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Discovery  

• 14 September, 2015 

• Combined objects of 29 and 36 

solar masses 

• Produced a black hole of 62 

solar masses. 

• Missing 3 solar masses 

converted to gravitational waves 

• Travelled 1.3 billion years to 

Earth 

• 50X all the power of all the stars 

in the universe 
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Laser Interferometric Gravitational-wave 

Observatory (LIGO) 
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LIGO Chirp Filter for Signal Target 
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CREST Research Thrust Areas 

• Dynamic adaptive computation for efficiency and scalability 

• ParalleX execution model to guide design and interoperability 

of cross-cutting system stack 

• Runtime system development – HPX+ 

• Advanced network protocols, drivers, and NIC architecture 

• Parallel programming intermediate representations 

• Parallel applications in numeric and data centric domains 

• Architectures 

– Edge functions for overhead reduction related to runtime system 

acceleration 

– Continuum Computer Architecture – ultra fine grain cellular elements 

– Network lightweight messaging 

• Workforce development, education, mentorship  
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Technology Demands new Response 
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Technology Drivers towards Runtimes 
• Sustained efficiencies < 10% 

• Increasing sophistication of application domains 

• Expanding scale and complexity of HPC system structures 

• Moore’s Law flat-lining and loss of Dennard scaling 

• Starvation, latency, overhead, contention 

• Asynchronous data movement and memory access 

• Energy/power 

• Changing priorities of component utilization versus 

availability  

• Collision of parallel programming interfaces for user 

productivity 

• Diversity of architecture forms, scales, generations requiring 

performance portability 
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Dynamic adaptive computation 
• Avoid limitations of “ballistic” computing by “guided” control 

• Exploit status information of system and computation at 

runtime for resource management and task scheduling 

• Take advantage of over decomposition naturally 

• Improve user productivity by unburdening of explicit control 

• Enable performance portability through real-time 

adjustment to hardware architecture capabilities 

• Expose and exploit lightweight parallelism through 

discovery from meta-data 

• Requires: 

– Modification to compilation 

– Addition of runtime systems 

– Possible support through architecture enhancements 

– Consideration of parallel algorithms 
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CREST Engaged in Co-Design for Dynamic Adaptive 

Computational Systems 

• Runtime systems only part of total system hierarchical 

structure 

• Must be defined/derived in part by support for and 

interoperability with: 

– programming model 

– Compiler 

– Locality (node) OS 

– Processor core architecture 

• Architecture will have to be designed to reduce 

overheads incurred by runtime systems; e.g.,: 

– Parcels to compute complexes 

– Global address translation 

– Context creation, switching, and garbage collection 

– Data and context redistribution for load balancing 
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 Performance Factors - SLOWER 
• Starvation 

– Insufficiency of concurrency of work 

– Impacts scalability and latency 

hiding 

– Effects programmability 

• Latency 

– Time measured distance for remote 

access and services 

– Impacts efficiency 

• Overhead 

– Critical time additional work to 

manage tasks & resources 

– Impacts efficiency and granularity 

for scalability 

• Waiting for contention resolution 

– Delays due to simultaneous access 

requests to shared physical or 

logical resources 

P = e(L,O,W) * S(s) * a(r) * U(E) 

P – performance (ops) 

e – efficiency (0 < e < 1) 

s – application’s average parallelism,  

a – availability (0 < a < 1) 

U – normalization factor/compute unit 

E – watts per average compute unit 

r – reliability (0 < r < 1) 



Performance Model, Full Example System 
• Example system: 

– 2 nodes, 

– 2 cores per node, 

– 2 memory banks per node 

 

• Accounts for: 
– Functional unit workload 

– Memory workload/latency 

– Network overhead/latency 

– Context switch overhead 

– Lightweight task management (red 
regions can have one active task at a 
time) 

– Memory contention (green regions allow 
only a single memory access at a time) 

– Network contention (blue region 
represents bandwidth cap) 

– NUMA affinity of cores  
 

• Assumes: 
– Balanced workload 

– Homogenous system 

– Flat network 

Modeling the full example system 



Gain with Respect to Cores per Node and 

Overhead; 

Latency of 8192 reg-ops, 64 Tasks per Core 
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Performance Gain of Non-Blocking Programs over Blocking 
Programs with Varying Core Counts (Memory Contention) 

and Overheads 



ParalleX Execution Model 
• Execution model establishes principles for guiding design of 

system stack layers and governing their functionality, 

interfaces, and interoperation 

• Paradigm shifts driven by advances in enabling 

technologies to exploit opportunities and fix problems 

• Execution models capture computing paradigms 

– Von Neumann, Vector, SIMD, CSP 

• Formal representation 

– PNNL-2 led EM2 project 

– Operational semantics specification 

– Prof. Jeremy Siek and Dr. Mateos Cimini 

• Employed in  

– Sandia XPRESS Project 

– NNSA PSAAP-2 C-SWARM Project 

– PNNL EM2 project 
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Distinguishing Features of ParalleX/HPX+ 



HPX+: Runtime Software System Development 

• First reduction to practice of ParalleX execution model 

• Thread scheduler 

• Global address system (AGAS) 

• Message-driven computation 

• Multi-nodal dynamic processes 

• Futures/dataflow synchronization and continuation 

• Percolation for heterogeneous computation 

• Introspection data acquisition and policy-based control 

• Load balancing hooks/stubs 

• Low level intermediate representation for source to 

source compilation and heroic users/experimenters 

• Drives architecture investigations 16 



HPX+ Runtime Software Architecture 
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Courtesy of Jayashree Candadai, IU 



Advanced System Area Networks 
• Photon (Prof. Martin Swany, Ezra Kissel) 

– In house developed network protocol 

– Lightweight messaging 

– Put with completion 

– HPX+ built on top of it 

• Parcels (Luke Dalessandro) 
– Advanced form of active messages in HPX 

– Message-driven computation 

– Migration of continuations 

• Data Vortex with UITS 
– Small machine, DIET 

– Emphasis on lightweight messaging 

– Many in situ tests 

– Larger machines at PNNL & IDA 
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Adaptive Parallel Applications 

• Adaptive mesh refinement (Matt Anderson) 

• Fast multipole methods (DASHMM) (Bo Zhang) 

• Barnes-Hut N-body (Jackson DeBuhr) 

• Shock-wave material physics with V&V & UQ (C-SWARM) 

• Wavelets (with Un. Notre Dame) 

• Extremely Large Network processing (with Katy Borner) 

• Brain Simulation (EPFL) 

• Regular Applications 

– LULESH 

– Linpack 

– HPCG 
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Wavelet Adaptive Multiresoultion 

Courtesy of Matt Anderson, IU 
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Not All Apps benefit from Runtimes 

• One size does not fit all 

• Applications with key properties best served by CSP 

– with uniform and regular execution,  

– with mostly local data access,  

– Static data structures 

– with coarse granularity 

• Scheduling to be determined at compile/load time 

• Data structure and distribution static 

• Runtime overhead costs detrimental  

– It should be smart enough to know when to get out of the way 

• Active scheduling policies can have deleterious effects 
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LULESH HPX+ Performance 

Courtesy of Matt AndersonIU 



SpMV in HPCG 



Problems caused by HPC Runtime 
• Experimental  

– Issues for performance, robustness, deployment 

– Possible exception: Charm++ is mature software 

• Impose additional problems  
– increased system software complexity 

• Added overheads, 
– Paradox: to reduce time, add work 

– Time and energy costs of task scheduling and resource management 

• Uncertainty about programming interfaces 
– New execution models cross-cutting of system layers 

• Support for legacy codes 
– Continuity of working codes on future machines 

• Workload interoperability such as libraries 
– Separately developed functions, filters, solvers,  
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Architecture for Runtime Acceleration 

• Reduction of overheads for runtime mechanisms 

• Reduced overheads permit finer grained parallelism 

• Example mechanisms feasible with conventional cores 

– Thread create & terminate 

– Thread context switch 

– Thread queue management 

– Parcel send/receive/complete and queuing 

– Global address translation 

• Mechanisms disruptive to cores 

• FPGAs can perform many of the required runtime functions 
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EMP Structure 
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Time Required to Accomplish Runtime Overheads 

Chart courtesy of Daniel Kogler, IU 



• Large scale integration with VLSI 

components 

• Reconfigurable for generalized 

logic circuit synthesis 

• Slower that custom logic 

• Fast enough to handle message 

and memory traffic at peak 

speeds 

• Rapid prototyping and small run 

product delivery 

• Includes industry standard 

interfaces and functional units 

• Updatable with design 

improvements and new functions 

Field Programmable Gate Arrays 
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FPGA Early Proof-of-Concept 

• FPGAs may permit early implementation and testing of 

some of these concepts 

• Those requiring core intrinsics may be beyond this 

technology because of separation of control path 

• Makes possible a vehicle of technology transfer using 

industry standard interfaces  
– Physical FPGAs 

– Abstract VHDL/Verilog design specifications 

• Integrated multi-components with FPGA layer E.g., Intel 

– NICs and FPGAs  

• Time constants comparable to message incident rate and 

main memory access rates  
– In spite of lower clock rates and device densities 
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Extreme Scale Parallel Computer Architecture 
• Continuum Computer Architecture (CCA) (Maciek Brodowicz) 

– Initial work at Caltech/CACR under DARPA sponsorship 

– Exploratory concepts, not needed with enabling technologies 

• Architecture in post Moore’s Law era 

– Investigates the limits of lightweight homogeneous structures 

• Ultra simple in design 

– Non von Neumann architecture 

• Eliminates FPU as critical optimization  

• Eliminates sequential issue 

• Eliminates separation of processing and memory 

• ParalleX as guiding principles of parallelism and 

asynchronous control 

– Embeds much of HPX functionality in hardware as primitives 

– Ideal for parallelism discovery from graph structure meta-data 
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CCA Structure: Simultac Fonton 

• Small block of fully associative tagged memory 

• Basic logical and arithmetic unit 

• Instruction register directs control to set data paths 

• Nearest neighbor communications with switching 
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Workforce Development, Education, & Mentorship 
• “Introduction to High Performance Computation” 

• “Operating Systems” 

• Graduate student research support 

– Faculty advisors  

– Substantial student desk spaces, computer laboratories 

• Outreach 

– Conference tutorials (supported by UITS) 

– Textbook 

• “High Performance Computing - Modern Systems and Methods” 

• Publisher Morgan-Kaufmann – July, 2017 

• ISE evolution 

– 2 Faculty 

– 3 Research Scientists 

– Planning 

• Curriculum, spaces, laboratories 
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