$B\to K \pi \psi$

kinematics This page concerns the kinematics of the reaction $B \to K \pi \psi$
from the publication [Mik18a] .
A brief description of the formalism is given in the Formalisms section.
Please see the publication [Mik18a] for further details.
Both side of the sum rules are compared interactively in the Simulation section.
The codes can be downloaded in Resources section.

Formalism

$t$-channel quantum numbers of scalar amplitudes $A_k^{(0,\pm)}$
$A_k^{(\sigma)}$ | $I^G$ $P(-1)^J$ $\tau$ $J^{PC}$ | lightest meson
$--$ | $--$ $----$ $--$ $-----$ | $------$ $A_{3}^{(+)}$ | $0^-$ $-1$ $+1$ $(1,3,\ldots)^{+-}$ | $\omega_2(-)$
$A_{3}^{(-)}$ | $1^-$ $-1$ $-1$ $(2,4,\ldots)^{-+}$ | $a_1(1260)$
$--$ | $--$ $----$ $--$ $-----$ | $------$

Born term of scalar amplitudes $A_k^{(0,\pm)}$
$(\sigma)$ | $(0)$ $(+)$ $(-)$ | values
$--$ | $----$ $----$ $----$ | $------$
$B_1^{(\sigma)}$ | $-\frac{1}{2}\frac{eg}{2 M}$ $-\frac{1}{2}\frac{eg}{2 M}$ $-\frac{1}{2}\frac{eg}{2 M}$ | $e = 0.303$
$B_2^{(\sigma)}$ | $\frac{1}{t-\mu^2}\frac{eg}{2 M}$ $\frac{1}{t-\mu^2}\frac{eg}{2 M}$ $\frac{1}{t-\mu^2}\frac{eg}{2 M}$ | $g = 13.54$
$B_3^{(\sigma)}$ | $\frac{\kappa_p+\kappa_n}{4 M}\frac{eg}{2 M}$ $\frac{\kappa_p-\kappa_n}{4 M}\frac{eg}{2 M}$ $\frac{\kappa_p-\kappa_n}{4 M}\frac{eg}{2 M}$ | $\kappa_p = 1.78$
$B_4^{(\sigma)}$ | $\frac{\kappa_p+\kappa_n}{4 M}\frac{eg}{2 M}$ $\frac{\kappa_p-\kappa_n}{4 M}\frac{eg}{2 M}$ $\frac{\kappa_p-\kappa_n}{4 M}\frac{eg}{2 M}$ | $\kappa_n = -1.91$
$--$ | $----$ $----$ $----$ | $------$

Model

Every isobar is simple Breit-Wigner \begin{equation} BW(x, m, g) = \frac{c}{m^2 - x - i mg} \end{equation}

References

[Mik18a]
M. Mikhasenko, A. Pilloni,, J. Nys, M. Albaladejo, C. Fernandez-Ramirez,
A. Jackura, V. Mathieu, N. Sherill, T. Skwarnicki and A. P. Szczepaniak
``What is the right formalism to search for resonances?,'' arXiv:1712.02815 [hep-ph], Eur. Phys. J. C78 (2018) 229

Resources

  1. FESR-PiPhot-Low.c:
    • Read_Multipoles reads the multipoles from files.
  2. FESR-PiPhot-Regge.c:
    • FESR_Regge returns the FESR at fixed $t$.
    • Ai_Regge returns the scalar amplitudes at fixed $t$ and $s$.
    • DSig_Regge returns the differential cross section at fixed $t$ and $s$.
    • Pol_Regge returns the polarization observables at fixed $t$ and $s$.
The multipoles are placed in a folder 'multipoles'. Change the variable 'path' to change their location.
  1. Simulation-param.txt
    Elab tmin tmax dt cutoff k1 k2 wmin wmax dw t0
    • Elab:             Lab energy for printing the observables for high energy
    • tmin tmax dt:       interval in t for the FESR
    • wmin wmax dw:       interval in $W=\sqrt{s}$ for printing Ai
    • t0:             print Ai at t = t0
    • cutoff:            W-max for the FESR
    • k1 k2:            moments of the FESR
    Units are in GeV.
  2. Trajectories.txt
    Intercept and slopes of 10 trajectories. Only the 8 first are used in this model.
  3. Residues.txt
    Parameters of the 12x2 residues $\beta(t)$.
    Each amplitudes contains 2 contribution, the leading Regge pole and a sub-leading contribution.
    In this model, the unnatural amplitude has only one contribution. The parameters of their sub-leading pole are set to zero.
    Each line is $j$, $\kappa$, $\delta$, $\beta_0$, $b$, $\gamma_1$, $\gamma_2$.

Simulation

The code compute both side of the FESR Eq. \eqref{eq:FESR} with the moment $k_1$ (odd amplitudes) and $k_2$ (even amplitudes).
The user can choose the moments $k_{1,2}$. They must be even positive integers.
$k_1$ must be odd and $k_2$ must be even.
The suggested cutoff is $E^\text{lab}_\text{max}$ is 2 GeV. The SAID model can be used up to 2.4 GeV and MAID up to 2.0 GeV
Note that imposing a cutoff above the range of validity of a solution might lead to misleading results.
The limit of validity of the models can be read from the partial waves files.

One can print the observables (differential cross section and $\Sigma,T,R$ asymmetries) using the Regge model.
The default value to compute the observables is $E^\text{lab}_\gamma = 9$ GeV.
The default $t$ range for the observables and the FESR is $t\in [-1,0]$ GeV$^2$.
The kinematical quentities are expressed in GeV.

The parameters (trajectories and residues) of the model can be changed. The defaults values are taken from [Mat18b] .

This page has been accessed $counterVal times.
Designed by Vincent Mathieu

"; ?>