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Dear Professor van Steveninck:

In submitting an application for the faculty position at the Biocomplexity Institute, I
would like to start by introducing myself with some details not listed specifically in the enclosed
C.V: 1 have received a Ph.D. in 1997 in chemistry from U.C. Berkeley working under Professor
David Chandler majoring in theoretical chemistry, and after completing 2 years of national
service in Korea, have been working as a postdoctoral researcher at Iowa State University,
University of Massachusetts at Amherst, and now at Cornell medical school in New York City.
As a graduate student at Berkeley, my research centered on the applications of statistical
mechanics and thermodynamics to physical chemistry, and more specifically, on theoretical
studies of various self-assembly processes in complex fluids, and in particular, of surfactant
mixtures such as micelle formation, lamellar phases, and bicontinuous microemulsions, and have
acquired a solid background in analytical theories of phase transitions, liquid state theories, and
complex fluids.

While at Iowa State, I have worked on applying and extending density functional
theories along with molecular simulations to the freezing of anisotropic fluids. At UMass, I had
the opportunity of gaining experience in some of the research areas of chemical engineering, and
molecular thermodynamics in particular, by studying properties of gas adsorption and dynamics
in mesoporous materials, and modeling the phase coexistence properties of network-forming
fluids such as water. Currently at Cornell, I am expanding the breadth of my research experience
to computational biology, by working on projects of developing computational methodologies
for applications to structural biology; implementations of the grand canonical simulation
methods for the solvation of proteins, and calculations of the free energy of binding of ligands to
enzymes.

Over the postdoctoral years, I have also been independently pursuing a theoretical study
of nonequilibrium dynamics and hydrodynamics, and in particular, the statistical mechanical link
between thermodynamics and hydrodynamics far from equilibrium. Preliminary accounts of the
work have been published last year, and in this month. The work, if pursued and developed
further aggressively, will have practical applications to areas in physical chemistry, particularly
in theories of reaction rates, and stochastic dynamical description of biomolecular processes as
described in more detail in the research plan enclosed. I believe the topic is especially promising
as a research area to be explored in the Biocomplexity Institute at the Indiana University, since it
can potentially provide a well-founded physical basis for the thermodynamic driving force of
biological organizations.



With a firm background and research experiences in various fields of theoretical
chemistry, and in particular, statistical mechanics of simple and complex fluids, I believe I will
be able to make worthwhile contributions to the overall research efforts of the Institute with
the development and applications of the theory of nonequilibrium dynamics to biophysical
processes and complex fluids, while effectively performing other duties of the University with
an appointment at the Department of Chemistry.

Please find enclosed the C.V., Research Plan, and copies of a recent paper published. In
addition, I have arranged for the recommendation letters to be sent from Professor David
Chandler, Department of Chemistry, University of California, Berkeley; Professor Benoit Roux,
Department of Biochemistry, Weill Medical College of Cornell University, and Professor Peter
Monson, Department of Chemical Engineering, University of Massachusetts, Ambherst. Please let
me know if there is any further information which could help assess my qualifications. I look
forward to the opportunity to discuss further my backgrounds and the possibility at the Institute.

Sincerely,

N s

Hyung-June



Research Plan
Dynamics of nonequilibrium processes: hydrodynamics, stochastic

dynamics, and their applications in biological systems

H.-J. Woo

Introduction

The central theme of my research plan is the study of nonequilibrium processes using statistical me-
chanics, stochastic dynamics, and transport theory. Description of nonequilibrium processes, such as
hydrodynamic pattern formations, networks of mutually catalyzing biochemical reactions, or the morpho-
logical development of embryos, remains as one of the main challenges of physical sciences. Many aspects
of the phenomena observed in nonequilibrium dynamical processes closely parallel the phenomenologies
of equilibrium phase transitions. The dynamical equations of motion governing the time-evolution of the
relevant macroscopic variables are intrinsically nonlinear, and a plethora of patterns and self-organized
structures arise as the instabilities of the nonlinear equations develop [1], as in phase transitions where
the equation of state of one phase becomes unstable toward another.

Recent developments both in physical sciences and molecular biology have accumulated much of the
necessary conceptual foundations as well as factual data of building blocks, to allow for attempts to
provide global and quantitative descriptions of such complex, self-organizing systems. I plan to pursue
systematic and quantitative studies of such systems, both on the fundamental level by extending currently
available theoretical formulations, and on the more specific level by applying the tools to model systems
of hydrodynamics, molecular dynamics, and biological systems.

Theoretical study of nonequilibrim dynamics and hydrodynamics

One of the most well-characterized classes of self-organizing phenomena far from equilibrium is the hy-
drodynamic pattern formation, such as the Rayleigh-Benard convection or the Taylor-Couette flow [1].
Currently remaining unsolved is the ‘pattern selection problem,’ the question of which of the newly-
emerged multiple solutions would be most stable in reality. A more general formalism appears necessary,
encompassing not only the deterministic hydrodynamic solutions, but also the stochastic deviations which
become non-negligible near the instabilities.

As a possible candidate for such a theory, I plan to pursue further an idea that was proposed re-
cently [2, 3], based on the Boltzmann entropy of hydrodynamic states in the microcanonical ensemble.
An explicit expression can be derived for the probability distribution of the time-dependent trajectories of
hydrodynamic variables, from which the conventional Navier-Stokes-type deterministic solution emerges
as the extremal path [3]. An immediate goal in this direction will be to derive from the probability of
trajectories the stationary probability distribution of hydrodynamic variables in nonequilibrium station-
ary states. The method for the derivation has in fact been developed and used previously in similar
situations [4, 5, 6]. The results will be tested for the experimental data of pattern formation in the
Rayleigh-Benard convection; in particular, regarding the selection and distribution of wave-numbers of
the roll states [7].



Stochastic dynamics of chemical and biochemical processes

In molecular systems, it is often of interest to study the dynamical evolution of “reaction coordinates,”
collective degrees of freedom of interest undergoing stochastic evolutions due to the coupling to the bath
[8]. The dynamical evolution equation, such as the Langevin or Fokker-Planck equations, involves the
potential of mean force or free energy, which arises from the collective effects of the bath on the reac-
tion coordinates, and is a highly nonlinear, multi-dimensional quantity in general. The computational
techniques for calculations of such a potential of mean force are now well-established, and are being used
extensively in computational biology of proteins [9). The classic Kramer’s theory of reaction rate (8],
based on the analysis of the stochastic dynamics of a one-dimensional reaction coordinate on a symmetric
bistable free energy surface, forms the theoretical foundation of much of the modern chemical applications
of the rate theories. In many systems of interest, however, a minimal description of the system requires
multi-dimensional reaction coordinates, whose study so far has only been made possible with direct nu-
merical simulations of the stochastic dynamics. In particular, the dynamical evolution of the reaction
coordinates in a multi-dimensional free energy surface is described by the equation of motion only locally,
and the global statistics of the multiple possible pathways from one stable state to another and their
associated rate constants cannot be obtained easily.

The nature of the problem is in fact closely related to the hydrodynamic case described in the previous
section. A more general formulation for the global statistics of the dynamical evolution of reaction coordi-
nates is desirable, which would yield the Langevin-type equation as its extremal Euler-Lagrange equation
describing the most probable time-evolution. More specifically, a nearly-straightforward adaptation of the
formalism of Ref. [3] should be possible, in which the reaction coordinates, potential of mean force, and
the diffusion coefficients would replace the hydrodynamic variables, entropy production, and the transport
coefficients, respectively. The formulation of a similar theory would yield an expression for the probability
distribution of the trajectories of reaction coordinates, and the relative probabilities as well as rates of
multiple pathways, each locally stable on the multi-dimensional free energy surface, could be obtained.
A first step will be to derive known results of the Kramer’s theory [8] using such a path integral-type
formalism, and examine regimes in the parameter space inaccessible within the convectional theory.

Of also interest will be possible applications to simulations of dynamical processes using the method
of the transition path sampling [10], whose recent development has had a great impact on studies of
a variety of dynamical processes. In transition path sampling simulations, Monte Carlo samplings are
performed on the trajectory space, allowing one to obtain information of the most relevant pathways and
intermediates. With weights of arbitrary trajectories given theoretically, such Monte Carlo samplings
could also be performed on coarse-grained reaction coordinates evolving non-deterministically.

As a first multi-dimensional application, I plan to consider the diffusion of potassium ions through
the membrane protein, the KcsA channel, which plays a pivotal role in many physiological processes
in biological cells. The potassium channels are proteins spanning the cell membranes, regulating the
overall concentration gradient of potassium ions and the action potential between the cytoplasm and the
exterior, and allows for the selective conduction of potassium ions [11]. An important advance in our
understanding of the detailed mechanism of ion conduction was the calculation of the potential of mean
force of ions on the channel with computer simulations [12]. It was revealed that 2 or 3 ions occupy
an alternating series of well-defined local free energy minima along the selectivity filter, allowing the
conduction via the “knock-on” mechanism. Since multiple ions are involved the potential of mean force
is multi-dimensional, and multiple pathways exist within the surface. Currently one needs to perform
Brownian dynamics simulations, where the Langevin equation with the potential of mean force and the
diffusion coefficient as the inputs is integrated numerically [13], to obtain information regarding the rate as
well as relative importance of various pathways. With the theory giving the global probability distribution
of all possible trajectories, one would be able to obtain the relative populations of pathways as well as
their rates analytically. In particular, a realistic and well-controllable model of the free energy landscape
of the channel could be devised based on the published simulation data Ref. [12], and the results of the
theory compared with those from direct simulations.



Molecular motors: mechanism of work production in biological cells

A potentially fruitful application of the studies
of nonequilibrium dynamics on the fundamental ADP. P
levels described above is the study of the mech- ATP H
anism underlying the operations of the motor r /'_/'

proteins within biological cells. Motor proteins R e ] CARGO
are the biological equivalents of the macroscopic Vo fext
engines, driving a wide variety of cellular pro- <<<<<<<<
cesses ranging from muscle contraction, cell di-
vision, and various cytoplasmic transport mech-
anisms of biochemical materials [15]. With re- Figure 1: A cartoon of a molecular motor propelling
cent developments in molecular and structural itself along a filament. Reproduced from Ref. [14].
biology revealing in unprecedented detail the

molecular mechanisms of the various constituent proteins involved in such processes, it should now be
possible to combine theoretical studies of the foundations underlying the operation of such microscopic
engines based on simplified models [16] with the realistic molecular structural information. It is likely
that such studies of the principle of work production on microscopic scales should accompany the at-
tempts to fabricate artificial machines on the nanoscale, which are being proposed in the recent drive for
nanotechnology.

On the fundamental level, the switch from the macroscopic
to microscopic scales entails a few changes in the characteris-
tic physics of the operation of an engine: fluctuations become
non-negligible [18], and the well-controlled temperature gradi-
ent, which forms the basis of heat engines in the macroscopic
scale, becomes infeasible [14]. Instead, molecular motor proteins
utilize the chemical energy released by the hydrolysis of ATP
to ADP, to propel themselves uni-directionally. As prominent
examples, myosin and kinesin, which power all muscle move-
ments, propel themselves along the molecular “railway track” of
actin or microtubule filaments [17]. Figure 1 shows a schematic
arrangement of the constituents involved in such a movement.

In both cases, the “power stroke,” a molecular equivalent
of the expansion stroke of a piston in a heat engine, involves
an elementary movement step of the motor protein along one
unit of the polymerized filament, driven by the conformational
change induced from the binding of ATP (ADP+P;). Denoting
the two conformational states as a and 3 connected by the inter-
conversion process

ko
a+ATP = B+ ADP +P,, (1)
kos

one can construct a minimal model and utilize the following Figure 2: Molecular structures of the
stochastic equation: myosin complex moving along the actin
filament. Reproduced from Ref. [17].
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and an analogous equation for pg, where p, = pa(z,v) is the
probability of finding a protein with the center of mass position = along the filament, velocity v, and
in the conformational state o, m is the mass of the protein, and kg7 is the Boltzmann constant times



temperature. C's denotes the concentration of a species A. Equation (2) is a Fokker-Planck equation, with
source terms accounting for the inter-conversion process. Key parameters of Eq. (2) are the potentials of
mean force W, (x) and Wg(x) of the two states along the coordinate, and the rate constants, k.g and kgq.

Based on the formulation described above, a two-sided approach to the problem is possible: on the one
hand, one can study the general physics of Eq. (2); the stochastic dynamics of a two-state system with
reversible inter-conversion processes far from equilibrium, riding on the periodic potentials of mean force,
for which simple model functional forms can be assumed. The properties of a Brownian ratchet along
a periodic asymmetric potential had been considered previously as a general model for various physical
systems [19]. Equation (2) adds a novel feature to such a model, the mechanism of the two-state inter-
conversion with different potentials. Whereas the asymmetry of the periodic potential acts as the source
of the net directed motion of the Brownian particle in the conventional models, it is the chemical potential
of ATP, and the resultant asymmetry of the reaction (1), that drives the motion in Eq. (2).

Equally important in the overall efforts to understand the operations of the motor proteins will be
the study of realistic molecular models based on the known crystal structures of the constituents [17],
which would ultimately yield the appropriate values of the parameters such as W,(z) and kg of the
stochastic model, and allow for quantitative comparisons with experiments. The primary tool of the
computational study will be the calculation of the potential of mean force, both for the conformational
inter-conversion process of the protein, as well as the periodic free energy profiles W, (x) and Wg(z). For
the conformational isomerization process, one can utilize the root-mean square deviation (RMSD) of the
atomic coordinates from a fixed specified structure as the reaction coordinate, and perform free energy
calculations via umbrella sampling methods [9]. The known X-ray crystal structures of the two isomers
a and B of myosin [20, 21] can be defined as the target structures of the RMSD reaction coordinate.
With the free energy profile connecting the two conformational states, one could estimate the rates using
the transition state theory or its refinements, and ultimately the new theoretical approaches outlined
in previous sections. The calculation of the periodic potentials along the filaments could be done in a
number of ways: one possibility is to employ the continuum electrostatic treatment, the Poisson-Boltzmann
method, where the interaction free energy between two proteins in solution is calculated by numerical
solution of the Debye-Hiickel-type Poisson equation of electrostatics [22].
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