
Accelerating Machine Learning
on Emerging Architectures
Big Simulation and Big Data Workshop

January 9, 2017
Indiana University

Judy Qiu
Associate Professor of Intelligent Systems Engineering
Indiana University

SALSA

Outline

1. Motivation: Machine Learning Applications

2. A Faster Machine Learning solution on Intel Xeon/Xeon Phi Architectures

3..\ Harp-DAAL Framework: Design and Implementations

SALSA

4. Conclusions and Future Work

Acknowledgements

Bingjing Zhang | Yining Wang | Langshi Chen | Meng Li | Bo Peng | Yiming Zou

SALSA HPC Group
School of Informatics and Computing

Indiana University

Rutgers University
Virginia Tech
Kansas University
Arizona State University
State University of New York at Stony Brooke
University of Utah

Digital Science Center
Indiana University

Intel Parallel Computing Center
IPCC

Motivation

• Machine learning is widely used in data analytics

• Need for high performance

– Big data & Big model

– ”Select model and hyper parameter tuning" step need to run the training algorithm for
many times

• Key: optimize for efficiency

– What is the 'kernel' of training?

– Computation model

SALSA

Recommendation Engine

• Show us products typically
purchased together

• Curate books and music for us
based on our preferences

• Have proven significant
because they consistently boost
sales as well as customer
satisfaction

SALSA

Fraud Detection

• Identify fraudulent activity

• Predict it before it has occurred

saving financial services firms

millions in lost revenue.

• Analysis of financial transactions,

email, customer relationships and

communications can help

SALSA

More Opportunities…

• Predicting customer “churn” – when a customer will leave a provider of a

product or service in favor of another.

• Predicting presidential elections, whether a swing voter would be

persuaded by campaign contact.

• Google has announced that it has used Deep Mind to reduce the energy

used for cooling its datacenter by 40 per cent.

• Imagine...

SALSA

The Process of Data Analytics

• Define the Problem

– Binary or multiclass, classification or regression, evaluation metric, …

• Dataset Preparation

– Data collection, data munging, cleaning, split, normalization, …

• Feature Engineering

– Feature selection, dimension reduction, …

• Select model and hyper paramenter tuning

– Random Forest, GBM, Logistic Regression, SVM, KNN, Ridge, Lasso, SVR, Matrix Factorization,

Neural Networks, …

• Output the best models with optimized hyper parameters

SALSA

Challenges from Machine Learning Algorithms

Machine Learning algorithms in various domains:

• Biomolecular Simulations

• Epidemiology

• Computer Vision

They have:

• Iterative computation workload

• High volume of training & model data

Traditional Hadoop/MapReduce solutions:

• Low Computation speed (lack of multi-threading)

• High data transfer overhead (disk based)

SALSA

Taxonomy for ML Algorithms

• Task level: describe functionality of the algorithm

• Modeling level: the form and structure of model

• Solver level: the computation pattern of training

SALSA

Outline

1. Motivation: Machine Learning Applications

3. Harp-DAAL Framework: Design and Implementations

2. A Faster Machine Learning solution on Intel Xeon/Xeon Phi Architectures

SALSA

4. Conclusions and Future Work

Emerging Many-core Platforms

Comparison of Many-core and Multi-core Architectures

• Much more number of cores

• Lower single core frequency

• Higher data throughput

How to explore computation and Bandwidth of KNL for Machine

Learning applications ?

SALSA

SALSA

Intel Xeon/Haswell Architecture

• Much more number of cores
• Lower single core frequency
• Higher data throughput

Intel Xeon Phi (Knights Landing) Architecture

SALSA

• Up to 72 cores, 288 threads connected in a 2D-mesh
• High bandwidth (> 400 GB/s) Memory (MCDRAM)

• Up to 144 AVX512 vectorization units (VPUs)
• 3 Tflops (DP) performance delivery
• Omni-path link among processors (~ 100 GB/s)

DAAL: Intel’s Data Analytics Acceleration Library

DAAL is an open-source project that provides:

• Algorithms Kernels to Users

• Batch Mode (Single Node)

• Distributed Mode (multi nodes)

• Streaming Mode (single node)

• Data Management & APIs to Developers

• Data structure, e.g., Table, Map, etc.

• HPC Kernels and Tools: MKL, TBB, etc.

• Hardware Support: Compiler

SALSA

Case Study: Matrix-Factorization Based on SGD (MF-SGD)

X= 𝑈𝑉

𝐸𝑖𝑗 = 𝑋𝑖𝑗 − 𝑈𝑖𝑘

𝑟

𝑘=0

𝑉𝑘𝑗

𝑈𝑖∗
𝑡 = 𝑈𝑖∗

𝑡−1 − 𝜂(𝐸𝑖𝑗
𝑡−1 ⋅ 𝑉∗𝑗

𝑡−1 − 𝜆 ⋅ 𝑈𝑖∗
𝑡−1

𝑉∗𝑗
𝑡 = 𝑉∗𝑗

𝑡−1 − 𝜂(𝐸𝑖𝑗
𝑡−1 ⋅ 𝑈𝑖∗

𝑡−1 − 𝜆 ⋅ 𝑉∗𝑗
𝑡−1

• Large Training Data: Tens of millions of points
• Large Model Data: m, n could be millions
• Random Memory Access Pattern in Training

Decompose a large matrix into two model matrices,
used in Recommender systems

SALSA

Stochastic Gradient Descent

The standard SGD will loop over all the nonzero ratings 𝑥𝑖,𝑗 in a random way

• Compute the errors

• Update the factors 𝑈 and 𝑉

𝑒𝑖,𝑗 = 𝑥𝑖,𝑗 − 𝑢𝑖,∗𝑣∗,𝑗

𝑢𝑖,∗ = 𝑢𝑖,∗ + 𝛾 ⋅ (𝑒𝑖,𝑗 ⋅ 𝑣∗,𝑗 − 𝜆 ⋅ 𝑢𝑖,∗)

𝑣∗,𝑗 = 𝑣∗,𝑗 + 𝛾 ⋅ (𝑒𝑖,𝑗 ⋅ 𝑢𝑖,∗ − 𝜆 ⋅ 𝑣∗,𝑗)

Challenge of SGD in Big Model Problem
1. Memory Wall

Processor is hungry of data !!

• 4 memory ops for 3 computation ops
In updating U and V

2. Random Memory Access

• Difficulty in data prefetching
• Inefficiency in using cache

Strong Scaling of SGD on Haswell CPU with Multithreading

We test a multi-threading SGD on a CPU

The strong scalability collapses after using more than 16 threads !!

What for Novel Hardware Architectures and
Runtime Systems

• 3D stack memory
• Many-core: GPU, Xeon Phi, FPGA, etc.

Hardware Aspect:

Software Aspect:

• Runtime System
• Dynamic Task Scheduling

Reduce the memory access latency
Increase memory bandwidth

A generalized architecture for an FPGA

IBM and Micron’s big memory cube

Intra-node Performance: DAAL-MF-SGD vs. LIBMF

SALSA

LIBMF: a start-of-art open source MF-SGD package
• Only single node mode
• Highly optimized for memory usage

We compare our DAAL-MF-SGD kernel with
LIBMF on a single KNL node, using YahooMusic
dataset

Intra-node Performance: DAAL-MF-SGD vs. LIBMF

SALSA

• DAAL-MF-SGD delivers a comparable
training time for each iteration with
that of LIBMF

• DAAL-MF-SGD has a better convergence speed
than LIBMF, using less iterations to achieve the
same convergence.

CPU utilization and Memory Bandwidth on KNL

• DAAL-MF-SGD utilizes more

than 95% of all the 256 threads

on KNL

• DAAL-MF-SGD uses more than

half of the total bandwidth of

MCDRAM on KNL

• We need to explore the full

usage of all of MCDRAM’s

bandwidth (around 400 GB) to

further speed up DAAL-MF-SGD

CPU (threads) utilization on KNL

Memory Bandwidth Usage on KNL

SALSA

Intra-node Performance: Haswell Xeon vs. KNL Xeon Phi

DAAL-MF-SGD has a better
performance on KNL than
on Haswell CPU, because it
benefits from

• KNL’s AVX512
vectorization

• High Memory
Bandwidth

KNL has

• 3x speeds up by
vectorization

• 1.5x – 4x speeds up to
Haswell

SALSA

Machine Learning using
Harp Framework

SALSA

The Growth of Model Sizes and Scales of
Machine Learning Applications

2014 2015

SALSA

Challenges of Parallelization Machine Learning
Applications

• Big training data

• Big model

• Iterative computation, both CPU-bound and memory-bound

• High frequencies of model synchronization

SALSA

Parallelizing Machine Learning Applications

Machine
Learning

Application

Machine
Learning

Algorithm

Computation
Model

Programming
Model

Implementation

SALSA

Types of Machine Learning Applications and Algorithms

• K-Means Clustering

• Collapsed Variational Bayesian for topic modeling (e.g. LDA)

Expectation-Maximization Type

• Stochastic Gradient Descent and Cyclic Coordinate Descent for classification (e.g.
SVM and Logistic Regression), regression (e.g. LASSO), collaborative filtering (e.g.
Matrix Factorization)

Gradient Optimization Type

• Collapsed Gibbs Sampling for topic modeling (e.g. LDA)

Markov Chain Monte Carlo Type

SALSA

Inter/Intra-node Computation Models
Model-Centric Synchronization Paradigms

Model

Process Process Process

Model

Process Process Process

Model

Process Process Process Process Process Process

Model1 Model2 Model3

• Synchronized algorithm
• The latest model

• Synchronized algorithm
• The latest model

• Synchronized algorithm
• The stale model

• Asynchronous algorithm
• The stale model

(A) (B)

(C) (D)

SALSA

Case Study: LDA mines topics in text collection

• Huge volume of Text Data

o Information overloading

o What on earth is inside the
TEXT Data?

• Search

o Find the documents
relevant to my need (ad
hoc query)

• Filtering

o Fixed info needs and
dynamic text data

• What's new inside?

o Discover something I don't
know

Blei, D. M., Ng, A. Y. & Jordan, M. I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 3, 993–1022 (2003).
SALSA

LDA and Topic model

• Topic Models is a modeling

technique, modeling the data by

probabilistic generative process.

• Latent Dirichlet Allocation (LDA) is

one widely used topic model.

• Inference algorithm for LDA is an

iterative algorithm using share

global model data.

• Document

• Word

• Topic: semantic unit inside the data

• Topic Model

– documents are mixtures of topics,
where a topic is a probability
distribution over words

Normalized co-
occurrence matrix

Mixture components Mixture weights

1 million
words

3.7 million docs

10k topics

Global Model Data

SALSA

The Comparison of LDA CGS Model Convergence Speed

The parallelization strategy can highly affect the algorithm
convergence and the system efficiency. This brings us four
questions:

• What part of the model needs to be synchronized?
The parallelization needs to decide which model parts
needs synchronization.

• When should the model synchronization happen?
In the parallel execution timeline, the parallelization
should choose the time point to perform model
synchronization.

• Where should the model synchronization occur?
The parallelization needs to tell the distribution of the
model among parallel components, what parallel
components are involved in the model synchronization.

• How is the model synchronization performed?
The parallelization needs to explain the abstraction and
the mechanism of the model synchronization.

rtt & Petuum: rotate model parameters
lgs & lgs-4s: one or more rounds of model
synchronization per iteration
Yahoo!LDA: asynchronously fetch model parameters

SALSA

Inter-node Computation Models
(Training Data Items Are Partitioned to Each Process)

Computation Model A

• Once a process trains a data item, it locks
the related model parameters and prevents
other processes from accessing them.
When the related model parameters are
updated, the process unlocks the
parameters. Thus the model parameters
used in local computation are always the
latest.

Computation Model B

• Each process first takes a part of the
shared model and performs training.
Afterwards, the model is shifted between
processes. Through model rotation, each
model parameters are updated by one
process at a time so that the model is
consistent.

Computation Model C

• Each process first fetches all the model
parameters required by local computation.
When the local computation is completed,
modifications of the local model from all
processes are gathered to update the
model.

Computation Model D

• Each process independently fetches
related model parameters, performs local
computation, and returns model
modifications. Unlike A, workers are
allowed to fetch or update the same model
parameters in parallel. In contrast to B and
C, there is no synchronization barrier.

SALSA

Intra-node: Schedule Data Partitions to Threads
(only Data Partitions in Computation Model A, C, D; Data and/or Model Partitions in B)

Thread Thread Thread

I I I

O O O

Thread Thread Thread

I I I

O O O

(A) Dynamic Scheduler (B) Static Scheduler

• All computation models can use this scheduler.

• All the inputs are submitted to one queue.

• Threads dynamically fetch inputs from the
queue.

• The main thread can retrieve the outputs from
the output queue.

(A) Dynamic Scheduler

• All computation models can use this scheduler.

• Each thread has its own input queue and output
queue.

• Each thread can submit inputs to another
thread .

• The main thread can retrieve outputs from each
task’s output queue.

(B) Static Scheduler

SALSA

Harp Framework

Harp is an open-source project
developed by
Indiana University.

• MPI-like collective
communication operations that
are highly optimized for big
data problems.

• Harp has efficient and
innovative computation models
for different machine learning
problems.

Task

Input (Training) Data

Load Load Load 1 1 1

4 Iteration

Current Model

Compute 2

New Model

3

Task

Current Model

Compute 2

New Model

3

Task

Current Model

Compute 2

New Model

3

Collective Communication (e.g. Allreduce, Rotation)

Harp

SALSA

Harp Features

Data

Abstraction Arrays & Objects
Partitions &

Tables

Management Pool-based

Computation

Distributed
computing

Collective

Event-driven

Multi-threading Schedulers

Dynamic
scheduler

Static scheduler

SALSA

Data Types

Partitions & Tables

Partition

• An array/object with partition
ID

Table

• The container to organize
partitions

Key-value Table

• Automatic partitioning based
on keys

Arrays & Objects

Primitive Arrays

• ByteArray, ShortArray, IntArray, FloatArray,
LongArray, DoubleArray

Serializable Objects

• Writable

SALSA

APIs

Scheduler

• DynamicScheduler

• StaticScheduler

Collective

• broadcast

• reduce

• allgather

• allreduce

• regroup

• pull

• push

• rotate

Event Driven

• getEvent

• waitEvent

• sendEvent

SALSA

Case Study: LDA and Matrix-Factorization
Based on SGD and CCD

Dataset

Node Type

Xeon E5 2699 v3
(each uses 30 Threads)

Xeon E5 2670 v3
(each uses 20 Threads)

clueweb1 Harp CGS vs. Petuum (30) Harp CGS vs. Petuum (60)

clueweb2
Harp SGD vs. NOMAD (30)
Harp CCD vs. CCD++ (30)

Harp SGD vs. NOMAD (60)
Harp CCD vs. CCD++ (60)

SALSA

Collapsed Gibbs Sampling for Latent Dirichlet Allocation

SALSA

Matrix Factorization

SALSA

Features of Model Update in Machine Learning Algorithms

I. The algorithms can converge even when the consistency of a model is not guaranteed to some extent.

II. The update order of the model parameters is exchangeable.

III. The model parameters for update can be randomly selected.

Algorithm Examples

Collapsed Gibbs
Sampling for Latent
Dirichlet Allocation

Stochastic Gradient
Descent for Matrix

Factorization

Cyclic Coordinate
Descent for Matrix

Factorization

SALSA

A Parallelization Solution using Model Rotation

Training Data 𝑫 on HDFS

Load, Cache & Initialize

3 Iteration Control

Worker 2 Worker 1 Worker 0

Local Compute

1

2 Rotate Model

Model 𝑨𝟎
𝒕𝒊 Model 𝑨𝟏

𝒕𝒊 Model 𝑨𝟐
𝒕𝒊

Training
Data 𝑫𝟎

Training
Data 𝑫𝟏

Training
Data 𝑫𝟐

Maximizing the effectiveness of parallel model
updates for algorithm convergence

Minimizing the overhead of communication for
scaling

SALSA

Pipeline Model Rotation

Worker 2 Worker 1 Worker 0

Time

𝑨𝟏𝒂

𝑨𝟎𝒃

𝑨𝟎𝒂

𝑨𝟐𝒃

𝑨𝟐𝒂

𝑨𝟏𝒂

𝑨𝟏𝒃

𝑨𝟏𝒃

𝑨𝟎𝒂

𝑨𝟐𝒂

𝑨𝟐𝒃

𝑨𝟏𝒃

𝑨𝟏𝒂

𝑨𝟎𝒂

𝑨𝟎𝒃

𝑨𝟎𝒃

𝑨𝟐𝒂

𝑨𝟏𝒂

𝑨𝟏𝒃

𝑨𝟎𝒃

𝑨𝟎𝒂

𝑨𝟐𝒂

𝑨𝟐𝒃

𝑨𝟐𝒃

Model 𝑨∗𝒂 Model 𝑨∗𝒃

Shift Shift Shift

SALSA

Dynamic Rotation Control for LDA CGS and MF SGD

Other Model Parameters
From Caching

Model Parameters
From Rotation

Model Related Data Computes until the time
arrives, then starts model
rotation

Multi-Thread
Execution

SALSA

CGS Model Convergence Speed

SALSA

LDA Dataset Documents Words Tokens CGS Parameters

clueweb1 76163963 999933 29911407874 𝐾 = 10000, 𝛼 = 0.01, 𝛽 = 0.01

60 nodes x 20 threads/node 30 nodes x 30 threads/node

K: number of features; 𝑎, 𝑏 hyperparameters;

SGD Model Convergence Speed

SALSA

MF Dataset Rows Columns Non-ZeroElements SGD Parameters

clueweb2 76163963 999933 15997649665 𝐾 = 2000, 𝜆 = 0.01, 𝜖 = 0.001

60 nodes x 20 threads/node 30 nodes x 30 threads/node

K: number of features; 𝜆 regularization parameter; 𝝐 learning rate

CCD Model Convergence Speed

SALSA

MF Dataset Rows Columns Non-Zero Elements CCD Parameters

clueweb2 76163963 999933 15997649665 𝐾 = 120, 𝜆 = 0.1

60 nodes x 20 threads/node 30 nodes x 30 threads/node

K: number of features; 𝜆 regularization parameter

Outline

1. Motivation: Machine Learning Applications

3. Harp-DAAL Framework: Design and Implementations

2. A Faster Machine Learning solution on Intel Xeon/Xeon Phi Architectures

SALSA

4. Conclusions and Future Work

Harp-DAAL: High Performance Machine Learning Framework

Harp
1. Java API

2. Local computation:
Java threads

3. Communication:
Collective MapReduce

DAAL
1. Java & C++ API

2. Local
computation: MKL,

TBB

3. Communication:
MPI & Hadoop &

Spark

Harp-DAAL

1. Java API

2. Local
Computation: DAAL

3. Communication:
Collective

MapReduce

SALSA

Harp-DAAL in the HPC-BigData Stack

Harp-DAAL is at the intersection of HPC

and Big Data stacks, which requires:

• Interface: User friendly, consistent with

other Java written Data analytics Apps.

• Low level Kernels: highly optimized for

HPC platforms such as many-core

architecture

• Models: inherit Harp’s computation

models for different ML algorithms

SALSA

Inter-node Performance: Harp-DAAL-Kmeans vs. Harp-Kmeans

Inter-node test is done on two Haswell E5-2670
v3 2.3GHz nodes. We vary the size of input
points and the number of centroids (clusters)

By using DAAL-Harp’s high performance kernels,
DAAL-Harp-Kmeans has a 2x to 4x speeds up
over Harp-Kmeans

SALSA

Inter-node Performance: Harp-DAAL-SGD vs. Harp-SGD

The Inter-node test is done on two Haswell E5-2670 v3
2.3GHz nodes. We use two datasets

• MovieLens, a small set with 9301274 points

• Yahoomusic a large set with 252800275 points

For both datasets, we have around 5% to 15% speeds
up by using DAAL-SGD within Harp.

There are still some overheads of interfacing
DAAL and Harp, which requires further
investigation.

SALSA

Interface Overhead between DAAL and Harp
We decompose the training time into different phases.
There are two overhead of interface

• Harp-DAAL Interface

• Conversion between data structures

• JNI interface

• Data movement from Java heap to out-of-heap buffer for
C++ native kernels in DAAL

• The two overheads could take up to 25% of the total
training time, which must be optimized in the future
work.

• Rewrite some Harp codes to create shared memory
space between DAAL and Harp

• Add more Harp compatible data structures to DAAL

SALSA

Outline

1. Motivation: Machine Learning Applications

2. Harp-DAAL Framework: Design and Implementations

3. A Faster Machine Learning solution on Intel Xeon/Xeon Phi Architectures

SALSA

4. Conclusions and Future Work

The Models of Contemporary Big Data Tools

Programming Models
Comparison of Iterative Computation Tools

Daemon

Spark Parameter Server

Daemon

Daemon

• Implicit Data Partitioning
• Implicit Communication

• Explicit Data Partitioning
• Explicit Communication

• Explicit Data Partitioning
• Implicit Communication

Various Collective
Communication Operations

Worker

Harp

Driver

Worker

Worker Worker Worker
Group

Server Group

Worker
Group

Asynchronous
Communication Operations

M. Zaharia et al. “Spark: Cluster Computing with
Working Sets”. HotCloud, 2010.

B. Zhang, Y. Ruan, J. Qiu. “Harp: Collective
Communication on Hadoop”. IC2E, 2015.

M. Li, et al. “Scaling Distributed Machine Learning
with the Parameter Server”. OSDI, 2014.

SALSA

Harp: a Hadoop plug-in based on map-collective models

YARN

MapReduce V2

Harp

MapReduce
Applications

MapCollective
Applications Application

Framework

Resource
Manager

Shuffle
M M M M

Collective Communication
+ Event Driven

M M M M

R R

MapCollective Model MapReduce Model

Programming Model Architecture

SALSA

• MPI-like collective communication operations that are highly optimized for big data problems.
• A Hadoop Plug-in to integrate with the ecosystems.
• Efficient and innovative computation models for different machine learning problems.

Hadoop/Harp-DAAL: Prototype and Production Code

Source codes available on Indiana
University’s Github account

An example of MF-SGD is at

https://github.iu.edu/IU-Big-Data-Lab/DAAL-2017-MF-
SGD

• Harp-DAAL follows the same standard of DAAL’s
original codes

• improve DAAL’s existed algorithms for distributed
usage

• add new algorithms to DAAL’s codebase.

• Harp-DAAL’s kernel is also compatible with other
communication tools.

SALSA

Summary and Future Work

• Identification of Apache Big Data Software Stack and integration with High Performance

Computing Stack to give HPC-ABDS

o ABDS (Many Big Data applications/algorithms need HPC for performance)

o HPC (needs software model productivity/sustainability)

• Identification of 4 computation models for machine learning applications

• HPC-ABDS Plugin Harp: adds HPC communication performance and rich data abstractions to

Hadoop by development of Harp library of Collectives to use at Reduce phase

o Broadcast and Gather needed by current applications

o Discover other important ones (e.g. Allgather, Global-local sync, Rotation pipeline)

• Integration of Hadoop/Harp with Intel DAAL and other libraries

• Implement efficiently on each platform (e.g. Amazon, Azure, Big Red II, Haswell/KNL Clusters)

SALSA

