Massachusetts Institute of Technology

Department of Brain and Cognitive Sciences
Cambridge, Massachusetts 02139

Dr. Dezhe Jin
MIT E25-425
Cambridge, MA 02139

December 7, 2003

Professor Rob de Ruyter van Steveninck
Biocomplexity Institute, Indiana University
Swain Hall West 117, Bloomington, IN 47405-7105

Dear Professor de Ruyter van Steveninck:

I would like to be considered for the Assistant Professor position in the Department of
Physics at Indiana University. After more than three years of postdoctoral research with
Professor Sebastian Seung at M.1.T, working on biophysical properties of neural
networks and their applications to neurobiological functions, I look forward to
establishing a solid research program in theoretical biophysics and teaching physics at all
levels at Indiana.

I had a great visit to Indiana this March. I enjoyed interacting with faculty members at
both the Physics and the Psychology Departments. With addition of two new faculty
members on experimental neurobiology, the Physics Department at Indiana provides me
with a great environment for leading a flourishing research program in theoretical
neurobiology.

In the past year, I have finished three research papers. One paper, accepted for
publication in Physical Review E, shows that a network consisting of a synfire chain of
neurons can recognize a specific spatiotemporal sequence of input spikes from sensory
neurons. Recently, I have extended this result to cover more general networks of multi-
compartmental neurons for processing arbitrary spatiotemporal sequences of input spikes.
The other two papers are the results of my collaboration with the experimentalists in
Professor Sur’s lab at M.I.T. These papers address issues on visual cortex, and currently
are in review process.

Enclosed please find my CV, list of publications, list of references, and statement of
research interests and plan. I have requested recommendation letters to be sent directly to
you from Professor Seung, Professor Sur, and Professor Graybiel of M.I.T, as well as
Professor Dubin of University of California at San Diego.

Sincerely yours,

“Zin lerh R—

Dezhe Jin
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My research focuses on the biophysical properties of neural networks and their applications to
computational models of brain functions. Consisting of a large number of intricately connected
neurons, brain is one of the most sophisticated dynamical systems in nature. Understanding
how brain computes is thus a challenging task that needs a multidisciplinary effort. Following
John Hopfield, physicists have played an increasingly important role in this effort. My goal
is to continue and amplify this trend by establishing a solid research program in a physics
department. The program will advance neurobiology with theoretical and computational tools
drawn from physics, and train graduate students and postdoctoral researchers with physics
background into neuroscientists. The program will also benefit the studies of other biological
and physical networks, including genetic networks, heart cells, colonies of flashing fireflies, forest
fires, and earthquakes (Mirollo & Strogatz (1990); Herz & Hopfield (1995)).

My research consists of two integrated parts: theoretical analysis of neural networks, and
detailed computational modeling of neurobiological functions such as feature selectivity in visual
cortex, motor control in basal ganglia, olfaction in insects and mammals, and song generation
and recognition in songbirds. The modeling will be done with close collaborations with experi-
mentalists.

Analysis of the biophysical properties of neural networks. The aim of the research
is to discover emerging properties of neural networks and elucidate their roles in neurobiological
functions. Most previous work on neural networks analyzed rate models (Hopfield (1984)), which
ignored the fact that neurons interact with individual spikes!, and approximate the neuronal
interaction as a function of the averaged spike rates of the neurons. My research has focused
and will continue to focus on biologically more realistic models — spiking models, which preserve
the pulse-coupled nature of the neural interaction.

Fast computation with spike sequence attractors.— My recent works show that, compared to
rate models, spiking models have richer and faster dynamics that can be exploited for information
processing in brain (Jin & Seung (2002); Jin (2002)). In these works, recurrent neural networks
driven by constant external inputs with different values are analytically studied with a novel
nonlinear mapping technique. The neurons are modeled as integrate-and-fire neurons, which
capture the essence of the biological process of spike generation. For a large class of network
structures, the dynamics of the networks quickly converge to dynamical attractors consisting of
periodic sequences of spikes with precise timings. These spike sequence attractors are richer in
structure compared to the attractors in the rate models, which ignore the order and timing of
the spikes (Hopfield (1984)). Moreover, convergence to the spike sequence attractors typically

!Spikes are pulses of neuronal membrane potentials that are transmitted to other neurons through their
connections.



takes only a few transient spikes, which is much faster than the transient dynamics in the rate
models.

Many important issues related to spike sequence attractors need to be explored. How do
these attractors depend on the structures of the networks? How many attractors are there
for a given set of the external inputs? How are they affected when more biological details
are added, including noise and different neuron models, etc.? What roles do these attractors
play in information processing in brain? Rate model attractors have inspired many models
of various brain functions, including associate memory (Hopfield (1984)), head direction cells
(Zhang (1996)), and neural integrators (Seung (1996)). I expect the same for the spike sequence
attractors.

Spiking neural networks and finite state machines.— The spike sequence attractors are the re-
sults of spiking neural networks driven by constant external inputs. In many cases, however, the
external inputs are spatiotemporal spikes. For example, auditory stimuli produce spatiotempo-
ral spiking of neurons in the cochlear ganglion, which in turn drives neural networks in auditory
brain stem nuclei and auditory cortical neurons (Trussell (1999)). How do spiking neural net-
works process such time dependent spike inputs?

To answer this important question, I studied a spike sequence recognizing network in a recent
paper (Jin (2003)). The network consists of excitatory neurons that are connected to form a
chain structure, and two inhibitory neurons that provide fast feedback inhibition and delayed
feedforward inhibition. Driven by spatiotemporal spikes, the excitatory neurons spike selectively
to a particular input spike sequence. Such selectivity is useful for tasks like speech recognition.
The dynamics of the network can be mapped into that of a finite state machine. Finite state ma-
chines are powerful conceptual models that have been applied to understand the computational
powers of digital computers (Sipser (1997)) and the structures of natural languages (Jurafsky &
Martin (2000)). Is it possible that neural networks driven by spatiotemporal spikes can be un-
derstood in terms of finite state machines, even when the network structures are quite general?
A positive answer to this question will greatly advance our understanding of the information
processing capabilities of spiking neural networks. Future work in this direction will also include
the effects of noise, which may turn the neural networks into Markov machines, which are the
probabilistic versions of the finite state machines.

Modeling of neurobiological functions. The goal of the research is to construct bi-
ologically detailed computational models of neurobiological functions. The modeling will be
guided by the theoretical studies of the neural networks; more importantly, it will be shaped
by experimental data. Establishing close collaborations with experimental groups will thus be
essential. The following projects are either already underway, or have strong potential for ap-
plying our results on spiking neural networks. Other projects will be added as the opportunities
for collaboration arise.

Orientation selectivity and feature maps in the primary visual cortez.— Neurons in the pri-
mary visual cortex spike rigorously when the visual stimuli have their preferred features, which
include orientation, spatial frequency, ocular dominance, etc. Across the cortical surface, the
preferred features of the neurons change smoothly to form feature maps. How do the feature
preferences of neurons arise? Several mechanisms, especially for the case of orientation se-
lectivity, are proposed and debated (Sompolinsky & Shapley (1997)). Modeling will play an
important role in clarifying this important issue, especially since there are many detailed exper-
imental results available for constraining the model parameters. Currently, we are collaborating
with Professor Sur’s lab at M.I.T. to combine experimental and theoretical efforts to tackle
various problems related to the feature selectivity in the primary visual cortex. We have already
submitted two papers (Jin et al. (2003); Yu et al. (2003)).
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Motor control in basal ganglia.— Basal ganglia is a critical structure in brain. It is driven
by various areas of cortex, and in turn influences cortical activity through thalamus (Graybiel
(2000)). Over the years, experiments have shown that basal ganglia is especially important
for motor control and learning. Damages to basal ganglia result in well-known motor control
disorders such as the Parkinson’s disease. However, exactly how basal ganglia works is poorly
understood. Recently, we have established a close collaboration with Professor Graybiel’s lab
at M.L.T. The goal is to elucidate the functions of basal ganglia by analyzing the experimental
data with novel techniques and constructing models based on the data. The work is in progress.

Olfaction in mammals and insects.- Olfaction is a complex pattern recognition problem.
A single perceived odor often consists of many chemical components; therefore, the olfactory
system must bind the multi-dimensional signal into a unified perception. Odor perception is
also largely invariant with the change of the concentration of the odor mixture. How does the
olfactory system solve such a complex problem? Recent experiments suggest that the inputs to
the olfactory system evoked by the multi-molecular mixtures are transformed into spatiotemporal
spike activities of the neurons in the olfactory bulb in mammal or the antennal lobe in insect
(Laurent (1999)). Precisely timed spikes are also observed (Stopfer & Laurent (1999)). This
is quite similar to the transformation of the external inputs to spike sequence attractors in
my recent theoretical works. There are also strong similarities between the olfactory network
structures and those studied in the theoretical works. These similarities suggest that there
is a good chance of relating the spike sequence attractors to olfaction. I plan to pursue this
possibility by constructing biologically detailed models of olfactory systems.

Song generation and recognition in songbirds.— Recent experiments have shown that singing
in songbirds is driven by precisely timed spike sequences in the neurons of HVC, a premotor area
(Hahnloser et al. (2002)). How are such sequences are generated? Experimental observations
suggest that neurons in NIF, another premotor area, are spontaneously active and drive the neu-
rons in HVC. This poses an interesting problem of generating precisely timed spike sequences
from noisy external inputs. One possibility is that HVC neurons receive inputs from a large
number of NIF neurons, hence averaging out the noise. These averaged inputs in turn generate
precisely timed spike sequences through the recurrent networks in HVC, much like the gener-
ation of the spike sequence attractors in the neural networks that I have studied theoretically.
Details, however, must be filled in with the experiments. Another interesting problem is how
the songbirds recognize the songs. Experimentally, neurons that are selective to the bird’s own
song are found in HVC and other areas (Lewicki & Arthur (1996)). Such selectivity might arise
from a network that is quite similar to the one I have studied for spike sequence recognition. I
expect to set up a collaboration with Dr. Hahnloser and Dr. Fee at M.LT. for future work in
songbirds.
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