Curriculum Vitae

Zhiyong Yang, Ph.D.
Center for Cognitive Neuroscience
Box 90999, LSRC Building, Duke University
Durham, NC 27708-0999, USA
Phone: (919) 684-6276, Fax: (919) 681-0815
Email: zhyyang@duke.edu

Name and position title

Zhiyong Yang, Research Associate

Education

1984 - 1988 BS (in Mechanics) Cheng Du Inst. of Tech, P. R. China

1991 - 1994 MS (in Theoretical Physics) Beijing Normal Univ., P. R. China

1994 - 1997 PhD (in Computer Vision) Chinese Academy of Sciences, P. R. China

Doctoral and postdoctoral research

1994 - 1997 National Laboratory of Pattern Recognition

Inst. of Automation, Chinese Acad. of Sciences, Beijing 100080, P. R. China

Supervisor: Songde Ma, Ph.D.

Research projects: Perceptual organization

Model solutions for the binding problem Shape representation and similarity

Neural dynamics of illusory brightness perception

PhD Thesis Title: Visual Binding: Theories and Models

1997 - 1998 Pattern Theory Group, Division of Applied Mathematics, Brown University Providence, RI 02912.

Supervisor: David Mumford, Ph.D.

Research projects: High order statistics of natural images

1998 - 1999 Dept. of Psychology, University of Arizona, Tucson, AZ 85721.

Supervisor: Richard S. Zemel, Ph.D.

Research projects: Probabilistic framework for combining of multiple modes of information about shape

1999 - 2003 Dept. of Neurobiology, Duke Univ. Medical Center, Durham, NC 27710. Supervisor: Dale Purves, M.D.

2003 - present Center for Cognitive Neuroscience, Duke Univ., Durham, NC 27708 Supervisor: Dale Purves, M.D.

Research projects: Visual perception of brightness, color, motion, stereopsis and space

Statistics and probabilistic models of range, hyper-spectral and

stereoscopic images based on natural scenes

Visual system structure and function Theoretical framework of vision

Teaching experience

1992-1993 Taught physics labs

1994-1997 Supervised four master degree students

Professional associations

Society for Neuroscience Cognitive Neuroscience Society Vision ScienceS Society Association for the Scientific Study of Consciousness

Honors

1996 Fellowship of the President of Chinese Academy of Sciences, P. R. China

1996 Best paper award, Inst. of Automation, Chinese Acad. of Sciences, Beijing, P. R. China.

Referees

Dr. Dale Purves Center for Cognitive Neuroscience LSRC Building, BOX 90999 Duke University Durham, NC 27708-0999

Email: purves@neuro.duke.edu

Phone: (919) 684-6122 Fax: (919) 681-0815

Dr. David Fitzpatrick Department of Neurobiology, Box 3209 Duke University Medical Center Durham, NC 27710

Email: fitzpat@neuro.duke.edu

Phone: (919) 684-5385 Fax: (919) 684-4431

Dr. James T. Voyvodic Brain Imaging and Analysis Center, Box 3918 **Duke University Medical Center**

Durham, NC 27710

Email: jim.voyvodic@duke.edu

Phone: (919) 668-2609 Fax: (919) 681-7033

Publications

- [1] Z.Yang. A twisted matching procedure for unbinding transitions of interacting membranes. *Physics Letters* **A192**, 247-249 (1994).
- [2] Z. Yang. Morphological transitions for the fixed-point potentials of the renormalization group. *Journal of Physics A Math & Gen* **28**, 1799-1806 (1995).
- [3] Z. Yang. Mobile random pinning in fluctuating strings. *Physics Letters* **A220**, 209-212 (1995).
- [4] Z. Yang. Conformal invariance and 1/f noise. *Physics Letters* **A197**, 235-237 (1995).
- [5] Z. Yang. Nonlinear superposition of receptive fields and phase transitions. *Physics Letters* **A219**, 277-281 (1996).
- [6] Z. Yang and S. D. Ma. A phenomenological approach to salient maps and illusory contours. *Network: Computation in Neural Systems* 7, 555-571 (1996).
- [7] Z. Yang and L. L. Yuan. Directed paths in random media, function approximation and nonlinear regression. *Physics Letters* **A230**, 369-420 (1997).
- [8] Z. Yang and S. D. Ma. Some generalizations and applications of standard regularization theory. *China J. of Graphics and Images* **2**, 87-90 (1998).
- [9] Z. Yang, J. Xiao and S. D. Ma. Visual orders, visual binding and representation. *China J. of Graphics and Images* **3**, 353-357 (1998).
- [10] Z. Yang and S. D. Ma. Local interaction fields and adaptive regularizers for surface smoothing and image restoration. *Network: Computation in Neural Systems* 9, 19-37 (1998).
- [11] Z. Yang and R. S. Zemel. Managing uncertainty in cue combination. *Advances in Neural Information Processing Systems* **12**, 869-875 (2000).
- [12] D. Purves, R. B. Lotto, S. M. Williams, S. Nundy and Z. Yang. Why we see things the way we do: evidence for a radically empirical strategy of vision. *Phil. Tran. Roy. Soc. Lond. B* **356**, 285-297 (2001).
- [13] Z. Yang, A. Shimpi and D. Purves. A wholly empirical explanation of perceived motion. *Proc. Natl. Acad. Sci. USA* **98**, 5252-5257 (2001).
- [14] Z. Yang, A. Shimpi and D. Purves. Perception of objects that are translating and rotating. *Perception* **31**, 925-942 (2002).
- [15] Z. Yang and D. Purves. A statistical explanation of visual space. *Nature Neuroscience* 6, 632-640 (2003).
- [16] Z. Yang and D. Purves. Image/source statistics of surfaces in natural scenes. *Network: Computation in Neural Systems* 14, 371-390 (2003).
- [17] Z. Yang and D. Purves. The Poggendorff illusion explained by the statistics of natural scene geometry. *Vision Research* (revised version under review).
- [18] Zhiyong Yang and D. Purves. The statistical structure of natural light patterns determines perceived light intensity. *Submitted*.

Papers/abstracts in referred conference proceedings

- [1] Z. Yang and S. D. Ma. Representation-induced similarity measures in vision. *Proc. Int'l Conf. on Neural Information Processing* **2**, 790-793 (1995).
- [2] Z. Yang, S. D. Ma and M. L. Qiu. Marginal effects, exchange interactions and phase transitions--A phenomenological approach to salient maps and illusory contours. *Proc. 2nd Asian Conf. on Computer Vision* 1, 259-263 (1995).
- [3] Q. F. Ke, Z. Yang and S. D. Ma. Energy-based method for road extracting from satellite images. *Proc. IAPR Workshop on Machine Vision and Application*, 337-340 (1996).
- [4] Z. Yang, S. D. Ma and Q. F. Ke. A new way to visual representation and learning. *Proc. IAPR Workshop on Machine Vision and Application*, 115-118 (1996).
- [5] Z. Yang, S. D. Ma and Q. F. Ke. Minimum description length mediated by geometrical redundancy reduction and complement space. *Proc. IAPR Workshop on Machine Vision and Application*, 482-485 (1996).
- [6] Z. Yang and S. D. Ma. From local interaction to global perceptual correlation--Judgment of apparent brightness and perception of subjective figures as a case study. *Proc. World Congress on Neural Networks*, 31-34 (1996).
- [7] Z. Yang and S. D. Ma. A similarity measure of deformable shapes. *Proc. Int'l Conf. on Intelligent Proc. Systems*, 1455-1459 (1997).
- [8] Z. Yang and S. D. Ma. How line perception emerges from points. *Proc. Int'l Conf. on Intelligent Proc. Systems*, 1460-1464 (1997).
- [9] Z. Yang and S. D. Ma. Phase transitions and bifurcation in visual perception. *Proc. Int'l Conf. on Neural Networks*, 602-606 (1997).
- [10] Z. Yang and S. D. Ma. Beyond the standard regularization theory. Lecture Note in Computer Science 1296 (Ed G. Sommers, K. Daniilids and J. Pauli, Springer-Verlag Berlin Hedelberg) 289-296 (1997).
- [11] Z. Yang, J. Xiao and S. D. Ma. Some general grouping principles: line perception from points as an example. *Proc. 14th Int'l Conf. Pattern Recognition*, 1825-1828 (1998).
- [12] Z. Yang. Invariance and scaling laws in natural images. Proc. 14th Int'l Conf. Pattern Recognition, 728-731 (1998).
- [13] Z. Yang and J. Xiao. Scaling laws in image gradient fields and texture retrieval. *Proc. 14th Int'l Conf. Pattern Recognition*, 1062-1064 (1998).
- [14] J. Xiao and Z. Yang, Q. F. Ke and S. D. Ma. Line structure extraction using multiple local and global grouping factors. *Proc.* 1st *Int'l Workshop on Computer Vision, Pattern Recognition and Image Processing*, NC, USA (1998).
- [15] Z. Yang. Scaling of local interaction energy and image similarity measure. *Proc. 1st Int'l Workshop on Computer Vision, Pattern Recognition and Image Processing*, NC, USA (1998).
- [16] Z. Yang. Image invariance, scaling features and image similarity. *Proc. Int'l Conf. Image Processing* 1, 843-846 (1998).
- [17] Z. Yang and D. Purves. Perception of objects that are both rotating and translating. *Journal of Vision*, 1(3), 325a, http://journalofvision.org/1/3/325, DOI 10.1167/1.3.325.
- [18] D. Purves and Z. Yang. The Poggendorff illusion explained by the statistics of natural scene geometry. *Journal of Vision*, 2(7), 201a, http://journalofvision.org/2/7/201/, DOI 10.1167/2.7.201.

- [19] Z. Yang and D. Purves. The probabilistic foundation of visual space. *Journal of Vision*, 2(7), 715a, http://journalofvision.org/2/7/15/, DOI 10.1167/2.7.715.
- [20] Z. Yang and D. Purves. A probabilistic framework for contrast perception. *Society for Neuroscience Abstr. 557.20* (2002).
- [21] Z. Yang and D. Purves. Statistical concatenations of luminance can explain lightness/brightness percepts. *Journal of Vision*, 3(9), 423a, http://journalofvision.org/3/9/423/, DOI,10.1167/3.9.423.
- [22] Z. Yang. Context-mediated probability vs. high-level processing in the perception of light intensity. 11th Annual Cognitive Neuroscience Society (CNS) Meeting, San Francisco, California, 2004.
- [23] Z. Yang and D. Purves. Context-adaptive maximum entropy coding of light intensity and brightness perception. Submitted to Computational & Systems Neuroscience, Cold Spring Harbor Laboratory, 2004.
- [24] Z. Yang. The statistical structure of luminance and spectral contrast in natural scenes. Submitted to Vision Sciences Society Meeting, Florida, 2004.

Talks and presentations

- [1] Representation-induced similarity measures in vision. Presented at *Intl' Conf. on Neural Information Processing* Beijing PR China 1995.
- [2] From local interaction to global perceptual correlation--Judgment of apparent brightness and perception of subjective figures as a case study. Presented at *World Congress on Neural Networks*. San Diego USA 1996.
- [3] A similarity measure of deformable shapes. Presented at *Int'l Conf. on Intelligent Proc. Systems*, Beijing, PR China 1997.
- [4] How line perception emerges from points. Presented at *Int'l Conf. on Intelligent Proc. Systems* Beijing, PR China 1997.
- [5] Scaling content of images and scaling content-based image classification and retrieval. Given at Department of Psychology State University of New Jersey Newark, Newark NJ. June 1998.
- [6] Visual combination of shading and texture. Given at Department of Neurobiology, Duke University NC. April 30, 1999.
- [7] Managing uncertainty in cue combination. Presented at 13th annual Neural Information processing Systems conference. Colorado USA December 1999.
- [8] Perception of objects that are translating and rotating. Presented at *Vision ScienceS Society Conference*, May 2001, Florida USA.
- [9] The Poggendorff illusion explained by the statistics of natural scene geometry. Presented at *Vision ScienceS Society Conference*, Florida, 2002. USA.
- [10] The probabilistic foundation of visual space. Presented at *Vision ScienceS Society Conference*, May 2002, Florida USA.
- [11] Stereo vision and statistics of natural scenes. Presented at Gordon Research Conference on Sensory coding and natural environment: Probabilistic models of perception. June 30-July 5, 2002. MA, USA.
- [12] The Poggendorff illusion explained by the statistics of natural scene geometry. Presented at Gordon Research Conference on *Sensory coding and natural environment: Probabilistic models of perception.* June 30-July 5, 2002. MA, USA.

- [13] Visual space as a statistical construct. Presented at Gordon Research Conference on *Sensory coding and natural environment: Probabilistic models of perception.* June 30-July 5, 2002. MA, USA.
- [14] The visual brain as a fundamentally probabilistic machine. Given at Department of Cell Biology and Neuroscience, Center for Computational Biology, Montana State University, Bozeman, MT, March 2003.
- [15] The statistical structure of natural light patterns determines perceived light intensity. Center for Cognitive Neuroscience, Duke University, October 2003.