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e 14 September, 2015

 Combined objects of 29 and 36
solar masses

 Produced a black hole of 62
solar masses.

« Missing 3 solar masses
converted to gravitational waves

Strain (10%)

.i \[.J\:/-'\“\'/ v

—
5
o
=
=
[\
-
™)
v

LIGO Hanford Data (shifted

+ Travelled 1.3 billion yearsto St , '
Earth g : 'W’\J\Mw’""\_/j\j / \/ \ »\'f”\/w
- 50X all the power of all the stars i T |
In the universe 030 035 040 045

Time (sec)

/lﬂﬂﬂ INDIANA UNIVERSITY

—~"CREST Center for Research in Extreme Scale Technologies



Laser Interferometric Gravitational-wave
Observatory (LIGO)

Hanford, WA
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LIGO Chirp Filter for Signal Target

Last Second Before Coalescence
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CREST Research Thrust Areas

« Dynamic adaptive computation for efficiency and scalability

« ParalleX execution model to guide design and interoperability
of cross-cutting system stack

* Runtime system development — HPX+

« Advanced network protocols, drivers, and NIC architecture
« Parallel programming intermediate representations

« Parallel applications in numeric and data centric domains

* Architectures

— Edge functions for overhead reduction related to runtime system
acceleration

— Continuum Computer Architecture — ultra fine grain cellular elements
— Network lightweight messaging

Workforce development, education, mentorship
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echnology Drivers towards Runtimes

« Sustained efficiencies < 10%

 Increasing sophistication of application domains

« Expanding scale and complexity of HPC system structures
* Moore’s Law flat-lining and loss of Dennard scaling

« Starvation, latency, overhead, contention

« Asynchronous data movement and memory access

* Energy/power

« Changing priorities of component utilization versus
availability

« Collision of parallel programming interfaces for user
productivity

» Diversity of architecture forms, scales, generations requiring
performance portabilit
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Dynamic adaptive computation
» Avoid limitations of “ballistic” computing by “guided” control

« EXxploit status information of system and computation at
runtime for resource management and task scheduling

« Take advantage of over decomposition naturally
* Improve user productivity by unburdening of explicit control

« Enable performance portability through real-time
adjustment to hardware architecture capabilities

« Expose and exploit lightweight parallelism through
discovery from meta-data

* Requires:
— Modification to compilation
— Addition of runtime systems

— Possible support through architecture enhancements
— Consideration of parallel algorithms
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CREST Engaged in Co-Design for Dynamic Adaptive
Computational Systems

Runtime systems only part of total system hierarchical
structure

Must be defined/derived in part by support for and
Interoperability with:

— programming model

— Compiler

— Locality (node) OS

— Processor core architecture

Architecture will have to be designed to reduce
overheads incurred by runtime systems; e.g.,:
— Parcels to compute complexes
— Global address translation
— Context creation, switching, and garbage collection
— Data and context redistribution for load balancing
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Performance Factors - SLOWER

P = e(L,O,W) * S(s) * a(r) * U(E)

P — performance (ops)

e — efficiency (0 <e <1)

s — application’s average parallelism,
a — availability (0O <a<1)

U — normalization factor/compute unit
E — watts per average compute unit

r — reliability (O <r<1)

« Starvation
— Insufficiency of concurrency of work
— Impacts scalability and latency
hiding
— Effects programmability

Latency
— Time measured distance for remote
access and services

— Impacts efficiency

Overhead
— Critical time additional work to
manage tasks & resources
— Impacts efficiency and granularity
for scalability
Waiting for contention resolution

— Delays due to simultaneous access
requests to shared physical or
logical resources
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Performance Model, Full Example System

Example system:
— 2 nodes,
— 2 cores per node,
— 2 memory banks per node

Modeling the full example system

Accounts for:
— Functional unit workload
— Memory workload/latency
— Network overhead/latency
— Context switch overhead

— Lightweight task management (red
regions can have one active task at a
time)

— Memory contention (green regions allow
only a single memory access at a time)

—  Network contention (blue region
represents bandwidth cap)

— NUMA affinity of cores

Assumes:
— Balanced workload
— Homogenous system
— Flat network
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Gain with Respect to Cores per Node and
Overhead,;
Latency of 8192 reg-ops, 64 Tasks per Core

Performance Gain of Non-Blocking Programs over Blocking
Programs with Varying Core Counts (Memory Contention)
and Overheads

Performance Gain
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ParalleX Execution Model
« EXxecution model establishes principles for guiding design of

system stack layers and governing their functionality,
Interfaces, and interoperation

« Paradigm shifts driven by advances in enabling
technologies to exploit opportunities and fix problems

« EXxecution models capture computing paradigms
— Von Neumann, Vector, SIMD, CSP

« Formal representation

— PNNL-2 led EM2 project

— Operational semantics specification

— Prof. Jeremy Siek and Dr. Mateos Cimini
« Employed Iin

— Sandia XPRESS Project
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Distinguishing Features of ParalleX/HP X+
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D Locality o—~_~ Thread LTI: local thread instantiation
Process - Suspended Thread RTI: remote thread instantiation
- Local Memory ——» Local Memory Access RAMO: remote atomic memory operation
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M pccelerator ----» Local Action DOT: dataflow object trigger
— Parcel FVA: future value access
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HPX+: Runtime Software System Development

First reduction to practice of ParalleX execution model
Thread scheduler

Global address system (AGAS)

Message-driven computation

Multi-nodal dynamic processes

Futures/dataflow synchronization and continuation
Percolation for heterogeneous computation
Introspection data acquisition and policy-based control
Load balancing hooks/stubs

Low level intermediate representation for source to
source compilation and heroic users/experimenters

Drives architecture investigations 16
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HP X+ Runtime Software Architecture
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Advanced System Area Networks

* Photon (Prof. Martin Swany, Ezra Kissel)
— In house developed network protocol
— Lightweight messaging
— Put with completion
— HPX+ built on top of it

« Parcels (Luke Dalessandro)
— Advanced form of active messages in HPX
— Message-driven computation
— Migration of continuations

 Data Vortex with UITS

— Small machine, DIET

— Emphasis on lightweight messaging
— Many in situ tests
— Larger machines at PNNL & IDA
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Adaptive Parallel Applications

« Adaptive mesh refinement (Matt Anderson)

* Fast multipole methods (DASHMM) (Bo Zhang)

« Barnes-Hut N-body (Jackson DeBuhr)

« Shock-wave material physics with V&V & UQ (C-SWARM)
« Wavelets (with Un. Notre Dame)

« Extremely Large Network processing (with Katy Borner)

« Brain Simulation (EPFL)

* Regular Applications
— LULESH
— Linpack
— HPCG

19
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Wavelet Adaptive Multiresoultion
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Not All Apps benefit from Runtimes

« One size does not fit all

« Applications with key properties best served by CSP
— with uniform and regular execution,
— with mostly local data access,
— Static data structures
— with coarse granularity

« Scheduling to be determined at compile/load time
« Data structure and distribution static

* Runtime overhead costs detrimental
— It should be smart enough to know when to get out of the way

« Active scheduling policies can have deleterious effects

22
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LULESH HPX+ Performance
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SpMV In HPCG

SpMV on small cluster
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Problems caused by HPC Runtime

« Experimental
— Issues for performance, robustness, deployment
— Possible exception: Charm++ is mature software

* Impose additional problems
— increased system software complexity

 Added overheads,

— Paradox: to reduce time, add work
— Time and energy costs of task scheduling and resource management

« Uncertainty about programming interfaces

— New execution models cross-cutting of system layers

« Support for legacy codes
— Continuity of working codes on future machines

« Workload interoperability such as libraries

— Separately developed functions, filters, solvers, e
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Architecture for Runtime Acceleration

« Reduction of overheads for runtime mechanisms
 Reduced overheads permit finer grained parallelism

« Example mechanisms feasible with conventional cores
— Thread create & terminate
— Thread context switch
— Thread queue management
— Parcel send/receive/complete and queuing
— Global address translation

« Mechanisms disruptive to cores
 FPGAs can perform many of the required runtime functions

26

/‘4% INDIANA UNIVERSITY

—~"CREST Center for Research in Extreme Scale Technologies



Normalized scalability (5”5”“)
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EMP Structure
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Time Required to Accomplish Runtime Overheads
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Field Programmable Gate Arrays

—) ]

« Large scale integration with VLSI
components

« Reconfigurable for generalized
logic circuit synthesis

« Slower that custom logic
« Fast enough to handle message
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FPGA Early Proof-of-Concept

 FPGAs may permit early implementation and testing of
some of these concepts

« Those requiring core intrinsics may be beyond this
technology because of separation of control path

« Makes possible a vehicle of technology transfer using

Industry standard interfaces
— Physical FPGAs
— Abstract VHDL/Verilog design specifications

 Integrated multi-components with FPGA layer E.g., intel
— NICs and FPGAs

« Time constants comparable to message incident rate and

main memory access rates

— In spite of lower clock rates and device densities .
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Extreme Scale Parallel Computer Architecture
« Continuum Computer Architecture (CCA) (Maciek Brodowicz)
— Initial work at Caltech/CACR under DARPA sponsorship
— Exploratory concepts, not needed with enabling technologies

* Architecture in post Moore’s Law era
— Investigates the limits of lightweight homogeneous structures
 Ultra simple in design
— Non von Neumann architecture
» Eliminates FPU as critical optimization
« Eliminates sequential issue
« Eliminates separation of processing and memory

« ParalleX as guiding principles of parallelism and
asynchronous control
— Embeds much of HPX functionality in hardware as primitives
— |deal for parallelism discovery from graph structure meta-data 32
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CCA Structure: Simultac Fonton

« Small block of fully associative tagged memory

« Basic logical and arithmetic unit

 Instruction register directs control to set data paths
* Nearest neighbor communications with switching
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« “Operating Systems”
« Graduate student research support

— Faculty advisors
— Substantial student desk spaces, computer laboratories

Outreach
— Conference tutorials (supported by UITS)

— Textbook
* “High Performance Computing - Modern Systems and Methods

* Publisher Morgan-Kaufmann — July, 2017

ISE evolution

— 2 Faculty

— 3 Research Scientists

— Planning 34
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