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Motivation

* Machine learning is widely used in data analytics

* Need for high performance
— Big data & Big model

— "Select model and hyper parameter tuning" step need to run the training algorithm for
many times

* Key: optimize for efficiency

— What is the 'kernel’ of training?

— Computation model ‘

SALSA




Recommendation Engine

* Show us products typically
purchased together

e Curate books and music for us
based on our preferences

* Have proven significant
pecause they consistently boost
sales as well as customer

satisfaction '
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Fraud Detection

* |dentify fraudulent activity

* Predict it before it has occurred
saving financial services firms
millions in lost revenue.

* Analysis of financial transactions,
email, customer relationships and
communications can help
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More Opportunities...

* Predicting customer “churn” —when a customer will leave a provider of a
product or service in favor of another.

* Predicting presidential elections, whether a swing voter would be
persuaded by campaign contact.

* Google has announced that it has used Deep Mind to reduce the energy
used for cooling its datacenter by 40 per cent.

* Imagine... ‘
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The Process of Data Analytics

 Define the Problem

— Binary or multiclass, classification or regression, evaluation metric, ...

* Dataset Preparation

— Data collection, data munging, cleaning, split, normalization, ...

Feature Engineering

— Feature selection, dimension reduction, ...

Select model and hyper paramenter tuning

— Random Forest, GBM, Logistic Regression, SVM, KNN, Ridge, Lasso, SVR, Matrix Factorization,
Neural Networks, ...

Output the best models with optimized hyper parameters ‘
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Challenges from Machine Learning Algorithms

Machine Learning algorithms in various domains:
* Biomolecular Simulations
* Epidemiology

* Computer Vision

They have:

i * Iterative computation workload

Latent Dinichlet Allocation

* High volume of training & model data

Traditional Hadoop/MapReduce solutions:
* Low Computation speed (lack of multi-threading)
* High data transfer overhead (disk based)
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Taxonomy for ML Algorithms

Task
Level

Modeling
Level

Solver
Level

: : : . : Structure Dimensionality
Classification | Clustering | Regression Recommendation Leaming Reduction
General Kemel | Nearest Decision |Factorization | Graphical Neural

Linear Model | Method | Neighbor Tree

Machine Model Networks

SVD,PCA,QR, GD,SGD,LBFGS, EM:EM,VB; BP; MCMC:GibbsSampling,
Eigen,ALS... CG,CCD... Metropolis-Hastings....
Linear Algebra Numerical Statistical
Kemel Optimization Inference

 Task level: describe functionality of the algorithm

* Modeling level: the form and structure of model

* Solver level: the computation pattern of training
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Emerging Many-core Platforms

Comparison of Many-core and Multi-core Architectures
* Much more number of cores
* Lower single core frequency

* Higher data throughput

How to explore computation and Bandwidth of KNL for Machine
Learning applications ?

SALSA



Intel Xeon/Haswell Architecture

Haswell 4-core Overview
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Much more number of cores
Lower single core frequency
Higher data throughput

Copyright (c) 2011 Hiroshige Goto All rights reserved.
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Intel Xeon Phi (Knights Landing) Architecture

< 16 GiB on-package MCDRAM, ~ 400 GB/s

<384 GiB system DDR4, ~90 GB/s

DDR4 CONTROLLER

PCle
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CORE [CORE| |CORE |CORE CORE |CORE| |[CORE|CORE| |CORE |CORE CORE |CORE
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Up to 72 cores, 288 threads connected in a 2D-mesh

High bandwidth (> 400 GB/s) Memory (MCDRAM)

DDR4 CONTROLLER

* Upto 144 AVXg12 vectorization units (VPUSs)
* 3 Tflops (DP) performance delivery

* Omni-path link among processors (~ 100 GB/s) SA/ SA




DAAL: Intel’s Data Analytics Acceleration Library

Data Management

Data sources
Data dictionaries
Data model
Numeric tables & matrices
Compression

Services

Memory allocation
Error handling
Collections
Shared pointers

Algorithms

Analysis
Training
Prediction

DAAL is an open-source project that provides:

Algorithms Kernels to Users
* Batch Mode (Single Node)
* Distributed Mode (multi nodes)

* Streaming Mode (single node)

Data Management & APIs to Developers

» Data structure, e.g., Table, Map, etc.
 HPCKernels and Tools: MKL, TBB, etc.

* Hardware Support: Compiler

SALSA




Case Study: Matrix-Factorization Based on SGD (MF-SGD)
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Decompose a large matrix into two model matrices,
used in Recommender systems

Large Training Data: Tens of millions of points
Large Model Data: m, n could be millions
Random Memory Access Pattern in Training
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Stochastic Gradient Descent

The standard SGD will loop over all the nonzero ratings x; ; in a random way

 Compute the errors
Stochastic Gradient Descent

ei,j = xl-,j — ui,*v*,j
* Update the factors U and V

Ui = Ui TV (€15 Vsj — A Uju)

U*J' = U*J’ +]/ . (ei,]’ . ui’* —A- U*,j)




Challenge of SGD in Big Model Problem

1. Memory Wall 0|

— hsw-avx |

—— hsw-no-vec /

100 |- ) /
—e+— linear speedup /

* 4 memory ops for 3 computation ops
In updating U and V

80 |-

Iteration (s)

Processor is hungry of data !!

40 [—

2. Random Memory Access

Training Time Per

e Difficulty in data prefetching
* Inefficiency in using cache 0

1 2 4 8 16 32 64
Thread Number

Strong Scaling of SGD on Haswell CPU with Multithreading
We test a multi-threading SGD on a CPU

The strong scalability collapses after using more than 16 threads !!

Speedup T(1)/T(N)



What for Novel Hardware Architectures and

Runtime Systems

Hardware Aspect:

e 3D stack memory
* Many-core: GPU, Xeon Phi, FPGA, etc.

Software Aspect:

* Runtime System
e Dynamic Task Scheduling

Reduce the memory access latency
Increase memory bandwidth

IBM and Micron’s big memory cube

i A

I 17 17 11

= L=l =

I

11 IT 3

Logic Block

Interconnection

Input/Output

Switch Box
Connect Block

A generalized architecture for an FPGA



Intra-node Performance: DAAL-MF-SGD vs. LIBMF

Test on KINNL with Yahoomusic Dataset

100 _ | | | | | | | | |
o1 < 0 LIBMF 160
l bAAL-MF-SGD
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N
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40
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Speedup(/1 thread)

20

Training Time Per Iteration (s)

1 2 4 8 16 32 64 128 256
Threads Number

LIBMF: a start-of-art open source MF-SGD package =~ We compare our DAAL-MF-SGD kernel with
* Onlysingle node mode LIBMF on a single KNL node, using YahooMusic
* Highly optimized for memory usage dataset SA/ SA



Intra-node Performance: DAAL-MF-SGD vs. LIBMF

Convergence (RMSE)

80

60

40

20

DAAL-MF-SGD delivers a comparable
training time for each iteration with
that of LIBMF
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Iterations

DAAL-MF-SGD has a better convergence speed
than LIBMF, using less iterations to achieve the
same convergence.
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CPU utilization and Memory Bandwidth on KNL
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DAAL-MF-SGD utilizes more
than 95% of all the 256 threads
on KNL

DAAL-MF-SGD uses more than
half of the total bandwidth of
MCDRAM on KNL

We need to explore the full

usage of all of MCDRAM'’s
bandwidth (around 400 GB) to
further speed up DAAL-MF-SGD
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Training Time Per Iteration (s)

Intra-node Performance: Haswell Xeon vs. KNL Xeon Phi
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Speedup T(1)/T(N)

DAAL-MF-SGD has a better
performance on KNL than
on Haswell CPU, because it
benefits from

* KNL's AVX512
vectorization

* High Memory
Bandwidth

KNL has

e 3xspeeds up by
vectorization

* 1.5X-—4x speeds up to
Haswell
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Machine Learning using
Harp Framework
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The Growth of Model Sizes and Scales of
Machine Learning Applications
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Challenges of Parallelization Machine Learning
Applications

* Bigtraining data
* Big model
* Iterative computation, both CPU-bound and memory-bound

* High frequencies of model synchronization

SALSA



Parallelizing Machine Learning Applications

Machine
Learning
Application

| Machine
Implementation Learning
| Algorithm

Programming Computation

Model Model ‘
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Types of Machine Learning Applications and Algorithms

Expectation-Maximization Type

e K-Means Clustering
e Collapsed Variational Bayesian for topic modeling (e.g. LDA)

_‘ Gradient Optimization Type I

e Stochastic Gradient Descent and Cyclic Coordinate Descent for classification (e.qg.
SVM and Logistic Regression), regression (e.g. LASSO), collaborative filtering (e.g.
Matrix Factorization)

Markov Chain Monte Carlo Type

e Collapsed Gibbs Sampling for topic modeling (e.g. LDA)

SALSA



Inter/Intra-node Computation Models

Model-Centric Synchronization Paradigms

(B) ;
[ oo, B viose: B oce |
o D 3

Synchronized algorithm * Synchronized algorithm
* The latest model * The latest model
©) (D)
Model liqal
s on | o e s
: Synchronized algorithm * Asynchronous algorithm E
* The stale model * The stale model




Case Study: LDA mines topics in text collection

“ATts” “Budgets™ “Children” “Education™
°
NEW MILLION CHILDEREMN SCHOOL HUge VO|Ume OfTeXt Data
FILM TA X WOMMEN STUDENTS . .
SH OW PROGRAM PEOPLE SCHOOLS > Information Overloadlng
MUSIC BUDGET CHILD EDUCATION 0 C c
MOVIE BILLION YEARS TEACHERS o What on earth is inside the
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC TEXT Data?
BEST SPENDIN G PARENTS TEACHER
ACTOR NEW SAYS BENNETT d S earc h
FIRST STATE FAMILY MMANIGAT ]
Y ORK PLAN WELFARE NAMPHY - Find the documents
OFERA MOMNEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT relevant to my need (ad
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CON GRESS LIFE HAITI hoc query)
. c c
The William Randolph Hearst F will gprve 51 .25 toy Lincoln Center, Metropoli- Fllterlng
ta:m_ (Mpera l.'_[_J., Mew Work Philharmonic kanrj JL1I|[II:1I.‘1’.1 5-:-,_'I_'|uu.. Char - arc telt that we had a o leed Info needs and
real opportunity © make a mark on the fature of the performing  arts with these grants an act .
every bit as important as our traditional areas of supp in health, medical rescarch. education dynamlc text data
and the social services” Hearst Foundat President Randolph AL Hearst said Monday m \ . .
¢ cing the grants. Lincoln Center’s share will be 52 for its new building. which ° What S hew |nS|de7
weill use young artists and provide new pubhic facilities. The Metropohitan Opera Co. and . . .
Mew Work Philbharmonie wall recemnve 54 cach. The Julhard %chool. where music and o) DISCOVGI’ Someth|ng I dOn t
the performing  arts are taught, will get 525 The Hearst F E a leading supporter knOW
of the Lincoln Center Consolidated Corporate Fo will make 1ts usuaal : 1
donation, too.

Figure 8: An example article from the AP corpus. Each color codes a different factor from which
the word 15 putatively generated.

Blei, D. M., Ng, A.Y. & Jordan, M. I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 3, 993-1022 (2003). SA/SA



LDA and Topic model

* Topic Models is a modeling « Document
technique, modeling the data by «  Word
probabilistic generative process. * Topic: semantic unit inside the data
* Topic Model

e Latent Dirichlet Allocation (LDA) is

_ _ — documents are mixtures of topics,
one widely used topic model.

where a topic is a probability
* Inference algorithm for LDA is an distribution over words
iterative algorithm using share Global Model Data
3.7 million docs
global model data.

0000000000000000 )0 _
xR )0 OR 000 000 10k topics
C )00 W, 00 0 :
¢ %11 500 % o J
0VVVVVLV000000000000 000000 e
0000000000000 “ 1 million =~ X
0000000000 )0 >0 words | W . W K*D
0000000000 ¥: ;00 D00 '
S GOGE 06000 : :
qu\:%:%%i(u('}a topic-doc matrix M,
V*D V*K
Document Collection Topic assignment word-doc matrix  word-topic matrix N,
Normalized co- Mixture components Mixture weights

occurrence matrix
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The Comparison of LDA CGS Model Convergence Speed

lell The parallelization strategy can highly affect the algorithm
: g ! ! ! convergence and the system efficiency. This brings us four
------- questions:
= |4y S * What part of the model needs to be synchronized?
= oo P P The parallelization needs to decide which model parts
S 09 S EREEERPERE e e needs synchronization.
3 : ' ' 1
3 *  When should the model synchronization happen?
2 Yahoo!LDA || . . . . .
s | In the parallel execution timeline, the parallelization
lgs ) | should choose the time point to perform model
85738 | synchronization.
: : rtt
-1.4 I I I i . " ,
0 2000 10000 15000 20000 23000 Where shOL_JId 1Ehe model synchronlz_atlpn occur:
E —_— The parallelization needs to tell the distribution of the
xecution Time (s)
model among parallel components, what parallel
components are involved in the model synchronization.
rtt & Petuum: rotate model parameters .

How is the model synchronization performed?
The parallelization needs to explain the abstraction and
the mechanism of the model synchronization.

Igs & Igs-4s: one or more rounds of model
synchronization per iteration
Yahoo!LDA: asynchronously fetch model parameters
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Inter-node Computation Models

(Training Data Items Are Partitioned to Each Process)

Computation Model A Computation Model B

e Once a process trains a data item, it locks e Each process first takes a part of the
the related model parameters and prevents shared model and performs training.
other processes from accessing them. Afterwards, the model is shifted between
When the related model parameters are processes. Through model rotation, each
updated, the process unlocks the model parameters are updated by one
parameters. Thus the model parameters process at a time so that the model is
used in local computation are always the consistent.
latest.

e Each process first fetches all the model e Each process independently fetches
parameters required by local computation. related model parameters, performs local
When the local computation is completed, computation, and returns model
modifications of the local model from all modifications. Unlike A, workers are
processes are gathered to update the allowed to fetch or update the same model
model. parameters in parallel. In contrast to B and

C, there is no synchronization barrier.
SALSA



Intra-node: Schedule Data Partitions to Threads

(only Data Partitions in Computation Model A, C, D; Data and/or Model Partitions in B)

(A) Dynamic Scheduler (B) Static Scheduler (A) Dynamic Scheduler

e All computation models can use this scheduler.

 All the inputs are submitted to one queue.

e Threads dynamically fetch inputs from the
queue.

e The main thread can retrieve the outputs from
the output queue.

(B) Static Scheduler

Thread Thread BEE Thread Thread Thread

.
I

 All computation models can use this scheduler.

e Each thread has its own input queue and output
queue.

e Each thread can submit inputs to another
thread .

e The main thread can retrieve outputs from each
task’s output queue.

SALSA



Harp Framework

Harp

@ |lteratio

‘GLoad

‘@ Load

‘@ Load

Task

‘QCompute

-

Jo

Task

‘ ©) Compute

4

Jo

Task

‘@Compute

¥

Jo

Collective Communication (e.g. Allreduce, Rotation)

Harp is an open-source project
developed by
Indiana University.

* MPI-like collective
communication operations that
are highly optimized for big
data problems.

* Harp has efficient and
innovative computation models

for different machine learning

problems.
SA[SA



Harp Features

: : Partitions &

ll Distributed
computing

o

= Multi-threading Gl Schedulers {

Computation g Dynamic
scheduler

Static scheduler
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Data T'ypes

Primitive Arrays Serializable Objects

* ByteArray, ShortArray, IntArray, FloatArray, * Writable
LongArray, DoubleArray

Partitions & Tables
Partition Table
* An array/object with partition * The container to organize
ID partitions

Key-value Table

e Automatic partitioning based
on keys

SALSA



APls

Collective Event Driven

e DynamicScheduler * broadcast e getEvent

_ e reduce _
e StaticScheduler e waitEvent

e allgather

e allreduce * sendEvent
* regroup
e pull

e push

* rotate

SALSA



Case Study: LDA and Matrix-Factorization
Based on SGD and CCD

Xeon Eg 2699 v3 Xeon Eg 2670 v3
(each uses 30 Threads) (each uses 20 Threads)
clueweb1 Harp CGS vs. Petuum (30) Harp CGS vs. Petuum (60)
clueweb2 Harp SGD vs. NOMAD (30) Harp SGD vs. NOMAD (60)
Harp CCD vs. CCD++ (30) Harp CCD vs. CCD++ (60)

SALSA



Collapsed Gibbs Sampling for Latent Dirichlet Allocation

CGS Algorithm for LDA

Input: training data X', the number of topics A, hyperparameters o, 3

Output: topic assignment matrix Z, topic-document matrix M, word-topic matrix N
1. Initialize M, N to zeros
2. for document j € [1, D] do
3. for token position z in document ;j do

5. Mi; +=1;Nyr +=1

6. end for

7. end for

8. repeat

9.  for document j € [1, D] do

10. for token position 7z in document j do

11. Mpj —=1;Nyr —=1

12. Z;; = k' ~ p(Z;; = k|rest) {sample a new topic by Eq. (2) using SparseLDA [8]}
13. J[kfj += 1;f\rwkr +=1

14. end for

15.  end for
16. until convergence

SALSA



Matrix Factorization

CCD Algorithm for MF

Input: training matrix V', the number of features

SGD A]gorithm for MF K, regularization parameter A
i Output: row related model matrix W and column
Input: training matrix V/, the number of features related model matrix

1. Initialize W, H to UniformReal(0,1 /v K)
2. Initialize residual matrix R toV — WH
3. repeat

K, regularization parameter A\, learning rate €
Output: row related model matrix W and column

related model matrix H 4. forV,;, € Vdo
trali ' YN 1 2 5. for : =1 to K do
1. Initialize W, H to UniformReal(0,1/v K) | T Siev., (Rij + HigWa) Wi
2. repeat , , 6. s* = > iev., A+ W3)
3. forrandom V;; € V do - Rij = Rij — (5% = Hyy) Wik
4. { L, regularization} 8. Hyj = s*
5 error = Wi, H*j o H'.j 9. end for
, - - ] T - 10.  end for
6. Wie = Wiy — €e(error - H_*j + A\Wiy) 1. forV,, €V do
7. H*j = H*_j — e(error - I'I-",; + )\H*j) 12. for b = 1 to /X do ]
8. end for 13 . 2ojev, (Bi; + Wi Hyj ) Hy
. . T o (AN HZ)
9. until convergence 2 jevi. ( AT
2 14. Rij = Rij — (2* — IT"Tz'k)ij
15. Wik = 2*
16. end for
17. end for

18. until convercence

SALSA



Features of Model Update in Machine Learning Algorithms

|. The algorithms can converge even when the consistency of a model is not guaranteed to some extent.

. The update order of the model parameters is exchangeable.

Algorithm Examples

Collapsed Gibbs Stochastic Gradient Cyclic Coordinate
Sampling for Latent Descent for Matrix Descent for Matrix
Dirichlet Allocation Factorization Factorization

SALSA



A Parallelization Solution using Model Rotation

9 Iteration Control

¢) Rotate Model

Worker 2 )

[Workero ] [ Worker 1 ] [

" Training
Data D

0&& jj

Local Compute

" Training

Data D,

|t

/Training\

Data D,

\\

=

f Load, Cache & Initialize

\k

4

|C Training Data D on HDFS

—

Maximizing the effectiveness of parallel model

updates for algorithm convergence

Minimizing the overhead of communication for

scaling

Input: P workers, data D, model AY_ the number
of iterations 7’
Output: A’
1. parallel for worker p € [1, P| do

2 fort =1to7 do

3 fori:ltopdo o
4 AL = F(Dp, A7)
5. rotate A;ﬁ

6 end for

7 end for

8. end parallel for

SALSA



Pipeline Model Rotation
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Dynamic Rotation Control for LDA CGS and MF SGD

Multi-Thread
Model Parameters i
Execution

From Rotation ==

gl
-
-
g 1
-

Model Related Data Computes until the time
Other Model Parameters arrives, then starts model ‘

From Caching rotation
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CGS Model Convergence Speed

clueweba 76163963 999933 29911407874 = 10000,a = 0.01,5 = 0.01
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K: number of features; a, b hyperparameters; SA[SA



SGD Model Convergence Speed
B g e T

clueweb2 76163963 999933 15997649665 = 2000,4 = 0.01,¢e = 0.001
2.2 ! ! ! ! ! I I 2.2 ! ! ! ! T I I
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K: number of features; A regularization parameter; € learning rate SALSA



CCD Model Convergence Speed

MF Dataset m Non-Zero Elements CCD Parameters

Test RMSE

clueweb2
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Harp-DAAL:

Intel Parallel Computing Center

at Indiana University

s

High Performance Machine Learning Framework

Harp

1. Java API

2. Local computation:
Java threads

3. Communication:
Collective MapReduce

DY.V.\E

1. Java & C++ API

2. Local
computation: MKL,
TBB

3. Communication:
MPI & Hadoop &
Spark

Harp-DAAL
1. Java API

2. Local
Computation: DAAL

3. Communication:
Collective
MapReduce

SALSA



Intel Parallel Computing Center

at Indiana Umver5|ty

Harp-DAAL in the HPC- Bngata Stack

Harp-DAAL is at the intersection of HPC

and Big Data stacks, which requires:

Big Model Big Training Big Model
Data Data Data

* Interface: User friendly, consistent with
other Java written Data analytics Apps.

* Low level Kernels: highly optimized for
HPC platforms such as many-core

DAAL Kernels: MF-SGD, K-Means, LDA arc h Ite cture

Harp-Communication

HPC Kernels: BLAS, MKL, TBB, OpenMP

* Models: inherit Harp’s computation
models for different ML algorithms ‘

HPC Hardware Platforms: Haswell CPU, KNL Xeon PHI

SALSA



Intel Parallel Computing Center

at Indiana Umver5|ty

Inter node Performance: Harp-DAAL Kmeans vs. Harp-Kmeans

Inter-node test is done on two Haswell E5-2670
v3 2.3GHz nodes. We vary the size of input
points and the number of centroids (clusters)

\ \
5.4

I | Harp-Kmeans
[T} Harp-DAAL-Kmeans ]

ot
T

W

Execution Time (10°s)
w

5000 50000 500000
Size of Points set

Harp-Kmeans vs. Harp-DA AL-Kmeans with 100000 Centroids

By using DAAL-Harp’s high performance kernels,
DAAL-Harp-Kmeans has a 2x to 4x speeds up
over Harp-Kmeans

I | Harp-Kmeans 0.4
[T} Harp-DAAL-Kmeans ]

ot
T

B

Execution Time (10°s)
w

1000 10000 100000
Num of Centroids

Harp-Kmeans vs. Harp-DAAL-Kmeans with 500000 Points

SALSA



Intel Parallel ComputingYCenter

gy at Indiana Umver5|ty

Inter-node Performance: H arp- DAAL S GD vs. H arp -SGD
Test for MovieLens with Dim 128 on 2 nodes of Juliet Test for MovieLens with Dim 512 on 2 nodes of Juliet Test for Yahoomusic with Dim 128 on 2 nodes of Juliet
9,500 =
260 |- 254 In Harp-SGD N 660 - 655 [T Harp-SGD N A [ T} Harp-SGD

I B Harp-DAAL-SGD I § Harp-DAAL-SGD I B Harp-DAAL-SGD | |

9,000

240 640

8,630

g g g

£ 220 £ 620 % 8,500

% 200 % 600 % 8,000

~ 180 580 ~

: : £ 7500

E 160 & 560 3

g g 5 7000

£ 140 £ 540 g

L% 120 5 520 L% 6,500 |

100 500 6,000

The Inter-node test is done on two Haswell E5-2670 v3 There are still some overheads of interfacing
2.3GHz nodes. We use two datasets DAAL and Harp, which requires further

investigation.
* MovielLens, a small set with 9301274 points

* Yahoomusic a large set with 252800275 points

For both datasets, we have around 5% to 15% speeds

up by using DAAL-SGD within Harp. SALSA



Intel Parallel Computing*,Center

at Indiana Umver5|ty

I nterface Overhead between DAAL and H arp
Dim 128 Dim 512 We decompose the training time into different phases.

There are two overhead of interface

Harp-DAAL Interface

*  Conversion between data structures

JNI interface

« Data movement from Java heap to out-of-heap buffer for
C++ native kernelsin DAAL

The two overheads could take up to 25% of the total

training time, which must be optimized in the future
Harp-DAAL Interface WOFk

Computation

Computation

Harp-DAAL Interface

JNI overhead JNI overhead

Rewrite some Harp codes to create shared memory
space between DAAL and Harp

Model Rotation Model Rotation

Misc Misc

Add more Harp compatible data structures to DAAL

SALSA
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The Models of Contemporary Big Data Tools
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Programming Models

Comparison of Iterative Computation Tools

Spark

Driver Daemon

* Implicit Data Partitioning
* Implicit Communication

M. Zaharia et al. "Spark: Cluster Computing with
Working Sets”. HotCloud, 2010.

Daemon &

Daemon &

Harp
/ Worker ,\
Worker Worker
w7

Various Collective
Communication Operations

* Explicit Data Partitioning
* Explicit Communication

B. Zhang, Y. Ruan, J. Qiu. “"Harp: Collective
Communication on Hadoop”. IC2E, 2015.

Parameter Server

Server Group

Worker Worker
Group Group

Asynchronous
Communication Operations

* Explicit Data Partitioning
* Implicit Communication

M. Li, et al. “"Scaling Distributed Machine Learning
with the Parameter Server”. OSDI, 2014.

SALSA



Harp: a Hadoop plug-in based on map-collective models

Programming Model Architecture

MapReduce Model MapCollective Model

MapReduce MapcCollective
Applications Applications

Shuffle » Collective Communication K
+ Event Driven Framewor

N B L MapReduce V2

Resource
Manager

* MPI-like collective communication operations that are highly optimized for big data problems.
* A Hadoop Plug-in to integrate with the ecosystems.
» Efficient and innovative computation models for different machine learning problems. SA/SA



Hadoop/Harp-DAAL: Prototype and Production Code

IU-Big-Data-Lab / DAAL-2017-MF-SGD @uUnwatch~ 2 A Star 0 YFork 0

<> Code Issues 0 Pull requests 0 Wiki Pulse Graphs Settings

Source codes available on Indiana
University’s Github account

Implement MF-SGD method within Intel's DAAL framework — Edit

P 42 commits I 2 branches > 0 releases 1 contributor

Branch: daal_2... ~ New file Upload files Find file = HTTPS v https://github.iu.edu/IU- E [  Download ZIP

R 137 Update daal_mac.Ist

il algorithms

i} bin

build

examples

externals

include

8 lang_interface/java/com/intel/daal
Il lang_service/java/com/intel/daal
il service/kernel

& .gitattributes

B .gitignore

B FAQ.md

E) LICENSE

E) README.md

B makefile

B makefile.lst

&) makefile.ver

B tags

add avx computeRMSE

add mf_sgd tbb based kernels
DAAL 2017. Revision: 14123
Update daal_mac.Ist

DAAL 2017. Revision: 14123
add avx computeRMSE

add distri examples to cpp and java
add avx computeRMSE
DAAL 2017. Revision: 14123
DAAL 2017. Revision: 14123
add mf_sgd algorithm

DAAL 2017. Revision: 14123
DAAL 2017. Revision: 14123
add revised README

add avx computeRMSE

add mf_sgd_batch.java

first version of daal_mf_sgd

add mf_sgd algorithm

Latest commit 93e2315 21 hours ago
3 days ago

a month ago
2 months ago
21 hours ago
2 months ago
3 days ago

3 days ago

3 days ago

2 months ago
2 months ago
a month ago
2 months ago
2 months ago
2 days ago

3 days ago
17 days ago
3 days ago

a month ago

An example of MF-SGD is at

https://github.iu.edu/IU-Big-Data-Lab/DAAL-2017-MF-
SGD

* Harp-DAAL follows the same standard of DAAL's
original codes

* improve DAAL's existed algorithms for distributed
usage

* add new algorithms to DAAL'’s codebase.

* Harp-DAAL's kernel is also compatible with other
communication tools.
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Summary and Future Work

Identification of Apache Big Data Software Stack and integration with High Performance
Computing Stack to give HPC-ABDS

o ABDS (Many Big Data applications/algorithms need HPC for performance)

o HPC(needs software model productivity/sustainability)
Identification of 4 computation models for machine learning applications

HPC-ABDS Plugin Harp: adds HPC communication performance and rich data abstractions to
Hadoop by development of Harp library of Collectives to use at Reduce phase

o Broadcast and Gather needed by current applications
o Discover otherimportant ones (e.g. Allgather, Global-local sync, Rotation pipeline)

Integration of Hadoop/Harp with Intel DAAL and other libraries

Implement efficiently on each platform (e.g. Amazon, Azure, Big Red Il, Haswell/KNL Clusters)

SALSA






