
Design Document For COMPUCELL and BIOLOGO

By: Trevor M. Cickovski
University of Notre Dame

Computer Science Graduate Student
College of Engineering

tcickovs@nd.edu

Under Supervision Of:

Jesus A. Izaguirre
University of Notre Dame

Computer Science Professor
College of Engineering
izaguirr@cse.nd.edu

June 20, 2003

Contents

1 Introduction 2

2 Fields And Evolvers 3
2.1 Description and Purpose . 3
2.2 UML Diagram . 4

3 Cell Classes 5
3.1 Description And Purpose . 5
3.2 UML Diagram . 6

4 Global Classes 7
4.1 Description And Purpose . 7
4.2 UML Diagram . 7

5 Conclusions 9

1

Chapter 1

Introduction

We present here a proposed design for an edition to the current COMPUCELL framework. These editions
will be made with the intention of increasing flexibility in the framework, improving software maintenance,
but first and foremost to interface well with the domain-specific language BIOLOGO . Our hope is that in the
future BIOLOGO will be the user’s main method of running COMPUCELL , aside from web-based execution.

BIOLOGO is currently undergoing changes as well. Formerly just another programming language that is
written in a text editor, now it is being changed to be XML-based, and the new compiler and code generator
will generate code in an intermediate language to hopefully make the process simpler. The overall converter
from the XML-based BIOLOGO file to these classes below is under development.

I have divided this document into three sections - each of these centering on different key features that
this new design will offer with the help of BIOLOGO . Even without BIOLOGO , the design has been able to
run with a C++ driver file, which we obviously won’t need when it is interfaced with the current framework.
Thus, we should be able to add this to the current framework.

2

Chapter 2

Fields And Evolvers

2.1 Description and Purpose

A field can be viewed as a multi-dimensional array - in our case, either a two or three dimensional array.
Currently COMPUCELL works in two dimensions but there are current efforts being made to extend it to
3D. Example fields that have already been hardcoded into the COMPUCELL framework include: the lattice
of pixels, the reaction-diffusion activator concentration, and the fibronectin concentration.

An evolver describes how a field changes overtime. Each field has one single evolver attached. The
current COMPUCELL framework does not have evolvers explicitly, however the code that evolves the afore
mentioned fields has been contained mostly in the classes CompuCell, ChemotaxisLatticeCon-
centration, FibronectinLatticeConcentration, and RectangularPottsLattice.

In this new design, we propose replacing the evolving code that is in various spots in the framework
with classes that are designed to evolve a specific type of field in a specific way. Each evolver will contain an
init() method which will be executed just once at the beginning of execution - usually used to initialize
its field with values, and a run() method executed at every step, which evolves the field. Not only that,
but we propose to have the user through a BIOLOGO program (1) control the order of the evolving of fields
(for example, evolving the activator before evolving the cells), and (2) customizing the evolvers by passing
certain values for parameters known by the evolvers.

Currently COMPUCELL uses three fields - one for the lattice, one for the activator concentration, and
one for the fibronectin concentration. In this edition, both the field and evolver class hierarchies use in-
heritance. The root classes are Field and Evolver. Field2D and Field3D inherit from Field.
Inheriting from these are any needed fields, for example, FieldPotts2D inherits from Field2D and
is a field of type Pixel. FieldConcentration2D is a field of type double and also inherits from
Field2D. A FieldRD2D or FieldRD3D field inherits respectively from Field2D or Field3D, but is
a field of Tuples. A Tuple is nothing more than a group of values. It is a doubly-templated class, with
one template argument for the type of value within the Tuple, and another for the size of the Tuple. This
is another extension that we are making to COMPUCELL - we want in reaction-diffusion to hold terms for
both activator and inhibitor, not just activator. Thus, a RD field is a field of groups of two double values,
or a field of type Tuple<double, 2>.

As mentioned, each of the three current fields in COMPUCELL uses a specific type of evolver (though
now it is not specifically called an ’evolver’). In the new design, we create the classes Metropoli-

3

sEvolver, SchnakenbergEvolver, and StandardFibroEvolver, all inheriting from Evoler.
Each are designed to evolve a Field of a certain type. This is summarized in the chart below, which shows
each evolver, the type of field it evolves, and at a higher level what field is being dealt with. These fields are
called morphogenesis fields for now, since that is what COMPUCELL simulates, but note that a future goal
is to expand this language to work with processes other than morphogenesis. Thus, this chart is with respect
to COMPUCELL and its current purpose.

Evolver Type Of Field Morphogenesis Field

MetropolisEvolver Field<Pixel*> Chicken Limb Cells
SchnakenbergEvolver Field<Tuple<double, 2> > Reaction-Diffusion
StandardFibroEvolver Field<double> Fibronectin

2.2 UML Diagram

FieldConcentration2D

Tuple
operator[]
getData
myData

FieldConcentration3D

FieldRD3D

FieldPotts3D

operator()
setSize2D

myCompatibleFieldTypes

Evolver

get/set methods
myDimension
myEvolver
myType

Field

Field3D
operator()
setSize3D
getSizeX
getSizeY
getSizeZ
myData

FieldRD2D

Field2D

getSizeX
getSizeY
myData

FieldPotts2D

Pixel
get/set methods

myX
myY
myZ

myValue
myFirstNeighbors

mySecondNeighbors
myThirdNeighbors

myFourthNeighbors
myAllNeighbors

myKeyword

myConcentrations
myNumRDSections

myLeftEdge
myRightEdge

myRadial
myRadialLinear

myFirstRow
myLastRow
myRDTop

myRDBottom
myDX
myDY
myDT

initializeCoordinates
initializeNeighbors

randomSelect
init

myDimy
myDimx

metropolis
run

myTemperature
myDistribution
myInitCellSize

myBoundaryBorder

myEndRows

SchnakenbergEvolver
get/set methods

init
run

initializeConcentration
updateConcentration

schnak_f
schnak_g

myGamma
constants

myFileInput
myRDUpdateFreq

myYMax
myVisualize
myTupleSize
myLattice

myProgressZone
myInputFile
myGlobals

myInputFileIndex
myWinExtentY
myEvolution
myStartRows

myVisualize

initializeSpins
get/set methods

MetropolisEvolver

myTotalEnergy

StandardFibroEvolver
get/set methods

init
run

myProductionRate
myThreshold
myVisualize
myRdfield

myActivatorIndex
myGlobals

get/set methods
myField

myCancell

myMitosisOn
myMitosisDoublingTime

myDomainFill
myStepsPerWindowMove

myWindowSizeX
myWindowSizeY

myWindowIncBotX
myWindowIncBotY
myWindowIncBotZ
myWindowIncTopX
myWindowIncTopY
myWindowIncTopZ

myEnergies
myCells

myActiveSimulationWindow
myGlobals

myNumberPixels
myCellSpins

DEVIATION
TOLERANCE

myMitosis
mySeed

myEvolution
mySelpixel

myCanpixel
mySelcell

Figure 2.1: Field And Evolver Classes.

4

Chapter 3

Cell Classes

3.1 Description And Purpose

The main purpose of the objects here are to present the ground for defining a cell model. A cell model
includes all variables and possible types for a cell that follows the model. When we say ’type’, we mean a
sort of state that the cell can be in, with certain unique properties. A cell can change type with the concept
of rule-based state automaton, in other words - there are certain rules that govern the conditions in which a
cell changes type. A cell of a certain model can only have a current type that is defined in the model, and
can only change to another type defined in the model. In the current COMPUCELL , we will say that our
cells follow the Chicken Limb Model. Within this model, each cell has several different variables such as J,
lambdavolume, and targetvolume, and can be of one of three possible types: NonCondensing, Condensing,
and Medium. In the new proposed design, we create a class CellContext from which all cell models will
inherit from, and another class CellTypewhich all cell types will inherit from. A CellContext object
contains a pointer to an object of type CellType. Once again, in the current COMPUCELL there is only
one model, Chicklimb - so in the new design this is a class that inherits from CellContext. We also
create a ChicklimbCellType inheriting from CellType, and also ChicklimbNonCondensing,
ChicklimbCondensing and ChicklimbMedium which inherit from ChicklimbCellType and
are each possible types for a cell following the Chicklimb model. An important thing to note is that all
of the afore mentioned classes in this section aside from CellContext and CellTypewill be generated
by the BIOLOGO compiler/code generator. Thus the models that are followed in a simulation and all of their
properties are completely under control by the user in the BIOLOGO program.

In the new design, we do assume certain properties for any cell, regardless of the model it follows. We
give each cell variables for spin, volume, and surface area, along with a couple of variables for mitosis.
However, it is of course optional whether or not these values are used in a simulation depending on what the
user codes in BIOLOGO , thus control is still given to the user.

Taking the example of Chicklimb, ChicklimbCellType defines the new variables that the user
defined in the BIOLOGO file. All of the subclasses of ChicklimbCellType give these variables values,
and also contain a function that describes how a cell of that current type (example ChicklimbNonCon-
densing changes to one of a different type. These rules are written by the user in BIOLOGO .

Viewing the diagram in the next section, in addition the afore mentioned design, we have included some
other classes which contain arrays of type CellContext, or to put it simpler, arrays of cells. Globals
will also be generated by BIOLOGO (in the current design we have an array of cells), but MetropolisE-

5

volver is designed to evolve a cell lattice and Mitosis is designed to work on an array of cells.

3.2 UML Diagram

ChicklimbCellType
get/set methods

j
lambdavolume
lambdasurface
targetsurface
muchemotax

mufibronectin

Chicklimb
initialize

 CellContext
get/set methods

update
myType

myCelltype
CellType

get/set methods
targetvolume

surfacearea
volume
spin

lastmitosistime
doublingtime

ChicklimbMedium

updateFields
changeType
getKeyword
myKeyword

updateStateVariablesupdateStateVariables
updateFields
changeType
getKeyword
myKeyword

ChicklimbCondensing
updateStateVariables

updateFields
changeType
getKeyword
myKeyword

ChicklimbNonCondensing

myWindowIncBotX
myWindowIncBotY
myWindowIncBotZ
myWindowIncTopX
myWindowIncTopY
myWindowIncTopZ

myEnergies
myCells

myActiveSimulationWindow
myGlobals

myNumberPixels
myCellSpins

DEVIATION
TOLERANCE

myMitosis
mySeed

myEvolution
mySelpixel

myWindowSizeY

initializeCoordinates
initializeNeighbors

randomSelect
init

myDimy
myDimx

metropolis
run

myTemperature
myDistribution
myInitCellSize

myBoundaryBorder
myVisualize

myMitosisOn
myMitosisDoublingTime

myDomainFill
myStepsPerWindowMove

myWindowSizeX

myCanpixel

setOriginalTargetVolume
setDoublingTimeVariation

originalTargetVolume
doublingPeriod

black
gray

newSubdomains
randSeed

DoublingTimeVariation

Globals
get/set methods

Fibronectin
ReactionDiffusion

Lattice

Mycells
gerrymander

mySelcell
myCancell

initializeSpins
get/set methods

MetropolisEvolver

myTotalEnergy

Mitosis
getLargestSpinValue

createCell
setNewTargetSize

mitosize
joinBlackGrayDeque

Figure 3.1: Cell Classes.

6

Chapter 4

Global Classes

4.1 Description And Purpose

The global classes represent everything that the user declared in the BIOLOGO file that is accessible
throughout the file. In the new design, everything centers around a Globals class. This class will also be
generated by the BIOLOGO compiler/code generator. Specifically contained in this class are:

• All of the fields that the user defined.

• All of the evolvers that were user employed with the fields.

• All of the energy hamiltonians that the user defined (these are within an Energies object).

• All of the global variables defined by the user (including arrays of cells).

4.2 UML Diagram

7

DoublingTimeVariation
randSeed

newSubdomains
gray
black

doublingPeriod
originalTargetVolume

setDoublingTimeVariation
setOriginalTargetVolume

gerrymander
joinBlackGrayDeque

mitosize
setNewTargetSize

createCell

FieldRD2DFieldConcentration2D

Mycells

Lattice
ReactionDiffusion

Fibronectin

get/set methods
Globals

getLargestSpinValue

SpaceDimensions
myLattice

NumPottsPixels

evolveWindow
get/set methods

zExtentMax
zExtentMin
yExtentMax
yExtentMin
xExtentMax
xExtentMin

SimulationWindow

Mitosis

interaction
volume
surface

chemotaxis
initinteraction
initvolume

initchemotaxis
initializeenergy
calculateenergy

myGlobals

Energies

myCelltype
myType
update

get/set methods
 CellContext

myAllNeighbors
myFourthNeighbors
myThirdNeighbors

mySecondNeighbors
myFirstNeighbors

myValue

StandardFibroEvolver

myGlobals
finish
run
init

CompuCell

FieldPotts2D

get/set methods

myZ
myY
myX

get/set methods
Pixel

myGlobals
myActivatorIndex

myRdfield
myVisualize
myThreshold

myProductionRate
run
init

run
init

get/set methods
SchnakenbergEvolver

myDT
myDY
myDX

myRDBottom
myRDTop

myLastRow
myFirstRow

myRadialLinear

initializeConcentration

myInputFileIndex
myGlobals

myInputFile
myProgressZone

myLattice
myTupleSize
myVisualize
myYMax

myRDUpdateFreq
myFileInput

constants
myGamma
schnak_g
schnak_f

updateConcentration

myRadial

myRDUpdateFreq
myFileInput

constants
myGamma
schnak_g
schnak_f

updateConcentration
initializeConcentration

run
init

get/set methods
SchnakenbergEvolver

myYMax

myRightEdge
myLeftEdge

myNumRDSections
myConcentrations

myEndRows
myStartRows
myEvolution

myWinExtentY
myInputFileIndex

myGlobals
myInputFile

myProgressZone
myLattice

myTupleSize
myVisualize

myWinExtentY

DEVIATION
myCellSpins

myNumberPixels
myGlobals

myActiveSimulationWindow
myCells

myEnergies
myWindowIncTopZ
myWindowIncTopY
myWindowIncTopX
myWindowIncBotZ
myWindowIncBotY
myWindowIncBotX
myWindowSizeY
myWindowSizeX

TOLERANCE

myTotalEnergy

MetropolisEvolver
get/set methods
initializeSpins

myCancell
mySelcell

myCanpixel
mySelpixel

myEvolution
mySeed

myMitosis

myStepsPerWindowMove

myDY
myDX

myRDBottom
myRDTop

myLastRow
myFirstRow

myRadialLinear
myRadial

myRightEdge
myLeftEdge

myNumRDSections
myConcentrations

myEndRows
myStartRows
myEvolution

myDT

myDomainFill
myMitosisDoublingTime

myMitosisOn
myVisualize

myBoundaryBorder
myInitCellSize
myDistribution
myTemperature

run
metropolis
myDimx
myDimy

init
randomSelect

initializeNeighbors
initializeCoordinates

Figure 4.1: Global Classes.

8

Chapter 5

Conclusions

In conclusion I would like to reiterate the potential of this design and my hope is that it can be implemented
soon with the redesign of old COMPUCELL by Joseph. Hopefully we can get these working together.

9

