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Motivation 

• Machine learning is widely used in data analytics 

• Need for high performance 

– Big data & Big model 

– ”Select model and hyper parameter tuning" step need to run the training algorithm for 
many times 

• Key: optimize for efficiency 

– What is the 'kernel' of training?   

– Computation model 
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Recommendation Engine 

• Show us products typically 
purchased together 

• Curate books and music for us 
based on our preferences 

• Have proven significant 
because they consistently boost 
sales as well as customer 
satisfaction 
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Fraud Detection 

• Identify fraudulent activity 

• Predict it before it has occurred 

saving financial services firms 

millions in lost revenue. 

• Analysis of financial transactions, 

email, customer relationships and 

communications can help 
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More Opportunities… 

• Predicting customer “churn” – when a customer will leave a provider of a 

product or service in favor of another.   

• Predicting presidential elections, whether a swing voter would be 

persuaded by campaign contact. 

• Google has announced that it has used Deep Mind to reduce the energy 

used for cooling its datacenter by 40 per cent.  

• Imagine... 
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The Process of Data Analytics 

• Define the Problem

– Binary or multiclass, classification or regression, evaluation metric, …

• Dataset Preparation

– Data collection, data munging, cleaning,  split, normalization, …

• Feature Engineering

– Feature selection, dimension reduction, …

• Select model and hyper paramenter tuning

– Random Forest, GBM, Logistic Regression, SVM, KNN, Ridge, Lasso, SVR, Matrix Factorization,

Neural Networks, …

• Output the best models with optimized hyper parameters
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Challenges from Machine Learning Algorithms 

Machine Learning algorithms in various domains: 

• Biomolecular Simulations

• Epidemiology

• Computer Vision

They have: 

• Iterative computation workload

• High volume of training & model data

Traditional Hadoop/MapReduce solutions: 

• Low Computation speed (lack of multi-threading)

• High data transfer overhead (disk based)
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Taxonomy for ML Algorithms 

• Task level: describe functionality of the algorithm

• Modeling level: the form and structure of model

• Solver level: the computation pattern of training

SALSA 



Outline 

1. Motivation: Machine Learning Applications

3. Harp-DAAL Framework: Design and Implementations

2. A Faster Machine Learning solution on Intel Xeon/Xeon Phi Architectures

SALSA 

4. Conclusions and Future Work



Emerging Many-core Platforms 

Comparison of  Many-core and Multi-core Architectures 

• Much more number of cores

• Lower single core frequency

• Higher data throughput

How to explore computation and  Bandwidth of KNL for Machine 

Learning applications ? 
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Intel Xeon/Haswell Architecture 

• Much more number of cores
• Lower single core frequency
• Higher data throughput



Intel Xeon Phi (Knights Landing) Architecture 
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• Up to 72 cores, 288 threads connected in a 2D-mesh
• High bandwidth (> 400 GB/s) Memory (MCDRAM)

• Up to 144 AVX512 vectorization units (VPUs)
• 3 Tflops (DP) performance delivery
• Omni-path link among processors (~ 100 GB/s)



DAAL: Intel’s Data Analytics Acceleration Library 

DAAL is an open-source project that provides: 

• Algorithms Kernels to Users

• Batch Mode (Single Node)

• Distributed Mode (multi nodes)

• Streaming Mode (single node)

• Data Management & APIs to Developers

• Data structure, e.g., Table, Map, etc.

• HPC Kernels and Tools: MKL, TBB, etc.

• Hardware Support: Compiler
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Case Study: Matrix-Factorization Based on SGD (MF-SGD) 

X= 𝑈𝑉 

𝐸𝑖𝑗 = 𝑋𝑖𝑗 − 𝑈𝑖𝑘

𝑟

𝑘=0

𝑉𝑘𝑗  

𝑈𝑖∗
𝑡 = 𝑈𝑖∗

𝑡−1 − 𝜂(𝐸𝑖𝑗
𝑡−1 ⋅ 𝑉∗𝑗

𝑡−1 − 𝜆 ⋅ 𝑈𝑖∗
𝑡−1

𝑉∗𝑗
𝑡 = 𝑉∗𝑗

𝑡−1 − 𝜂(𝐸𝑖𝑗
𝑡−1 ⋅ 𝑈𝑖∗

𝑡−1 − 𝜆 ⋅ 𝑉∗𝑗
𝑡−1

• Large Training Data: Tens of millions of points
• Large Model Data: m, n could be millions
• Random Memory Access Pattern in Training

Decompose a large matrix into two model matrices, 
used in Recommender systems 
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Stochastic Gradient Descent 

The standard SGD will loop over all the nonzero ratings 𝑥𝑖,𝑗 in a random way 

• Compute the errors

• Update the factors 𝑈 and 𝑉

𝑒𝑖,𝑗 = 𝑥𝑖,𝑗 − 𝑢𝑖,∗𝑣∗,𝑗 

𝑢𝑖,∗ = 𝑢𝑖,∗ + 𝛾 ⋅ (𝑒𝑖,𝑗 ⋅ 𝑣∗,𝑗 − 𝜆 ⋅ 𝑢𝑖,∗) 

𝑣∗,𝑗 = 𝑣∗,𝑗 + 𝛾 ⋅ (𝑒𝑖,𝑗 ⋅ 𝑢𝑖,∗ − 𝜆 ⋅ 𝑣∗,𝑗) 



Challenge of SGD in Big Model Problem 
1. Memory Wall

Processor is hungry of data !! 

• 4 memory ops for 3 computation ops
In updating U and V

2. Random Memory Access

• Difficulty in data prefetching
• Inefficiency in using cache

Strong Scaling of SGD on Haswell CPU with Multithreading 

We test a multi-threading SGD on a CPU 

The strong scalability collapses after using more than 16 threads !! 



What for Novel Hardware Architectures and 
Runtime Systems 

• 3D stack memory
• Many-core: GPU, Xeon Phi, FPGA, etc.

Hardware Aspect: 

Software Aspect: 

• Runtime System
• Dynamic Task Scheduling

Reduce the memory access latency 
Increase memory bandwidth  

A generalized architecture for an FPGA 

IBM and Micron’s big memory cube 



Intra-node Performance: DAAL-MF-SGD vs. LIBMF 

SALSA 

LIBMF:  a start-of-art open source MF-SGD package 
• Only single node mode
• Highly optimized for memory usage

We compare our DAAL-MF-SGD kernel with 
LIBMF on a single KNL node, using YahooMusic 
dataset 



Intra-node Performance: DAAL-MF-SGD vs. LIBMF 
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• DAAL-MF-SGD delivers a comparable
training time for each iteration with
that of LIBMF

• DAAL-MF-SGD has a better convergence speed
than LIBMF, using less iterations to achieve the
same convergence.



CPU utilization and Memory Bandwidth on KNL 

• DAAL-MF-SGD utilizes more

than 95% of all the 256 threads

on KNL

• DAAL-MF-SGD uses more than

half of the total bandwidth of

MCDRAM on KNL

• We need to explore the full

usage of all of MCDRAM’s

bandwidth (around 400 GB) to

further speed up DAAL-MF-SGD

CPU (threads) utilization on KNL 

Memory Bandwidth Usage on KNL 
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Intra-node Performance: Haswell Xeon vs. KNL Xeon Phi 

DAAL-MF-SGD has a better 
performance on KNL than 
on Haswell CPU, because it 
benefits from 

• KNL’s AVX512
vectorization

• High Memory
Bandwidth

KNL has 

• 3x speeds up by
vectorization

• 1.5x – 4x speeds up to
Haswell
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Machine Learning using 
Harp Framework 
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The Growth of Model Sizes and Scales of 
Machine Learning  Applications 

2014 2015 
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Challenges of Parallelization Machine Learning 
Applications 

• Big training data

• Big model

• Iterative computation, both CPU-bound and memory-bound

• High frequencies of model synchronization
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Parallelizing Machine Learning Applications 

Machine 
Learning 

Application 

Machine 
Learning 

Algorithm 

Computation 
Model 

Programming 
Model 

Implementation 
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Types of Machine Learning Applications and Algorithms 

• K-Means Clustering

• Collapsed Variational Bayesian for topic modeling (e.g. LDA)

Expectation-Maximization Type 

• Stochastic Gradient Descent and Cyclic Coordinate Descent for classification (e.g.
SVM and Logistic Regression), regression (e.g. LASSO), collaborative filtering (e.g.
Matrix Factorization)

Gradient Optimization Type 

• Collapsed Gibbs Sampling for topic modeling (e.g. LDA)

Markov Chain Monte Carlo Type 
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Inter/Intra-node Computation Models 
Model-Centric Synchronization Paradigms 

Model 

Process Process Process 

Model 

Process Process Process 

Model 

Process Process Process Process Process Process 

Model1 Model2 Model3 

• Synchronized algorithm
• The latest model

• Synchronized algorithm
• The latest model

• Synchronized algorithm
• The stale model

• Asynchronous algorithm
• The stale model

(A) (B) 

(C) (D) 
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Case Study: LDA mines topics in text collection 

• Huge volume of Text Data

o Information overloading

o What on earth is inside the
TEXT Data?

• Search

o Find the documents
relevant to my need (ad
hoc query)

• Filtering

o Fixed info needs and
dynamic text data

• What's new inside?

o Discover something I don't
know

Blei, D. M., Ng, A. Y. & Jordan, M. I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 3, 993–1022 (2003). 
SALSA 



LDA and Topic model 

• Topic Models is a modeling

technique, modeling the data by

probabilistic generative process.

• Latent Dirichlet Allocation (LDA) is

one widely used topic model.

• Inference algorithm for LDA is an

iterative algorithm using share

global model data.

• Document

• Word

• Topic: semantic unit inside the data

• Topic Model

– documents are mixtures of topics,
where a topic is a probability
distribution over words

Normalized co-
occurrence matrix 

Mixture components Mixture weights 

1 million 
words 

3.7 million docs 

10k topics 

Global Model Data 
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The Comparison of LDA CGS Model Convergence Speed 

The parallelization strategy can highly affect the algorithm 
convergence and the system efficiency. This brings us four 
questions: 

• What part of the model needs to be synchronized?
The parallelization needs to decide which model parts
needs synchronization.

• When should the model synchronization happen?
In the parallel execution timeline, the parallelization
should choose the time point to perform model
synchronization.

• Where should the model synchronization occur?
The parallelization needs to tell the distribution of the
model among parallel components, what parallel
components are involved in the model synchronization.

• How is the model synchronization performed?
The parallelization needs to explain the abstraction and
the mechanism of the model synchronization.

rtt & Petuum: rotate model parameters 
lgs & lgs-4s: one or more rounds of model 
synchronization per iteration 
Yahoo!LDA: asynchronously fetch model parameters 
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Inter-node Computation Models 
(Training Data Items Are Partitioned to Each Process) 

Computation Model A 

• Once a process trains a data item, it locks
the related model parameters and prevents
other processes from accessing them.
When the related model parameters are
updated, the process unlocks the
parameters. Thus the model parameters
used in local computation are always the
latest.

Computation Model B 

• Each process first takes a part of the
shared model and performs training.
Afterwards, the model is shifted between
processes. Through model rotation, each
model parameters are updated by one
process at a time so that the model is
consistent.

Computation Model C 

• Each process first fetches all the model
parameters required by local computation.
When the local computation is completed,
modifications of the local model from all
processes are gathered to update the
model.

Computation Model D 

• Each process independently fetches
related model parameters, performs local
computation, and returns model
modifications. Unlike A, workers are
allowed to fetch or update the same model
parameters in parallel. In contrast to B and
C, there is no synchronization barrier.

SALSA 



Intra-node: Schedule Data Partitions to Threads 
(only Data Partitions in Computation Model A, C, D; Data and/or Model Partitions in B) 

Thread Thread Thread 

I I I 

O O O 

Thread Thread Thread 

I I I 

O O O 

(A) Dynamic Scheduler (B) Static Scheduler 

• All computation models can use this scheduler.

• All the inputs are submitted to one queue.

• Threads dynamically fetch inputs from the
queue.

• The main thread can retrieve the outputs from
the output queue.

(A) Dynamic Scheduler 

• All computation models can use this scheduler.

• Each thread has its own input queue and output
queue.

• Each thread can submit inputs to another
thread .

• The main thread can retrieve outputs from each
task’s output queue.

(B) Static Scheduler 
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Harp Framework 

Harp is an open-source project 
developed by  
Indiana University. 

• MPI-like collective
communication operations that
are highly optimized for big
data problems.

• Harp has efficient and
innovative computation models
for different machine learning
problems.

Task 

Input (Training) Data 

Load Load Load 1 1 1 

4 Iteration 

Current Model 

Compute 2 

New Model 

3 

Task 

Current Model 

Compute 2 

New Model 

3 

Task 

Current Model 

Compute 2 

New Model 

3 

Collective Communication (e.g. Allreduce, Rotation) 

Harp 
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Harp Features 

Data 

Abstraction Arrays & Objects 
Partitions & 

Tables 

Management Pool-based 

Computation 

Distributed 
computing 

Collective 

Event-driven 

Multi-threading Schedulers 

Dynamic 
scheduler 

Static scheduler 
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Data Types 

Partitions & Tables 

Partition 

• An array/object with partition
ID

Table 

• The container to organize
partitions

Key-value Table 

• Automatic partitioning based
on keys

Arrays & Objects 

Primitive Arrays 

• ByteArray, ShortArray, IntArray, FloatArray,
LongArray, DoubleArray

Serializable Objects 

• Writable
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APIs 

Scheduler 

• DynamicScheduler

• StaticScheduler

Collective 

• broadcast

• reduce

• allgather

• allreduce

• regroup

• pull

• push

• rotate

Event Driven 

• getEvent

• waitEvent

• sendEvent
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Case Study: LDA and Matrix-Factorization 
Based on SGD and CCD  

Dataset 

Node Type 

Xeon E5 2699 v3 
(each uses 30 Threads) 

Xeon E5 2670 v3 
(each uses 20 Threads) 

clueweb1 Harp CGS vs. Petuum (30) Harp CGS vs. Petuum (60) 

clueweb2 
Harp SGD vs. NOMAD (30) 
Harp CCD vs. CCD++ (30) 

Harp SGD vs. NOMAD (60) 
Harp CCD vs. CCD++ (60) 
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Collapsed Gibbs Sampling for Latent Dirichlet Allocation 
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Matrix Factorization 
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Features of Model Update in Machine Learning Algorithms 

I. The algorithms can converge even when the consistency of a model is not guaranteed to some extent. 

II. The update order of the model parameters is exchangeable.

III. The model parameters for update can be randomly selected.

Algorithm Examples 

Collapsed Gibbs 
Sampling for Latent 
Dirichlet Allocation 

Stochastic Gradient 
Descent for Matrix 

Factorization 

Cyclic Coordinate 
Descent for Matrix 

Factorization 
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A Parallelization Solution using Model Rotation 

Training Data 𝑫 on HDFS 

Load, Cache & Initialize 

3 Iteration Control 

Worker 2 Worker 1 Worker 0 

Local Compute 

1 

2 Rotate Model 

Model 𝑨𝟎
𝒕𝒊 Model 𝑨𝟏

𝒕𝒊 Model 𝑨𝟐
𝒕𝒊  

Training 
Data 𝑫𝟎 

Training 
Data 𝑫𝟏 

Training 
Data 𝑫𝟐 

Maximizing the effectiveness of parallel model 
updates for algorithm convergence 

Minimizing the overhead of communication for 
scaling 
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Pipeline Model Rotation 

Worker 2 Worker 1 Worker 0 

Time 

𝑨𝟏𝒂 

𝑨𝟎𝒃 

𝑨𝟎𝒂 

𝑨𝟐𝒃 

𝑨𝟐𝒂 

𝑨𝟏𝒂 

𝑨𝟏𝒃 

𝑨𝟏𝒃 

𝑨𝟎𝒂 

𝑨𝟐𝒂 

𝑨𝟐𝒃 

𝑨𝟏𝒃 

𝑨𝟏𝒂 

𝑨𝟎𝒂 

𝑨𝟎𝒃 

𝑨𝟎𝒃 

𝑨𝟐𝒂 

𝑨𝟏𝒂 

𝑨𝟏𝒃 

𝑨𝟎𝒃 

𝑨𝟎𝒂 

𝑨𝟐𝒂 

𝑨𝟐𝒃 

𝑨𝟐𝒃 

Model 𝑨∗𝒂 Model 𝑨∗𝒃 

Shift Shift Shift 
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Dynamic Rotation Control for LDA CGS and MF SGD 

Other Model Parameters 
From Caching 

Model Parameters 
From Rotation 

Model Related Data Computes until the time 
arrives, then starts model 
rotation  

Multi-Thread 
Execution 
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CGS Model Convergence Speed 

SALSA 

LDA Dataset Documents Words Tokens CGS Parameters 

clueweb1 76163963 999933 29911407874 𝐾 = 10000, 𝛼 = 0.01, 𝛽 = 0.01 

60 nodes x 20 threads/node 30 nodes x 30 threads/node 

K: number of features;  𝑎, 𝑏 hyperparameters; 



SGD Model Convergence Speed 

SALSA 

MF Dataset Rows Columns Non-ZeroElements SGD Parameters 

clueweb2 76163963 999933 15997649665 𝐾 = 2000, 𝜆 = 0.01, 𝜖 = 0.001 

60 nodes x 20 threads/node 30 nodes x 30 threads/node 

K: number of features;  𝜆 regularization parameter; 𝝐 learning rate 



CCD Model Convergence Speed 

SALSA 

MF Dataset Rows Columns Non-Zero Elements CCD Parameters 

clueweb2 76163963 999933 15997649665 𝐾 = 120, 𝜆 = 0.1 

60 nodes x 20 threads/node 30 nodes x 30 threads/node 

K: number of features;  𝜆 regularization parameter 
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Harp-DAAL: High Performance Machine Learning Framework 

Harp 
1. Java API 

2. Local computation: 
Java threads 

3. Communication: 
Collective MapReduce 

DAAL 
1. Java & C++ API

2. Local
computation: MKL, 

TBB

3. Communication:
MPI & Hadoop & 

Spark 

Harp-DAAL 

1. Java API

2. Local
Computation: DAAL 

3. Communication:
Collective 

MapReduce 
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Harp-DAAL in the HPC-BigData Stack 

Harp-DAAL is at the intersection of HPC 

and Big Data stacks, which requires: 

• Interface: User friendly, consistent with

other Java written Data analytics Apps.

• Low level Kernels: highly optimized for

HPC platforms such as many-core

architecture

• Models: inherit Harp’s computation

models for different ML algorithms
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Inter-node Performance: Harp-DAAL-Kmeans vs. Harp-Kmeans 

Inter-node test is done on two Haswell E5-2670 
v3 2.3GHz nodes. We vary the size of input 
points and the number of centroids (clusters)  

By using DAAL-Harp’s high performance kernels, 
DAAL-Harp-Kmeans has a 2x to 4x speeds up 
over Harp-Kmeans 

SALSA 



Inter-node Performance: Harp-DAAL-SGD vs. Harp-SGD 

The Inter-node test is done on two Haswell E5-2670 v3 
2.3GHz nodes.  We use two datasets 

• MovieLens, a small set with 9301274 points

• Yahoomusic a large set with 252800275 points

For both datasets, we have around 5% to 15% speeds 
up by using DAAL-SGD within Harp.  

There are still some overheads of interfacing 
DAAL and Harp, which requires further 
investigation. 
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Interface Overhead between DAAL and Harp 
We decompose the training time into different phases. 
There are two overhead of interface  

• Harp-DAAL Interface

• Conversion between data structures

• JNI interface

• Data movement from Java heap to out-of-heap buffer for
C++ native kernels in DAAL

• The two overheads could take up to 25% of the total
training time, which must be optimized in the future
work.

• Rewrite some Harp codes to create shared memory
space between DAAL and Harp

• Add more Harp compatible data structures to DAAL

SALSA 



Outline 

1. Motivation: Machine Learning Applications

2. Harp-DAAL Framework: Design and Implementations

3. A Faster Machine Learning solution on Intel Xeon/Xeon Phi Architectures

SALSA 

4. Conclusions and Future Work



The Models of Contemporary Big Data Tools 



Programming Models 
Comparison of Iterative Computation Tools 

Daemon 

Spark Parameter Server 

Daemon 

Daemon 

• Implicit Data Partitioning
• Implicit Communication

• Explicit Data Partitioning
• Explicit Communication

• Explicit Data Partitioning
• Implicit Communication

Various Collective 
Communication Operations 

Worker 

Harp 

Driver 

Worker 

Worker Worker Worker 
Group 

Server Group 

Worker 
Group 

Asynchronous 
Communication Operations 

M. Zaharia et al. “Spark: Cluster Computing with 
Working Sets”. HotCloud, 2010. 

B. Zhang, Y. Ruan, J. Qiu. “Harp: Collective 
Communication on Hadoop”. IC2E, 2015. 

M. Li, et al. “Scaling Distributed Machine Learning 
with the Parameter Server”. OSDI, 2014. 
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Harp: a Hadoop plug-in based on map-collective models 

YARN 

MapReduce V2 

Harp 

MapReduce 
Applications 

MapCollective 
Applications Application 

Framework 

Resource 
Manager 

Shuffle 
M M M M 

Collective Communication 
+ Event Driven 

M M M M 

R R 

MapCollective  Model MapReduce  Model 

Programming Model Architecture 

SALSA 

• MPI-like collective communication operations that are highly optimized for big data problems.
• A Hadoop Plug-in to integrate with the ecosystems.
• Efficient and innovative computation models for different machine learning problems.



Hadoop/Harp-DAAL: Prototype and Production Code 

Source codes available on Indiana 
University’s Github account 

An example of MF-SGD is at 

https://github.iu.edu/IU-Big-Data-Lab/DAAL-2017-MF-
SGD 

• Harp-DAAL follows the same standard of DAAL’s
original codes

• improve DAAL’s existed algorithms for distributed
usage

• add new algorithms to DAAL’s codebase.

• Harp-DAAL’s kernel is also compatible with other
communication tools.
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Summary and Future Work 

• Identification of Apache Big Data Software Stack and integration with High Performance

Computing Stack to give HPC-ABDS

o ABDS (Many Big Data applications/algorithms need HPC for performance)

o HPC (needs software model productivity/sustainability)

• Identification of 4 computation models for machine learning applications

• HPC-ABDS Plugin Harp: adds HPC communication performance and rich data abstractions to

Hadoop by development of Harp library of Collectives to use at Reduce phase

o Broadcast and Gather needed by current applications

o Discover other important ones (e.g. Allgather, Global-local sync, Rotation pipeline)

• Integration of  Hadoop/Harp with Intel DAAL and other libraries

• Implement efficiently on each platform (e.g. Amazon, Azure, Big Red II, Haswell/KNL Clusters)

SALSA 




