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“Big Science” to the Long Tail of Science

The ATLAS experiment

at the Large Hadron

| Collider in Switzerland
uses SAGA in

conjunction with PanDA

| as a workload

management system.

The Super-Kamiokande
project searches for
neutrinos to understand
the creation of matter in
the universe. It uses
SAGA to simulate
collisions on HPC clusters.

Nektar++ is a finite

RADICAL-Pilot is bein
e element package which

used by Chemistry

researchers to support uses SAGA in the
large-scale and backend to submit jobs to
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multidimensional replica \E_,//"*‘ ”‘g‘; W a variety of clusters. It
exchange simulations on T IR tackles problems such as
supercomputers.

modeling air flow around
automobiles.

RADICAL-Pilot supports
multi-physics and coupled
simulations, such as
hybrid CFD-MD

Researchers at UCL
London are using
RADICAL-Pilot to
advance understanding
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Cybermanufacturing.



Convergence of HPC and “Data Intensive” Computing:

e Supercomputers were (historically) net producers of data, not consumers

e Convergence at multiple levels, including Software Environment
o HP-ABDS: Integration of High Performance with Advanced Functionality
o SPIDAL and MIDAS (http://spidal.org)
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& ACS Publcations
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NCI-DOE Collaboration Paving Way for Large-
Scale Computational Cancer Science

Subscribe

February 17, 2016 by Warren Kibbe, Ph.D.

Imagine the concentrated power of more than
one million laptops working to screen a tumor
sample from a patient against thousands of
drugs and millions of drug combinations. At the
end of this screening process, this mega-
computer would help to identify a specific
treatment with the greatest potential to combat
that patient's cancer.

NCI scientists, in collaboration with

colleagues with the Department of Energy (DOE)
2 (ECI) and the
ting Initiative (NSCI),
have been hard at work for the past 14 months
developing a plan to use this type of large-scale
computing to influence cancer science and,

e Compu

National Strategic Com

The Titan supercomputer at the U.S.
Oak Ridge National Laboratory in
Tennessee will be one of several
supercomputers used in the NCI-DoE
National Strategic Computing
Initative

Credit: Oak Ridge National Laboratory, US.



Protein folding mechanisms

Noé et al, PNAS (2009)
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A Schism in Biomolecular Simulations?

e Given a finite amount of computing which is better:
o Many simulations or Longer simulations?

One long trajectoryor...

fs ps ns us ms s

brute force —long contiguous in ime MD 16 ps/day!

requires: special purpose / unique hardware DHFR. ~23.5K atoms
i.e. D.E. Shaw’s Anton machine '

Ac;‘Experimem

...ensembles of
independent
simulations?

fs ps ns p el
AM BER on K4o G PUs <70 -65 -60 —ss, = B Ty ~80  -70  -60 —mMMV—EASnA =30 -20 -10
~190 ns/day per GPU ’

Figure 2: Schematic of the MD simulation time scale comparing long MD
simulation on a special purpose machine like Anton to multiple
independent MD runs on accelerators.




Landscape of Biomolecular Simulations

e Larger biological systems /1 ; information
o Weak scaling

dimensional
reductlon

o Status Quo: Size of systems: > 10M atoms ) k
e Long time scale problem
O Strong Scaling Multidimensional replica exchange umbrella

sampling (REUS) simulations of a single uracil

o Status Quo: Duration of systems: > 10 ms  ribonucieoside.
e Scaling challenges > than either single-partition strong and weak scaling.
o Accurate estimation of complex physical processes, e.g., M-REMD
e Gap between weak scaling and strong scaling capabilities will grow.



Brief Introduction to Sampling

e Sampling: BPTI, 1ms MD ~3 months on
Anton (Shaw et al, Science 2010).
o More sampling
o Better sampling
o Faster sampling

Backbone RMSD from native (A} P

e More sampling: Hundreds or
thousands of concurrent MD jobs

e Better Sampling: Drive systems towards
unexplored regions, don’t waste time
sampling behaviour already observed

o E.g. DM-d-MD, AMBER-COCO




Multi-dimensional Replica-Exchange

Information
loss via
dimensional

When the number of replicas cannot > number of nodes/cores, 1D replica
exchange is the “default” (only!) option



DM-D-MD: Diffusion Map Driven Molecular Dynamics

(Courtesy: Ceclia Clementi, Rice)

Speeding up the sampling of a protein landscape

Evolve a swarm of trajectories in a way that favors
the exploration in the “slow” directions

Associate a weight to each trajectory to preserve W +Wg /3 L
the Boltzmann statistics W

1. Preve, C. Clersenti POCP, 16, 19181 (2014}



COCO: A simple tool to enrich the
representation of conformational
variability in NIVIR structures

Charles A. [aughton,]* Modesto Orozco,””* and Wim Vranken’

L
—_— PC3™ B
PC1 PC1

W : F’Ci = & : PC2 1 .?. :
PC3

Proteins 2009; 75:206-216.



Advanced Sampling

Better Sampling: Drive systems towards
unexplored regions, don’t waste time
sampling behaviour already observed

lteratively run “analysis” and “sampling”
phase

o Sampling phase: multitude of
trajectories are run in parallel

o Analysis phase: Information
gathered by the trajectories is
analyzed and used to restart new
trajectories to explore new regions of
the configurational space.

LSDMap on the final points
of a swarm of trajectories

|

New swarm of trajectories
starting from “frontier point”,
With a force bias in the
dircetion of th el1st DC

Diffusion Map driven Moleculad Dynamics
(DM-d-MD), uses dimensionality reduction
method of “Diffusion map” to extract a good
reaction coordinate and use it to redistribute
a large set of trajectories in the sampling of a
complex configurational space.



Weak Scaling
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Weak Scaling: Simulation and Analysis
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Adaptive and Steered Patterns

However many applications involve
adaptive execution and steering.

Examples of simulation algorithms:
o Commingle replica exchange simulation

with a coarse-grained potential

o Steer ensemble simulations based on
intermediate analyses

o Add more ensemble members...

e A framework that expresses different
simulation algorithms as “adaptive
execution patterns”. How ?
o Generalise static patterns EnTK
o Opens many research questions
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MSM: ML-driven Sampling

—




MSM: ML-driven Sampling




MSM: ML-driven Sampling

Credit: Kyle Beauchamp




MSM: ML-driven Sampling

Trajectories

v

|
Vectors in R"

v

|
Vectors in R™

Integer
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Bayesian MSM Rate Matrix MSM



Better Sampling -- Requires Learning “on the fly”

Adaptivity parameter=1
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Finding the optimal resource configuration.



The Power of Many: RADICAL-Ensemble Toolkit

SINGLE MD

e Support for heterogeneous tasks b B & ,
o Multi-node and sub-node, application = L) (;E’
kernels, MPI/non-MPI &Y * (= b’
@ 3 AGE geri
DRUGS xperiment

e Adaptive: Workload and resource: tasks and/or
relations between tasks unknown a priori

e Range of concurrency and coupling of tasks gggg
o Multiple-levels and degree TREIEIH 'EEEE =
e Multiple dimensions of scalability: bRus
o Concurrency: O(100K)-O(1,000K) tasks
Task size: O(1) - O(1,000) cores Ermeriiie soupiiin Parallelism: gg;r;ir;;;?yifation

Multi-node parallelism

Task duration: O(1) - O(10,000) second:,in simuiation 100’

Within-node parallelism
(SIMD/SIMT)

Launch: 0(1 OO+) tasks per second Tight coupling between simulations 10,000's
100's '

o O O O

10's



RADICAL-Pilot Overview

 Programmable interface (arguably unique)
— Defined state models for pilots and units.

e Supports research whilst supporting
production scalable science:
— Agent, communication, throughput.
— Pluggable components; introspection.

* Portability and Interoperability:
— SAGA (batch-queue system interface)
— Modular pilot agent for diff. architectures
— Works on Crays, XSEDE resources, most
clusters, OSG, Amazon EC2...

O000 OO Application
OJOXOXOXOXE,
OJONCNONOXO,

Pilot-API

User Workstation

Pilot Manager

Unit Manager

Pilot Launcher

\4
OO0 0 OCY)

Unit Scheduler

00 00Q0O0
SAGA MongoDB
Resource A Resource B
Pilot 4 Pilot
Agent Agent

Unit Execution

v

Unit Execution




Pilot Jobs: Many Variations on a Theme

DIANE WISDOM Coaster System RADICAL Filot
2001 2004 2009 2003

Mimrod/G Glideln
2000 2002

ToPoS
2007 2008 2011

1995

ApplLes i MyCluster
1998 2007

GWPilot
2012

BOINC DIRAC GlideinWms Co-Filot
2002 2008 2006 2011
| | | | |
Resource Grid LHG MPI Waorkll. Sys.

FPlacenolders Integration  Adoplion Capabilities HECCloud

“Perfection is achieved, not when there
is nothing more to add, but when there
is nothing left to take away.”

- Antoine Saint-Exupéry

Application Filot Systam
{workfiow, BoT, ...) &
#|  Interiace (GUI, CLL AP |
Workload Task
Pilot Workload
Manager Manager
DCR [chuster, laas, worksiation)
b
Pllot Provisioning
"_—
Container (Job, VM) [Multi-lavel schaduling)
Pilot it
Task Execution Task L Task Dispatching
d Manager |~ [Muslti-leved acheduling,
= Earty/Late binding)
Resource
[core, memary)

e “P*: A Model of Pilot-Abstractions”, 8th IEEE
International Conference on e-Science (2012)

e A Comprehensive Perspective on Pilot-Jobs
http://arxiv.org/abs/1508.04180 (2015)




Agent Architecture

Components: Enact state
transitions for Units

State Updater: Communicate with
client library and DB

Scheduler:

Maps Units onto compute nodes
Resource Manager:

Interfaces with batch queuing
system, e.g. PBS, SLURM, etc.
Launch Methods:

Constructs command line, e.g.
APRUN, SSH, ORTE, MPIRUN
Task Spawner:

Executes tasks on compute nodes

SAGA 4 4*  MongoDB
' Resource
SSH Tunnel
Pilot
\ 4 \/ i
Heartbeat Agent State Updater
Monitor
Scheduler Staging Input|| |
' v
Resource Scheduling| ____ .
Manager
Launch Methods Execution ____________
t v

Task Spawner

Staging Output I




RADICAL-Pilot: ORTE

e ORTE: Open RunTime Environment
o Isolated layer used by Open MPI to coordinate task layout
o Runs a set of daemons over compute nodes
o No ALPS concurrency limits
o Supports multiple tasks per node

e orte-submit is CLI which submits tasks to those daemons
o ‘sub-agent’ on compute node that executes these
o Limited by fork/exec behavior
o Limited by open sockets/file descriptors
o Limited by file system interactions



RADICAL-Pilot + ORTE-LIB

SAGA-API MongoDB
e All the same as ORTE-CLI, but Resource
i i \/ Login MOM
o Uses library calls instead of Nodio v Node
qsub > Agent
orterun Processes
. ¥
o No central fork/exec limits pe—
o Shared network socket
. .
(Hardly) no central file system —— comute ¥ ——
interactions ORTE Daemon Node ORTE Daemon Node

7

6068
OO OC




Agent Performance: Full Node Tasks (3xN, 64s)

235 | | | I
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230 ORTE CLI
295 L ORTE LIB -
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|
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Agent Performance: Resource Utilization

Wi e = = = e o e e = = = =

Core Utilization (%)

Unit Duration (s)



Challenges of O(100K) Concurrent Tasks

e Agent communication layer (ZMQ) has limited throughput
o limit is not yet reached
o bulk messages (is implemented now)
o separate message channels
o code optimization
e Agent scheduler (node placement) does not scale well with number of cores
o bulk operations (schedule bag of tasks at once)
o good scheduling algorithms and implementations exist
o code optimization, C-module (instead of pure Python)
e Collecting complete jobs is just as hard as spawning new ones
o decouple
e Interaction with DB and client side has limited scalability
o replace with proper messaging protocol (also ZMQ?)



Distributed WLMS



Next Generatlon Workflow Management for High Energy Physncs
.

3} /Z—> ee Data
D vy/Z— ee MC

Events/ GeV/c
4]
o
o

0 - e .S
40 50 60 70 80 90 100110 120 130
M.. (GeV/c?)




LHC Upgrade Timeline

2009 LHC startup, Vs 900 GeV

\f3=?+8 Tev‘ L-'Ex.lnmcm-?s-ir bunc:h Spa':ing 5{]n3 — _
~25 fb”

Go to design energy, nominal luminosity - Phase 0

Run 2

Vs=13~14 TeV, L~1x10%cm*s", bunch spacing 25ns

~75-100 fb*

Injector + LHC Phase | upgrade to ultimate design luminosity

2018

2020

2021 vs=14 TeV, L~2x10*cm?s", bunch spacing 25ns Run 3 A new dEtECtDI’
Lhez ~350fb "

2023 3 ‘:\:}" h- s -
—_ HL-LHC Phase |l upgrade: Interaction Region, crab cavities? : — R )

2025

8-

@ = & ¢
-E-E-E-

i 2

Vs=14 TeV, L~5x10%cm?s", luminosity levelling

20357

e.g. tracking, calorimeters



LHC Upgrade Timeline

¥ update - December 1013

2009 LHC startup, Vs 900 GeV

2010

2011 Vs=7+8 TeV, L~6x10¥cm™s", bunch spacing 50ns Run 1

2012 ~25 iy

e Go to desi inal luminosity - Phase 0 |

sors |5 o to design energy, nominal luminosity - Phase Ru n 4

2015

M Run3 i_
2017 — .

_— R un 2 10-2039"
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i 015 - 201

2021 ﬁ €M “s",%unchss;-aacing éns + 13 X new detector
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sopg (EES 20.0@ thsﬁilgpgrade Interaction Region, crab cavities? LHCb

2025

Mt " Vs=14 TeV, L~5x10*e¢m*s", luminosity levelling

e.g. tracking, calorimeters
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AIMES

e AIMES: Investigate principles and identify
abstractions for distributed execution.

©)

Uniformity in execution across dynamically
federated heterogeneous resources.

Conceptual — implementation improvements:

“Better” mapping of workloads to infrastructure
and thus also utilization

e AIMES Model of Workload Management:

@)

Importance of dynamic integration of
workload and resource information.

Pilot-based Execution Strategy: Temporally
ordered set of decisions that need to be made
when executing a given workload.

>
Workload B
Description )
1 S
\/ Execution Manager
:{ Execution Strategy ‘
3 >
X 4 E
'2b y e
| . =
| Pilot S
Resource )
Information ¢ 5 é
™ @
5 \\\é\ o Resource
! a “\ar-.eaa Access Layer
D i
]
I Y]
' %
o
OSG TITAN XSEDE 5
D
2]

Schematic of RADICAL-WLMS approach to
workload-resource integration: Evaluate
workload requirements & resource capabilities,
derive an execution strategy, and enact it
executing the workload on the federated

resources.



Dynamic Resource Management
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A

PANDA-SAGA : BigPANDA Project (2012-2016) o
PANDA-Pilot : Ongoing redesign for TITAN
PANDA-AIMES : Heterogeneous workloads and unified execution
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Lessons for how we build
workflow systems?



“Building Blocks” Approach to Workflow Systems ?

e Workflows aren’t what they used to be!
o More pervasive, sophisticated but no longer confined to “big science”
o Diverse requirements, “design points”; unlikely “one size fits all”

e Extend traditional focus from end-users to workflow system/tool developers!
o Building Blocks (BB) permit workflow tools and applications can be built.

e An illustrative example of a building block common across WFMS
o Pilot Job Systems to support scalable execution of multiple tasks



RADICAL-Cybertools:
Abstractions driven building block CI.



RADICAL Cybertools: Abstraction based BB

Applications Workflows DSW

z
. ]
L4 Synapse Swift ExTASY RepEx §
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SWIFT - RADICAL Cybertools Integration

|‘T{ Application | |i{ Swift Script | |’—‘ Swift Script
1
. Execution Manager Swift System Swift System
e Many WFMS use pilot systems; greater  Aplcaion APt SwittPuser ‘ Runtime
. . ‘ Execution Strategy I+ Runtime | AIMES Provider
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. . . . uncie Vanager Pilot Scheduler b
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. . . . I . 1 Ot’ . + | Resource (e.g. Stampede)
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H i — 1: Ci:stl)cr Cigstt)cr
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- SSH M lob C{OE :
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‘ Job T Job ‘ i =~ = Dusbaseserviee

Reference: “Analysis of Distributed Execution of Workloads”,
https://arxiv.org/abs/1605.09513




Pilot-Streaming

Pilot-Streaming enables the coupling of data production | 4, . o ;%§
(simulations) and analysis within HPC environment.
Spark-Streaming Flink Pilot Compute Unit
Data )
:
g

Compute Pilot-Job
(e.g. YARN, SLURM, Torque, PBS)

D\, s " n ] HPC Resources Cloud Resources g 5
Streaming ETL Hadoop Machine (Slurm, Torque, SGE) 23

D\ Framework SQL Learning &

Broker
[ Pilot-Streaming utilizes

Storage and Format .

[ }— (e.g. Lustre, HDFS,.. Pilot-Jobs to deploy message

Broker Mutab'e/ 9 ° broker and stream processing I
|:|/ Text HDF5 | Columnar | Random | Other 3

Access = 4 frameworks on HPC and Clouds.
2

—— —
— —
- [ ]

Message Broker - Storage . Stream Processing 0 —— —— — —

Kafka Spark-Streaming Amazon Kinesis Google Pub/Sub



Pilot Streaming: EnsembleMD and MDAnalysis

HPC Machine

Pilot-Agent

HPC

R o
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Pilot-Streaming is utilized
to couple MD simulations
and continuous analytics
(LeafletFinder). By
continuously monitoring
developed Leaflets.

Dynamic resource

Leaflﬂtf'mder[?ﬂﬂ management is critical to

name F*

' balance data production
rates and analytics needs.



PanDA: BIG and RADICAL!

Scientific Tools and
Applications Workflows

uoneoljddy

Workload Execution and Management

Task Execution Runtime System

Resource Access Layer

Clouds
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RADICAL-Pilot

RADICAL-SAGA

HPC

PANDA-SAGA : BigPANDA Project (2012-2016)
PANDA-Pilot : Ongoing redesign for HPC Systems/TITAN
PANDA-AIMES : Heterogeneous workloads and unified execution model.
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Thank you!
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