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Research Interests and Plans

The accurate prediction of gene structure in eukaryotes is an important problem for
computational molecular biology and has significant biomedical implications. It can also
be a platform for testing our understanding of transcription, pre-mRNA processing and
translation. In the last 15 years, great strides have been made towards the goal of
predicting the complex intron/exon structure of mammalian genes. Yet, even the best
programs claim to accurately predict the complete coding region of a typical human gene
in less than half of the test cases. Clearly, there are significant gaps in our understanding
of the fundamental principles governing pre-mRNA processing. These gaps are even
larger than this evidence indicates because all gene prediction programs to date have been
pragmatic efforts to maximize predictive performance, rather than systematic efforts to
model the behavior of the biological system. The lessons learned from these programs
are further compromised by the limited and often unrealistic training and test sets used.

While some view this as evidence for the inadequacy of current algorithms, others
question whether it still makes sense to expect a single canonical structure for every gene.
This latter view is engendered by the growing appreciation for the widespread role of
alternative splicing in the generation of protein diversity. This process, in which a single
transcript can be spliced into different forms, dramatically complicates the gene structure
prediction problem. It also encourages a major rethinking of this problem and the
assumptions that have gone into the current approaches to its solution. My current
interests are therefore focused on analyzing the factors involved in alternative splicing
with the goal of developing a biological model for transcription and pre-mRNA
processing. This model will guide the construction of a computational model, which can
predict the most likely mRNA products produced from a primary transcript under a
particular set of conditions.

Solving this problem will require research on many fronts:

e splice site identification and modulation
tissue-specific splicing factors
splicing kinetics and co-transcriptional pre-mRNA processing
exon assembly algorithm design and development
content statistics for exons, introns, UTRs and intergenic regions
integration of similarity-based measures into gene predictors

Splice Site Identification and Modulation

The separation of splice sites from non-sites is a classic problem in motif analysis.
Although many complex methods such as neural networks, maximal dependence
decomposition and discriminant analysis have been applied, none offer dramatically
better performance than a simple weight matrix model. This suggests that a significant
part of what makes a splice site functional must lie outside the site itself. The
identification of proteins that enhance or suppress the activity of splice sites by binding to
nearby cis elements has validated this notion. Although the binding sites for these factors
have been characterized, no one has effectively used this information to improve splice
site recognition.
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Tissue-Specific Splicing Factors

Alternative splicing factors are expressed in a tissue-dependent manner. This has made it
difficult to use information about their binding sites for splice site recognition because
gene structure is not typically considered to be tissue dependent, in spite of the fact that
alternative splicing is prevalent and well-documented phenomenon. To make progress in
splice site identification, we must consider not only the adjacent sequence for splice
enhancers (or suppressors) but do so in a manner that takes into account the presence of
the factors which bind to them. This information is not readily available now but can
easily be obtained. Several large-scale full-length cDNA sequencing projects including
the RIKEN mouse project and the Mammalian Gene Collection effort are capable of
providing this information. One needs to measure the expression levels of alternative
splicing factors in each of the ~50 libraries that contribute the majority of full-length
cDNAs (and therefore gene structures and splice site positions). This assumes that each
mRNA expression level correlate with the activity of the corresponding alternative
splicing factor. If so, this data will help to study splice sites (and gene structure
generally) under more defined conditions that have been possible previously.

Splicing Kinetics and Co-Transcriptional Pre-mRNA Processing

There is increasing evidence that splicing and other pre-mRNA processing activities are
tightly coupled to transcription. Co-transcriptional splicing has a number of implications
that have yet to be exploited for gene prediction applications. For example, insertion of
transcriptional “pause” signals has been shown to affect splice site selection in vivo and
in vitro. This suggest that in some circumstances, diffusion-limited assembly of the
splicing complex may be rate limiting and that slowing transcription allows splicing to
proceed on more proximal sites. On the other hand, the carboxy-terminal domain (CTD)
of the RNA pollI large subunit has been shown to bind splicing factors, thereby tethering
them to the nascent pre-mRNA as it emerges from the polymerase complex. This has the
effect of increasing the local concentration of these factors in the vicinity of the splice
sites, creating, in effect, zero-order kinetics. By understanding factors influencing
transcriptional velocity and enabling preloading of spliceosome components on the CTD
we will gain invaluable insights into pre-mRNA splicing prediction.

Development and Testing of Exon Assembly Algorithms

In 1993, Gary Stormo and I introduced the use of dynamic programming (in the program
GeneParser) as means of finding the optimal assembly of scored introns and exons into a
gene prediction. Over the next decade, the basic method has been extended in a variety of
ways. The most important was the application of hidden Markov models by Burge and
Karlin in 1997 with the program GenScan; in the same year, Reese, et al. introduced a
program called Genie using a very similar methodology. A significant problem in
comparing the accuracy of these and related methods is that different methods are used to
assess motifs (such as splice sites) and content measures (such as codon usage), making it
impossible to determine whether performance differences are due to these factors or
improvements in the assembly algorithm. To fairly compare assembly algorithms, they
need to be compared using the same content and site statistics. To do this, I plan to build
a modular gene prediction program in which the various components can be readily
substituted. A thorough analysis of the assembly algorithms used by popular gene
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prediction programs “reconstituted” using standardized components should help dispel
confusion over the factors responsible for the differing levels of performance between
commonly used programs. It also sets the stage for building a computational model of
transcription and pre-mRNA processing.

Development of Content Statistics

Content statistics measure properties over an entire sequence interval, as opposed to site
statistics, which are measured at a particular position in a sequence. The most well
known content measure is the codon usage statistic, which measures the unequal use of
nucleotide triplets characteristic of coding exons. This class includes related measures
such as codon bias (the unequal usage of synonymous codons) and higher order
frequency tables based on hexamers or octamers, as well as measures which are less
obviously tied to the coding function such as local compositional complexity or CpG
suppression. The prediction of 5°- and 3’-UTRs will be an essential part of gene
prediction and modeling efforts; the development of new content measures will be
important in the discrimination of these areas from adjacent intergenic regions.

Application of Similarity-Based Measures to Gene Prediction

The GeneParser program was also the first to use sequence similarity as evidence for
protein coding potential. Genomic sequence intervals that contained BLASTX
alignments between the genomic sequence of interest and a protein database were
considered more likely to be coding that those that did not. Conversely, regions that
aligned to characteristically intronic repetitive sequences such as Alu and L1 repeats were
given negative scores for exon likelihood and positive scores for intron likelihood.

From a purely predictive standpoint, the use of sequence similarity in gene prediction is a
powerful adjunct. It assumes the presence of homologous sequences in the database and
will not help to identify truly novel genes. Fortunately, as more and more organisms are
sequenced to completion, the probability of encountering a gene with no paralogues
continues to fall. As aresult, this technique will be important to include in the gene
prediction system under development. However, since knowledge of homologous
sequences is clearly not a part of spliceosome functionality, it is not appropriate to
include this information in the modeling system.

Interaction with Laboratory Researchers

Expression Analysis

Since predicting the sequence of the processed mRNA is the ultimate goal of this work, it
is essential to have good experimental data on which to base our models. The high-
throughput sequencing of full-length mRNAs from mouse (RIKEN) and other mammals
including humans (MGC) are our basic working data sets. They are preferable to datasets
based on RefSeq because the sequences are derived from a relatively small number of
cDNA libraries constructed from well-defined tissues. Although there are on average
two distinct cDNA species for every known gene, this is a low level of redundancy,
which will result in a very sparse matrix of genes, tissues and spliced isoforms.
Collaboration with other laboratories studying tissue-specific alternative splicing will be
essential to create a database of sufficient depth for accurate model building. It is quite
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reasonable to expect that the first successful models of alternative splicing will involve
only a small number of very well studied genes.

Quantitation of Alternative Splicing Factors

The ability to model the behavior of splice enhancers and suppressors is contingent on
knowing the circumstances under which these motifs exert their effect. Since the activity
of splice enhancers is mediated through specific alternative splicing factors, the
expression of which can be estimated by traditional means (at the protein or nucleic acid
level). I am currently looking for a collaborator who would be in a position to do
quantitative PCR on the unnormalized RIKEN and/or MGC libraries. Even qualitative
expression data on these factors would be useful when combined with the repertoire of
spliced cDNAs from each library.

Summary

Gene prediction algorithms have evolved greatly over the last decade and have reached a
performance ceiling. By exploiting these tools for new purposes, we can leverage this
evolution to solve new problems. I believe understanding alternative splicing is one of
the most important issues facing molecular biology today. Coupling existing algorithms
with new sources of experimental data will allow us to ask much more precise questions
of our genomic sequences. The naive question, “what is the sequence of the protein
encoded by this gene?” can be replaced with, “how is my gene spliced under these
circumstances, in this particular tissue?” The ability to answer this question will depend
not only on the genomic sequence itself but also on the expression of genes that modulate
pre-mRNA processing.
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Teaching Interests

Background and Motivation

My career path was greatly influenced by a computational biology course I took as an
undergraduate. Gary Stormo, who would later become my Ph.D. mentor, taught the
course. At the time, I was working as a research assistant in a biochemistry lab doing
detailed structure-function studies on calcium binding proteins. It seemed as thought
scientists could spend his entire career laboriously working out the details of a class of
proteins, perhaps even a single protein. Gary Stormo’s class caught me at a time when I
was wondering whether I wanted continue doing this sort of work. It opened my eyes to a
whole world of problems for which data was already available—one niceded only to
analyze it in the appropriate way. This appealed to me for several reasons. Not only did
the public sequence databases enable me to spend more time analyzing data, it allowed
me to attack problems on a grander scale, problems that are more fundamental to biology
as a whole. Consequently, I have wanted to develop a course of my own to share some of
my enthusiasm for the subject and hopefully recruit new talent to the field.

Computational biology and bioinformatics mean many different things to different
people. Sequence analysis is the sub-discipline at which I feel most at home, although
expression analysis has become an important part of my own research.

The Course: Computational Analysis of Biological Sequences

Goals

I would like to create a computational biology course aimed at teaching the fundamental
principles of nucleic acid and protein sequence analysis. Computational biology has
become such an integral part of modern molecular biology that many practitioners of the
latter do not understand the fundamental algorithms on which their tools are based. The .
goal of this course is to give students an understanding of the mathematical and
algorithmic underpinnings of commonly used programs such as BLAST, Smith-
Waterman, HMMER, GenScan, etc. By better understanding these programs, students
can become more critical consumers of their output because they understand the
assumptions and limitations inherent in the programs.

Requirements

The course will be one semester in length and aimed at third- or fourth-year
undergraduates and graduate students. The course requires students to have had
sufficient molecular biology and biochemistry to understand the central dogma in detail
and have a working knowledge of enzymes of intermediary metabolism. Familiarity with
a computer language such as C/C++ is not essential but highly recommended.

Structure

The class will be taught at two levels simultaneously. The undergraduate course will not
require the use of programming skills. Problems sets would be limited to writing
pseudocode and working our problems with pencil and paper. The graduate level course
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will require the completion of additional exercises that requiring writing programs in
C/C++ or another high-level language (at the instructors discretion). In some cases,
student will be provided with a template containing code, which performs some basic
functionality such as reading in sequences, allowing the students to focus on the
biologically interesting aspects of the problem.

The function of the problem sets is to help students learn by doing. They will be graded
but will only count for about 20% of the overall grade. Ideally, I would like to have two
to three lectures a week, plus one or two study sessions with a TA where students can
work through the problems in small groups. The TA would have an important
responsibility to help the students teach themselves, rather than simply show them how to
do the problems directly. Indeed, I would probably come to these sessions for the first
few weeks to make sure the sessions were working as intended.

Class Project

If one wanted to eliminate the requirement for programming in the graduate level course,
another possibility would be to add a class project in its place. Such a project would
likely involve some sort of programming but in a less rigid sense. Students would be
encouraged to select projects related to their own research using skills learned in the
class. I would be happy to make suggestions to students unable to identify projects
applicable to their own work.

Course Outline

1. Introduction (for biologists)
a. Algorithms (DP, HMMs)
b. Computational complexity
c. Programming languages
2. Introduction (for computer scientists)
a. The central dogma of molecular biology
b. Biopolymers: DNA, RNA, protein
c. Gene structure, protein functions, phylogenetics
3. Sequence alignment
a. Pairwise alignment
i. Longest common substring
ii. Optimum global alignment (Needleman-Wunch)
iii. Optimum local alignment (Smith-Waterman)
iv. Protein alignments
1. Substitution matrices
2. Gap penalties
b. Multiple alignment
i. Dynamic programming approaches
ii. Heuristics based on multiple pair-wise alignments
iii. Other methods
c. Fast database searching
i. Hash-based methods
1. BLAST
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2. FASTA
ii. Interesting variations on BLAST program
1. PHI- and PSI-BLAST
iii. Hardware implementations
1. Peristaltic arrays, FPGAs and SIMD computers
4. Sequence Motifs: Representation and Identification
a. Consensus sequences
b. Weight Matrices
i. WMM
ii. WAM
iii. Maximal Dependence Decomposition
c. Artificial Neural Networks
i. Introduction to Neural Networks
ii. Training feed-forward back-propagation networks
iii. Scoring sequences with neural networks
d. Profile HMMs
i. HMM Introduction
ii. Training Profile HMMs
iii. Scoring sequences with HMM profiles
e. Finding motifs in unaligned sequences
i. Iterative alignment procedures
ii. Gibbs sampler
5. Sequence Assembly
a. Sequencing strategies
i. HGP: Mapping and sequencing
ii. Celera: Whole genome shotgun sequencing
iii. Pros and cons
b. Algorithms
i. Theoretical aspects
1. Shortest common superstring is NP-complete
ii. Greedy approach
iii. Overlap-layout-consensus
iv. Eulerian Paths
¢. The finer points
i. Impact of repetitive sequences
ii. Use of clone-end sequencing
6. Gene Prediction
a. Review of gene structure
b. Gene features
i. Motifs
1. Splice sites
2. Promoters
3. PolyA signals
ii. Content measures
1. ORFs and codon usage, reading frame consistency
2. Local compositional complexity
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3. CpG suppression
4. Repetitive sequences
c. Exon assembly algorithms
i. Rule-based systems
ii. Dynamic programming
iii. HMMs
d. Gene Prediction by spliced alignment
7. Molecular evolution
a. Genetic drift, neutral mutations and molecular clocks
b. Phylogenetic trees
i. Unrooted trees
ii. Rooted trees
iii. Maximum parsimony
iv. Maximum likelihood
v. Methods of invariants

Sample Homework Problems
1. Dynamic programming

a. Using a spreadsheet calculator program (e.g. Microsoft Excel) to create
the table, implement a local dynamic programming alignment algorithm
using a gap penalty of 1n+4, a mismatch penalty of -1 (match scores +1)
and the following sequences as an example:

i. ACACGCGGGGCAATGAGGTCATC
ii. ACGCCCGGCAATGAGGCACTCATC

b. Using the table created above, show the optimum traceback and the
resulting alignment

c. (extra credit) Can you find a way to automatically color the cells of the
optimum traceback?

2 . Motif analysis

a. Given a list of 50,000 aligned sites (e.g. donor splice sites), write a
program to create a Weight Matrix Model scoring function.

b. Use this program to scan a given gene sequence for splice sites. Calculate
the specificity and sensitivity of your scoring scheme.

c. (Extra Credit) Using the same sites, create a Windowed Weight Array
Model as described by Zhang and Marr (CABIOS 9(5): 499-509 (1993)).

d. (Extra Credit) Use the WWAM program to score the same sequence used
in b). Does your performance improve?
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