
Towards Exascale Across Scales!

 Shantenu Jha

Rutgers Advanced DIstributed Cyberinfrastructure &
Applications Laboratory (RADICAL)

http://radical.rutgers.edu

“Big Science” to the Long Tail of Science

● Supercomputers were (historically) net producers of data, not consumers
● Convergence at multiple levels, including Software Environment

○ HP-ABDS: Integration of High Performance with Advanced Functionality
○ SPIDAL and MIDAS (http://spidal.org)

Convergence of HPC and “Data Intensive” Computing:

A Tale of Two Data-Intensive Paradigms:
Data Intensive Applications, Abstractions and Architectures
Jha, Qiu, Fox
http://arxiv.org/abs/1403.1528

 Case Study: Biomolecular Sciences

● Given a finite amount of computing which is better:
○ Many simulations or Longer simulations?

A Schism in Biomolecular Simulations?

● Larger biological systems
○ Weak scaling
○ Status Quo: Size of systems: > 10M atoms

● Long time scale problem
○ Strong scaling
○ Status Quo: Duration of systems: > 10 ms

● Scaling challenges > than either single-partition strong and weak scaling.
○ Accurate estimation of complex physical processes, e.g., M-REMD

● Gap between weak scaling and strong scaling capabilities will grow.

Landscape of Biomolecular Simulations

Multidimensional replica exchange umbrella
sampling (REUS) simulations of a single uracil
ribonucleoside.

● Sampling: BPTI, 1ms MD ~3 months on
Anton (Shaw et al, Science 2010).
○ More sampling
○ Better sampling
○ Faster sampling

● More sampling: Hundreds or
thousands of concurrent MD jobs

● Better Sampling: Drive systems towards
unexplored regions, don’t waste time
sampling behaviour already observed

○ E.g. DM-d-MD, AMBER-COCO

Brief Introduction to Sampling

When the number of replicas cannot > number of nodes/cores, 1D replica
exchange is the “default” (only!) option

Multi-dimensional Replica-Exchange

DM-D-MD: Diffusion Map Driven Molecular Dynamics
(Courtesy: Ceclia Clementi, Rice)

Proteins 2009; 75:206–216.

● Better Sampling: Drive systems towards
unexplored regions, don’t waste time
sampling behaviour already observed

● Iteratively run “analysis” and “sampling”
phase

○ Sampling phase: multitude of
trajectories are run in parallel

○ Analysis phase: Information
gathered by the trajectories is
analyzed and used to restart new
trajectories to explore new regions of
the configurational space.

Advanced Sampling

Diffusion Map driven Moleculad Dynamics
(DM-d-MD), uses dimensionality reduction
method of “Diffusion map” to extract a good
reaction coordinate and use it to redistribute
a large set of trajectories in the sampling of a
complex configurational space.

Weak Scaling

Weak Scaling: Simulation and Analysis

● However many applications involve
adaptive execution and steering.

● Examples of simulation algorithms:
○ Commingle replica exchange simulation

with a coarse-grained potential
○ Steer ensemble simulations based on

intermediate analyses
○ Add more ensemble members...

● A framework that expresses different
simulation algorithms as “adaptive
execution patterns”. How ?
○ Generalise static patterns EnTK
○ Opens many research questions

Adaptive and Steered Patterns

MSM: ML-driven Sampling

MSM: ML-driven Sampling

MSM: ML-driven Sampling

Credit: Kyle Beauchamp

MSM: ML-driven Sampling

Better Sampling -- Requires Learning “on the fly”

Finding the optimal resource configuration.

The Power of Many: RADICAL-Ensemble Toolkit

● Support for heterogeneous tasks
○ Multi-node and sub-node, application

kernels, MPI/non-MPI

● Adaptive: Workload and resource: tasks and/or
relations between tasks unknown a priori

● Range of concurrency and coupling of tasks
○ Multiple-levels and degree

● Multiple dimensions of scalability:
○ Concurrency: O(100K)-O(1,000K) tasks
○ Task size: O(1) - O(1,000) cores
○ Launch: O(100+) tasks per second
○ Task duration: O(1) - O(10,000) seconds
○ ….

RADICAL-Pilot Overview

• Programmable interface (arguably unique)
– Defined state models for pilots and units.

• Supports research whilst supporting
production scalable science:

– Agent, communication, throughput.
– Pluggable components; introspection.

• Portability and Interoperability:
– SAGA (batch-queue system interface)
– Modular pilot agent for diff. architectures
– Works on Crays, XSEDE resources, most

clusters, OSG, Amazon EC2...

Pilot Jobs: Many Variations on a Theme

● “P*: A Model of Pilot-Abstractions”, 8th IEEE
International Conference on e-Science (2012)

● A Comprehensive Perspective on Pilot-Jobs
http://arxiv.org/abs/1508.04180 (2015)

“Perfection is achieved, not when there
is nothing more to add, but when there
is nothing left to take away.”
 - Antoine Saint-Exupéry

Agent Architecture

● Components: Enact state
transitions for Units

● State Updater: Communicate with
client library and DB

● Scheduler:
Maps Units onto compute nodes

● Resource Manager:
Interfaces with batch queuing
system, e.g. PBS, SLURM, etc.

● Launch Methods:
Constructs command line, e.g.
APRUN, SSH, ORTE, MPIRUN

● Task Spawner:
Executes tasks on compute nodes

● ORTE: Open RunTime Environment
○ Isolated layer used by Open MPI to coordinate task layout
○ Runs a set of daemons over compute nodes
○ No ALPS concurrency limits
○ Supports multiple tasks per node

● orte-submit is CLI which submits tasks to those daemons
○ ‘sub-agent’ on compute node that executes these
○ Limited by fork/exec behavior
○ Limited by open sockets/file descriptors
○ Limited by file system interactions

RADICAL-Pilot: ORTE

● All the same as ORTE-CLI, but
○ Uses library calls instead of

orterun processes
○ No central fork/exec limits
○ Shared network socket
○ (Hardly) no central file system

interactions

RADICAL-Pilot + ORTE-LIB

Agent Performance: Full Node Tasks (3xN, 64s)

Agent Performance: Resource Utilization

Challenges of O(100K) Concurrent Tasks
● Agent communication layer (ZMQ) has limited throughput

○ limit is not yet reached
○ bulk messages (is implemented now)
○ separate message channels
○ code optimization

● Agent scheduler (node placement) does not scale well with number of cores
○ bulk operations (schedule bag of tasks at once)
○ good scheduling algorithms and implementations exist
○ code optimization, C-module (instead of pure Python)

● Collecting complete jobs is just as hard as spawning new ones
○ decouple

● Interaction with DB and client side has limited scalability
○ replace with proper messaging protocol (also ZMQ?)

Distributed WLMS

Next Generation Workflow Management for High Energy Physics

June 2016 Alexei Klimentov 32

LHC Upgrade Timeline

In 10 years, increase by factor 10 the LHC luminosity
➔ More complex events
➔ More Computing Capacity

June 2016 Alexei Klimentov 33

LHC Upgrade Timeline

In 10 years, increase by factor 10 the LHC luminosity
➔ More complex events
➔ More Computing Capacity

Run1 :
2009 - 2013

Run3
2020-2022

ALICE
+

LHCb

Run4

ATLAS
+

CMS

Run2 :
2015 - 2018

AIMES
● AIMES: Investigate principles and identify

abstractions for distributed execution.
○ Uniformity in execution across dynamically

federated heterogeneous resources.
○ Conceptual → implementation improvements:

“Better” mapping of workloads to infrastructure
and thus also utilization

● AIMES Model of Workload Management:
○ Importance of dynamic integration of

workload and resource information.
○ Pilot-based Execution Strategy: Temporally

ordered set of decisions that need to be made
when executing a given workload.

Schematic of RADICAL-WLMS approach to
workload-resource integration: Evaluate

workload requirements & resource capabilities,
derive an execution strategy, and enact it,
executing the workload on the federated

resources.

Dynamic Resource Management

● PANDA-SAGA : BigPANDA Project (2012-2016)
● PANDA-Pilot : Ongoing redesign for TITAN
● PANDA-AIMES : Heterogeneous workloads and unified execution

Lessons for how we build
workflow systems?

● Workflows aren’t what they used to be!
○ More pervasive, sophisticated but no longer confined to “big science”
○ Diverse requirements, “design points”; unlikely “one size fits all”

● Extend traditional focus from end-users to workflow system/tool developers!
○ Building Blocks (BB) permit workflow tools and applications can be built.

● An illustrative example of a building block common across WFMS
○ Pilot Job Systems to support scalable execution of multiple tasks

“Building Blocks” Approach to Workflow Systems ?

RADICAL-Cybertools:
Abstractions driven building block CI.

RADICAL Cybertools: Abstraction based BB

● Many WFMS use pilot systems; greater
variance in use of WLMS:
○ Pegasus → Corral/glidein-WMS
○ Condor/glidein →glidein-WMS
○ Swift, Galaxy → No (XSEDE)

● Swift-RCT comparison and integration:
○ Workflow -> Workload -> Tasks

abstractions
○ Uniform execution Model: Binding

of tasks and pilots to resources
○ Efficient scheduling across pilots

and resources

SWIFT - RADICAL Cybertools Integration

Reference: “Analysis of Distributed Execution of Workloads”,
https://arxiv.org/abs/1605.09513

Pilot-Streaming
Pilot-Streaming enables the coupling of data production
(simulations) and analysis within HPC environment.

Pilot-Streaming utilizes
Pilot-Jobs to deploy message
broker and stream processing
frameworks on HPC and Clouds.

Pilot Streaming: EnsembleMD and MDAnalysis

Pilot-Streaming is utilized
to couple MD simulations
and continuous analytics
(LeafletFinder). By
continuously monitoring
developed Leaflets.

Dynamic resource
management is critical to
balance data production
rates and analytics needs.

PanDA: BIG and RADICAL!

● PANDA-SAGA : BigPANDA Project (2012-2016)
● PANDA-Pilot : Ongoing redesign for HPC Systems/TITAN
● PANDA-AIMES : Heterogeneous workloads and unified execution model.

Thank you!

Thanks to RADICAL Team

Geoffrey Fox, A Klimentov, K De, J Weissman, D Katz (CS/CI)

Cecilia Clementi, Peter Kasson, Frank Noe (BMS)

Thanks to NSF and DOE

http://radical.rutgers.edu

