Cytoskeleton and Cell Motility
V.1 COORDINATORS
V.2 PARTICIPANTS
V.3 INTRODUCTION
V.4 SPECIFIC RESEARCH OBJECTIVES V.5 BACKGROUND AND SIGNIFICANCE
- V.5.i The Microtubule Cytoskeleton
- V.5.ii The Mitotic Spindle Apparatus
- V.5.iii Organelle Transport by Motors
- V.5.iv Actin Networks
- V.6.i Subproject 1 - Microtubule Plus-end Interacting Proteins
- V.6.ii Subproject 2 - Microtubule Interactions with the Cortex
- V.6.ii.a Advantages of C. elegans Model
- V.6.ii.b Aims
- V.6.ii.c Methodology
- V.6.ii.c.1 Identification of regulators of astral microtubule dynamics and interactions
- V.6.ii.c.2 Develop approaches for quantifying astral microtubule plus-end behavior and force generation; and measure changes in those parameters as a function of position in the embryo, stage of mitosis, and presence vs. absence of selected proteins
- V.6.ii.c.3 Mathematical models of rotational alignment, spindle asymmetry, and spindle rocking, based on measurements and predictions
- V.6.iii Subproject 3 - What Mechanisms Drive the Movement and Positioning of Subcellular Elements?
- V.6.iii.a Fast Axonal Transport
- V.6.iii.b Vesicle Transport in Embryos
- V.6.iii.c Modeling Transport Mechanisms
- V.6.iv Subproject 4 - Experiments on the Actin Cytoskeleton
- V.6.iv.a Introduction
- V.6.iv.b Background and Significance
- V.6.iv.c Aims
- V.6.iv.d Biochemical Assembly of F-actin: Thermodynamics
- V.6.iv.e Construction of a Composite Actin Network to Mimic Cytoskeletal Mechanics
- V.6.iv.e.1 Introduction
- V.6.iv.e.2 Preliminary Results
- V.6.iv.e.3 Hypothesis
- V.6.iv.e.4 Methodology
- V.6.iv.e.5 Model
- V.6.iv.e.6 Significance
- V.6.v Subproject 5 - Computational Modeling of the Actin Cytoskeleton
- V.6.v.a Hybrid Stochastic/Reaction-Diffusion Model
- V.6.v.b Minimum Model of the Globally Interconnected Cytoskeleton
- V.6.vi Subproject 6 - Intracellular Study of Cytoskeletal Viscoelastic Properties
V.8 Timeline