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“Big Science” to the Long Tail of Science



● Supercomputers were (historically) net producers of data, not consumers
● Convergence at multiple levels, including Software Environment

○ HP-ABDS: Integration of High Performance with Advanced Functionality 
○ SPIDAL and MIDAS  (http://spidal.org)

Convergence of HPC and “Data Intensive” Computing:

A Tale of Two Data-Intensive Paradigms: 
Data Intensive Applications, Abstractions and Architectures
Jha, Qiu, Fox
http://arxiv.org/abs/1403.1528



          Case Study: Biomolecular Sciences





● Given a finite amount of computing which is better:
○ Many simulations or Longer simulations?

A Schism in Biomolecular Simulations? 



● Larger biological systems
○ Weak scaling
○ Status Quo: Size of systems: > 10M atoms

● Long time scale problem
○ Strong scaling
○ Status Quo: Duration of systems: > 10 ms

● Scaling challenges > than either single-partition strong and weak scaling.
○ Accurate estimation of complex physical processes, e.g., M-REMD

● Gap between weak scaling and strong scaling capabilities will grow.

Landscape of Biomolecular Simulations

Multidimensional replica exchange umbrella 
sampling (REUS) simulations of a single  uracil 
ribonucleoside. 

 
 



● Sampling: BPTI, 1ms MD ~3 months on 
Anton (Shaw et al, Science 2010).
○ More sampling
○ Better sampling 
○ Faster sampling

● More sampling: Hundreds or 
thousands of concurrent MD jobs

● Better Sampling: Drive systems towards 
unexplored regions, don’t waste time 
sampling behaviour already observed

○ E.g. DM-d-MD, AMBER-COCO 

Brief Introduction to Sampling



When the number of replicas cannot > number of nodes/cores, 1D replica 
exchange is the “default” (only!) option

Multi-dimensional Replica-Exchange



DM-D-MD: Diffusion Map Driven Molecular Dynamics 
(Courtesy: Ceclia Clementi, Rice)



Proteins 2009; 75:206–216.



● Better Sampling: Drive systems towards 
unexplored regions, don’t waste time 
sampling behaviour already observed

● Iteratively run “analysis” and “sampling” 
phase

○ Sampling phase: multitude of 
trajectories are run in parallel

○ Analysis phase: Information 
gathered by the trajectories is 
analyzed and used to restart new 
trajectories to explore new regions of 
the configurational space. 

Advanced Sampling

Diffusion Map driven Moleculad Dynamics 
(DM-d-MD), uses dimensionality reduction 
method of “Diffusion map” to extract a good 
reaction coordinate and use it to redistribute 
a large set of trajectories in the sampling of a 
complex configurational space. 



Weak Scaling



Weak Scaling: Simulation and Analysis



● However many applications involve 
adaptive execution and steering. 

● Examples of simulation algorithms:
○ Commingle replica exchange simulation 

with a coarse-grained potential
○ Steer ensemble simulations based on 

intermediate analyses
○ Add more ensemble members...

● A framework that expresses different 
simulation algorithms as “adaptive 
execution patterns”. How ?
○ Generalise static patterns EnTK
○ Opens many research questions 

Adaptive and Steered Patterns



MSM:  ML-driven Sampling



MSM:  ML-driven Sampling



MSM:  ML-driven Sampling

Credit: Kyle Beauchamp



MSM:  ML-driven Sampling



Better Sampling -- Requires Learning “on the fly”

Finding the optimal resource configuration. 



The Power of Many: RADICAL-Ensemble Toolkit

● Support for heterogeneous tasks
○ Multi-node and sub-node, application 

kernels, MPI/non-MPI

● Adaptive: Workload and resource:  tasks and/or 
relations between tasks unknown a priori

● Range of concurrency and coupling of tasks
○ Multiple-levels and degree 

● Multiple dimensions of scalability:
○ Concurrency: O(100K)-O(1,000K) tasks
○ Task size: O(1) - O(1,000) cores
○ Launch: O(100+) tasks per second
○ Task duration: O(1) - O(10,000) seconds
○ ….



RADICAL-Pilot Overview

• Programmable interface (arguably unique)
– Defined state models for pilots and units. 

• Supports research whilst supporting 
production scalable science:

– Agent, communication, throughput.
– Pluggable components; introspection.

• Portability and Interoperability:
– SAGA (batch-queue system interface)
– Modular pilot agent for diff. architectures
– Works on Crays, XSEDE resources, most 

clusters, OSG, Amazon EC2...



Pilot Jobs: Many Variations on a Theme

● “P*: A Model of Pilot-Abstractions”, 8th IEEE 
International Conference on e-Science (2012)

● A Comprehensive Perspective on Pilot-Jobs 
http://arxiv.org/abs/1508.04180  (2015)

“Perfection is achieved, not when there 
is nothing more to add, but when there 
is nothing left to take away.” 
       - Antoine Saint-Exupéry



Agent Architecture

● Components: Enact state 
transitions for Units

● State Updater: Communicate with 
client library and DB

● Scheduler:
Maps Units onto compute nodes

● Resource Manager:
Interfaces with batch queuing 
system, e.g. PBS, SLURM, etc.

● Launch Methods:
Constructs command line, e.g. 
APRUN, SSH, ORTE, MPIRUN

● Task Spawner:
Executes tasks on compute nodes



● ORTE: Open RunTime Environment
○ Isolated layer used by Open MPI to coordinate task layout
○ Runs a set of daemons over compute nodes
○ No ALPS concurrency limits
○ Supports multiple tasks per node

● orte-submit is CLI which submits tasks to those daemons
○ ‘sub-agent’ on compute node that executes these
○ Limited by fork/exec behavior
○ Limited by open sockets/file descriptors
○ Limited by file system interactions

RADICAL-Pilot: ORTE 



● All the same as ORTE-CLI, but
○ Uses library calls instead of 

orterun processes
○ No central fork/exec limits
○ Shared network socket
○ (Hardly) no central file system 

interactions

RADICAL-Pilot + ORTE-LIB 



Agent Performance: Full Node Tasks (3xN, 64s)



Agent Performance: Resource Utilization



Challenges of O(100K) Concurrent Tasks
● Agent communication layer (ZMQ) has limited throughput

○ limit is not yet reached
○ bulk messages (is implemented now)
○ separate message channels
○ code optimization

● Agent scheduler (node placement) does not scale well with number of cores
○ bulk operations (schedule bag of tasks at once)
○ good scheduling algorithms and implementations exist
○ code optimization, C-module (instead of pure Python)

● Collecting complete jobs is just as hard as spawning new ones
○ decouple

● Interaction with DB and client side has limited scalability
○ replace with proper messaging protocol (also ZMQ?)



Distributed WLMS



Next Generation Workflow Management  for High Energy Physics 
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LHC Upgrade Timeline

In 10 years, increase by factor 10 the LHC luminosity
➔ More complex events
➔ More Computing Capacity
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LHC Upgrade Timeline

In 10 years, increase by factor 10 the LHC luminosity
➔ More complex events
➔ More Computing Capacity

Run1 : 
2009 - 2013

Run3
2020-2022

ALICE
+

LHCb

Run4

ATLAS
+

CMS

Run2 :
2015 - 2018



AIMES  
● AIMES: Investigate principles and identify 

abstractions for distributed execution.
○ Uniformity in execution across dynamically 

federated heterogeneous resources.
○ Conceptual → implementation improvements: 

“Better” mapping of workloads to infrastructure 
and thus also utilization

● AIMES Model of Workload Management:
○ Importance of dynamic integration of 

workload and resource information.
○ Pilot-based Execution Strategy: Temporally 

ordered set of decisions that need to be made 
when executing a given workload.

Schematic of RADICAL-WLMS approach to 
workload-resource integration: Evaluate 

workload requirements & resource capabilities, 
derive an execution strategy, and enact it, 
executing the workload on the federated 

resources. 



Dynamic Resource Management

● PANDA-SAGA  : BigPANDA Project (2012-2016)
● PANDA-Pilot     : Ongoing redesign for TITAN
● PANDA-AIMES : Heterogeneous workloads and unified execution



Lessons for how we build 
workflow systems?



● Workflows aren’t what they used to be!
○ More pervasive, sophisticated but no longer confined to “big science”
○ Diverse requirements, “design points”; unlikely “one size fits all” 

● Extend traditional focus from end-users to workflow system/tool developers!
○ Building Blocks (BB)  permit workflow tools and applications can be built.

● An illustrative example of a building block common across WFMS
○ Pilot Job Systems to support scalable execution of multiple tasks

“Building Blocks” Approach to Workflow Systems ?



RADICAL-Cybertools: 
Abstractions driven building block CI.



RADICAL Cybertools: Abstraction based BB



● Many WFMS use pilot systems; greater 
variance in use of WLMS: 
○ Pegasus → Corral/glidein-WMS
○ Condor/glidein →glidein-WMS
○ Swift, Galaxy →  No (XSEDE)

● Swift-RCT comparison and integration:
○ Workflow -> Workload -> Tasks 

abstractions
○ Uniform execution Model: Binding 

of tasks and pilots to resources
○ Efficient scheduling across pilots 

and resources

SWIFT - RADICAL Cybertools Integration

Reference: “Analysis of Distributed Execution of Workloads”, 
https://arxiv.org/abs/1605.09513



Pilot-Streaming
Pilot-Streaming enables the coupling of data production 
(simulations) and analysis within HPC environment.

Pilot-Streaming utilizes  
Pilot-Jobs to deploy message 
broker and stream processing 
frameworks on HPC and Clouds.



Pilot Streaming: EnsembleMD and MDAnalysis 

Pilot-Streaming is utilized 
to couple MD simulations 
and continuous analytics 
(LeafletFinder). By 
continuously monitoring 
developed Leaflets.

Dynamic resource 
management is critical to 
balance data production 
rates and analytics needs.



PanDA: BIG and RADICAL! 

● PANDA-SAGA  : BigPANDA Project (2012-2016)
● PANDA-Pilot     : Ongoing redesign for HPC Systems/TITAN
● PANDA-AIMES : Heterogeneous workloads and unified execution model.



Thank you!
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