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A Model for Final-State Interactions (7).

I'ivterazione (V — A) di Fermi sono, in primo ordine, inversamente proporzionali m.H.,,.

. 5 i io. wviazioni, a certe energie del- | .
lrato della massa del hosone intermedio. Queste deviazioni, ¢ nerg i G. BONKEVAY ¥

Faculté des Sciences - Orsay
Faculté des Sciences - Bordeaux

mi azione approssimata della massa del bosone vettoriale.

(") Traduszione a cura della Redazione. (ricevuto 'l Agosto 1963)

Résumé. — Par des méthodes de prolongement analytique, on étudie
un modele pour la désintegration d'une particule en trois particules iden-
tiques en ne tenant compte que des interactions élastiques deux i deux,
dans une seule onde partielle supposée dominante. On établit ainsi une
équation intégrale 4 noyaun régulier dans la région physique. Si une réso-
nance a lieu dans les interactions i deux corps, on montre 'importance des
deux premiéres rediffusions. Les rediffusions d'ordre plis élevé sont sur
des feuillets de Riemann de plus en plus lointains.

Introduction.

Production amplitudes B,+ B, - A, + A,+ A, are considerably simplified if
Watson's conditions are valid ('), or if the final state is created via a weak
coupling, or if a long-life resonance takes place between initial and final par-
ticles. In these cases the final state does not remember the way it was formed
and the total amplitude depends on three variables only, s, 8., 8, the squared
total energies of couples A,A,, A A, AJA, in their respective center-of-mass

(*) The research reported in this document has been sponsored by the Office of
Scientific Research, OAR, through the European Office Aerospace Research, United.
States Air Force.

T Deceased in mountain accident July 28, 1963.
(') M. Warson: Phys. Rev., 88, 1163 (1952).
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G. BONNEVAY A MODEL FOR FINAL-STATE INTERACTIONS 1327

domain of analyticity in all s’s compatible with these equations? The final
aim being to obtain workable integral equations.

In Section 1 the general method is given.

. In Section 2 we define a ¢« minimum » domain of holomorphy for @ and
- ifs continuation on the second sheet.

Hence one sees that ¢ has normal thresholds only in both variables s,
and . This was already proved for :,Esmmrz.
diagrams by Barron and Kacser (°) and also
Anisovicn, ANsEL'M and Grisov (¢). The proof
here is extended to all rescattering diagrams
(Fig. 1). Fig. 1.

Then, in Section 3, one gets a double-
dispersion relation in s,, ¢ waich will be studied later on in connection with
three-body unitarity.

Section 4 is devoted to the derivation of an integral equation, for fixed o,
which has a regular kernel inside the physical decay region, and which em-
phasizes the importance of the first two rescatterings of the resonance process.
.”_ Singularities due to all rescatterings are found on successive Riemann sheets:
there is a finite number of them on each sheet and one sees that their distance

svstems. The total amplitude can be approximated by

r
(1) H._H.w:_,.uqv..._u”.u%|.¥mwwm;x:wn_xuuu

i which m, is the mass of the resonant intermediate state M; S is the squarved
tolal energy, linearly related to the s, b

+ my = my - my

115y, 82, %) 15 a funetion of the three independent variables s,.
Now Fl(s,, s, 8;) looks like a four-leg funetion in which one of the external
sses m is the total energy +/N =m, that is to say a variable in contra-
di-tinetion to the ordinary case.

[t is therefore reasonable to assume that F is the analytic continuation
uil m, that is on o, of the reaction amplitudes M-+ A, — A, -+ A, from the re-
1 of small values of m?* or g, in which a Mandelstam representation can
umed. Then, for small o

(2 Fsy, 82, 8) = > Dils,, 0) + > Diyls, 85, 0) 4 to the physical region on the Riemann surface increases with the order of
i iAhi rescattering.

L o . Comparison with Landan singularities is given in Section 5.
wliere @, are the subtracted parts, or the Cini-Fubini terms, @,; being the
duonble-dispersive functions.

In a previous paper (%) we showed that the @, part gives an infinite number
ol Landau curves tangent to the physical region when o enters the decay |
recion M — A+ A,+ Ay, casting some doubt on the Cini-Fubini approximation.

Nevertheless BoucHIAT and FLAMAND (*) have shown that if the final two-
Ly interactions are going through a resonance the neglecting of all rescat-
tering is not a bad approximation. This means that one could try to improve
thut analysis by considering a model in which only two-body forces in only
one partial wave are taken into account. Then the @, are identically zero
as it is well known (') and one gets a model similar to the one of PEIERLS
atil TARSKI (4).

[n the present paper we study the following well-defined mathematical
problem: given the Cini-Fubini part of F in eq. (2) for small ¢ and the two-
body unitarity condition in M-+ A, - A,-- A, channels, what is the largest

1. — Position of the problem.

We shall study our problem in a simplified version

(1) M — 75, + 7+ Ty

where an initial state M of varying mass m gives three neutral particles that
we call pions of equal masses m_=1; has no spin; the pions interact in

S-wave only. A scalar resonance can occur, we call it o.
We define py, py, p; the outgoing four-momenta of the pions, and as usual

introduce
8 = AHU = HB__.Wn = A‘-B‘_IT ..m,:.wu ]

a

Prt Pt Pas Pt=m?,

I

(3) P
C =8+ 8FsH=m=+3.

(*) G. Bonxgvay: Prec. Roy. Soc., A 266, 68 (1962), see also G. Barrtox and
(. KacsER: Nuove Cimento, 21, 988 (1961).

(%) ', BovcHIAT and . Framaxp: Nuove Cimento, 23, 13 (1962).

(*) R.F. PrigreLs and J. Tarsxki: Phys. Rev., 129, 981 (1963).

(5) G. Barrox and C. Kacser: Nuove Uimento, 21, 593 (1961).
(%) V. V. Axisovich, A, A. Axser'm and V. N. Grisov: Zurn. Eksp. Teor. Fiz.,
42, 224 (1962); Sov. Phys. J.E.T.P., 15, 159 (1962).
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I the center-of-mass system of particles 2 and 3, B
where sy(s, #, o) is given by (4); M(s) is the analytic continuation of wm-w elastic
amplitude M (s) through the normal s-cut (4= s, Ims=0). On the real axis,
§>d, M(s-tie)= M*(s+ie).

si=dgtd=(Btw), B=Vpitm,  o,=Vpil,

Sy =2+ 2w,0,— 2pqr, ¢ = <m¢||u , Consequently the absorptive part a(s, g) will in general be analytic in .
(4) = Let us rewrite (Gd)
) . .(\.\Tw.| ﬁﬁﬁlawummlﬁ.ﬁwn_!:uv. stis, o
=2+ ..weu_aaluwﬁ_q.u, ’ P = ) .Lvd\m - . — 1 ‘ i 4
167) als, o) = qM(s) { D(s, o) + .ﬁm ‘ @(s', o)ds'}
8y (8.7}

q is the relative momentum of particles 2 :B.m 3; p the momentum of 1:
r=cos (P, q).

[icaction (I) is then deseribed by a function F(s,, s, s;) of a point in a :
threc-dimensional space in which there arve four disconnected physical regions §
limiled by the surface

where the new path of integration is a segment of a straight line—due to
linear change of variable—joining the two points y_mhﬁ_fiﬂé?.. 41, 0) in
the s'-complex plane.

Our problem is now the following: what are the analytical properties in s
and o of a(s, o) and @(s, o), assuming that the only singularities arve those
which come from the system (6) itself? Of course one needs to know the prop-
erties of M(s). We will assume the usual ones that is to say: M(s) is mero-
morphic in the holomorphy domain of the S-wave amplitude M(s) that is in
the s-plane cut by {— oo, 0} and {4, +co}; the poles of M are the =-m r
onances. For simplicity we will assume only one resonance, that is two poles
= EM and s= qzw* corresponding to the g-meson (assumed scalar).

(5) P 8188 = (0 —4)*,

whicli is obtained in writing @* =1 in eqs. (4).
e four regions are:

a) Three regions of scattering
(IT) M4+ w— 7+ T

Siy 8= 0.

General method. — We start from an initial region Z{Imo=Ims=0,

b) One region for decay process (I) with 6<4, s =>4} where a and @ are assumed analytic.

1) From this region we continue a and @ defining a minimum domain D

ot of holomorphy for @ and meromorphy for a.

81y 82, &

Sow for small o, let us say o< 4, i.e. m< 1, only reactions (I} are pos-
and we assume a single unsubtracted dispersion representation for
(s, 825 83):

2) Going out of D) one will find singularities in the integral term in
(6d, f) for @ and therefore for @; this will give new singularities in the integral
term, for ¢ and therefore for @ and so on.

(6a) F(s1y 82, 8) = 2 P(s,0) 4 3) It will still be necessary fo see whether or not these singularities
! cancel each other.
1 (a(s'y o) .,
(60) P(s:, 0) Im.‘ s'— 8 day Remark 1. - Singularities ean occur in the integral term in (6f) in two
4

ways: a) the integration contour meets some singularity of @; b) s;°(s, o) or
(2pg)~* are singular. This happens when s=0, s=4, s=(m+1)%. The
point s =0 will always be found singular. From eq. (4) it is clear that if

will the two-body unitarity condition

(6c) als, ) = q M (s) Fo(s, o) , pg=0, sf =s; and if such a point is reached without having to deform the
41 path of integration, the point is not singular since the path is reduced to zero.

(6d/) a(s, ) = qH(s) {P(s, 0) + | P(sals, @, 0), 0) Az} ,
% Remark 2. — When ¢ varies, as long as a(s, ¢) is analytic around the

normal branch point s =4, @ and F, can be continued through the normal

BEBG
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1 one gets

g-ent by the analytic functions @ and F, defined by
(13) I(o) =16y g, Fol— g,y 0)|*-

(1) 2ia(s, o) = D(s, 0) — B(s, o) = Fols, 0) — Fals, 0) - ..

The complex number N_EU@..LI 0oy 0) = fuze(0) is the M-w-p coupling constant.
From eqs. (6¢) and (7), turning round s=4, one Sees that the normal S Tf ;12 and . negligible, fy,, becomes real.
threshold is a square root branch-point for F, and therefore @; that is to say | -

it gencrates two sheets only.

ound the normal threshold, @ and @ are
7), @ is multiplied by —1, 50 that

~ 2. - The minimum domain of analyticity.
Jtemark 3. — When s turhs I :

exchunged (see remark 2) and from eq. (

the function alg is regular for s= 4.

In the initial region %, @ is assumed analytic in o; therefore a(s, o) 18 also
. analytic, since the path of integration is on the
- real negative axis where @(s', o) is analytic in s'.

Lemark 4. - Function a(s, ¢) and therefore @ and @. on the wooo:n.., ..__.. When ¢ and s move and go out of #, the path of R \\\\\om“
she! have the same p resonance than M(s) duc to the factor M(s) in eq. (6f, ¢). & integration in (6f) moves in the s'-plane. Using re- ..\\a
Let ns write S ok 1 and analytical properties of @, eq. (6b), one ../}
, . sees that the integral terms will certainly be analytic //\
(8) (s, o) _ .!..mm*.n..q.v..,... _ ._,Lmnli = (8, 9) | as long as the infegration contour does not cross 57
q (s — my)  2i(s —mp) 4 ' the normal s'-cut of ®(s', o) neither meets the only Fig. 2.

| singularity of @, s'=4.
This defines the « minimum domain of meromorphy », D for afq.
The frontiers of D are given by

Suli-ritution of (8) into eq. (6b) gives

R* Rio) ;
(9) (s, 6) = mﬁ'unQ]uJ e WAMHQJ + @' (s, 0) .
419 e .,...ﬁ F: si(s,0)=1¢", Res =4, Ims'=0,
. £ (14)
wil! - G:  sls,a,0) =4, —1l<Rex<1, Imz=0.
(1) muhlw<.3wiﬁhmn1§£u i _
. When the point (s, o) crosses F the integration contour enters the 2nd sheet

f @, when (s, o) crosses %, the integration contour has to be deformed (see

m: = g, — 207 q, (by definition ImA/s—4>0); yis the p 2% partial width. o) ¢
, . ashed curve in Fig. 2).

The first two terms in eq. (9) give @ Breit-Wigner formula

Remark 5 (7). — Inside D all eqs. (6) arve valid. If (s, o) crosses % without

R(0)q,
(11} %mﬂlw,mwl s— 2iyq’ rossing %, eqs. (6) are still valid except (6¢) which must be replaced by
stor and y* neglected. - 6 als, o) = qJ(s) Fols, o)

wien g, 1s substituted into the numer:

One defines the partial width (o) for M — p+m by B
here 7, is not the partial wave, but the analytic continuation of it

4

— 2 ; i 1 .
| e : : ..mw: Fy(s, 0) = Fyfs, o) + .w|mum a(s’y o) ds’.
iy (8.0

Hence, from unitarity condition eq. (6g) (see Section 3)

5 (7) This important remark is due to Bessis and Pram, Saclay preprint, 1963. Inside
R(o) = wm% mumfl oy O) , but outside D, the partial-wave series does not converge if one uses F,.
=]

.m a4* - 11 Nuwove Cimento.
]
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1352 that is the integral of F alon

101 . ai
gion, sed domain obtal
=

T in this re
being the true partial wave The enlar

2 + (see Fig. 2)
ath from 53 1O S, (e I8

by supp g ier will be called D.
gne frontier ¥ : .
_mL Mmmsmﬂu D., D, the restriction of .Uﬁbo ov. o
L 2
. Hm.“um? m_u , D, to the o-plane for fixed s, Wi
coTTespo vy Ds

., §,, respectively:

(8, o)

A tilinear P 3
w rec e s-plane for

frontier

fixed o, and] 8
s F., Y, and g from 4 to infinity.
al
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g For ¢ <12 the normal s-cut {4, +oo} is entirely inside D, so that for-

ned | mulae (6) and remarks 1 to 4 are valid. This gives the way to construct the

complete domains D and D: for each o rveal or complex, the normal s-cut must
be inside D, that is to say, conversely, ¢ must be in D, for any s running

For real s greater than 4, % is easy to construct and one finds the real
axis from g, to infinity with
Go=8+44245, Ims =10

§=4,

or solving in s
§= (m—1)*.
_ The frontier %, is a closed loop (see Fig. 5).
. There are no singular points on %, except, may be, the point ¢ = 2s+4
.~ in which the extremity s} coincides with the

threshold s'=4. This point corresponds to 4 < plane
' the leading Landau singularity for the trian- T
Y o, L5 p PR - S 1
1 g and § _.wmﬂmnm?m? gular diagram. In fact, this singularity does 7 =12 | R I i
o hically for real O £ 7 oq. (OF SHE R Aok T = ToN & s+ T2s+4
4 , ave easy to construct m;.wwﬁ Mmuﬂm_&mo n of the surface 7 .,.mw rwu._ aﬁom mﬁﬁﬁ% was proved by BarTON and _ \ \x
F, and 5 art L siders the intersev » o opam Fig. 3R KACSER (). S
e gance to gev &, one 00D ts the Mandelstam ik arve 98 Now the point o= g, inside &, is singular Fie. 5
For ins gt 5y 8 =103 one ge o this line intersects i . o s 18 8 g. o,
by the real plane W_n.m w‘uam_zm__ to the s.=0 m.,wﬁm_igh o describes F,. VM‘ ¢ since when ¢ approaches g,, the contour of
b5 ! ns & ,om 4 to 11 ¥ o1 wave Fyfintegration is deformed and does not tend to zero but to 2[(m—-1)—4], while
Given s med : ¢ runs from the partial wave Lo g ;
— g*; when hand cub for the p

alled the left
9 one gevs 3
by =@ dashed line.

in two Ucwﬂﬁm 81
that , is just ¥&

Thus for QA% a
#, is vepresented DY

at is usnally ¢ n on g
nd for s<o<l

o solid line, ¥,

frontiers draw

b s-plane
Z | (=1
o, S e >
| ?3.,4:» A
=4 |
) q b) geo<12
a
Fig. 4.
-0, Ims=
- by {Res<0,
p. =D, is the whole s-plane cut D3 {
o o i appears. i
. q.f J__u o « forbidden » Fccd.m%m.ﬂ T ot 0t -
inereases, 07 % < always outside D,- ez by

One sees that s=0 i e remark 1).

and are not gingular (s€

. inside D
re in s out of Di-

m_ Q
¢ — (m—1)? goes

4a, W (2pg)~* tends to infinity. Then, in this point, @ behaves like the squave root
term (o — o) %

When s runs from 4 to infinity ¢ goes from 12 to infinity, that is m from 3
to infinity, so that the domain D is defined by the condition: ¢ is in the plane
cut by the normal g-cut {12, +oo} and s in D,.

When o is real greater than 12 (on
the normal g-cut) the domain da Seerms
to exclude a part of the normal s-cut
(see Fig. 4¢); but ¢ real is only a limiting
case. To see what happens we study
Ua for complex ¢ in the vicinity of 12:
c—12 =g exp[if] where § varies from
x to zero. Figure 6 shows continuous
variation of #_ from Fig. 4b to de tor
infinitesimal e, that is to say, in the non-
relativistic limit. The loop %, which
was a branch of a cubic becomes now a
branch of an hyperbola for § =z, and a

1t

0}.

—=(m

the pol

s
b
=3
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ica . 8= (m—1)% in the border of . The other iteration
1331 traight line covering the whole mwww“”mm @ procedure for singularity is to remark that from
< o straig sor0. ONE k- % .
pola plus @ SY topent from Zer0: o B eq. (15b), ® having the normal branch point o= 12
branch of an hyper ren O s slightly different 1ro’ the nonshaded reglon T 4. (15b), . m‘ e . i ¢
heil g =0. When e inside D, that 18 a(s, o) must have also the same branch point (see
recion o completel] d : : . : = : e
o] cut is €0 N : eq. (6d ; hence 1 eq. (1ba s not zero f
geus that the normal ¢ - s, i 1 the limit of _.mp.,“ ¢ 3 Hm \Ao. \_Mvﬁvﬂ_v , in eq. (15a), ¢ i or
s TR, 6. . tant conclust I o " to its real S as p..». ols). , , .
v ﬂwm thermore We geti the :,m.ﬁcp.w above the real axis if @ ?w:www ﬂrmwwn&p g In fact (s, 6) which is a real funetion of real
; _.wa W«. has a real part (see w_ﬁ.. »SJHS.H.% part; in other words ¥ ®  variables can be split into two parts which have sup-
a1 A&Mr a positive vanishing EHM Nrm left-hand cub of Fig. 4¢- #  ports indicated in Fig. 7, and are limits on the real
A ._:.B tor alq 18 pelow that part © s-g-plane of two analytic functions ¢,, ¢, of s and o Fig. 7.
1 _..4_.»05.
- £ 6 (s, 0) = [@als*y 09 B(0 —12) + (s, 07) (0 —au(s)) ] ,
The ncﬁa.—mlamumamwon Reiale™ {f one assumes a and .
. i s, o) 18 analytic in @ 50 .-.wwa,.ﬁ.:.. nm@?wm:ﬂgﬁoﬂ in 5 where ¢, and ¢, are the « periods » of a(s, 6) when ¢ furns round the branch
In D, ea- (6b) is valid, al$, e gets the double-dispersie ® points ¢=12 and o= g,(s), respectively. One finds
j 1 . <¢/4.. or geb 1
P ﬁmwwndm.,ww@dmﬁw g BosR 1 1 s%is,0)
s and o g (17a) ¢uls, 0) = o‘_”g_.ﬁh‘ G) — @y(s, 0)] = mhﬂﬁmv b(s, o) -+ e b(s', o)yds') ,
= j Tms=0, 4 29 2pq
1 (g5, 0 ) ds' 4<8, ’ B 57 (2.0)
_ | B ’ B Ll
C.@Q_._‘ .ﬁ_ﬂv._ Qu = 7T g—a E " ) st
12 E - — T ' ’
- o C(1Th) (s, 0) = 5 [als, 0) — G5, )] = qH(s) 5 %m a(s'y 0) ds’,
1 4 cnfm. 1 nuu..lqlll . H A l.pumﬁ.
_ 1L fas'|ad' G-y — o) | ]
z D(s, 0) = A. (s _ ;
(15b) (8, anm P - where

tor than 4 3
frontier of D for s real greater than 4, &
TOL

—— e our nmzmaﬁ_ 18 wquW D(s, 6) — Dyryls. o W.\ﬁ.ﬁ&
We saw that o= 0ol$) ﬂrwmw‘ww “H HMWB apply the m.moo:ﬂ @M”MV owo,‘.nmm@o:&ﬁm H,..__ﬁ ) 8.0 Sﬁ (819) o-1s(8; 0] a. i
{s a branch poin® MR ¢ is, @ has the singularity MME“ possible singular g . A p

thod of geetion 1, tha ,‘ il gingularity we fin L oniting gs the ﬁmd.oa (*) of @ around ¢=12, and will be called the absorptive part
mevny (m—1), then by eod-pe} cefore for a and @, in WILHEs of @(s, o) in the ¢ channel; the sign § is to remember that one has to deform
g&wﬂmoa the integral ferm and the . the integration contour when o crosses %
w L

i g :ziSf F Note that in eq. (16) one has to write gu(s*, ¢-), that is the value of the
53 (5 £ analytic function g, when o becomes real from below the real axis.

. . When 12 <0< 0,(s), g =, and one finds (17a) easily. When ¢ = g,(s),
iterating *

¢ = (m—+1)s and by

. | o its (16) and (17h) writing
which gives . ..,.oum gets (16) and (17b) writing

v..w (8, g)=m 41, " ...p_m.mﬁnmw o) = Ti.f.f o) —a(st, 7)) =
and so OmL. :
d ml.ll?ﬁ..lzu_ i

5
1o inside D s 17 + = 1 . s ; oo e ;

L DU o mtl is inst 1§ = qi(s) {D(s*, o) — P(st, 07) + — [[P(s'F, 07) — D(s", 07)]ds
which gives g=mAl B T hat the first iteTablel Lo iteration procedur _ _ 2ra) H I

Wevertheless one Eari- e long as § remains 1t o M ° \gularity discoveredf h

o E + as st Bl B 4
that it cannot be w:u.m.ama tion cannot destroy () the fir ~ (") The notation @,,(s, ¢) means the value of a after ¢ has turned round the branch
stops and the gecond iterad ol T Section §point o=12 counterclockwise etc. Note that Gy (s, 6)=@m-qp(s, ¢); that is to say

OP=y <o { Riemann *

=S y points are in differen

2 hrand
— a the s=(m—1)
() In fact, all these Enm&m | after s has furned roun

% : :.u,B
we find the fyst iteration ¥
point.

¢ turns round o,(s) or s turns round (m—1)? one gets the same value of a: this
is because the tangent to the curve g=gy(s) is never parallel to s=0 or a=0.

al oo

-]
2F =
el w
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When s follows the dashed curve 1-2-3, the path takes positions 1-2-3 shown
in Fig. 8.

Tn T and IT the path is entirely in the first sheet of @. There are no singular
points on the frontier between IT and IIT since when s is on this curve s is
on the border of the second sheet but comes above the real axis, while the
only singularity for @(s', ¢) on
the real axis is §'= (m—1)* if &'
reaches it from below (see Fig. 6,
at the limit of real ¢, the singu-
larity s = (m—1)* appears on the
border of the physical sheet below
the real axis).

Thus & can freely enter region
IIT. In that region, s; comes into
the second sheet in region ITIT,
while s} remains on the first sheet.
Now IIT~ is identical to T and
inside D, where @ is meromorphic.
Two cases are then possible:

since when ¢ turns round o,(s), the path of integration goes from above to
below the normal cut in the s'-plane. Then one writes

D(st, o¢) — (s~ 07) = P(s7, 07) — P(s—, o7) + D(s~, 67) — D(s,07)
2i[b(s*, 6) + als, 07)] = 2i[b(s~, o) + als, a*)].

Il

(learly the absorptive part b(s, a) is connected with unitarity in the o channel,
that is, the three-body unitarity. We shall study this point in a future paper
and show that identification of b with that part of three-body unitarity which
comes from iterated two-body forces, gives an integral equation on b which
in principle determines the a-dependence.

4, — Integral equation for the absorptive part.

If one is not interested in the behaviour in the total energy, the system (6)
gives an integral equation for fixed ¢ in @, F, or a. For example in F, one
gets the usual Muskelishvili-Omnés equation for the partial wave, the solu-
tion of which is defined up to an arbitrary funetion of ¢ in the best case,
i.e. zero or only one subtraction constant.

Unfortunately when o =12, in the decay region, the path of integration
that is the left-hand cut #,, becomes complex and a real part of it covers the
physical region 4<s< (m—1)* as is shown in Fig. 4¢, and the usual iteration
method becomes doubtful.

To avoid this difficulty we will study the analytical properties of a(s, a)/q,
continued through the frontier 7, and find another integral equation with
a regular kernel when s is in the physical region.

As we have seen at the end of Section 1, the physical region must be reach-
ed from below the real axis for the function a/q, which has no right-hand cut
(see remark 3). We shall make all continuations from this region.

When s crosses the #, frontier, the path of integration in eq. (6f) enters
the second sheet of @ where it can meet singularities of @, then one finds new
singularities for a, that is for @ and so on. A first example was the point
s=(m—1)%

To see what happens one needs to know in what regions s; goes when
¢ moves. The interesting regions are separated by the image of #, through
the s(s;, o) = s, mapping, that is, finally, the image of the whole real axis,
since #, is already the mapping of a part of it (the s-cut).

Figure 8 shows this correspondence: the s-plane is divided into six re-
gions I, IT, ITI and their symmetrical T% IT*, I11*. When s is in I, sy (s, @) is
in I7, s;(s, 0) in I7, and so on.

a) Either the assumed s=
=, =m pole is not in I, then
region III is entirely free of sin-
gularity and there remains a real
cut for a(s,¢)/g from —oo to
{m—1)2, plus the two resonance

poles m? and m:".

Fig. 8.

b) s=a,=m is in I. In that case one finds a logarithmically singular
point inside region ITI, s= e, given by (end-point singularity) s7 (e, 6) = o

When s turns round oy, s;(s, ) turns round o and the integral term in
eq. (6f) is increased by — 2im times the residue of @ at the pole o= 3?
that is, —2ing: R(o) from eqs. (8) and (9). Hence one gets the period of a/q
around e,

(19) 577 (a(8) 0) = a,(s, 0)) = 74, R(0) ﬁm .

Similarly if s reaches the point «f in III* passing at the right of s= (m—1)3

M(s)
2pq

| =

(19%) (als, 6) — @as(s, 0)) = g R*(0)

o]
=

q

- Drawing complex cuts from o, and n.” to infinity, using Eqs. (19) and (19%),

bE04
2895
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gives the discontinuity of aff
a dispersion relatio

We see r
- H.”\ JM;\ how the square-root branch points (m—1)* and m-+1 generate
infinite number of Riemann sl miciber
: g sheets. On each of t sheets : i
P f these sheets a finite number
The i int is i
__EHUM:.?::_ point is that, on the Riemann surface, the distance to the
w w.vw.ﬁ._a region of the successive o, is incraasing with », so that it is reasonable
- to «disguise » their influence by an i ' i 5 i
» by an integral on a cut from (m—1)*
 JosE B - é —1)* to +
taking into account the nearest points only (*?), that is o o, | ”
: : S oy, :
As for «,, one can easily calculate the period of a/q E.osum‘nn: Mﬂﬁ.w are
oW T ) 1] 1 . 1 i . ;
now two contributions due to coincidences of the two extremities of the in

ing (%) that @ols, o) in eq. (17b)

and remember
one can write

through the cut from — oo to (m—1)%
for «l(s, o) (see Fig. 9).

3ut a part of the
(m —1)% Therefore we sh

cut still covers the physical decay region, from 41
all try to continue ajq through the real axis, fro
below, at the left of (m—1)% in order to push
the cut starting atb (m—1)* towards the positi
real axis. g
Let usg assume we are from now on in case
First we see that the only singular points

s is coming from below 4

the real axis when
§=— (m—1)* and g=10 (in that case the inte; . B a
tion contour is infinite), so that one can continy = (a(s, o) — @als, o)) = — g, B(0) .»W»E o H(s) _L_aw?.,v

; zuy ] N-GQ 214, ﬂqw nl.._lmm wﬁ___l ds’

alq freely between 0 and (m—1)%
goes from region TIL to TIT*, s, comes back to the first sheet,
1d sheet in ITIT, that is, region IT which is free of any 8B

holomorphic in ITT*.
the path of integration ¢
into IT"*, that is I). Thus wh

. Now we are in a position Tite a di i : i i
ranch points o, «, and the two remaining cuts,
oo, 0} and {(m—1)% + oo} (see Fig. 10). _ R
. To get an integral equation we use mn.. (8), which
....ddm the pole terms; egs. (19), (21), which give
he weight function on «, and e,-cuts; and m:ﬂ:q
must know the jump of a/q across E.Hm two :::ww.
.ﬁm. For the (m —1)*-cut this jump is just (s, o)
ven by eq. (17b) but continued in a different H..mmwo:ﬂ
i vms,d:w.:_.@ﬁ when s goes from (m—1)* to + oo above the real axis, th:
El wam_mb H+..h SWM path .c», integration is entirely inside the .,w_.moo.:.a r.“b:m.w..”m
MMEm H.s H " I, SE_,U is, in H‘HH* and II, respectively, in which we r:oé.nm
holomorphic; but the integration contour crosses region IIT and 1 b
S.Emﬂ.m to avoid singularities s=0 and s =, (see Fig. H.: ﬁ e
me jumyp through the {— oo, 0} cut is calculated in a ,.WH,_W:.:. ray
Finally one gets the integral equation . ks

When §
goes to the secol
cularity. Hence alq is

When s goes into region T1%,
{1.e second sheet (s; into I17*, that is TIT; s
the point o, defined by

omes entirely i

& reaches

anRu. o) = oy

reaches o, while s;(s, o) reaches o, and s = o, is again & logarithn
(Section 1) of iterating singularities and
given by

. apply our general method
shiould obtain the infinite set of gingularities s=0o%n

§5 (pery O) = Fns

(20) i
rting from the pole o= Mg -
In the case of equal masses that we
posed, SINCe %, = %o» Ogpty = %y Havie

discuss here all these points are
But in fact they

= 0.

parently super
in different Riemann sheets, and therefore cannot destroy each other.
As a matter of fact, if one draws & cut from :zI.Sn,ﬁo — oo, one 1 B ) o ot ) b G mw::m um_.mmu ds’

only two of them, % and o, ; if one pushes this cut to the right of the H.,wmp. [ 2l Tl v—e =
one meets o3 if 8 coming from the physical region below the real axis, o P
round the point (m—1)* clockwise, one meets o gince for s= o, = %, 8= 4 i M(s') ds’ :ﬁ?; @ y 0

5 By & " T ]

he second sheef where these ] . 94, £(0)2¢ 2p'q 7 —3 T ds” + m.\ﬁ ds' -+ ..IM ‘ nﬁ ds’,
2 s3le’ o tme) xi.ﬁ —_—

Sy = Oty and the integration path is now int
are singular; we notice that s= m-+1 and ¢ =4 are now
%, in the same way. To find o5, § Must reach o, after crossing the rea
between s=4 and s=Mm-T 1, otherwise the path of integration would H.mm... )

on the first sheet and one would find no singularity in o= 0y

gingular. One

S * ;
?Wc?wm.. Eumm o has disappeared. One could find it and all the set =5 by turnin

( and m-+1 acﬁnono_oowiae. But the distance of o} from a_._o. hysi .m
is greater than the distance of w«, for the same n. e
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As can be seen by a dual diagram method, for example, the set (20) of
;_ymé_p,ﬁ:a: points a,, with o, =m?, is the set of leading Landau singularities
of Feynman amplitudes @ corresponding to the graphs of Fig. 12, and which

e dgyw(s, o) is the pole terms in eq. (8); ¢u(s', o) is given by eq. (17.h

e =y
1 M(s) Ailaum e n-th order rescattering of the resonance process (0).
| @a(8, 0) = — (als, ) — ay(s, 0)) = ¢ =" P a(s', 0)ds’, The absorptive parts of the ®™(s. o) are oiv v ,
BY; E 2pq 5 ptive parts of the @ 7(s, o) are given by Cutkosky's rules, that
4

unitarity for graphs in the s-channel:

In conclusion, we have derived an integral B 5 M(s) &\a.a ds’
s and s-plane eq. (22) for a(s, o) which has a regular kernel "=l 2 | s—m’
on the physical region. Then one can iterate thes sitaa
inhomogeneous term which already takes into: ; siie.a)
account the mnearest singulavities o, o), o, B,.. {24) a= g, R M(s) | ds' P, o)
Furthermore, the solution depends linearly on: 2p o :
an arbitrary parameter R{c), which is a fune-
tion of the total energy o, directly related to Eu.a ol 1 ‘o.on.“z;,ﬂu ) -
M-p-7 and p-w-m coupling constants by eq. (12) T n) s—s s
O1r course if the two-body interactions take place in a P-wave stale, as ig 4

the case in a more realistic model, @ — 3w for example, one would have! E
another subtraction constant. ¢This is exactly what we should get by iterating the pole term agy of eq. (8)

We are now going to give an interpretation of the inhomogeneous term:
in cq. (22). Hence one sees that the first two terms a and o' have the logarithmic
branch points o, e, with periods given by eq. (19) and the first term of eq. (21)
for @, the second term of eq. (21) for a®.

5. — Comparison with Landau singularities. Therefops;the tungtion

sy o) — aP(s, 6)) /g

[f everything but agy, is neglected in eq. (22) one gets the usual aﬁﬁ_moa_m._. (a(s, 0) —a
approximation, that is, the sum of three Breit-Wigner formulae for F(s,, ¢, &u__..
of ¢q. (6a). This corresponds to reaction M — g+ — 37 described by graph
(0) of Fig. 12.

The s =0 singularity is the usual « pseudo-normal » threshold given by
Lundaw’s rules. The point s = (m —1)* is the non-Landauian singularity fo

is now regular in o, o,.

i Nevertheless, we have reintroduced new singularities by this procedure, due
s o the factor M(s). For example, the new function has the normal threshold
- s=4 now. Hence, eq. (23) can be replaced by

trisngular diagrams discovered by CUTKOSKY (1), 4
| (25) als, o) = apwl(s, 0) + a;'(s, o) +
; +e EM ] @
"~ I 2] " [ 2 '
¥ 3 + a®(s, o) + q [auls') g B ds" ds" ¢ \ Prs', o) ds’
i R ) s —s 2p '—m® ' x s—s
P 4 ENTIN ] 1
__q:ﬁs : a ( b3 ?
' 'y o MNs'y @) W8, 0 " py(s’
(0) + M\aw,@,;ﬁ 2 w,._, ¢r, (85 0) 44 €|~m, » 9) %f_,m ﬁam 19) ds’
4 s'—s 7 $'—¢ ) s'—s
—e (m—1)* -

(') R. E. Curkosky: Journ. Math. Phys., 1, 429 (1960}, ...._..HH_S.Q. dy(s') is the absorptive part of M; GM_?,H ), ﬂm._..s?r o) being the dis-

L]
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continuities of a® across the {— oo, 0} and {4, +-oco} cuts that can easily bg
calculated from eqs. (24).

Thus it is elear that the inhomogeneous term in eq. (22) or eq. (25) cannot
be reduced to the Feynman rescattering terms only; one has to add other
contributions, three integral terms in (25), which cancel the supplementary
singularities coming from the Feynman amplitudes. Our analysis just proved
that thanks to these additional terms the iteration procedure can converge
since now the kernel is regular inside the physical region, in contradistinetionf
to usual integral eqs. (6b, f). .

iwould cancel the supplementary singularities introduced by the crossed
Adiagrams.

I wish to thank C. BoucHiat, G. FLamMaxp, D. Bessis, M. FROISSART and
F. Puam for interesting discussions and erities.

6. — Concluding remarks. RIASSUNTO (9

In the present paper we have emphasized the importance of the loga:
rithmic singularities due to the first two rescatterings when the two-body
interaction takes place through a resonance.

1f, for instance, the resonance pole is in region I of Fig. 8 with (m*— 1)/24
< T, < (m—1)* one has 4« Reay= m+1

Con metodi di continuazione analitica, si studia un modello per la disintegra-
ione di una particella in tre particelle, non tenendo conto che delle loro interazioni
astiche a due a due, in una sola onda parziale supposta predominante. Si stabilisce
cosi un’equazione integrale a nocciolo regolare nella regione fisica. Si mostra 'impor-
fanza delle due prime ridiffusioni, quando si manifesta una risonanza nelle interazioni
= . 2 due corpi. Le ridiffusioni di ordine pii elevato si trovano su foglietti di Riemann sem-
Tmo,~—y < 0 and the distance of the first logaye pia lontani.
rithmic point ¢, from the physical region is very
small and of the order of the width . The poin
a, is further away since Im e, > 0: to reach it
has to turn round the point s = 4, erossing ths
normal ent. Figure 13 shows different paths te
reach oy, oy, o, (M—1)?% oy= o, from a physical
point s.
Thus for practical purposes one could start with the inhomogeneous tern
of eq. (22) only. The following approximation should be done to evaluate the
{(m—1)%, +oc} integral by iteration, forgetting about {— oo, 0} which is faf
away.
When 7! > (m—1)?, o, and «, move in the complex plane on the loop Z,
if f — 0. When m: < (m*—1)/2, Im &, > 0, the distance to a, increases. ﬁE.__
e < m+1, o mmaﬁtmp? through the {(m—1)% -+ co} cut.
Let us add the final remark that the previous discussion applies aipm_
4 < g <12, that is, in the ordinary case of the N/D method. Then, of course, it
not useful to push the left-hand cut to the right side. But one can suppres
the loop which appears in Fig. 4b and discover the logarithmic points o, and
The present analysis is then a justification of the isobar approach, in whi
only Born terms, resonance poles and their crossed terms are taken into ag
count. These crossed terms give the logarithmic points o, o: in the parti
waves. Nevertheless one should correet this approximation by terms whid]

(*) T'raduzione a cura della Redazione.




	Untitled-1
	Untitled-2
	Untitled-3
	Untitled-5
	Untitled-6
	Untitled-7
	Untitled-8
	Untitled-9
	Untitled-10
	Untitled-11

