scale model would include thousands of variables and equations to analyze. The analysis of such
huge models is a computationally challenging task.

As a remedy to this, a genome-scale modeling approach, termed flux balance analysis or stoichiometric mod-
eling, has been recently developed and reviewed (Reed and Palsson, 2003). Achievements in stoichiometric
modeling include simulation of cellular responses to addition and deletion of genes, events in external media,
yield improvements of useful biochemicals, etc. (Edwards et al., 2002).

A stoichiometric model encompasses: 1) a set of mass balances to describe distributions of steady state fluxes in
the network, 2) thermodynamics to pinpoint irreversible reactions, and 3) “boundary conditions” to set transport
fluxes across the cell’s systemic boundary. Stoichiometric models are usually highly undetermined and, so, they
are often formulated as linear programs where a specific biomass growth is optimized.

Since in stoichiometric models fluxes are viewed as independent variables, due to the omission of the functional
dependence on concentrations and kinetic data, the models provide the broadest feasible boundary of flux distri-
butions potentially available to the cell. In contrast, if all kinetic data were known, the fluxes and concentrations
would be determined uniquely.

Complexity of genome-scale stoichiometric modeling. During the last decade, the following two ap-
proaches to the flux analysis of metabolic networks have been primarily developed: 1) The linear algebra ap-
proach, based on the matrix rank and null spaces (Heinrich and Schuster, 1996), and 2) The convex analysis
approach, based on elementary flux modes (Heinrich and Schuster, 1996) and extreme pathways (Schilling et al.,
2000). Extreme pathways are the edges of the convex cone generated by the mass balances in the flux space.
Elementary modes correspond to minimal sets of reactions that can simultaneously operate with nonzero fluxes.
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Any flux distribution in the whole network can be represented as a sum of extreme pathways or elementary modes
taken with non-negative coefficients.

Stoichiometric matrices are usually rank deficient, i.e. the rank is less than the number of rows and columns.
Computation of ranks and null spaces of such big matrices is a nontrivial exercise due to numerical roundoff
errors (Golub and van Loan, 1996). It is also known that elementary flux modes and extreme pathways result in
combinatorial explosion. For instance, the central metabolism of Escherichia coli, containing only 110 reactions,
gives rise to 43,279 elementary modes (Stelling et al., 2002). At the same time, the genome-scale model of
Escherichia coli, a typical workhorse procariotic organism, includes about 800 metabolites and 1000 reactions
(Reed et al., 2003). Given that, new approaches to the analysis of stoichiometric models should be developed.

Flux-coupling analysis. In a recent study we have analyzed how the general design principles of genome-
scale metabolic networks can introduce meaningful relationships between fluxes (Burgard, Nikolaev et al., 2003)
and metabolites (Nikolaev et al., 2003). As a result, a new approach based on the computation of maximal
and minimal ratios for each pair of flux variables was developed. Mathematically, a series of equivalent linear
programs was formulated to model responses of a metabolic network to perturbations of a single reaction flux.
While a unit flux for one reaction is set, minimal and maximal values of the other reaction fluxes are computed.
Flux ratios can be classified as follows: 1) If the ratio between two fluxes ranges from zero to infinity, the fluxes
are completely uncoupled; 2) If the ratio ranges from zero to a finite constant or from a finite constant to infinity,
the fluxes are directionally coupled; 3) If the flux ratio varies between two finite constants, then the fluxes are
partially coupled; and 4) If the ratio is constant, the fluxes are fully coupled.

The flux coupling analysis provides surprisingly diversified information on stoichiometry-driven events in the
cellular metabolism. Some of these include the structural analysis of pathways and their functions, equivalent
knockouts and prediction of operons, etc. For instance, the three major metabolic pathways, glycolysis, the pentose
phosphate (PPP), and the TCA cycle show significant internal coupling while being completely decoupled from
one another. In other words, no glycolysis flux is capable of forcing flux through the TCA cycle or PPP based
on stoichiometry alone. Directionally coupled fluxes can reveal reactions that should be suppressed to prevent or
block the nonzero flux through a particular reaction (equivalent knockouts). Also, information on coupled fluxes
can be used to estimate intracellular fluxes coupled to transport fluxes that can be measured and controlled.

Computational requirements for the flux-coupling analysis are in the order of 15-40 minutes for genome-scale
models involving as many as 1,173 reactions upon utilizing the LINDO optimization solver (Lindo Systems, Inc.),
accessed via C++ on an Intel Pentium IV, 2.4 GHz, 512 MB RAM computer. CPU times for the computation
of one minimal or maximal flux ratio are in the order of milliseconds.

Prediction of operons. In prokaryotes, operons are two or more genes whose expression can be co-ordinated.
The genes organized in operons are often — though not necessarily — functionally related (e.g., they may encode
enzymes of a particular metabolic pathway). The organization of genes into an operon may allow their expression
to be co-coordinately “turned on” (induced) or “turned off” (repressed) according to the cell’s needs.

Partially and fully coupled reactions can bear nonzero fluxes only if the enzymes catalyzing these reactions
are simultaneously active. This suggests that enzyme subsets corresponding to flux-coupled reactions may be
encoded by genes from common operons. As a result, we have developed a new computational technology and
software to identify subsets of coherently regulated enzymes (Maranas, Nikolaev, and Burgard, 2003).

Comparisons of enzyme subsets with operons available from the Regulon DB database (Salgado et al., 2001)
has revealed that about 30% of the enzyme subsets, identified from the model for Escherichia coli, include two
or more genes from common operons. Almost half of such subsets correspond exactly to operons. One can hope
that when the quality of metabolic reconstructions improves, predictions from modeling studies will also improve.

Scale-free nature of flux centered metabolic graphs. To evaluate integrity and complexity of stoichiomet-
ric couplings between reaction fluxes the number N (k) of nodes/fluxes implying k active fluxes was computed.!

LIf nonzero flux vy through reaction R; assumes that reaction R must have nonzero flux vz, then flux v is said to imply flux vs.
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Specifically, our goal was to see if directional coupling among metabolic fluxes is scale free, characterized by a
relatively small number of well connected nodes, N (k) oc k=%, or random, where the number of arcs associated
with each node follows a Poisson distribution. Scale-free distributions for three different organisms were found,
Escherichia coli, a simple prokaryotic parasite inhabiting the human stomach (Helicobacter pylori), and Baker’s
yeast, a eukaryotic cell (Saccharomyces cerevisiae).

Unlike numerous previous studies (Jeong et al., 2000; Dorogovtsev and Mendes, 2003) the nodes in flux-
centered graphs denote metabolic functionalities (fluxes) and not metabolites or reactions. Two nodes from
flux-centered graphs are connected if the corresponding fluxes are fully, partially, or directionally coupled. Genes
corresponding to reactions with the most connected fluxes can be crucial in a sense that mutations or knockouts of
such genes can significantly alter the whole cell’s functioning or even lead to cell death. Therefore, the vulnerability
of the cellular metabolism to genetic alterations can now be more directly assessed.

Genome-scale metabolic pools. An organism’s stoichiometric backbone establishes certain barriers and limits
on both reaction fluxes and metabolic concentrations. In particular, these can easily thwart any biotechnological
or medical objectives if not well understood. For instance, often, the aim of metabolic engineering or medical
treatment is to increase concentrations of some chemicals inside the cell. If the changes in the needed concentra-
tions are constrained by conservation relationships, linear combinations of metabolites that do not change over
time, the concentrations may reach internal steady states long before a desired metabolic shift occurs. A simple
example is the conservation relationship [ATP] + [ADP] + [AMP] = const corresponding to a pool of adenine
nucleotides ATP, ADP, and AMP. An increase in the concentration of any metabolite will be compensated by
draining of the other metabolites from the pool.

In the ongoing research (Nikolaev et al., 2003) we have developed a new optimization-based approach to infer
meaningful information on conserved metabolic pools. Whereas steady state fluxes can be found from the analysis
of the right null space of a stoichiometric matrix, conservation relationships can be obtained from the analysis
of the left null space of the same matrix. The previously developed approaches are based on computation of all
elementary conserved moiety vectors (Heinrich and Schuster, 1996) and extreme concentration pools (Famili and
Palsson, 2003). Combinatorial explosion of such solutions in genome-scale models is well known. However, in many
practical cases, only particular metabolic pools can present interest. For instance, in biotechnology disrupting
pools constraining concentrations of useful amino acids can help increase their yields. The new approach allows
one to locate 1) all metabolites coupled within the same conserved pools; 2) metabolites absent from all conserved
pools; and 3) pools of a particular interest. In cases 1) and 2) none of actual metabolic pools is computed.

StoichPro (eCell): A stoichiometric modeling computational engine. At present there are few com-
putational tools that allow one to carry out stoichiometric modeling of metabolic networks. Some of these tools
are developed to solve specific optimization problems and in most cases the source code is closed. To efficiently
develop new algorithms and experiment with real data, I have implemented an STL/C++ stoichiometric mod-
eling environment which can be viewed as a computational “dry lab.” It includes 1) an electronic cell (eCell),
based on recursive principles; 2) administrative routines to efficiently control data flows, memory allocation, error
exceptions, etc.; 3) auxiliary utility routines, and 4) C++ abstract data types or wrappers to incorporate differ-
ent optimization engines and codes written by third parties. A complete stoichiometric matrix is never stored
and, instead, is dynamically assembled from stoichiometric equations of particular reactions. Also, a three vector
representation of sparse matrices is used. This allows one to efficiently cope with typical stoichiometric matrices
which can include up to 10® matrix elements with just less than 0.7% of nonzero elements.

2. Future plans and research directions

At present, the bioinformatics stage of using large amounts of accumulated data to form an inventory of genes
and metabolic subsystems is progressing rapidly, and we are entering a period in which dynamic behavior of
organisms will be explored by modeling. Based on this objective data-driven trend, I plan to bridge my current
research, related to genome-scale modeling, with dynamic modeling of intracellular processes. While detailed
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research plans can be influenced and shaped by academic surroundings, the following three research directions
will help me establish my own independent research.

Stoichiometric modeling. Stoichiometric modeling can be viewed as a preliminary step in the analysis of
a more complex intracellular dynamics based on kinetic properties. Metabolic regulation is a key issue in the
understanding of the cellular metabolism and I plan to investigate the role that stoichiometry and reaction network
connectivity can play in coordination of particular reaction fluxes. More precisely, I believe that stoichiometric
models can help determine and predict barriers/limits under which amplification or expression of particular
enzymes can or cannot result in a desired metabolic flux at steady state conditions.

Metabolic Control analysis. Modeling of biochemical transformations is complicated by metabolic regulation
unknown in many cases. To remedy this, a theoretic framework, termed metabolic control analysis (MCA),
has been developed to characterize the role of particular reactions in the control of concentrations and fluxes
(Kacser and Burns, 1973; Heinrich and Rapoport, 1974). Control of particular reactions differs from metabolic
regulation that is closely related to the biological function of metabolic pathways. Nevertheless, MCA has
already proven extremely useful in quantifying metabolic regulation and has been used in the study of signaling
pathways, biotechnology and drug discovery. I plan to extend MCA to the case of periodic metabolic oscillations
to study effects of positive and negative feedbacks, responsible for emergence and stabilization of periodic regimes,
respectively.

Simulation of interacting cellular populations. The study and simulation of cellular populations is another
important example of dynamical interactions in biology. This study is significant because of the necessity to
provide an adequate interpretation of population observations in terms of events occurring in single cells. In
many cases stable asynchronous regimes (e.g., with phases of intracellular oscillations uniformly distributed over
the whole population) may not be observed in small population models, while these are abundant in wet lab
experiments. Apparently, substantial attraction basins of such regimes can emerge in big population models.
Since each cellular oscillator is usually “stiff,” it can be quite difficult to numerically integrate and analyze the
whole big population model with the phases uniformly distributed over all oscillators. Indeed, in such a regime at
every time moment there will be an oscillator that undergoes a sharp transient process resulting in a very small
integration step. To overcome such difficulties, new averaging approaches and techniques should be developed.
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Teaching Statement

I believe that research and teaching dynamically complement each other. I love to teach and always try to
find an opportunity to interact with students. As a result, I have a diverse teaching experience and constantly
try to improve my teaching skills and methodology.

1. Teaching experience. As a graduate student, I had frequent meetings with up to 10-15 students at their
requests to discuss homework and exams. At the same time, I was a member of Lectureship Society “Znanie,”
(“Knowledge”), where I delivered scientific talks intended for a general audience.

While at the Institute for Mathematical Problems in Biology (IMPB), Biological Research Center near Moscow,
I taught advanced mathematical courses in the School of Natural Sciences for high school students. My students
were admitted to the Moscow State University and the Institute for Physics and Technology (PhyzTech), some of
the highest ranked educational institutions of Russia. I frequently tutored undergraduate students from several
Moscow educational institutions in formal mathematical courses in which the students struggled. After our
meetings, the students considerably improved their grades.

While at the IMPB, I co-advised Dr. Gennady Cymbalyuk, who at that time was a graduate student studying
computational neuroscience, and trained him in the theory of dynamical systems, the theory of bifurcations and
numerical analysis. I formulated a research project to study dynamics in a system of coupled neuronal oscillators
and guided Gennady through all stages of the project, starting from the formulation of a mathematical problem
through modeling, data collection, and analysis. We completed the project with a publication in an internationally
recognized journal [1]. Also, for this work Gennady was awarded a Soros’ Scholarship in Mathematics by the
International Science Foundation in Washington. Recently, I has been proud to learn that Dr. Cymbalyuk was
awarded an Assistant Professorship in the Department of Physics and Astronomy at the Georgia State University.

While at the Integrated Genomics, Inc. in Chicago, I led a team of five professional programmers to develop
a complex computer system to model cellular organisms. Although highly skillful in their professions, the pro-
grammers had relatively little experience in science, and I taught them elements of mathematics, biology, and
numerical analysis within a limited time and under strong pressure to get the job done.

While at the Pennsylvania State University, I have co-advised and trained several graduate students in research,
applied mathematics, and programming. As a result, we have prepared several papers accepted for publication
in high profile journals [2-4]. Previously, the students would spend weeks manually preparing data for computer
simulations. I held several training sessions to teach them Perl, a high level programming language designed for
efficient manipulation of arbitrary text files where a predefined data pattern can be recognized. As a result, Tony
Burgard and Priti Pharkya can now parse huge data sets (as, e.g., the KEGG metabolite and reaction database),
extract subsets of the needed data, and then transform the raw data into the form suitable for modeling. I also
discussed with Madhukar Dasika basic elements of the spectrum theory for the differential-delay equations used
in his microarray studies. I explained to Gregory Moore the limited applicability of contracting maps which he
tried to use in his protein optimization studies.

2. Teaching philosophy. I firmly believe that fundamental knowledge, including universal approaches and
techniques, should be taught first along with basic skills like problem motivation, logical reasoning, and abstrac-
tion. I consider a formal education as a starting point in a life-time learning process of professional growth. This
is why I believe that the students must be given tools for learning independently.

Students need to digest great volumes of information covered in lectures, readings, and assignments, so they
must be taught about time management, goal prioritizing, and technical writing. I view quizzes and exams not
only as a means to evaluate students but also as a way to build students’ confidence in solving problems under
a limited time. Working on problems individually or in groups can also help students develop such socially
important skills as patience, self-control and leadership.

Following a commonly accepted teaching practice, I intend to teach through examples and gradually move
from simple ideas to higher levels of abstraction and generalization. In addition to a formal evaluation, I believe in
having frequent informal conversations with students to understand their real capabilities and stumbling blocks.
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Often such informal conversations can show that students know more than they demonstrated at a certain hour
on a certain day. This is a good time to become better acquainted with students and to show sincere interest
in each individual. Students who feel that a teacher is fair, approachable, and sincere will usually make a more
determined effort to excel in their assignments.

3. Teaching interests. Most of all I wish to be seen as a resource for my students. Certainly, I am naturally
interested in teaching courses related to my research interests. This would provide me with the opportunity
to return to the classroom with new ideas inspired by current trends and achievements in modern science and
technology. I always try to use computers inside and outside of the classroom and enjoy seeing my students gain
a thorough understanding of the art of scientific computing.

With my background in applied mathematics, numerical methods, and modeling, I can teach required under-
graduate courses including Calculus, Linear Algebra, Differential and Integral Equations, Equations of Mathe-
matical Physics, Numerical Methods, etc. Also, I can teach both abstract and less formal graduate courses such as
Theory of Dynamic Systems and Bifurcations, Bifurcations in Dynamic Systems with Symmetry, Mathematical
Modeling in Biology, and Mathematical Biology.
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