CURRICULUM VITAE

CONTACT INFORMATION

Name:

Hyung-June Woo

Address:

Department of Biochemistry, Rm. W201,

Weill Medical College of Cornell University,

1300 York Ave., New York, NY 10021.

E-mail:

hyw2001@med.cornell.edu

Phone:

(212) 861-3858 (cellular)

(212) 746-4237 (office)

EDUCATION

Ph.D., 1997, Chemistry, University of California, Berkeley.

(Adviser: Professor David Chandler).

B.S., 1993, Chemistry, Korea Advanced Institute of Science and Technology.

PROFESSIONAL EXPERIENCES

2002 – present Postdoctoral Associate,

Department of Biochemistry,

Weill Medical College of Cornell University,

New York, NY.

2001 – 2002 Postdoctoral Associate,

Department of Chemical Engineering,

University of Massachusetts,

Amherst, MA.

1999 – 2001 Postdoctoral Associate,

Department of Chemistry, Iowa State University,

Ames, IA.

1997 –1999 Instructor, Republic of Korea Army Chemical School,

Chunnam, South Korea (mandatory military service).

RESEARCH EXPERIENCES

- Computational biophysics of proteins (works currently in progress).
 - Grand canonical Monte Carlo simulation of water with proteins.
 - Free energy calculation of the binding affinity of ligands to enzymes.
- Nonequilibrium thermodynamics and statistical mechanics.
 - · Theoretical formulations; statistics of trajectories and hydrodynamics .
- Phase behavior and glassy dynamics of fluids in porous media.
 - Modeling of Vycor glasses and fluid adsorption.
 - Equilibrium and dynamical simulations of coarse-grained lattice models.
- Statistical mechanics of phase transitions in simple fluids.
 - Mean-field theory of ice phase equilibria.
 - Density functional theories of hard and soft sphere fluids.
 - Theory of freezing in weakly anisotropic fluids and colloidal systems.
- Statistical mechanics of phase transitions in complex fluids
 - Theories of self-assembly in amphiphilic mixtures.
 - Mesoscopic correlations in bicontinuous microemulsions.
 - Elastic properties of amphiphilic layers and membranes.

PUBLICATIONS

- 1. H.-J. Woo and B. Roux, Grand canonical Monte Carlo in the generalized solvent boundary potential, submitted (2003).
- 2. H.-J. Woo, Statistics of nonequilibrium trajectories and pattern selection, *Europhys. Lett.*, **64**, 627 (2003).
- 3. H.-J. Woo, Variational formulation of nonequilibrium thermodynamics for hydrodynamic pattern formations, Phys. Rev. E, 66, 066104 (2002).

4. H.-J. Woo, F. Porcheron, and P. A. Monson,

Modeling desorption of fluids from disordered mesoporous materials, submitted (2003).

5. H.-J. Woo and P. A. Monson,

Mean-field theory of ice phase stability,

J. Chem. Phys., 118, 7005 (2003).

6. H.-J. Woo and P. A. Monson,

Phase behavior and dynamics of fluids in mesoporous glasses,

Phys. Rev. E, 67, 041207 (2003).

7. H.-J. Woo, L. Sarkisov, and P. A. Monson,

Mean-field theory of fluid adsorption in a porous glass,

Langmuir, 17, 7472 (2001).

8. H.-J. Woo and X. Song,

Self-consistent theory of orientational order and fluid-solid equilibria in weakly anisotropic fluids,

J. Chem. Phys., 116, 4587 (2002).

9. H.-J. Woo and X. Song,

Freezing and orientational order in weakly anisotropic fluids,

Phys. Rev. E, 63, 051501 (2001).

10.H.-J. Woo and X. Song,

Functional integral formulations for classical fluids,

J. Chem. Phys., 114, 5637 (2001);

11.H.-J. Woo, C. Carraro, and D. Chandler,

Assembly of extended interfaces and micelles: Charge frustrated models of amphiphilic mixtures,

Faraday Discussions, 104, 183 (1997).

12.H.-J. Woo, C. Carraro, and D. Chandler,

Quantitative molecular interpretation of curvature elasticity of saturated surfactant monolayers,

Phys. Rev. E, 53, R41, (1997).

13.H.-J. Woo, C. Carraro, and D. Chandler,

Quantitative molecular interpretation of mesoscopic correlations in bicontinuous microemulsions,

Phys. Rev. E, 52, 6497 (1996).

14.H.-J. Woo, Y. I. Kim, and E.-K. Lee,

Effect of Perturbation on the area-preservation map,

Int. J. Bifurcation Chaos, 4, 137 (1994).

15.H.-J. Woo, E. K. Lee, and E.-K. Lee,

Generalization of the Curie-Weiss model to the D-dimensional spin system,

Bull. Korean Chem. Soc., 14, 485 (1993).

Conference Prceedings

1. H.-J. Woo, L. Sarkisov, and P. A. Monson, Understanding adsorption hysteresis in porous glasses and other mesoporous materials,

Studies in Surface Science and Catalysis, 144, 155 (2002).

MISCELLANEOUS SKILLS

- Scientific programming: C, Fortran 90, parallel programming in MPI.
- Biomolecular simulation package: CHARMM.
- Unix system administration experiences on Linux, AIX, SGI, and Digital Unix.