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Now in proceeding to equ (16) two abstractions have
taken place.

i) The invariant formulation of the statement.

This has the effect of introducing & matrix
Cwe instead of the probabilities. This is only
& formal mathematical trick which does not add
anything physicel to the situation,
e

ii) ¥e heve started with a particular situation,
nemely that, which follows from the chosen
exemple of an intermediete measurement of
which we do not know the result, yielding =
particuler set of probabilities Aar, .
It is obvious however, that the egquation

<C>..,2;cu_.w&
does not refer to how we got the knowledge of
the ¥. and what their values are. This
equation (and its invariant formulation) is
therefore general and one may forget about

the special example by which it was
introduced.

p. 17 egu B! and vy) : Qmeans the representation of ¢ in the

system, that is just the diagonal represen-
tation of eqgu d,).

p. 18 1line with 8 } read: € is real, i.e. hermitian; ...
(the same correction two lines below)

r. 20 Remark to theorem 4 : The mentioned & priori knowledge
reduces the number of measurements
only, if one does not coumt the
experimenis, which have delivered
this & priori knowledge. 1In the
example /4 for instance, we know

without measuring the polarization

of the beam., This implies, however,
that we know the applied magnetic
field. For this we have to make
three measurements. Considering

only the beam, we may regard this

as an a priori knowledgec.

.
p. 29. The reader should derive the same result by using the
Heisenberg picturc,

- =
p. 31. 7th line from the bottom read: .., the result cos(P,),
) thus...

Py
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Introductory note

These lcctures which are now appearing as a report
were concelved as an introductery course for experimental
phyeicists at CERN. The notes of the lectures given
have been written up in an informal manner, esgentially
for the benefit of those who attended the course. As
80 many requests for copies of these lectures have cone
from outside CERN, it has heen decided to make then
fore generally available, Neither the treatment nor
the list of references should be consldered in any way
as definitive,

When it was decided that this material should be made
avallable to a wider public, most of the lectures had
already been duplicated. Therefore it has been felt
desirable to add some explanatory notes to the list of

corrections.

Explanatory notes and list of corrections

p. 2. 7Tth lire from the bottom : Read : If the vactors

are normalized.

P- 5. equ (3) The reader may prove this by putting

bu)= ZU, )¢, ; Pl)= O,

P. 5. last line : The first sum is over b and e,
the second one over c¢.

p.12, 14th line from below : After nothing insert a
gemicolon,

p.1l3, 10th line from above : Read:... its wave number
k s e

p.15. equ (16) :.This equation is the invariant
formulation of the aboveequ.

Lo =2 cypwy
Our partial knowledge of the system
is expressed by the probabilities

Wy = ’ u’aa,w”Z ’
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p. 32. 4th line irom the bottom read: ... by & little discussioﬂ).
p. 38, 4th line irom above rcad: ... formulation {42), which ...

. p. 41. above equ. (49) read: The answer is yes. Put .
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i, Representations and Transformation Theory

In this introduction I reuwind you of a few bLasic facts

of ordinary quantum mechanics.

) 4 rhysicegl™syaten is said to be in & aefinite micro-state, if
every observable .0of & complete setl of commuting observables has
been measured. We rgfiesent this state by a state vector in
Hilbert space and call it a purs state.

Example : If we know that a hydrogen atom is in energy stete
belonging to En' we do not yet know the whole state

. unlgss we determine alsc the angular momentum J and m . If this
is not done, the state may still Ye any linear combination of

angular momentum eigenfunctions belonging to En and we do not

know which one.

+*
The state is defined by our knowledge and by nothing elas, )

j ) To every observable belongs a hermitian operator end a single
measurement of this observable always results in giving one cof
the eigenvalues. After the measurament cur knowledge jumpe
discontinucusly because we know something we did not know before,
Consequently the state vector alsc Jumps : After the measure-~

. ment it is an eigenvector of the corregponding operator, but with
respect to other operators which commute with that in question,

it may still be undetermined and therefore not "pure',

¢) Apart from the discontinuous Jumping of state vectors because of
meagurements, there is anothar movement of tho states, which is

continuous and follows the equai.on of motion

HY = - — —— (Schr¥dinger picture)
A 9t
&
The state follows this equation only between Epe measursments,
. thet is during the time where the system is closed. H is the

Hamiltonian cf the closed wvystem.

*) The meaning is, of course, that one does one's best to get the
right knowledge, If, for instance, one cannot get complete
knowledge, one should realize that. Otherwise one gets wrong

; predictions,
C'ﬂ\fil!'3%‘/E[R v fastio.com
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d) Whereas the movement according to the equation of motion is
completely determined by the initial state (the equation of
motion is lst order in t!), the discontinuous " jumps" connected
with measursments are not completely determined. In fact, if the
state V/ ie known and we make a meagurement 1o which the operatozﬁ}

belongs, then the rule is

Take the complete orthonormal set of eigenvectors of A defined

2y
A ¢Q =Q¢a and expand the normalized [(kf/} l)‘j) = i] state

into a series

&/’ ZjCéuqql' J Cé,’ (qu) 9{) 1s the "cosinus" between gll’ WJ
The scalar product is defined abstractly by

(@)= (p,0)"

(% A @) = 7 (Lf') Ep) where 2 is any complex number (not oparator

This definition does not refer to any coordinate system; it is
invariant, If the space is a three-dimensional Euclidian (real)
space, then this is the normal scalar product, which 1s -~ without

reference t0 any coordinates - defined by

(?;)F;) = IT‘

| lr_zl T cos (?I T_'Z,.)

{
If the vector is normalized to(9{ %{)' {, then the acalar produot
is just the cosinus (in a generalized meaning).

Then calz'is the probability that the measurement A yields the

aigenvalue a. Once the measurement is done, we know
that the state is CPQ . The state vector has jumped into this
new direction =nd begins inmediately to follow again the

Jechr&dinger equation,

4003/E/p
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QM\)J,D,L/

/\/

/

Z( @a, a,:q.) ZC ac, ((pa,’@a):zccja‘co.

The eigenvectors of a complets set of commuting hermivian operators
form 4 basis of *he Hilbart epace and & state is completely defined

by its compuneniu with respect to theee basis vectors, that is by

the ca . Thus / c
R 7|
- ) \ :

which means tha* the gzétract vectoxr HJ is represonted in a certain

coordinate system by lle compo...tu Cq -

The ordinary Schr¥dinger functions %’(Xﬂ)are such a representation :
where the subscript of the ¢ is continuous and is called x.
Thus
2 A . . .
i &J(X)l CiX' is the probability to find in
: u position (x) - measurement

the value between x and » + dx.

The mean value of a large number of measvremenls, all starting from

the same statevj, is given by

- 2 * o
<A> Prob(a) —%Q'Ca! —'gCG‘O.CO .

I

Because the ca represent the vecto- H’, this I8 nothing else than

the scalar product (written in coupononts)

(A; = g:C:QCG = (L;V) A L[J;’) Tndeed . \f‘/m E(_‘ @C{, glves

L

The term "expectalion value™ i« cowmon but unjustified, because
it is really & mean value which need not coincide with what we

expect, namely cne“of the esigenvalues "e",

P T UUN
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g) Commuting operators bOssess a common basis in Eilbert space (in
fact, the basis is completely defined by the complete aet of

commuting operators) and can be measured sirultaneously,

Non-commuting operators cannot be measured sinultaneously, Lot
4, B, C Ye thres non-commuting operators (assume for simplioity

that each one forms a complete set) of observables i

A @Q = va;ba‘ (We label the eigenvaotorg by the
corresponding eigenvalues rather

(1) B LP/G = /6 Lfb than writing A(pt = Q’i. (P,-_ .

Qur notation is therefors very

C HUC = C l‘]"i near to Diracés,)

Assume A to be measured. Then the system is in state gba .
Which ia the probability to find the eigenvalus b in the measure-
ment B 7 If this measurement is done immediately after the
meagurement A,.then the state is still

QD(ZL) = 0(9) - ¢<1.
=0

: i /

The rule is : Expand ¢) 1ln a8 series of 72 5
0 o is unitary and trana-
(2) @[0) '(pa." Z Uga(fﬁ_& )' U{ga' (ﬂ; ¢a) forms from LP to QD

The supersoript o on 8 mesang tha.t,;.ty ie a constant unitary trana-
formation connecting two systems of ocordinatas :(‘f’ and qJ

2
Acoording to the above rule d), the wanted probability is lﬂba’

If we wait sometime before we measure B, the stateq) has changed

according to Schr¥dinger's equation 1

é » —"E;- H¢ h CP{O) = @CL . This can be taken into

account by using a time-

CM(})(I%(I))?-’/EH/M'\M fastio.com
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(3) <

-

depsndent Uba(t) which then also obeys Schrddinger's equation :

( d U 1
= - Iy (H ‘. UJ&@(-&)

dt
U,f: a(a) = O,g%

Uba(t) are then the oomponents (with respect to the basis %9
of that state VBctoz-qp , which for t+ = 0 coincides w1th
Wo may call U (t) a Schr8dinger function (for fixed a).

(Exemple + = = E_ , energy eigenvalue, b = x , the position of
n P

the partiocle., Then

1) = x, T
Ut =¥, 0]
is the ordinary Schr8dinger function),

That 18 1 Those unitary matrioces G(t) which obey the Schridinger
equation and which for t = O (the time of the last messurement)
coincide with the y &ive us the full information on possible
results of measurements., The columns of these matrices are -

in & general sense - nothing else but Schrddinger functions.

In the case that we make the next measurement at time t (instead of

at t = 0), the probability is IU(t)bal2 (for finding the eigen-

value b),

Now another question ¢ What is the probability of measuring c

if C is applied? Obviously
*

U (f) 12 This ocan be writtenm in two
a ‘
ways 3 ' .

)= S U, (DU Yam ZUOY

prob. (ct after a) =

www fastio.com
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Therefore

0 .
+] = (t
. UCCL(J gucﬁu«’ia )
Thus, if B ig hot measured inbetween A and C, we have

(@ won, Gcarr ) - |U W2 [ D0 U, ()2

If instead B is measured at time t' between A and C, we have

prob. (¢ after b) = ‘Ucﬁfz"-

2'anc‘l prob-. (b after a) = ]Uga{fl} lz

Then the probubility to measure o after b and b after a is

(5) prob, (ct after b, after a) = prob. (ct after bt') -prob.(btl after a
AP (¥)|2
U(_g ) Uf’a—

If B is measurcd but we do not recognize the result, then

(6) prob.{(c after a, B measured) =2;:prob.(ct after bt') -prob.(bt, after

-5 |Uftt) IZ. |U,,,f”|2
§065U{Jc€f) T ; U«‘SQH’)‘Z

one has to distinguish ocarefully these two cases. This is not

Because

t-t'
L

the place for a full discussion, but the reader may try to discuss
these questions by means sf an idealized experiment and to rind;f
out what it really means, He will immediately see that it

> ‘fantomatically ieads from here into the deepest questions of

1nterpretat10n 0f quantum mechanics and the theory of mealurements.
- gs.‘lnn

4003/E/p
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h) We may equally well represent the operators by a matrix with

respect t0 & certain basis, say Qll’ as we have represented the
vectors (states) by their components with respect to this basis

Oaa’ : (Cpa, ) OQ)Q‘)

R

One must clearly distinguish between state vectors and operators
on the one hand and their representations, namely components and
matrix elements, on the othér hand, The latter depend on the
chosen basis, the former are defined in an abstract manner and

do not depend on the basis,

Especially

Aa.’a = (QDOJ}A Q)@) =[§Da» ;& gba) = acga’a, is diagonal,

‘Changing the basds by means of & unitary transformation, changes

the matrices also

Oaal = (@Q JO@Q ;J ; ngL = ZO,&QSO{, or short
daa’ = (Z Qm(& ) Ozgﬁlo'(’%') B Q;:a'ox; 3

In short i OA = 'O(j+ OB O = O-,

(Here 0, means the matrix representation in the basis Q%-of 4.)

.

www fastio.com
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1) EHeisenberg- and Schr¥dinger Picture

30 far we have used the Schrddinger picture, the operators are
congtant in time and generate by their eigenvectors a conatant

base in Hilvert space. The state of the gystem turns around i

3 Be)=-% H

Ot

— @y

and at a given time the cosinus between \I/ and the axes (po, glva
the probability to measure the eigenvalue a of A, The jump of VJ

into one of the axes is the more probable the nesrer V¥ is to this

axis,

These statements are the only ones which have experimental maaning.
They provide the necessary link between the determined "motion"

of the isolated system and the undetermined results of Measure-
ments,

Because thias is so, we can say that the angles between QD and the
axes of that operator A which I am going to measure next are the
only relevant content of the theory. By definition they do not

depend on the deseription : —

(1, @) =(LUUP) = (ULUP) = (¥ D) ror any watsamy o

Hence we may use even a time-dependent U without changing the
phyaiéai_oontent of the theory, because if we turn all veotors
(inoluding the basis) around, the relative motion of gb with

respect. %0 tr. (or any other basis) remains unohanged and so does

physics,

4003/E/p
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Compare equ. (1l) with equ. (3); V and U follow both the same
equation, only the initial condition is éifferent., The V in
equ. (1l), however, is only a special case of that in equ. (3)
becausse Bba may be the unit matrix. This is the case if
after the measurement A one again applies the same measurement

at a later time t and asks for the probabilities,
We have now acoording §o (10)
qho = b/+ QD Kt) : :
<
| LW, %
O(t) = /* 0V = e 7 Mg ¢~ H AT

Now the atate Qj = gbo remains constant, but the operators and

therefere the basgis turn around

d0&) <« '
P = 5 [H} O] is now the equation of meticn, (Proof?)

The interaction picture is one of the infinitively many inbetwaen

Schr8dinger and Heisenberg 1+ Let H equal Ho + Hi where the
solution of Ho 1s known, Then we put

- fot and find the following interpretation :
L/ =ée The axes (operatcrs) move as in the
corresponding simple case where only H,
is present. On the other hand, gbia not

sonstant; because by this tranaformation

S| &

we have only removed that part of its
motion which corresponda to Ho' The
rest of motion still remains., Indeed :
Calling (p; the naw vector and ¢ the 0ld
(Schrbddinger pioture), one has

.‘\_
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o n
From gb z . — (F{ + F{.) gb follows immediately
Rove

dt
. A 4 t
dfi‘f“ag MR - f-eh e R

. - H
Jd-t = HO/ O[t\‘l where -t) £ T‘ H° O ¢ Rl

(The simple proof is left to the reeder.) /
Here the equation of motion is split into two parts, one for the
state and the other for the operators; the .relative motion of

with respect to the axes remains the same of course.

M. Tastlio.com
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2) Treatment of States which are not pure

a) General remarks

&8 suid in the introduction, the state reprecsenta our

knowledge. If this knowledge is an optimum - that is if a complete

set of communting observables has been measurcd - it is & pure astate.

Practically however this is the exoception and the rule iz to have

only partial knowledge; then the state is not pure,

Three examples :

o) A system in a temperature bath. If we do not count the

www fastio.com

bath to the system, then we know only macroscopic data

P, V, T or any other set of thermocdynamical gquantitiea,

We know practically nothing about the state vector ¥ and

as long as we have the contact of the system with the

bath, 'V is not well defined. But even if we remove the
system from the bath and isolate it completely, we may say,
perhaps, that it is in a certain state\k. But this statement
means absolutely nothing, because if V 1is defined by our
knowledge, it is Jjust nonsense to say so, In fact, a magro-
scopic system of N = 1023 particles has so many commuting
obgervables that it is impossible to measure all of them.
Even if we mcasure its energy, then we know only that it ia
in an cnergy eigénstate, but wc¢ do not know which linear
combination it is with respect to all the other constants

of motion, But nevertheless we have some knowledge t p, T, V,
for example. And this allows ua to know at least certain
probabilitics for finding the system in a pure state; for

inatance :

£
*'EF’ is the probability of finding
W(t) = ?L z the system in an energy eigen-
LQ-B-—‘F state of energy §.
£
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This "state" of & system just coming out of a temperature
bath is very "impure" s0 to speak. This may be different
in other cascs, where a part of the commuting observables
nave been measured, We may call such & state partislly impure

~o
end may add a word indiceting with respect to which observables

it is impure. -

The following example is of that kind., Coneider a mono-
chromatic beam of atoms without interaction, We need not
consider then the whole beam as "the system" but rather one
single representative atom. We know then its wave number [,
ite energy (say it is in the ground state), but not its
magnetic quanium number if it happens to have a spin s« 0,

The stute is then impure with respect to spin orientation.

Consider the example of three operators 4, B, C (each being
& "complete system”)and let us start with a pure state ¢k.
If we wish to know the probability for finding ¢ in the next

experiment, we have the urnique answer

1
prob.(ct after a) = lué:)I i

i

where < :-E +|u_
\

dt 7 ent ALfo) = [f,, - (%.0.) .

But suppose that before we come to do the experiment C,
somebody has done experiment B on our system, but we do not
know the result. We only know that before it was in a pure
atate q&.and that B was measured, Nevertheless we find

according to (6) 1
prob.(ct aftdr &, B me&suredt1) = %;:uiéf'tU[zfuéf)(l

In words : Immediately after B has been measured, the system
18 in a pure state qz,for the others. For us, it is no longer

in the pure state ¢k- because B was measuraed,

-


http://www.fastio.com/

- 14 -

g

But it is not in & pure stete .L for un elihar, since wa do
‘not knov the rceault. Neverthelesr, arter the measurement 3

(of whicn we do not know the reguls) 'ho arotem i et least
in a well defined "mixturs ssnwe', o lnwy, ‘n faect, with
which probability it is in eacl or> ¢! the niunivle pure
states %é i this is |ubgf)[z

thing, namely the state of the aystew {-nich iy one definite

. ™upay e du 0t know every-

of the Qb ), but on the viher hand we cre not complately

ignorant; we know just the |[L##}jl N
M

b) Introduction of the Density Matrix

NHow, what do these exaupie- h.o r o otoamenr? e have a
wall defined partial knowledge ¢ *he r~uo.%2, [t may be partial
with respect to all obaervebles [ersmple ~, <, cr c.ly with
respect to some of them (examples 1';. . jv.orbic: ivw, how to
express this situation in the fram: wi guinsum secananicy.
Example ¢) will very naturally leal tr ¢ic general lescription,

Obviously, the expectation value ¢l U _o -19v

- 2 2 .- Vg oaey gt [ ot
<C>'Zb'luwl-luml:LCIH_\"‘LH-:r,(_: R [[L(m[z _
CL L,(- e v /‘lﬂ
In the following we shall omi* the *iz. vvemvimi;. e fiu the

time t' at which B is measgured, bzciuc: aay wa~nuvc.ient means
a "jump" of the state and oniy bheiween Lnd @iculersaus, when
the system is lsolated, the state :cllcws the Uchrtdingar aguation.
ihus, in order to have defini‘e situriicas, “he tirge t' has to
f?q fixed, and the (;L have t0 bz couuidered oo congtants, We may
‘;pfiﬁtﬁtiﬂp O, then t - t' = © is the time .0 vhich C is measured.

1)

; Uéb b;%ays maans Ucb(t). Tais %¢, 2o we b2rs cgen, the Sohrtdinger
funotion, which (for b fixed) dessw!brn ilhe shutbe q)(t) with
respect to the basis of C. XLater un e sha’ . comu dback to the

question ‘of tiﬁe dé%endence again,

4003/E/p

ClibPD www fastio.com


http://www.fastio.com/

- 15 -

Now

S olu e 7
¥:- z L&l ET

L

u:bc ucb -

P

—
C

)

C

i the disgonal element of the matrix representation with respect

t¢ the Schrtdingem,functi

€ ?Cw

and this may be written a

g,

{Cy=) Coor gt

b
Hers g’{;{'z é‘d@-' Lf&

our speciel description,

(16)

ey = Teleg) =

Tr (¢C)

ons .U Hence
cht

leo

Cop S = Te (Cf)

is diagonal. But this is just due to

The equation

*)

therefore true for

is invariant and

any base,

*) Tr(AB>= Z-A ‘ZBKIAM = T;'(BA) Gudd
LK (34
Te U['ALL)*#ZAK& u&' udilu. = }:AKC gm - Z = Tr A,

ClibPD www fastio.com
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o) Properties of the Density Matrix

Let us now play around with this matrix f y to find
. A few thecrems. First of all, if we know the state (before

measuring C) to be a pure state, say %L y then -‘l, that is

L
C
OA
S( « i 0> = TrieC) = G+ (4, oy )
o |

That is, the definition of (16) contains

the ordinary treatment, where one

considers pure atates only.

| Theorem 1 : (c,) = 'T}(?(: ) is an invariant (with respect to

unitary transformations in Eilbert
space) generalization of the
orainary definition of expectation

values,

We have found - by chance - that representation in which P s
diagonal, because we have described ? with respect to that system
in which we knew the probabilities wl“ In any other system

is not diagonal, Let us take again our three operators A, B, C
and assume that A has been measured but that we do not know the
result. We may, however, know the probability W, for the system

being in state Q).
[

(Whatever our knowledge may be, it oan be represented by L .
If we know nothing, then all W are equal; if we have complete

knowledge, one sing;e W, 1ie 1, the others are zero).

We ask nnw for the expectation of C and will find three different
rapruaantations of Q accordingly to whether we express f in the
baais dk_or Y, or{, . We alrcady know that Q is dtagonal in d%’
with the l;, a8 eigenvalues., For Qé a8 basis we may expect also

4003 /E/p

ClibPD www fastio.com


http://www.fastio.com/

(17)

ClibPD

()

- 17 -

something simple, because this is the aystem of eigenvectors of C,
the quantity we want to measure. The most general form we will
have in the system %L, becausc B may be any operator which does

not commere with 4 and/or C. We have

o
[‘ = ‘___ Ly C = T { ol = -\-_ *
< 7 tar T Taa 2 W ui’au te Clrfr' — {J‘; a‘ L2 “a - C

Y G -

Let us analyse these equations in terms of

Le>= Trel)

.Y . . :
—n-(QC) = t?'la; Cua : fLAI = ‘_Jlar is dlagonal

Te(eCY = o_ L AL, TS *
(g Ltg [,‘,' 65‘,\]& {,a_ ! g{_{,‘ ;_‘;__‘LI%.ALZ a{r&. = (afqa-J)('{’

Te(¢C) = c Wyl =2 cd

here C is diagonal but q is not.
We Bsee

Theorem 2 : The density mebrix depends in its representation uu
two syRtems of besis vectors in Hilbert spaca,
flrstly on that system in which we know the probabi-

lities L,, secondly on that system which ue chooese as basis in

our Hilbert space. If we choose that spe01al pystem as basis in
which we know the probability distribution, then f is diegonal

and its eigenvalues &re just the probabilities L

-

www fastio.com
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Shdt 'u-lts{m Lo
Its general form is :

o gt /i +
?Eylfr T o~ LL(w‘a D{(m . K“ Yd_u )(ft.

a

whers ?d means the diagonal form,

A few propertiss of f are the following :

By definitiOn.z:u1 = 1 , because W, are probabilities. Hence

QW = lrg» = 1 in any reprosentation. Furthermore & > O,
hence 0 ¢ W, & 4

P) E:uﬁ = T}gi é . in any representation. If f is not diagonal

&)

4003/E/p
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this reads

tl

< which limits the valu.

;"' .
"i‘u— IY\K,

of the elements.

In its diagonal form g»is real i.e, hermetic; this statement is

invariant. Hence

%
? is hermotic : gik = O , which was already uwsed in ().
Take that representation in which the operator tc measure, C, is
diagonel] and agsgume C to have only positive eigenvalues. Then
{C> 30 implies thet every diagonal element j’“ 2C .

This can by concluded in any representation, Hence

§ % 0 1ln any representation,
KK
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We colloet these statements in

=

Theorenm 3 T ¢ A

-~ P ¢

. Te gq & aw bosng rebwneula¢4nb
j: le I* ¢ 1 i
VK g" }I

0 & §, &1 y

So far, we have written everything with two mgtrix subscripts,
becauae we supposed that our operators A, B, C form esach one a
complete set of commuting obmervables. This is an idealization.
In goneral a state is labelled by many quantum numbors and the
transformation matrices are therefore labelled by more than two
subscripts, they are multi-dimensional matrices. Accordingly ?
/ is & multi-dimensional matrix and the foregoing formulae are
valid if 1 ”(11 1) k= (k k), thet is, the sub-
scripts repreosent each a full set of quantum numbers. It may
happen, however, that we know something definite of *he state -
it may be only partiaslly impure. With respect to ths corresponding
‘ subscripts, §' degenerates to & matrix (in diagonal representation)
g which contains only zeros but for one place where it has a 1.
We may then drop this subscript from y and the dimension of ? is
reduced by one., Remember,for instance, example 2a,ﬂ5) where n
monochromatic beam of a*oms is given. The only quaﬁtity which we
do not know is the spin somponent in 2 -directior, i.e. the
polarizstion, Let ? be the spin of the atom, shen thers are 2 + 1
possible orientations and Q reduces to a square (two dimensional)

~ matrix of 2] + 1 rows and columns,

%
Another reduction of E takes place if wg are’not interested in some
of the quantum numbers specifying the stete and if they are not
relevant to the planned experiment, For inetance, the considered

beam may noti be monochromatic, but we are interested only in its

00
CMQAH'BK@AngSHOCON
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polarization, Then the subscript referring to the wave number k
drops out and ¢ is also in this case a (2 + 1) x (23 + 1) matrix,
Thias g however cannot serve then to ealculate expectation values

for the momentum,

In general : if © 1s a8 N by N metrix, then from theorem 3 we

zonclude i

The N2 oomplox matrix elements contain 2N2 real numbers. Thsa
condition gﬁrf reduces this to N2 and the condition Trp = 4
to N2 ~ 1, The inequalities rustrict the values of those N2 -1

parameters but not their total number. Thus we have

Theorem 4 : If for a given problem thu density matrix reducae
toc a N x N matrix, then P contelins N2 ~ 1 independent
parametera. Determination of f impliea therefors
in general N2 - 1 measursments. In some cases this

number may be reduced by & priori knowledge.

Example s o ) We may pass the beam throvgh an analyser which
gelects m = O only, For the selected beam every-
thing i1s known., However we heve to pay for it in

losing part of thoe previcus beam.

p) The atoms may come from a box in a temperature
—
bath and a magnetic field }¢ is applied to the box,
Then f is determined by measuring T and jE y Bince
then we know the polarization of the beam because
the polarization iz to follow Boltgpanis law :

—

-
P I3
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Finally we may ask for the time variation of f . i

Woe go back to theorem 2, which states that the most gencral form
of ? is given by

2

(uU)gdu ),

gvbz_éit ,ulu~44

If we ask now for the time dependence, we must again recall the

fact that a physical system is changing in time in two ways

a) by measurements, Thes¢ are sudden jumpsand one does not
know beforvhafid whioh will be the Jump, This motion to some
extent is undetermined.

b) Betwcen measurements, as an isolated system, it moves according

t¢ the Schrddinger equation, This is completely determined.

If we now ask for the time variation of the density matrix, this
question makes sense only with reaspect to the second movement.
That is, we have to supposc the W, to be roprusentatives of our
knowledge as coming from the last experiment, In so far they have
to be considered as constant. However, since that last measurc-
ment has boon done, the system has changed according t0 the
Schr8dinger equation and this is expressed by the time varistion
of the SchrbBdinger functions Uy, (t) (Remombers Uba(t) is the
Schrddinger function raprasenting that state ¢ﬁfwhich at t = 0
was (ﬁk. if the basis is»ql.) As we are here in the Schrd¥dinger

picture, we see that ?F(({J is timedependcnt.

Which is its equation of motion? From (18) follows
“

“[J' w flu H d £

E%H»f_ (E&_ ) (u o, ER (_; and from

@g Lo duf Lo . follows then
TR L Te = 1w
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2= 20T ‘1
1 L Hl\ (Schrddinger picture)

Note that this is not the same as for opecrators in the Heiaéﬁgérg
plcture, wher:c onc has a + sign fsee (15)/. Indsed, this time
dependencn: comes from the fact that the matrix f is defined in
the Schr¥dinger picture by Schr¥dinger functions and,as we have
seen, thce Schrédinger states move opposite to that direction.

in which Heisenberg operators move in the Hzlgenberg picture.

We can intagrate (19) at once

T 1y
g({)= et%i ¢lo) e* t

(Schrédinger picture)

Now it is wasy to go over to the Heissnberg pioture

The expectation of € must be the same in both descriptions, hence

= 'ﬂ-(ewieﬁ“{ﬁ €{4H—) r
> i lgn co) (aetzorsee

Here we have usud the fact that Tr(AB) = Tr(Ba).

We may therefore state

+ Theorem 5 : In the Schrédinger picture, one has
constant operators ; ff . - i

In the Heisenborg pioture, one has instead

constant \9; i—__[z’: t_t: [“jf."]

ClibPD www fastio.com


http://www.fastio.com/

- 2% -

o g
|
Rewemburing that for pure states the ? -description
1 reduces to the common formulation of gquantum
l mechanics, we way say
) { e The whole guantum theory may be described ty the
i above agquations of motion and the reguirement that
Y _
(D= T}-(f[y) for any obscrvable O,
|

Finally, with regard to theorem 4 we may echange our interpretation
gné forget (80 to speak) the derivation of the density matrix and
its formal definition by theorem 2, Instead, we may define it by
gxpectation values, i.,e. by measurements only and say

s
Theorem 6 : The density matrix g’ expresses our knowledge of the

physical system in question. It is defined by

' O 2= T;—(ew) If it contains r = N° - 1

: independent parameters, then
the measurement of r expectation values <( G(a);>
1s sufficient for its complete determination.
Sometimes less is required (sce examples following
theorem 4), According to the chosen picture it
follows the egquations of motion given in theorem 5.
It is always bound to fulfil the requirements of

theorem 3%,

4003 /E/p
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The Use of the Denaity Matrix

In the following e¢xamples the use of the density matrix
i1s demonstratea., We sclect only a few very simple cases, and the
rcader should not think that i% is always like that. The general
gituation does not always follow the ideal lines of thecrem 6; -
rather, the situation is just reversed ¢t we do not determine a
denaity matrix ¢ by measuring the Nz-l independent data and thua
have finiahed ocur job. ?ho normal situation is that we have some

information (a priori or experimental) concerning our system and

we want to calculate that density matrix e which refers to & ocertain

planned experiment, This caloulation is tha theoretician's task
and can (and will, in general) be a very ocomplicated one., What I
mainly can do here is to show how the result of a theoretical
investigation,which is expresscd in terms of a density matrix,

has to be interpreted by the experimentalist. But in some of tie

following examples we can aven calculate the density matrix by using

simple arguments,

Thermodynamics

Consider a box containing a gas, Assuming tite particles

t0 be mass points of mass m without interaction, we may solve the
Schr¥ddinger «¢quation for each particle separately and put the
solutions together in an approPriéte way to have the azolution
of the whole ayatom. Thereby the encrgy sigenstates q% arae
defined. ‘

Wo put this box now into a bath of temperature T and
assume a terribly small but finite interaction between the dbath
and the box and alao among the partioies. This interaction will
then cause a thermodynamical evquilibrium without visibly ochanging
the epeotrum (the set of cigenvalues) of the Hamiltonian H.
Aleo thehﬁtatd veotors are hardly changed, but the system 18 no

longer in a dofinite state benvause of the interaction.

www fastio.com
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In a loosc sensc one can elready say in classical Fhysice
that temperature and cnergy arc complementary; the cxact messurc-
ment of once of thesc two dustroys the knowledge of the other one.
This 1s the same in quantum mechanics,

But we can at least say something, namcly : if we remove
the system from H&s bath and thern neasure its energy, we must find
it in & definite state, say Vg,and the probability of finding it

Just in this state 1s according to Boltzmann :

£
%

- E
2T
<

This is a situation which calls for a description by the density
matrix, since we do not know the state but the whole probability
distribution, Using thc energy eigenfunciions d)a as basisg in our

Hilbert space, ¢ is diagonal {theorem 2)

ClibPD www fastio.com
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Now the dinominator Ir Le k’) = 'T) is a number and here

only serv.s to normalize € to nave -Trf = 1, In statistical

. mechanics, however, this function of T is important because it

defines the frce energy of the system by ¢

r
(24) F=-hT u,fiZ(T) My Z(T) = & kT iod o
F-H
(25) g* Q-E? (where F 18 a number times the "unit

operator"; H,the Hamiltonian, is an

operator, )

Here we have scen that g may even be oxpressed in an asbstraot

manner as oOperator rather than by a matrix representation,

This operator may now bs oxpended in a series

‘r|,

@ 3 L () s T

Ax

and for any coperator wo find the expectation value 1

0% T T (G0 - S T (W)

"

A simple consequence is that (O Dequals zero for any operator,
for which T}Qﬂhb) equals zero for all n., One intuitively asees
that this applies, for instance, to the total angular and linecar
momentum, in the absence of external fields alsc to the di-electric
and magnetic polarization.

4003/8/p
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Polarization of a Particle Benm

Consider a beam of spin $ particles and let us be
intervsted only in the pelarization, According to theorem 4,
Ve hdﬁzua 2 x 2 matrix with throe independunt parameters and
conaequantly'hec;‘}hr%i meesurcments to determinu Q. We define
& polarizution voetor P by the uxpectation values of the Pauli

spin matrices

—

P," I 2 = r(?{rﬂ) l

—J
1]

L= (T y = Tr{ga)

-

(T3> = Tr (g53) o = (., )

Y
"

Obviously P2 = 1 for a 100% polerizod beam; P2 w O for an
—
unpolarized one, We may measurs P by determining the magnetic

¢ipole moment per cubic centimeter, M

Iq= N -; (N = Number of partioles/cms;
f ﬁ-- magnetic moment)
-l
or we may even knowla priori if the beam comes out of a box of

—
temperature T in an cxternzl magnetic field 3 .

-
This knowledge of P determines < uniguely :

Since ¢ 18 2 x 2, it must be & linear combination of the three

0 's and the unit matrix

€= G+ za‘-cr‘ ;

L

Sinoe Ir o = 0 , we have (from theorem 3) ’E‘Q = Zauz 1
A
thus & = %,

C\\:)Pl)ﬂ‘ooﬁ\/fﬁ/fﬁs;\o com
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‘ 2
Furthermore, from . C, < LT, (cyel.) and © = 1 follows

t(o09 )= 2., so that with (28) and (29) we have

— 4 Sl oo
P¢= r[ig:. + O—LLL‘G‘L} = 2(’4“L and thus c-

=

=
.

K

e

Hence g ia completely determined byh; and vic%*versa. Assume

now g to be known, cither by a measurecment of P or from thermo=-
dynamioal equilibrium. This knowledge refers to a ocertain instant
and ? may now vary in time according to the equation of motion.
Cf courde, if the beam is not influenced by eny intoraotion,
nothing happens. But suppose the beam to pass through a home-
geneous magnetic field., What will be the result of a meesurement
after that? You of course intuitively know the answer because
Cne may c¢onsider the whole beem as a magnetized piece of matter
which will follow the olassical laws and will therafore show

a preceasion of the polarization vector, But we shall now derive
this result from the equation of motion of ? t

(31) §§ "‘i [4’@ } (theorem 5)

—_—
The Hamiltonian of a particle in a magnetic field I} ia

(32} 'H‘ - X & &';E Py is the gyromagnetioc ratio ( i- for
z . ' electro:

4003/E/p
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This is the only relevent part of the Hamiltonian, because €

commutes with the rest of the terms of E. Thus

beczuse the rest of.?

d% T % — —

— -
I IkA 4%]

elt L K Pt commutes with H,

Yy
2

Now simple &algebra using O35 = Ty (oyel.) and T, = 1 1leads to
, > - - 5 -+ B s B - =

(&6)((\~CT)" th'{~)+£[ X&JO" for any C{J8 , thus
33 e T AN
(33) e, ﬂ&’r} = 2r{Crb )0

In our casec

Niag
“a
i
>
i
M

(f > = -
oo -d (k)T -

(34) Az Z

ot

d

We may now calculate Tt from this result :

%%? = Ir (5§Cﬂ_>==* g Z:(jéx P 7}'UTiGL) = =K (i%*fB)K‘ e

(35) ot

o,
This tells us how

which is the conjeotured classical formule,
Applied

the expectation volue of the polarization preoeites.
to o gas in & temperature bath in oquilibrium, we find from the

TgWal
CliFds3 /BBy fastio.com
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[

. - -
condition I O that P is parallel to ¥ . One ocan extend

—
fo
d
this trcetment as to obtain also the rclaxatior

effects leading to thermodynamioal equilibriunm,

Having thus the density matrix (30) at = certain instant %t = 0
and knowing the Hamiltonion acting on the system, ve may calculate
it for any %time t > 0., The direction and degree of polarisation

is then given by

(36) P - 7?‘(§:;) ; IPI = degree of polarizatirn.

Let us now assume that we have a polarization analyser which—

shows the measurcd polarization nn a scale like this

R

>
and points in the dircotion Q (unit vector) relative to which
I wish to measure the polarization. Let the scale be normalized
so that a completely polarized beam gives + 1 respeoctively,

e 4 -
if @ points parallel or anti-parallel tc P.

—_
Again we intuitively know that if P is the polarization and
—»
' Q the diruetion of the pointer, the instrument will show just

the value
E '-§ but we shall derive this result from

a consideration on Y .

4003 /E/p
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-
We must roprescnt the analyser by an operator A(Q) so that

Tt LQA) is just the result to read off from the scalc.

y
Since S 15 2 x 2, 4 wust be 2 x 2 also and has the form

- - -
AL&)-D((H)‘J.* [@m)g‘ = ,(+:(Slg-; . Then
1 7 = -4 7 = -
gh= 11 BF)( ¢ 3T )= (0 B Pg*'gﬂ’*”ﬁ*ﬁ)'“)
Then
o ,‘? - =
TelgA) = ()~ PpE)

e
If tho buam is completely unpolarized (P = 0), one should measurc
zaro, hunce o0 = 0. If 1t is complotely polarized, onc should
-
find the result .r. (P, Q), thus (5(3,) - 3. Honoe

- =2 -
A[O) = - and the general case gives
_ == -+ -
|r(%’A) = PG = I.D( (> (_PQ)
ey
Then the polarization with ruspect to the direction Q 1s shown
directly on tho scale, and the dogree of polarization jP| is

-t
found by varying the direction Q till ome finds the maximum

value; this valuc is just [P| .

‘a
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¢) The Polarizetion of Light

The Lerm "4 partially polarized beam of light" has a very
simple meaning if the-light can be decomposed into two cppoaitely’
polarized componcnts, But what are these Oppositely polarized

components in general?

It scems that one of the most elegant and useful descriptions

is that by mcans of the so-called Stokes~parameters,

We counsider first a monochromatic polarized plane wave and
put the z-axis of the coordinate system in its propagation direction.

Then the most gencral totally (ellipticelly) polarized wave ia

14 . -al (4
£ ¢ Lt L 1wt Lot & ! oot
el e tlg silotee) ) ® Flep/=°°
(37) E, L b (wtey) Etcﬂut»?l b Ly :
The three parameters.£1Jil and qD determine intensity and state of
polarization.
1 1 - 2
(38) ]: = E_(£4 i ) is the intenaity, wherseas
€ (_F
- and determine the polarization,
£
| (The reader should reeall these things by a title discussion).
We now use the last expression in (37) to introduce
— £ 2
T = (ﬁ,d;d) = é_ C’mol.#cau
(39) - the "Stokes paramaeters".
I, = CC,C-) - ZC;\C;
)
4005/E/p
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Here C_ sare the Pauli matrices (see page 27) and the scalar product

is formally the same as if the two-component quantities were spinors.

Using (Tb = 1

j/‘" ::(l C.C' Cj’; e )

-

¥or this case of a 100 % polarized wave <3

1 t 1
j{ﬁgv“ - 3,+f51+j3—1f

one can write this very short as

e obeys formally the law

but this does not mean that it transforms like & four~vector under

Lorentz-transformations,

with space directions!

The components of o

have nothing to do

Going back ¥o the common notation, we find

I

A

Note thet Uﬂ is not
g linear function of

the electiric field!

dp et 4 ~ —
§#( *+£“)¢=3#(3q+-§(e*)

In general the wave (37) is
glliptically polarized and the
etate of polarization is unique-
ly defined by twc parameters
(see (38)) which we can choose
Two such para-
q) and*4/
One hde the

following relations :

meters ere the angles

\i J,= 0, el 0 = 588,000
(40) ? A= —tlle e, = L g, Gul
¥ ¥ A 1 H

L‘$3= (,.'(,1-61(,?':: a(i'-il)

A very evident interpretation is the following 1
as convenlent,
in the figure,

{e 2% <o |

3
4003/E/p
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If (37) refars to the XY=8ySToi
(£,5x, 8,59 ) then with

b 1= 2 tg b = 3
i3 >
’ -~
j " T L[]
L IA L
(40a) 4 oy (the proof is left to the
‘1,?'&-)
v reader, )
From (40) and (40a) follows a simple interpretation of the components
g 4 G=tT
3| = 0 gives v * L tnat is
= 0
3 0
0 .
undetermined
T4 gives -
+
Y v - g
0
0 gives ¢=“f/=c
1
(The figures are understood as seen from behind the outgoing light
Iz is parallel to z-axis,)

This interpretation also defines the necessary measurements
to determine ﬂ/h for a given bean,

S0 far, wnly completely polarized light was considered and now
we turn 10 the most genercl case where tho light is only partially
polarized,

4003/1/p
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One gets a partianlly depolarized beam by adding incoherently

two beams of opposite polarization., We must first make two things

clear
o0} What does incoherent addition mean?
" 7@) What does opposite polarization mean?
-
o ) The concept of incoherent addition involves time and statistics.

If & "physicel" source of light radiates, then the atoms zre
independent of each other and at any instant the wave is & complicated
superposition of components of different amplitudes and phases. (We
may assume here that the frequency is sharp. The question of frequency
spread enters only if one tries to superpose coherently two beams

coming from a single .gource,)

Thus at a certain instant t from all atomstogether one has

- ij(.u{]&f}[kjtvd)&co{ (Li'l £ (L‘Jé'*lkJ
E = | ___
Sta(;’?]‘“”(““mufﬁ M 42 (Lt + %)

(The reader may prove that it can elways be written in the last form. )

Now the essential point is that the momentary total amplitudes ﬁ
*
and phases ﬁ/ vary rapidly and randomly with time ), since they are
the result of superposition of statistically emitted waves. Thus

the general form is

— "‘1&’“)(‘*3\‘-*4{(1})
Eiy =
) whﬂ*)un(u%-+¢l&0

%

4k

*) Here our presupposition that & is sharp becomes inconsistént,
If T 1s the "correlation time" of these statistiocal amplitude
and phase functions, then the freguency is spreai over an interval
of the order Ay ~ T4

»
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in


http://www.fastio.com/

4003/E/p

.—' 36_

If two such heams come from different sourcea, thay are
statistically indepecndent {the same is true it they come from tha
same source, but have a difference in optical pajh greater than the
coherence length - for this the frequency spreed is essential) and

if they are mixzd, we say they are added incoherently.

We note further that such 2 beam 19 completely depolarised,
because ”4/ﬂ1 and 41—?@ =AY are the parameters which determine
the state of polarization and they vary rapidly and statistically
with time, (This applies in the mean over a sufficiently long time,.
If, however, by some coincidence method one picks out only certain

photons, then these may appear completely polarized.)

We wish now to superpcse two polarized beams incoherently.
Therefore, we must describe a polarized "physical" beam; that is,
we mudt know how such a beam loocks after having passed through

a polarizing filter. 4 well defined polarization means 1

w =ﬁ-‘ = ek,

Y, () 4P and

T -t = f= wun.

and an ideal polarizer would just select only those components of the
beam, which fulfil these conditions (in practice, intensity and
sharpness of polarization are of course complementary). Thus for

such a completely polarized beam

with the same f(t)

wler = o L
ﬁt&)ﬂ ﬂt'ﬁ“} %

\[/lu')-‘-h(_’q = ¢ = const,

1

ClibPD www fastio.com
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In the notation of (37) this gives the completely polarized

"physicel" beam :

) ‘ /1 J&tJ{ ] -l‘f-\}(‘_ \
i} 2yl [l ' {H/ ~ W €

ol e

E - R el
& kﬂ)le“@"‘*ﬂ TTE by | T

Assuming two different sources S' and 3" (the prime in the

fellowing formulae downot mean derivativaes), one hes at eny inastant

-r — - .
E=E'+&" = [c’mrc*’mj t [(J’U) - c”‘(f/]

and this becomes an "incoherent" superposition only due to the fact
that one observes in general over time intervals, which are long as
compared with the "mean fluctuaticn time" of the c's. From (39a)

then follows for any instant

SR ﬂ}ﬁh i)+ 2 Re (c;‘lf) oA c”(f}J

The Stokes vector is thus & rapidly varying guantity, but 1f we go

over t¢ the time mean velues , we find that

3, =2l 3h
R

(incoherent superposition)

P
T T
ry T 1 1,8 1 ]
becauss 1# and jr 1nvqlve factors ;:g [@u]] At end T‘g [F ]
0 o

-
wherens in the mixed expression every term contains fgctors like

LU0 P un (+'s¥ ) de = 0

by

'I.i
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which vanish because f'(t) and £"(L) as well as F'(t) and Yo"(t)
are statistically independent. Thus we have defined what we moan

by incocherent addition and have found at the same time & very simple
formulation (« ', which indeed *s nothing elsec than a generalization
of the well known fact that the .ntensities add algetrajioly’ in auch
a superposition (remember I, =& I).

411 The second guestion is rather different. We have seen.that
inooherent beams do not interfere, because their intensities
8imply add. The resson was that their amplitudes and phases are
statistically independeni. But there is another way to make sure,
that two beams oonnot interferas, even if their amplitudses and phases
are not statistically independent : That is the case if they have
"opposite polarization", This is well known, for instarce, for two

perpendicularly linearly polarized waves. We therefore define i

Two beamsy ere nppositely polarized if and only if they can

never interfare whatever their phase relations may be.

Weo shall thus get the most general descripticn of what
"opposite pnlarization" means 17 we take twC beams which otherwise
would have tile best chance o inter”ere and ask for the necossary
and suffieient cendition that trey do not intverfere, The best chance
for interferenc: i of course preseat with two beams of the -
form (41), which are completely currelated, tha’ is, both have the
same f{+) and %’(t} but for a onnstant phase difference « cnd a
constant differcnce in amplitude : They are ccherent., Two such beanms
are made by splitting a beam from u single source into two componenta
and letting them have different paths. Frem (41) we see thet they
woﬁld be deecrlbad by

iy [ et TURET IV £l et
N if 1 1
LH} {H}q ( o) G- 2e e™ E{ei@m+¢ﬂ

with £(t) and ﬁ/(f) being the samc in both beams,
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The necessary and sufficient condition for non~interference is,
that

thet is the mixed term in the intensity vanishes
N

0 . ‘ i i " 1 "~ h

SR S O S A ) e

Thus ¢le' Lty aj(%ﬂL¢‘) =0 If we put Y'"- @' | we have
t71’5“ + /tlllz‘:. = 0

(The reader may assure himself, that by puttin ‘' we loose nothing).
Y 8

' Now with ¢)= az{ . &y s 56; we get & + b = 0, hence
L i
e
I 1
(43) €= ate
I i
I t? ;.—O‘td

‘ are the necessary and sufiicient conditions for oprosite polarization.
From (40) fellows immediately

N I R (IUSILS AP

il

Y :
o= 38 ¢ vy o - 1w - ety
| ) . . 1
‘' 31J= %tft: _!-,‘h.(Lfa:’ - %6‘12,‘1 [11 g’luqﬂ = - C\? j?’
i _ 1 ”Z;"' 4 2 7 7 It
33 '%(Ea‘“]‘)r— :L‘!(EI-EJ ) = - & :f3
We get therefore the simple result .

The necessary and sufficlent condition for two completely polarized
beems q; dan i j; having opposite polarization, is (with 0£a’s 4 )
LIV A T _ LR DY AP YA S )
S (3300040 = (g -del ety
»
(32 ¢ 1 is no restriction; one can, if necessfry, interchange the

notation),

4003 /E/p
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The reader may discuss &s =2n exercisge what is the opposite to a given
elliptical polarization (use (40) and (40a)). Result s the ellipase is

a : :
turned by 90”7 and the sense of rotation of the electric vector is
reverged,

Now, we zet & partially depolarized beam by incoherent super-

position of two completely polarized beams with opposite polarigzations:

" -1,
3 = j' e 1 = W4,
” a7 %‘ ! -, y = hance
3 = -0 3"
) 3,_., = (A*Qq’) .30’
(45) o .
3= (- T
-7
For completely poclarized beams we had 3- j: = Q. Herewe find
(46) T-3, = (4-u?) 3! -{(1ra') 3, = - 4atglt o«
-»7 7
(We have used 3'-4, =0 since that bean is completely polarized), We
see that for a partially depolarized beanm :;{-jf is always £ O,
the equality hulding for complete polarization,
We may define the degree of polarizaticon by a number 0<£ K < 1
I’ 4-4? P44l ‘
41 k= =D 29 Vs (')
I+I" _‘4*(;1 30
We collect thess results : )
A partially polarized beam of light is obtained by adding inccherently
two beawms of opposite (pure) polarization. Its stokes vector is i
e
(48) :o 3.3, 20 YER
%‘=' 3; p degree of polarization X m -?rﬁ
3y So= 3L 0 & ke 4 o
(The interpretation in terms of measurabls quantities is given on p.3¥
4003/E/p
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We nave sghown, that 8 partielly depolurized beam is obtained by &dding
inccherently two beams of cpposite polarizetion, In order to see that
this is already the ..ost general case, we must still show, that any

beam can be decomposed uniguely into two incoherent completely polarized
besms (witth4he obvious exoeption of a completely unpolarized beam).

If & beam is gi’@n in the form (48) - i.e. we suppose the

components 5. to be measured (bccording to the interpretation on p.3%)

by suitable analyzers - can cne decompose it uniquely into two ccomplete-

ly polerized beusms of opposite polarization 7

The answer is yes. But

~f o

- ' 1t _ Aa

(49) -Sr = 3lp.+ jf\ - '-3)
I

The two beams 3; and 3: shall be of opposite polarization and

each one 100# polarized, thus

- -
<= oalg!
j: e & jo' Hence
e - - -
. I = a3t e (4-a7) 3
(50) \
" 1 '
ja= jo“’dﬂ - ('1""6\ )jp
From the given jﬁ follows the degree of polarization (47)
(= (hateag _ o6t Veihaitoay  gg?
D Ay ar I Avor !
. ) -’)D ¢ 1 . . 2
since 3. 1§ {100, polarization). Thus, we can solve for a“;
1+ e = 2 ;1-&2=—2—k—- , and with (46) and (47) for K # 0O
- A+ K A+ K
‘ .
1. f‘o - — -
d /K i 4“6.. Vj.ﬂ"i'[*jg
- il _ ‘I+K 1 A;K ) = e A
(51) Tp= gl = ol ¢ 5 e | 5 K 1.
Iyfk /- e .
4003/1./p
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Thus we have tecomposed the given beam in a unlgque way into two 100%
polarized 2% .. witp OPPOsite ypol.rization. .he polarization states

of these two Leanms are then interpreted according to the rules of p. 3%
For X = 0 the decompcsiticn is no longer unique since 1edesdys k=20

One takes any two oppositely polarized beams of equal intenaity.

Finally we go over from this classical description to quantum
electrodynamics, It is here not the place to do it rigorously, it can
b8 sketched only (see €.g. Jauch and Rohrlich),

The o's of (37) are now operators 1

Ca Q,
L+ ) 7 4

' ~ +
where G?.L&) and va[h ) &re destruction and creation operators for
. —»
E&ght quanta of wavevector k . The coordinates are the same as before,

M points into the positive 2 -direction. The commutation relations arec
- -
I
[Qﬁ(h)J a, (& )} - qﬁﬁ' Oy

The stokes paerumeters jf are thus replaced by cperators

— + o+ Q4
3= LT “(@&1>§~@L = (9,7.4)

and the classical stokes parameters are now defined as expectation

values

Zr_ S ( ¢ Z:f‘ )

is we.may always assume 'ﬁﬁ to be normalized such that d,= 1, we have
just 3 parameters defining the state and degree of polarization of our
beam, Thisﬂis the same situation as for a rolarized particle beam, we
expect therefore P to have essentielly the same atruoture as for

particle beams (30).

4003 /E/p
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In fact, from the commutation relations {(53) follows that
JENR Ry i
LT ET = Ta(2,-2)
s

The lowest order representation of these rules is just given

by the Fauli U netriegs (p. 1'-) and Zo = 0o = 1

A8 1t must be, we have then

(57) 3, = —ri'(?z,,) = Tf‘f’ =1, 3= Tf‘-(g’;) (compare with (28))

The density matrix is thus in complets analogy to (28) and (30):

N
(58) S’-%Linrjﬁ)

—
Note, however, the important difference between J and P ., For

—
particles the polarization vector P gives the degree and direction of
the polarization, 1ts components refer directly to space directions.

For a light beam 1 defines the polarization sccording tc the inter-

—dy
pretation on p. 3% ., The components of J have nothing to do with space
directions !

d) An idealized experiment

In his review article (see references) Farm.discusses an idealized
éxperiment, which we shall consider as an illustration of the foregoing
formelisw, 7

y\)ﬂ’\v’ -

optlcal
analyzer

source /]ﬁ #
) ‘ ‘ f Coincidence gate
[ - (]
Beam
&nalyzer C ‘
N * Beam
analyzer
B
4003 /E/p
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A beam of excited dtomsis analyzed for m (magnetic guantum number) then
in & box C it cuits radiation which is analized also and finally the bve.
is again analyzed in coincidence with the optical analyzer., Under thes.
idealized conditions one measures m before and ufter emiasion and__

analyzes the light quantum of this atom,

By a calculation, whieh goes beyond the 3cope of this leoture,
One can under caertain dsaumptions (transition from § = 1, m = O)to
E’ =2, ' = (, : 1) determine the density matrix for the emitted
radiation.

Fanc discusses several cases, of which we shall select here two
and s8implify them even by disregarding the intensities (normalizing
them to unity).

ol ) B is not used, A selects atoms with m = O, For slow atoms one finds

for the density matrix

1
It e
(59) g=2{1+ o
From (58) by comparing components one has immediately
T,=1 (by definition)
(60) 3,=0
3= 0
T T alle
37 feae
In the direction @ the degree of peolarization is thus from (48)
<7 i
k*=. &&_EL ; hence the light is not 100% polarized (for ¢ = o
by Hu'Q completely depolarized) and we may ssk for & de~
composition into 100% polarized beams. From (51)
1K, 1-K \ ‘
=z 7 2
61) 510 | g & = | o K=M91
r 0 r 0] Lrﬁu
14K : 1K
T By
4003/E/p
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The aiscussion follows the schome of L I
For ¢ = Q; the light is nut pelarized and may be decomposed arbitrari-

ly, For @ # 0, cne has linearly polarized components:

?
R A

:
| p)

) ) \Q‘_ﬂu //

g

C

ﬁ ) Let B select in coincidence (with the observed photons) atoms
with m' = 0, + 1, - 1. Then G is

%(l+0"5); 1

|3

n' s Q; g = (1,001); K =1

f\.
mloat1, 0=1i (- e 8.0y T Un® 53 )
A4 le
A L
j“(lsos: W).ze)-—-hle );K"I
f A+ tn'E A0 0O

The discussion is left to the reader, see p. 34,
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Refzrences
AetelBlices

The most recent and general article ig by

U. Fano,Rev, mod. phys. 29, 74 (1957)

there one finds some of the things treated here, but many others
t00, including a large list of further references,

As further application and exercise one may read the article on
polarization of fast nucleons by

L. Wolfenstein, Ann. Rev. of Nucl. Science 6, 43 (1956)
which also includes a big list of referencges,

4 more involved uge of density matrices is made in many articles
by
H.A, Tolhoek and §.R. de Groot, e.g. Physica 15, 833 (1949), Phys. Rev.

83, 189 (1951)
and in the review article on angular correlation by

L.C. Bicdenharn and M.E. Rose, Rev. mod. phys. 25, 729 (1953).
A general treatment will presumably be found in the book.

U.Fane and G. Racah, Irrasducible tensors (Academic Press Inc, New York)
whioh will appear in 1958).
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