
CREST Research in Dynamic Adaptive

Methods for Extreme Scale Computation

Thomas Sterling

Professor of Electrical Engineering

Director, Center for Research in Extreme Scale Technologies

School of Informatics and Computing

Indiana University

January 9, 2017

SOIC/ISE Colloquium Series:

Big Data and Big Simulation

2

Discovery

• 14 September, 2015

• Combined objects of 29 and 36

solar masses

• Produced a black hole of 62

solar masses.

• Missing 3 solar masses

converted to gravitational waves

• Travelled 1.3 billion years to

Earth

• 50X all the power of all the stars

in the universe

3

Laser Interferometric Gravitational-wave

Observatory (LIGO)

4

Hanford, WA

Livingston, LA

LIGO Chirp Filter for Signal Target

5

CREST Research Thrust Areas

• Dynamic adaptive computation for efficiency and scalability

• ParalleX execution model to guide design and interoperability

of cross-cutting system stack

• Runtime system development – HPX+

• Advanced network protocols, drivers, and NIC architecture

• Parallel programming intermediate representations

• Parallel applications in numeric and data centric domains

• Architectures

– Edge functions for overhead reduction related to runtime system

acceleration

– Continuum Computer Architecture – ultra fine grain cellular elements

– Network lightweight messaging

• Workforce development, education, mentorship
6

Technology Demands new Response

7

Technology Drivers towards Runtimes
• Sustained efficiencies < 10%

• Increasing sophistication of application domains

• Expanding scale and complexity of HPC system structures

• Moore’s Law flat-lining and loss of Dennard scaling

• Starvation, latency, overhead, contention

• Asynchronous data movement and memory access

• Energy/power

• Changing priorities of component utilization versus

availability

• Collision of parallel programming interfaces for user

productivity

• Diversity of architecture forms, scales, generations requiring

performance portability

8

Dynamic adaptive computation
• Avoid limitations of “ballistic” computing by “guided” control

• Exploit status information of system and computation at

runtime for resource management and task scheduling

• Take advantage of over decomposition naturally

• Improve user productivity by unburdening of explicit control

• Enable performance portability through real-time

adjustment to hardware architecture capabilities

• Expose and exploit lightweight parallelism through

discovery from meta-data

• Requires:

– Modification to compilation

– Addition of runtime systems

– Possible support through architecture enhancements

– Consideration of parallel algorithms
9

CREST Engaged in Co-Design for Dynamic Adaptive

Computational Systems

• Runtime systems only part of total system hierarchical

structure

• Must be defined/derived in part by support for and

interoperability with:

– programming model

– Compiler

– Locality (node) OS

– Processor core architecture

• Architecture will have to be designed to reduce

overheads incurred by runtime systems; e.g.,:

– Parcels to compute complexes

– Global address translation

– Context creation, switching, and garbage collection

– Data and context redistribution for load balancing

10

 Performance Factors - SLOWER
• Starvation

– Insufficiency of concurrency of work

– Impacts scalability and latency

hiding

– Effects programmability

• Latency

– Time measured distance for remote

access and services

– Impacts efficiency

• Overhead

– Critical time additional work to

manage tasks & resources

– Impacts efficiency and granularity

for scalability

• Waiting for contention resolution

– Delays due to simultaneous access

requests to shared physical or

logical resources

P = e(L,O,W) * S(s) * a(r) * U(E)

P – performance (ops)

e – efficiency (0 < e < 1)

s – application’s average parallelism,

a – availability (0 < a < 1)

U – normalization factor/compute unit

E – watts per average compute unit

r – reliability (0 < r < 1)

Performance Model, Full Example System
• Example system:

– 2 nodes,

– 2 cores per node,

– 2 memory banks per node

• Accounts for:
– Functional unit workload

– Memory workload/latency

– Network overhead/latency

– Context switch overhead

– Lightweight task management (red
regions can have one active task at a
time)

– Memory contention (green regions allow
only a single memory access at a time)

– Network contention (blue region
represents bandwidth cap)

– NUMA affinity of cores

• Assumes:
– Balanced workload

– Homogenous system

– Flat network

Modeling the full example system

Gain with Respect to Cores per Node and

Overhead;

Latency of 8192 reg-ops, 64 Tasks per Core

1
2

4
8

16
32

0

10

20

30

40

50

60

70

P
e
rf

o
rm

a
n

c
e
 G

a
in

Performance Gain of Non-Blocking Programs over Blocking
Programs with Varying Core Counts (Memory Contention)

and Overheads

ParalleX Execution Model
• Execution model establishes principles for guiding design of

system stack layers and governing their functionality,

interfaces, and interoperation

• Paradigm shifts driven by advances in enabling

technologies to exploit opportunities and fix problems

• Execution models capture computing paradigms

– Von Neumann, Vector, SIMD, CSP

• Formal representation

– PNNL-2 led EM2 project

– Operational semantics specification

– Prof. Jeremy Siek and Dr. Mateos Cimini

• Employed in

– Sandia XPRESS Project

– NNSA PSAAP-2 C-SWARM Project

– PNNL EM2 project

14

Distinguishing Features of ParalleX/HPX+

HPX+: Runtime Software System Development

• First reduction to practice of ParalleX execution model

• Thread scheduler

• Global address system (AGAS)

• Message-driven computation

• Multi-nodal dynamic processes

• Futures/dataflow synchronization and continuation

• Percolation for heterogeneous computation

• Introspection data acquisition and policy-based control

• Load balancing hooks/stubs

• Low level intermediate representation for source to

source compilation and heroic users/experimenters

• Drives architecture investigations 16

HPX+ Runtime Software Architecture

17

LCOs

APPLICATION
LAYER

Lulesh
LibPXGL

N-Body

FMM

GLOBAL ADDRESS SPACE

PGAS
AGAS

PARCELS

PROCESSES

SCHEDULER

Worker threads

ISIR PWC

OPERATING SYSTEM

HARDWARE

Cores

NETWORK

NETWORK LAYER

Courtesy of Jayashree Candadai, IU

Advanced System Area Networks
• Photon (Prof. Martin Swany, Ezra Kissel)

– In house developed network protocol

– Lightweight messaging

– Put with completion

– HPX+ built on top of it

• Parcels (Luke Dalessandro)
– Advanced form of active messages in HPX

– Message-driven computation

– Migration of continuations

• Data Vortex with UITS
– Small machine, DIET

– Emphasis on lightweight messaging

– Many in situ tests

– Larger machines at PNNL & IDA
18

Adaptive Parallel Applications

• Adaptive mesh refinement (Matt Anderson)

• Fast multipole methods (DASHMM) (Bo Zhang)

• Barnes-Hut N-body (Jackson DeBuhr)

• Shock-wave material physics with V&V & UQ (C-SWARM)

• Wavelets (with Un. Notre Dame)

• Extremely Large Network processing (with Katy Borner)

• Brain Simulation (EPFL)

• Regular Applications

– LULESH

– Linpack

– HPCG

19

Wavelet Adaptive Multiresoultion

Courtesy of Matt Anderson, IU

21

Not All Apps benefit from Runtimes

• One size does not fit all

• Applications with key properties best served by CSP

– with uniform and regular execution,

– with mostly local data access,

– Static data structures

– with coarse granularity

• Scheduling to be determined at compile/load time

• Data structure and distribution static

• Runtime overhead costs detrimental

– It should be smart enough to know when to get out of the way

• Active scheduling policies can have deleterious effects

22

LULESH HPX+ Performance

Courtesy of Matt AndersonIU

SpMV in HPCG

Problems caused by HPC Runtime
• Experimental

– Issues for performance, robustness, deployment

– Possible exception: Charm++ is mature software

• Impose additional problems
– increased system software complexity

• Added overheads,
– Paradox: to reduce time, add work

– Time and energy costs of task scheduling and resource management

• Uncertainty about programming interfaces
– New execution models cross-cutting of system layers

• Support for legacy codes
– Continuity of working codes on future machines

• Workload interoperability such as libraries
– Separately developed functions, filters, solvers,

25

Architecture for Runtime Acceleration

• Reduction of overheads for runtime mechanisms

• Reduced overheads permit finer grained parallelism

• Example mechanisms feasible with conventional cores

– Thread create & terminate

– Thread context switch

– Thread queue management

– Parcel send/receive/complete and queuing

– Global address translation

• Mechanisms disruptive to cores

• FPGAs can perform many of the required runtime functions

26

EMP Structure

28

Wide-word Struct ALU

...
Thread 0 registers

Thread N-1 registers

…

Scratchpad

Memory Interface
Row Buffers

Dataflow

Control

State

Wide

Instruction

Buffer

Parcel

Handler

Thread

Manager

Memory Vault

Fault

Detection

and

Handling

Power

Management

Access

Control

AGAS
Translation

Datapaths

with

associated

control

Control-only

interfaces

PRECISE

Decoder

I

N

T

E

R

C

O

N

N

E

C

T

Time Required to Accomplish Runtime Overheads

Chart courtesy of Daniel Kogler, IU

• Large scale integration with VLSI

components

• Reconfigurable for generalized

logic circuit synthesis

• Slower that custom logic

• Fast enough to handle message

and memory traffic at peak

speeds

• Rapid prototyping and small run

product delivery

• Includes industry standard

interfaces and functional units

• Updatable with design

improvements and new functions

Field Programmable Gate Arrays

30

FPGA Early Proof-of-Concept

• FPGAs may permit early implementation and testing of

some of these concepts

• Those requiring core intrinsics may be beyond this

technology because of separation of control path

• Makes possible a vehicle of technology transfer using

industry standard interfaces
– Physical FPGAs

– Abstract VHDL/Verilog design specifications

• Integrated multi-components with FPGA layer E.g., Intel

– NICs and FPGAs

• Time constants comparable to message incident rate and

main memory access rates
– In spite of lower clock rates and device densities

31

Extreme Scale Parallel Computer Architecture
• Continuum Computer Architecture (CCA) (Maciek Brodowicz)

– Initial work at Caltech/CACR under DARPA sponsorship

– Exploratory concepts, not needed with enabling technologies

• Architecture in post Moore’s Law era

– Investigates the limits of lightweight homogeneous structures

• Ultra simple in design

– Non von Neumann architecture

• Eliminates FPU as critical optimization

• Eliminates sequential issue

• Eliminates separation of processing and memory

• ParalleX as guiding principles of parallelism and

asynchronous control

– Embeds much of HPX functionality in hardware as primitives

– Ideal for parallelism discovery from graph structure meta-data

32

CCA Structure: Simultac Fonton

• Small block of fully associative tagged memory

• Basic logical and arithmetic unit

• Instruction register directs control to set data paths

• Nearest neighbor communications with switching

Router

Basic
ALU

Burton
Decoder

&
Dispatch
Controller

Trans-cell Switch

. . .

 Tagged Registers

PIM

PIM

PIM

PIM

PIM

PIM

PIM

PIM

PIM

PIM

PIM

PIM

PIM PIM PIM

PIM

PIM

PIM

PIM

PIM

cell

cell

cell

cell

cell

cell

cell

cell

cell

cell

cell

cell

cell cell cell

cell

cell

cell

cell

cell

Workforce Development, Education, & Mentorship
• “Introduction to High Performance Computation”

• “Operating Systems”

• Graduate student research support

– Faculty advisors

– Substantial student desk spaces, computer laboratories

• Outreach

– Conference tutorials (supported by UITS)

– Textbook

• “High Performance Computing - Modern Systems and Methods”

• Publisher Morgan-Kaufmann – July, 2017

• ISE evolution

– 2 Faculty

– 3 Research Scientists

– Planning

• Curriculum, spaces, laboratories

34

