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The Yang-Mills field, interacting with itself but not with other fields, is quantized using canonical equal-
time commutation relations that do not involve the time component of the Yang-Mills potentials or the
conjugate operator. Instead of decomposing the field into physical components and gauge variables, all
three spatial components of the Yang-Mills potentials are retained. This keeps the equal-time commutators
simple and provides, in the Schrodinger representation, a simple solution of the problem of constraints:
“Good states, i.e., states satisfying all constraints, are represented by gauge-invariant functionals of the
spatial Yang-Mills potentials. A finite scalar product for good states is given as a functional integral over a
“tube” in configuration space, i.e., the space of the spatial Yang-Mills potentials over all of three-dimensional
space. This tube is constructed in a certain manner around a manifold & of representatives for the gauge-
invarjant manifolds. It is shown that this scalar product does not depend on the choice of . For the purpose
of proving Lorentz and gauge invariance of the theory, a modified Hamiltonian is considered which does
not give rise to any constraints by itself, and which results in field equations which reduce to the Yang-Mills
equations when applied to good states. The conventional primary and secondary constraints show up as
conditions selecting the subspace of good states. Gauge invariance is proven for the complete theory,
applied to good states. Lorentz invariance is proven for the equal-time commutation relations, using the
method of Heisenberg and Pauli, for the conditions selecting the subspace of good states, and for the equa-
tions of motion applied to good states. Lorentz invariance of the scalar product of good states is shown
by proving self-adjointness of the energy-momentum density operators, relative to the scalar product. The
self-adjointness of these operators is assured by the particular construction of the tube in configuration
space, over which the functional integral is taken. One may take the limit of the scalar product, letting
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the tube thickness go to zero, and arrive at a functional integral over =.

I. INTRODUCTION

HE raison d’étre for the Yang-Mills field is to bring
about local isospin invariance of a local field
theory of hadrons. Hence, the quantization procedure
for this field must have this invariance, here called
gauge invariance. Since it is hoped that the Yang-Mills
field will provide a theory of strong interactions,’ one
should not rely on perturbation theory in proving
gauge and Lorentz invariance or in setting up the basic
quantization procedure. Among the nonperturbative
quantization procedures known to the author, only the
procedures of DeWitt? and Mandelstam® leave no
question about gauge and Lorentz invariance. How-
ever, in DeWitt’s procedure,? the equal-time com-
mutators involve a Green’s function which is not known
explicitly in closed form, and the same Green’s function
occurs in the equation of motion in Mandelstam’s
method.? This complicates nonperturbative applica-
tions of the theory. Since we intend to use the Yang-
Mills field in nonperturbative fashion, we look for a
quantization for which the equal-time commutation
relations and the equations of motion are simple, and
for which Lorentz and gauge invariance is assured.
Such a quantization is shown in the present paper.

* Work conducted at the Douglas Advanced Research Labora-
tories under company-sponsored Independent Research and
Development funds.

1 To our knowledge, no convincing argument has been given for
or against a nonvanishing physical mass of the Yang-Mills field.

2 B. S. DeWitt, Phys. Rev. 162, 1195 (1967).

3 S, Mandelstam, Phys. Rev. 175, 1580 (1968).

The arrangement is as follows. In Sec. II we point
out in detail why there is a question about gauge or
Lorentz invariance in the nonperturbative Yang-Mills
field quantizations known to us, with the exception of
DeWitt’s? and Mandelstam’s® procedures. In Sec. III
we show that the Yang-Mills field equations result, if a
certain Hamiltonian together with canonical equal-
time commutation relations are applied to a subspace of
“good” states; the Hamiltonian is such that it does not
give rise to constraints. The conditions selecting the
subspace of good states are easily satisfied in the
Schrodinger representation, where states are repre-
sented as functionals of the Yang-Mills potentials:
Good states are represented by gauge-invariant func-
tionals of the spatial Yang-Mills potentials. In Sec. IV
a finite norm for good states is obtained by defining the
scalar product of good states as a functional integral
over a certain ‘“tube” in the configuration space, i.e.,
the space of spatial Yang-Mills potentials over all of
three-dimensional space. In Secs. V and VI we give a
proof of gauge and Lorentz invariance of the equal-
time commutation relations, the equations of motion
applied to good states, and the scalar product of good
states. In Sec. VII the resulting rules are summarized.

x% k=0, 1, 2, 3, are Cartesian inertial coordinates of
events in the Minkowski space of special relativity.
Kk, \, 4, and » range from 0 to 3; o, B, v, and & range from
1 to 3. As an argument of a function, « stands for x* and
x stands for a*. The metric tensor g, in event space is
taken with signature 4+ — — —. . denotes 9/9%, and
the summation convention is used. The operators
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b(x), i=1, 2, 3, are the Yang-Mills potentials; the
group indices 7, 7, &, I, and m range from 1 to 3, and the
structure constants for SU(2) are denoted by c;;*. If
desired, everywhere but in (4.10) and its consequences,
the isospin group SU (2) may be replaced by any simple
and compact group, by appropriate adjustment of the
range of group indices and structure constants; how-
ever, the choice SU(2) is most strongly backed by ex-
periment. The space-space components of the Yang-
Mills field are defined as

Baﬁi= aabgi—- aﬁbai~6jkibajbﬂk . (1. 1)
We freely use the covariant derivative
Vb= 0,0°—cj1'bv*, (1.2)

where ¢ is any vector in the Lie-algebra space of
SU(2). Equation (1.2) holds for »* numerical or
operator-valued; for the latter case, the operator
ordering in (1.2) is to be noted. We will use the group
metric

gij=cur'cit® (1.3)
which is covariant constant,
V.£:;=0, (1.4)

because of the constancy and antisymmetry of c;;*.

II. COMMENTS ON EXISTING
QUANTIZATIONS

We recall what is meant by local gauge invariance. It
comes about, in the simplest setting of a local nucleon
field theory of strong interactions, as a lack of physically
distinguished orientation of the neutron and proton
basis vectors in isospace, separately at all events x*
(space- time points). All we can do is choose these basis
vectors orthonormal at every event x*. Since this leaves
the orientation of the basis vectors undetermined, we
demand invariance of the theory under smooth but
otherwise arbitrary event-dependent rotations of the
orthonormal basis vectors.* Such a change in basis
vectors is called “a local gauge transformation,” or, in
this paper, ‘“a gauge transformation.” It is expressed by
three real numerical functions 7%(x) which determine,
at every event x*, the SU(2) group element

S(x)=er* @Li, (2.1)

which affects the rotation of the isospace basis vectors;
the L; are constant matrices representing a basis for the
Lie algebra of SU(2). Under gauge transformations with
infinitesimal 7%(x), the Yang-Mills potentials 4,i(x) suffer
an infinitesimal change

8= —V'. (2.2)
Since the 7i(x) are numerical, we call (2.2) a numerical

4 There is a further condition that the rotation must vanish at
spatial infinity, but this does not affect the considerations of this
section.

QUANTIZATION OF THE YANG-MILLS FIELD

2343

gauge transformation if we want to emphasize the
distinction with transformations (2.2) in which the
n%(x) are operator-valued. Such transformations have
been mentioned in the literature in an attempt to save
local gauge invariance,® or to relate gauges subject to
different subsidiary conditions.® Whatever the meaning
of such operator gauge transformations, invariance of
the theory under these transformations brings no relief
from the requirement of invariance under numerical
local gauge transformations (2.2).

In addition to the procedures of DeWitt? and Man-
delstam,® nonperturbative quantizations of the Yang-
Mills field known to us are the procedures of Yang and
Mills,” Schwinger,®1° Arnowitt and Fickler,® Goto and
Utiyama,® and Goto.!! We will point out a lack of proof
of gauge or Lorentz invariance in each of these
procedures.

The subsidiary condition used by Yang and Mills”
is in our notation

3% |¢)=0. (2.3)

Under an infinitesimal gauge transformation (2.2), the
operator 9,0 changes by

0,0b*i= ~3KV“77"= _axaxni—l”cjki(akbxj)nk
Fepbiot. (2.4)

When applied to a state satisfying (2.3), the second
term on the right-hand side does not contribute any-
thing, leaving

<_6xakni+cjkibxjax"7k) hb); (25)

which does not generally vanish. Hence, the condition
(2.3) on states is not gauge-invariant.

In the first quantization procedure of Goto and
Utiyama,® arbitrary numerical functions A\ are used in
the Hamiltonian. The result is an equation

aoboiz }\i, (2.6)

which shows dobo’ to be numerical. However, by’ can be
related to the operator b.° by a Lorentz transformation,
and there is a need to show that no inconsistency arises
in the Heisenberg equations applied to good states,
under Lorentz transformations.

Goto and Utiyama’s second procedure’ employs the
subsidiary condition (2.3) for good states which, as
shown above, is not gauge-invariant; introduction of an
operator gauge transformation® does not relieve the
requirement of invariance under numerical gauge
transformations.

Goto’s work!! on the separation of redundant vari-
ables involves Eq. (2.6), which, as discussed above,

5T. Goto and R. Utiyama, Progr. Theoret. Phys. (Kyoto)
Suppls. 37 and 38, 322 (1966).

6 R. L. Arnowitt and S. I. Fickler, Phys. Rev. 127, 1821 (1962).

7 C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).

8 J. Schwinger, Phys. Rev. 125, 1043 (1962).

9 J. Schwinger, Phys. Rev. 130, 402 (1963).

10 J, Schwinger, Nuovo Cimento 30, 278 (1963).

11T, Goto, Progr. Theoret. Phys. (Kyoto) 36, 1283 (1966).
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raises a question of Lorentz invariance. Goto!! offers an
argument intending to show Lorentz invariance, utiliz-
ing the Lorentz invariance of the second Goto-Utiyama
quantization.® However, for that procedure, gauge
invariance is in question, as indicated above. Hence,
invariance under Lorentz and gauge transformations
has not been shown satisfactorily.

Schwinger® and Arnowitt and Fickler® use a gauge
for which

9.0%=0. (2.7)

Suppose there exists such a gauge; we take it as an
initial gauge, perform an infinitesimal gauge transforma-
tion, and show an inconsistency by calculating §9.0%
in two different ways. One way is to simply substitute
(2.2):

6aabai= _aavani: —aaaaﬂi‘i"cjkib“jaa’?k, (2'8)

where use has been made of (2.7). The other way of
calculating 69,62 is by similarity transformation of the
operator by I+ B, which represents the gauge trans-
formation in state space:

80.b*= —[B,db*]=0, (2.9)

where (2.7) has been used. Consistency of (2.8) and (2.9)
would demand that

—6a6ani+€jkib“jaa71k=0. (210)

Since the 7%(x) are numerical, and the b, are operators,
the only solutions of (2.10) are »’(x) with

dan'(2) =0, (2.11)

in contradiction with the stipulation that the »%(x) in
(2.2) can be taken as any set of smooth functions. The
same argument, but with « replaced by «, holds for
Schwinger’s Lorentz gauge.®

A similar contradiction arises if it is assumed that
there exists a gauge with®

bs*=0. (2.12)

Starting with this gauge, the two ways of calculating
8bs* due to an infinitesimal gauge transformation give
—63’)77: and 0.

Schwinger’s quantization using group parameters!®
employs a decomposition of the Yang-Mills potentials
bo'(x), and the conjugate operators II,i(x), into trans-
verse and longitudinal parts:

bat= DT+ du), (2.13)
=TT —a), (2.14)
db*T=0, (2.15)
Qe IIT=0. (2.16)

The decompositions (2.13) and (2.14) are not gauge-
invariant, since the transverse and longitudinal parts
mix. Hence, the procedure is not manifestly gauge-
invariant, and a separate proof of gauge invariance is

HENDRICUS G. LOOS

188

required. To point out that a gauge transformation is
a similarity transformation®? of the operators, and thus
leaves all commutation relations invariant, is not
sufficient; as we have seen above, inconsistencies may
show up if the result of the similarity transformation is
compared with the result of making the change (2.2).
Until this comparison has been satisfactorily worked out
for Schwinger’s procedure,'® there remains a question
of gauge invariance.

III. HAMILTONIANS, COMMUTATORS,
AND CONSTRAINTS

The time component of the conventional Yang-Mills
field equations is inconsistent with the canonical equal-
time commutation relations. We deal here with this
problem by modifying the Hamiltonian such that no
constraints arise from it, and such that the new field
equations reduce to the Yang-Mills equations, when
applied to a subspace of “good” states. An adequate
modified Hamiltonian is

H'=/d3x(%HaiHai——% apg'B*B;—bo; Vo I1% — (8,09 Iy,
(3.1)

where the operators II%(x) are canonically conjugate to
the operators b,%(x), and

wi(x)= (b (x))+c'(x), (3.2)

where the f? are arbitrary functions of the &,/(x) not
involving their derivatives, and the ¢i(x) are arbitrary
real numerical functions of x*. The equal-time commuta-
tion relations are canonical:

— w5 e,;) ,

[II%i(x),bx(y) 1= —ir6;°6%(x —y), (3.3)
[bki(x)’b?\j(}'):l =0 ) (34)
(L (x), I(y) ]=0. (3.5)

From the Hamiltonian (3.1) and the commutation rela-
tions we calculate, in the Heisenberg picture, the time
derivative of the operators b,%(x), bo*(x), IL.(x), and
Iyi(x) ; the results may be written

.= Boat, (3.6)
= 9%+ ui 3.7
V. Bri= — 0\ILo™+ (8 f7/ 9b™) Ly, (3.8)

where
Boo'= 9oba’— dabo’ —Ciibo’bot . 39

Equations (3.6) and (3.7) relate the generalized mo-
mentum densities II%(x) to the generalized velocities
90b.*(x). Equation (3.8) is a dynamical statement ex-
pressing doIL\¢; there is no inconsistency with the equal-

12To mention unitarity of the gauge transformation in the
context of Schwinger’s paper (Ref. 10) would require further
elaboration, because his scalar product involves only the trans-
verse variables, while the generators V, II%(x) of gauge trans-
formations have a longitudinal as well as a transverse part.
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time commutation relations. The field equations (3.8)
applied to “good” states, i.e., states |y) satisfying

() [9)=0, (3.10)
Vo I1%(x) [¢)=0, 3.11)
reduce to the conventional Yang-Mills equations,

applied to |¢):
V. B5¢ [ $)=0. (3.12)
If (3.10) and (3.11) are satisfied at one time Zy, they
are satisfied at all times. This can be seen as follows. Let

(3.10) and (3.11) be satisfied at time f,. Then, (3.6) and
(3.8) give, at o,

VB ¢)=0, (3.13)
QoII%|y)=0. (3.14)

Taking the time derivative of (3.8), and using (3.14)
gives, at #,

VB |¢Y)=0. (3.15)
Equation (3.13) may be written, at 4,
VoB | y)+VsBPi|y)=0. (3.16)
The covariant divergence of (3.16) is, at &,
VoVoBi | )+ V, VB |y)=0. (3.17)
We use the Ricci identity®
2V Vavi= —cji' B, (3.18)

which holds for any v which changes under an in-
finitesimal gauge transformation (2.2) by

dvi= —c,-kinka. (319)
The identity (3.18) is well known!* for numerical 8,°
and »%, and it remains valid for operator-valued b,¢ and
%, because of the commutivity of the b, at equal times.
For operator-valued b,* and v, the factor ordering in
(3.18) should be noted. Using (3.18) and the antisym-
metry of the structure constants, (3.17) may be written,
at to,

VoV Boi|§)=0 (3.20)
or

0oV B | ) —ci bV BOk [Y)y=0.  (3.21)

The last term in (3.21) vanishes because of (3.11).
Hence, (3.21) amounts to, at f,

AoV B0 | ) =0. (3.22)

Equations (3.14) and (3.22) show that (3.10) and (3.11),
if satisfied at one time, are satisfied at all times.

18 Square brackets around indices denote alternation:
@ ap) =3(0as—pa),
a1apy) = (1/31) (@apyTayastasva—Apay— Bayp—dy8a);
see J. A. Schouten, Ricci Calculus (Springer Verlag, Berlin, 1954),

p- 14.
1 H. G. Loos, J. Math. Phys. 8, 2114 (1967).

OF THE YANG-MILLS FIELD

2345

The Hamiltonian (3.1) on good states |¢) gives the
same result as H |y), where

H=/de(%IlaiHai—i*BaﬁiBaﬂi) . (323)
H does not involve the time component by’ of the
Yang-Mills potentials.

We now pass to the Schrodinger picture, and use the
Schrodinger representation in which states are repre-
sented by functionals ¥ of the real functions b,%(x) at a
fixed time [ the b,%(x) at a fixed time are written here as
bi(x)], b.'(x) operating on ¥ amounts to multiplication
of ¥ with the real'® function b,°(x), and the operators
TI%;(x) are represented by functional derivatives,

1I%;(x) = —15/8b./(x) . (3.24)

The Schrédinger representation provides a very simple
solution of the constraints (3.10) and (3.11). The
primary constraint (3.10) is satisfied by restricting the
state functionals ¥ to be functionals of the spatial
Yang-Mills potentials b6,/(x) only. The secondary
constraint (3.11) is satisfied by the additional restric-
tion to gauge-invariant state functionals of the b.%(x).
To show this, we perform an infinitesimal gauge trans-
formation (2.2), and calculate the change in a state
functional ¥[b,]:

oY )
oV = —/daxTVan’

= —1/d2x H"i\I/ni-l—i/d%(VaH"‘i)\Ilni, (325)

where use has been made of (3.24), partial integration,
and Gauss’s theorem. II*; is the component of II%;
normal to the surface of integration at spatial infinity.
Suppose ¥ is invariant under all gauge transformations
(2.2) for which

7(x) >0 for |x| o>

, (3.26)

in such a manner that the surface integral in (3.25)
vanishes; then one has from (3.25),

O=/d3x(VaH“,-)\I/ni, 3.27)
and (3.11) follows. From here on, unless specified dif-
ferently, a gauge transformation will have 5(x) re-
stricted by the condition (3.26).

In judging the gauge invariance of a state functional,
it is easiest not to think of the gauge transformation in
state space, but to simply replace ¥[b,] by ¥[ba+0ba],
where 8b, is given by (2.2). Whether or not a state
functional is invariant under this substitution is easily
seen by inspection. Also, a gauge-invariant state results
from operating on a gauge-invariant state with a gauge-

15 Reality is demanded here to secure self-adjointness of certain
operators on good states; see Sec. VL.
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Fic. 1. Gauge-invariant mani-
folds x(¢4) and manifold = of
representatives.

X(¢’)

invariant operator, and gauge invariance of an operator
can be judged easily. It should be noted that the gauge
invariance of “physical” state functionals already
follows from the interpretation of the state functional
W[b,(x)] as the amplitude for finding, upon measuring
a complete commuting set of gauge-invariant operators,
results described by the eigenvalues b,%(X); this ampli-
tude is the same as that for finding the result of the
measurement described by 4’ 4i(x), related to the bqi(x)
by a gauge transformation.

Since good state functionals do not depend on b,
and since the Hamiltonian (3.23) applied to good states
does not involve b¢?, we can dispense with by altogether,
and work only with the spatial Yang-Mills potentials
bo'. The only equal-time commutators needed are the
spatial components, k=a, A=8, of (3.3)-(3.5). These
commutators originally were meant to apply to the
full state space of all functionals ¥[,]. Since .’ and
—1i(8/8b,") applied to a functional of the spatial Yang-
Mills potentials gives again a functional of the spatial
Yang-Mills potentials, we may restrict the k=a, A\=4
components of the equal-time commutators to act on
the space of the ¥[b,], not restricted to be gauge-
invariant. Anyway, the operators b, and II%; turn a
nood state into a bad state, because these operators are
got gauge-invariant. We could project the resulting
state back on to the good state space, but the resulting
commutators would be complicated.

Our method of dealing with the constraints is similar
to the method used by Wheeler!® and DeWitt! for the
gravitational field,'® which method was previously given
by Peres!® in the context of the Hamilton-Jacobi
theory for the gravitational field. For the Yang-Mills
field, it was noted by Schwinger® that gauge-invariant
states satisfy the secondary constraint, but no use of
this fact has been made in the Schrodinger representa-
tion, which makes it possible to judge gauge invariance
of a state by inspection.

The spatial components of the equal-time commuta-
tion relations (3.3)-(3.5) are the same as the commuta-
tion relations for the extended operators used by
Schwinger.1 These extended operators, which were
constructed using a decomposition of potentials into

16 J. A. Wheeler, Relativity, Groups, and Topology, 1963 Les
Houches Lectures (Gordon and Breach, Science Publishers, Inc.,
New York, 1964).

17 B. S. DeWitt, Phys. Rev. 160, 1113 (1967).

18 This similarity was pointed out to the author by L. E.
Thomas.

19 A, Peres, Nuovo Cimento 26, 53 (1962).
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physical variables and gauge variables, are just the
bo* and B%¢; of the present paper. The decompositions
used by Schwinger!® make it difficult to solve the
constraint conditions.

It may be of interest to note that the Hamiltonian
(3.23) may be written in bilinear form:

1 1
H=- fd%c aMeg) i=m /d%c a) e e, (3.28)
2 2
where

(3.29)

and €27 is the totally antisymmetric tensor density of
unit weight which has €'?*= 1. The functionals

Vy=etl,

a®e=FiB0%+5e*"Bgy;,

(3.30)
where

1
U=§ /d% 6“57(baiapb7;-—%Gijkbaibfgjbyk) , (331)

satisfy

B =0 (3.32)

and are gauge-invariant; they have zero energy, mo-
mentum, angular momentum, and electric charge, and
have even parity. However, their behavior at certain
indefinitely increasing Yang-Mills potentials dis-
qualifies them as physical state functionals. The
functional

Wo=¢ 1l (3.33)

falls off appropriately with increasing b,(x). If we
would make the rule to omit configurations d,*(x) for
which U=0 from the domain of definition of all func-
tional differential operators, then ¥, would have all
the properties required of the vacuum. However, if
one puts the structure constants to zero, ¥, does not
reduce to the electromagnetic vacuum state func-
tional given by Katz.?°

IV. SCALAR PRODUCT OF GOOD STATES

A conspicuous feature of the present method is the
redundancy of description of the Yang-Mills field con-
figuration by means of all three spatial components
b.i(x) of the Yang-Mills potentials; two such com-
ponents would suffice. Since the simplicity of the equal-
time commutation relations and the simplicity of the
solution of the constraint problem depends on this
method of retaining all three components ,%(x), we do
not wish to perform the fashionable decomposition of
the potentials into physical variables and gauge vari-
ables. However, if we naively define a scalar product of
states as a functional integral over all 5,%(x), an in-
finite norm results.®!® For electrodynamics, we get a
finite and otherwise satisfactory scalar product by
integrating only over the transverse potentials.10-20
However, for the Yang-Mills field, the situation is com-

20 A. Katz, Nuovo Cimento 37, 342 (1965).
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plicated by the fact that, under gauge transformations,
the transverse and longitudinal parts of the potentials
mix.

We define a scalar product for good states which is
finite and Lorentz- and gauge-invariant. Consider the
configuration space Q for the Yang-Mills field, i.e., the
space of all numerical real-valued functions b.%(x),
possibly restricted by certain conditions at spatial
infinity. We begin by assigning a metric to this space.
We notice that such a metric is already manifest in the
Lagrangian L of the Yang-Mills field; the term of L
which is quadratic in the generalized velocities is

1 1
- / B3(doba?)doh?y=—r / Br(dbsi)db;, (4.1)
2 2(dt)?

showing a metric proportional to

gasgii0*(X—Y). (4.2)

We simply take the metric (4.2) as the metric for the
configuration space €, although we do not know
whether this is necessary. This makes @ a Eucledian
space with Cartesian coordinates b,%(x); the distance
||Ab.i(x)|| between any two points with coordinate
difference Ab,*(x) is given by

[|Abai(x)||2= / @ AbaiAb;. (4.3)

This distance is gauge-invariant, since Ab,‘Ab%; is
gauge-invariant.

Consider a point b,'(x) of Q. A gauge transformation
maps b,’ into &',%. Performing all possible gauge trans-
formations on b,’ gives a manifold X of points #',%; it is
easy to see that X is gauge-invariant. Calling two points
of Q equivalent if and only if there exists a gauge trans-
formation which maps one point into the other, the set
of all gauge-invariant manifolds X forms a set of equiv-
alence classes. Each equivalence class may be repre-
sented by one of its points. We choose these representa-
tives such that they form a manifold E. Let E be
coordinatized by coordinates £4, where 4 denotes a con-
tinuous label. Then, the £4 may be used to label the
gauge-invariant manifolds; this is indicated by the
notation X(&4). Figure 1 shows a finite-dimensional
analog of the situation. Since it turns out that = has
“twice” as many dimensions as X, the manifold Z is
shown as a surface and X as a curve. It can be shown
that X is not flat. Since no two points of  can be related
by a gauge transformation, the coordinates £4 in Z may
be interpreted as physical variables. For example, =
may be taken as the set of transverse potentials, and &4
as their Fourier components. It can be shown that for
the Yang-Mills field there does not exist a manifold &
which intersects all X(£4) orthogonally; for the elec-
tromagnetic field, such E1 X(&4) does exist, and it
turns out to be the manifold of transverse potentials.

After this preparation, we define the scalar product of
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Fi16. 2. Tubelike region R of Q.

good states |¢) and |¢) as the functional integral

@)=y [ e, (4.4
R
where the measure is taken as the one belonging to the
metric (4.2); this measure is uniform in the coordinates
be'(x). R is a tubelike region of Q, which will be dis-
cussed in detail, and which is indicated in Fig. 2. In
Fig. 2, the relative dimensions of = and X are chosen
incorrectly, in order to show most clearly the con-
struction of the tube R. For the purpose of this con-
struction, we first label points b.(x) of @ by the co-
ordinates (£4,7%(x)), where £4 are the coordinates in =
of a point bo.’(x)eZ which lies in the same gauge-
invariant manifold X as b,%(x), and 5*(x) are the parame-
ters of a gauge transformation (2.1) which maps bo.*(X)
into b.*(x). The details of this map can be found from

boiLi=S"(bou'LiS—aS) 4.5)

where S(x) is given by (2.1); multiplying (4.5) on the
right-hand side with L; and taking the matrix trace
gives

b/ (X) = a7 (X) Do’ (X) —a/(X) , (4.6)
where
a#/(x)=(1/a) TrS1(x)L;S(x)L, 4.7
a’(x)=(1/a) TrLiS7(x)dS(x), (4.8)
and ¢ is given by
TI'LiLjZ agij, (4:9)

where g;; is the group metric (1.3). For the specification
of the tube R to be used in (4.4), we specialize to the
two-dimensional representation of SU(2), so that .S
of (2.1) is a 2)X2 unitary matrix. The tube R is taken as
the point set {(£4,7%(x))}, for which the £4 range over
all of E, and for which the 7?(x) satisfy the condition

/ B[ 2—TrS(x)]<e, (4.10)

where ¢ is a positive number; of the 7%(x) which satisfy
(4.10) we only use the set which is connected to the
element 7%(x)=0. It will be shown in Secs. V and VI
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F16. 3. Slices cut off R and R’ by x’s.

that this choice of functional integration region R
assures gauge and Lorentz invariance of the scalar
product (4.4). The normalization constant N in (4.4)
depends on the choice of € in (4.10).

The scalar product (4.4) does not depend on the
choice for the manifold E of representatives for the
gauge-invariant manifolds. We will prove this by con-
sidering two arbitrary choices, & and E’, as shown in
Fig. 3. E and &’ need not be related by a gauge trans-
formation. The functional integral (4.4) is the sum of
contributions from slices cut off R by gauge-invariant
manifolds X(£4). The distance between neighboring
X’s is constant, since gauge transformations are iso-
metries in Q. Therefore, the slices cut off R and R’ by
two neighboring X’s have equal thickness. If we could
show that these slices also have equal area in a X, then
it would follow that (4.4) has the same value, using =
or &, since ®[b] and ¥[4] in (4.4) are constant along
a X, because of the gauge invariance of these functionals.
The proof that the slices, cut off R and R’ by a X, have
equal areas goes as follows and refers to Fig. 4. We
denote by b, the intersection of Z and X, by b, the
intersection of E’ and X, by 7'(x) the gauge transforma-
tion which maps b, into &y, by C and C’, respectively,
the intersections of the boundaries of R and R’ with X,
by S(x) the gauge transformation which maps b, into
the point & on C, and by & the result of applying the
gauge transformation 7°(x) to b. Since b lies on C, we
have, from (4.10),

/ Pe[2—TrS(x)]=e. (4.11)

b’ is the result of applying the gauge transformation
T(x)S(x) to bo. From the consistency of the map from
bo to b to " and the map from b, to b’ to &', and the
arbitrariness present in the choice of points, it follows
that we must have

T(x)S(x)=U(x)T(x) (4.12)
o
' Ux)=Tx)SX)TYx). (4.13)
From (4.13) and (4.11) it follows that
/dsx[Z—TrU(x)jze, (4.14)

so that &’ lies on C’. Considering the arbitrariness of the
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choice of b on C it follows that, under the gauge trans-
formation 7'(x), C maps into C’. Since gauge transforma-
tions in @ are isometries, C and C’ have equal areas.
This concludes the proof that the scalar product (4.4)
isindependent of the choice of E.

Of course, the gauge-invariant state functionals must
be restricted such that the functional integral (4.4) is
convergent. This places a restriction on the behavior of
the state functionals at the open ends of the tube R,
which is analogous to the condition on wave functions
¥ (x) for |x| —.

One may take the limit of (4.4) as e — 0, and obtain
a functional integral over =, involving a measure which
may be calculated from the limit process. A practical
choice for & would be one for which this measure is
relatively simple. It may turn out that some of the
complications of the manifestly covariant formalism,??
which we tried to avoid by choosing the canonical
formalism, crop up in the measure over E to be used in
the limit e — 0. In any case, the canonical formalism
outlined here is expected to be simpler for dealing with
physical problems not involving the scalar product,
such as eigenvalue problems.

V. GAUGE INVARIANCE

We take the IL,® to transform as a vector in the Lie
algebra space of SU(2), i.e., under the infinitesimal
gauge transformation (2.2), II,* is to suffer a change

5HK£: —CjkiT)jHKk. (51)
This assignment implies gauge invariance of the equal-
time commutation relations (3.3)-(3.5), of the relation
(3.6) between the spatial generalized momenta and
velocities, and of the constraint conditions (3.10) and
(3.11). The operators #° in the relation (3.7) between
the timelike generalized momenta and velocities are
restricted to belong to the class (3.2). We attempt an
assignment of transformation of #* under gauge trans-
formations (2.2), such that the momentum-velocity
relation (3.7) becomes an invariant statement and #*
stays in the class (3.2).

Let 6 f* and 8¢ be the infinitesimal changes in f?and ¢*
under the gauge transformation (2.2), which make the
momentum-velocity relation (3.7) a gauge-invariant
statement. From (5.1) for k=0, one then has

— i Il*= 0, (—V*n?)+ (9 7/ 9bx7) (— Vn?)
+5 (b)) +dci(x) -
From (5.2) and (3.7) it follows that one must take

(5.2)

8¢t=9,0*n* —cjxinick (5.3)
and
8f¢=—ci'n’f* —c’b*i9 m"
afi afi
+ a)\nj—iﬁckzjb)\knl y (54)
9by\7 aby\’
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showing that fi4-§f* are functions of the operators
by (x), not involving their derivatives. Hence, under
gauge transformations, the #* remain in the class (3.2).

With the transformation assignments (5.1), (5.3),
and (5.4), the equations of motion (3.8) are not gauge-
invariant. The difference between the changes of the
left- and right-hand side of (3.8) under the gauge
transformation (2.2) is

—CjkinjVKB“)k—Cjkinja)\HOk—Cjki(awj) I10%

afi af’
—5<5§\—>H05+Cjklab)\ T]kHol y (55)

where 8§(9/%/db";) is the change suffered by df%/ab*;,
which could be calculated from (5.4). Write

afi ok af afi
5< >=—6uc’nl*——6ucln’ +5*<— ); (5.0)
ab; b b b

%

then (5.5) may be written
—Cjki(a)\’r)j) HOk'—é*(afj/ab)‘i) IIOJ, 5 (57)

showing the gauge variance of the equations of motion
(3.8). But, since the operator (5.7) applied to good
states gives zero, the operator equations of motion (3.8)
applied to good states give gauge-invariant results.

Turning to the scalar product (4.4), we note that the
measure in Q is gauge-invariant, and that ®*[5] and
W[b] are gauge-invariant as well. That makes the
scalar product gauge-invariant, if the gauge transforma-
tion in @ is taken as a coordinate transformation. How-
ever, from the proof that (4.4) is independent of the
choice for E, we can see that the scalar product (4.4)
is also invariant under point gauge transformations
in Q.

VI. LORENTZ INVARIANCE

We investigate the invariance of the theory under
proper Lorentz transformations. The Hamiltonian (3.1)
may be derived from the Lagrangian density

L' =1Ba B3804 ud) (0 i+u;) . (6.1)

The Yang-Mills potentials b,° are taken to be a vector
under Lorentz transformations. That makes the B,,* of
(1.1) and (3.9) tensors. In order to make £’ a scalar, we
take the #° to be scalars. The notation IL,* used in
Sec. III obscures the dependence of these operators on
the time direction. The matter is clarified by calculating

1= 0L'/99.b2" . (6.2)
From (6.1) one finds that
1= B* 4 g IO, (6.3)
showing that, for a fixed time direction, one has
1% =11, (6.4)
11e,=11%,. 6.5)
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F16. 4. Mapping in x pertaining to different
choices E and Z'.

Equation (3.7) shows the Iy to be scalars, and then, the
II; given by (6.3) are tensors. The primary constraint
(3.10) is an invariant condition on states. With (3.6),
the secondary constraint (3.11) together with the equa-
tions of motion (3.8) (\=a) applied to good states may
be written in the form (3.12), which is an invariant
statement.

Lorentz invariance of the k=a, A= components of
the equal-time commutators (3.3)-(3.5), subject to the
Hamiltonian (3.23), has been shown by Schwinger,
using his method involving the equal-time commutator
of energy densities.?! We give here an independent
proof of Lorentz invariance of the equal-time commuta-
tion relations, and we will do this for the complete
system (3.3)-(3.5), subject to the Hamiltonian (3.1).
We follow the method of Heisenberg and Pauli??; un-
fortunately, their results cannot be immediately applied
to our case, because H’ of (3.1) involves the spatial
derivatives of the momentum densities II*%

The commutation relation (3.3) may be expressed as

/UU;M@[n“«@ﬁM@XF:—wwm%oo,<a®

where o is the equal-time surface through y% dfy is an
element of ¢ at x* and i(x) is any operator-valued or
numerical function which is good in the sense of
Lighthill.?* Equation (6.6) is invariant under spatial
rotations. An infinitesimal Lorentz transformation of
the observer has two effects: The equal-time surface o
of integration in (6.6) is tilted, and the coordinate sys-
tem to which (6.6) refers is changed. The latter change
leaves (6.6) invariant, since I of (6.3) is a tensor,
and df, and b,; are vectors. A pure infinitesimal Lorentz
transformation which tilts ¢ around y* gives a dis-
placement of x*,

6.7)

where 2,5 1s some infinitesimal antisymmetric tensor

21 J, Schwinger, Phys. Rev. 127, 324 (1962).

22 W, Heisenberg and W. Pauli, Z. Physik 56, 1 (1929).

23 M. J. Lighthill, Introduction to Fourier Analysis and Gen-
eralized Functions (Cambridge University Press, Cambridge,
England, 1964).

b= (=),
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with v,5=0; the surface element df, changes by
ddfe=—vNdfr.

Under the infinitesimal tilt, the left-hand side of (6.6)
changes by

(6.8)

/dfk(a()h)voa(xa_ya)
LI Byo(y)] — / 0 JLII by (3) ]
+ / Afoh[10a(x%—y*)3olIM,b,;(y)]. (6.9)

Using (6.6), the first integral of (6.9) is seen to vanish,
leaving

/dfoh[ _eUO)\HOi_-UOaBa)\i
+20% (22 —y%) 811, b,;(v)],

where use has been made of (6.3). Separate calculation
of (6.10) for the four cases obtained by taking A as 0 or
and u as 0 or B3, gives zero, using (3.3)-(3.5) and (3.8).
Hence, an infinitesimal Lorentz transformation does
not change the left-hand side of (6.6). The right-hand
side also remains unchanged. Hence, (6.6) is Lorentz-
invariant, and since (6.6) is nothing but a transcrip-
tion of (3.3), the commutation relation (3.3) is Lorentz-
invariant.

The commutation relation (3.4) is invariant under
coordinate transformations. Under the infinitesimal
point transformation (6.7), this commutator changes by

Wa(x*—y*)[0ub*, b0 () ], (6.11)

and this expression is found to be zero for all four cases
obtained by taking « equal to 0 or v and X\ equal to 0
or 8. Hence, (3.4) is Lorentz-invariant.

The commutator (3.5) may be expressed as

(6.10)

/ Af k[T, T19(y) ] =0, (6.12)
where v, is a constant vector for which
v,d fr—vd f,=0. (6.13)

The statements (6.12) and (6.13) are invariant under
coordinate transformations. For Cartesian coordinates
with x°=0 on ¢ we have df,=0, v,=0; (6.12) thus
reduces to (3.5), in view of (6.4). Under an infinitesimal
tilt ¢ — ¢’ described by (6.7) and (6.8), v, suffers the
change

0v,= —vM 0, (6.14)

2 From here on in this section, any function of event coordinates
shown without specification of the argument is meant to be taken
at x.
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and the left-hand side of (6.12) changes by

f df()h{ [_vOaHa)\i_*_.Ul)a(xa _ya) 601’10)4" WOHOM(}’)]
’ — 00011, IT=i(y) T} . (6.15)

We calculate (6.15) separately for A, » equal to 0 or 3.
The calculation is straightforward for A=0, »=0, for
A=0, »=g4, and for A=3, v=0. For A=, v=1, the cal-
culation is rather involved, and we show some of the
steps. For that case, the expression within the curly
brackets in (6.15) is

[ — 00 BoBi—-00,, (5% —y=) 3o BY,0,B07i(y) ]
Y

— 0%, B¢ Bevi(y)].  (6.16)
From (3.3) it can be shown that!®
LB Bi() 1= 2V g (s —y),  (6.17)

where V# is taken with respect to x and operates only

on 7. Using (6.17), expression (6.16) may be written

—20p00°, VIeghlrgiigd(x —y)

— 200000, V1g18g%53(x —y) 40000 (2% — y%)
X[VoB*,B*"i(y)], (6.18)

where use has been made of (1.4). With (3.8), (6.18)

may be expressed as

_27:7}07)0a{ \v4 [Dlgls] Ygij53(x _y)+ V[D‘g'ﬂ Bg1]63(x _y)

T+ (w2 —y*) V, VA3 (x —y)} . (6.19)
The last term in the curly brackets of (6.19) is
Vi (x*—y*) VPPl 7g%i5%(x —y) }
—(Vs(x=—y*))VIPgPl7g 5% (x—y)
— Vivli(an—y)g g (x—y)
— Va(VE(x=—y))gfl7giis*(x —y)
_V[‘Xgﬁ] 7gij63(x_y)
= — Vlegr18giigd(x —y) — ViegPlvgiigb(x—y).  (6.20)

Hence, the expression (6.19) vanishes. This completes
the proof of Lorentz invariance of the equal-time com-
mutators (3.3)-(3.5), subject to the Hamiltonian (3.1).

The Lorentz invariance of the scalar product (4.4)
may be proved by showing that the generators of
Lorentz transformations in state space are self-adjoint
with respect to this scalar product, so that Lorentz
transformations are unitary in the space of good states.
The generators of pure Lorentz transformations in state
space, found from the Lagrangian (6.1), are

M’””‘=/d3x{[(aobﬁ)B""’H—(aobui)II"",'—QG’]x"‘

—[(0be) 1"+ (37D, Bo7 ]

—beII, 5% Bo;} . (6.21)

These generators satisfy the mapping equations for the
Heisenberg picture:

LM 0% bgi(x) ]= x*9obg” — x°9°bg'+ 85°b% ,

) . o 6.22
iM% b (x) 1= weduby—a00b—bed, 02D
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The operators (6.21) involve by* and are not gauge-
invariant; therefore, they will turn a good state into a
bad state. Fortunately, M’%* operating on sufficiently
localized good states may be expressed as a gauge-
invariant operator, not involving b¢?, operating on these
states. To do this, we first note that the operator

Xoa= / &% 95(b* B0 —b%B% %) (6.23)

vanishes? on states which are sufficiently localized.
Therefore, on good states with this property, we
may as well take as the generators of pure Lorentz
transformations

MOa — M/0a+X0a i /dsx{xO(BﬂaiBOBi+bakVﬂBOBk)

+xa(_bojVBBOﬁj_{_BoﬁiBOﬂi_cg’)}. (624)
Equation (6.24) may be simplified by dropping the
terms with VgB%,, since they give zero on good states;
the result is, on good localized states,

Moo= / @B (T00xx —TO0x0) | (6.25)

where

To= — (B B*+1g™B,,B»)  (6.26)

is the gauge-invariant energy-momentum tensor acting
on good states. Since the operator (6.25) is gauge-
invariant and does not involve 5%, it turns a good state
into a good state.

We now proceed to prove Lorentz invariance of the
scalar product (4.4) by showing that M9 of (6.25) is
self-adjoint with respect to (4.4). The question of self-
adjointness of M is complicated by the circumstance
that we cannot specify the operators b,%(x) to be self-
adjoint since a scalar product is here only defined for
good states, and the non-gauge-invariant operators b,
turn a good state into a bad state. What can be done,
and what turns out to be sufficient, is to specify that in
the Schrodinger representation the 5,%(x) are to be
represented by real numerical functions 4,/(x), and the
states are to be represented by functionals of the real
functions b,%(x). Then 7% occurring in (6.25) is self-
adjoint, if the functional differential operator

52/8b4i(x)8b%i(x) (6.27)

is self-adjoint; this can be seen from (6.26), (3.6), and
(3.24). From the identity

52p*

2
/ B —— / 56( )w
R 0b4°6b%; R 0b56b%;
6 v Pl
=/ ob (‘-t'* —-( )‘If), (6.28)
R 0bst 6b%; 6b2;

25 Since X 9= is not gauge-invariant, the norm of X%|y) is not
defined; we mean here component-wise vanishing of the resulting
state vector.
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it follows that the operator (6.27) is self-adjoint with
respect to (4.4) if

)
/ 8b——2,%(x) =0, (6.29)
B 0bai(X)
where
()= o ( 50+ )\p 6.0
2.4(X) = - . .
8b%;(x)  \ob2(x)
Equation (6.29) is satisfied if
. 5 |
/ d?x f(x) f b——.i(x)=0  (6.31)
R 5but(x)

for all f(x) subject to some condition at spatial infinity.

Calling
J)vi(x) =w,i(x), (6.32)
(6.31) may be written
)
/ 8b—Waix =0, (6.33)
R 0 aix

where writing X as a repeated index implies integration
over all X, by an obvious extension of the summation
convention. Using Gauss’s theorem, (6.33) may be ex-

pressed as
/ 0% % ,ix =0 y
B

where B is the surface of the tube R as shown in Fig. 2.
Equation (6.33) reduces to (6.34), provided that the
state functionals ®(£4), ¥(£4) fall off rapidly enough as
| £4| — =, such that the surfaces at |£4| =« do not
contribute to the integral. We will show that (6.34) is
satisfied on account of the gauge invariance of the state
functionals ®[»] and ¥[&], and the special construc-
tion of the surface B. This is done as follows.

Let b(£4,7%(x)) be a point of the intersection C of the
surface B and the gauge-invariant manifold X, as shown
in Fig. 2. The gauge transformation S of (2.1) maps the
point by(£4,0) into the point &. Since b lies on B, S(x)
satisfies (4.11). The unitary matrix S is similar to a
diagonal matrix with ¢* and ¢~ on the diagonal, a(x)
being a real function. Therefore, we have

TrS—1(x)=TrS(x), (6.35)

and it follows with (4.11) that the point & with co-
ordinates £4, —#*(x) lies on C. Any infinitesimal vector
8bo in E at by is mapped by S(x) into a vector §b in B at
b, and is mapped by .S~!(x) into a vector 80’ in B at b’.
Also, 80’ is the image of 6b under the map S—2(x).

So far, we have discussed vectors b in B at b, which
are the gauge transforms of vectors 8b¢ in = at bo. Next,
we consider infinitesimal vectors 6b in B at b, which lie
in X, as shown in Fig. 5. Any point of X may simply be

(6.34)
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F1c. 5. Vectors 8b in x, tangent to C.

labeled by the gauge transformation S(x) which pro-
duces the point from b&o. This is done in Fig. 6; the
point by is labeled by the identity-matrix function 7(x).
Let #(x) be an infinitesimal anti-Hermitian matrix. The
point [14+#(x) S(x) lies on the curve C, if

/ Prf2—Tr[1+u(x)]S(x)} =¢; (6.36)
with (4.11) this implies that
/ % Tru(x)S(x) =0. (6.37)
In order to see whether the point
T'=52(x)[1+u(x)]S(x) (6.38)

lies on C, we calculate
/d3x(2—TrT)=fd3x[2—TrS‘2(1+u)S]
= —/d%c TruS—1, (6.39)

using the previous result that S—! lies on C. Since S is
unitary and # is anti-Hermitian, the integral on the

F16. 6. Mapping pertaining to opposite points of C.
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right-hand side of (6.39) is

— / d*x TruS—'= / d®x TrutST
*
=(/d3x TruS) =0, (6.40)

by (6.37). Hence, T lies on C. It follows that the trans-
form by S2 of any infinitesimal vector 6b in C at b of
Fig. 5 is a vector 60’ in C at &’. Combining this result
with our findings concerning vectors b of Fig. 2 at b, we
see that the gauge transformation S~2(x), which maps a
point b of B into a point & of B, also maps any infini-
tesimal vector 6b in B at b into a vector 64’ in B at &'.
Therefore, we have

[obi(x) Li o= S*(x)[00*(x) Li JoS*(x),  (6.41)

for the surface elements 8b** of B in (6.34), at
“opposite” points & and &’ of the surface B.

Next, we compare wqqx at opposite points b and b’ of
B. First, we investigate how the functional derivative
8V /6b,i(x) of a gauge-invariant functional ¥[d,]
transforms under an infinitesimal gauge transformation
(2.2). Changing the argument b of the functional by an
arbitrary infinitesimal amount Db produces the change

o
D\P=/d3x —Db,(x). (6.42)
8b4*(x)

Now we perform an infinitesimal gauge transformation
(2.2). Since this leaves DV invariant, we have, from
(6.24),

5 5
0= / d3x<&~Dbai+—6Dbai>, (6.43)
5ba’ 8B4

where

3Dbyi= —ciiiniDby*, (6.44)

as follows from (2.2). Substitution of (6.44) in (6.43)

gives
o o
0:/d3x<5“_6]‘ki7]‘7 )Dbo/C (6.45)
0bo* 0bo®
for arbitrary Db.*; hence, we must have
o L 4
o——=cu"n’'— . (6.46)
8bo* 8b*

From (6.30) and (6.32) it follows that w,:;(x) has the
same transformation law under infinitesimal gauge
transformations as §¥/8b*%. Therefore, one has

[wai(X) L7 o = S2(%) [wai(x) L7]6S%(x)

for opposite points & and &’ of B. Writing, with the
help of (4.9), the expression under the integral of (6.34)

(6.47)
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as
(6.48)

1
- f d3x Trob*(x) Lawq;(x) L7,
a

we see from (6.41) and (6.47) that this infinitesimal
flux has equal values at opposite points b and &’ of B.
Hence, the total flux (6.34) through B vanishes, com-
pleting the proof of self-adjointness of the operator 7,
with respect to the scalar product (4.4).

The proof of self-adjointness of the remaining term of
(6.25), involving T°= follows similar lines, once it is

shown that
/d3x T°a=/d3x Bs'B";

is independent of the operator ordering. Because of the
antisymmetry of the structure constants, (6.17) gives

[Basi(x),B%(y) ]=610.0°(x—y). (6.50)

Hence, the difference between the expressions (6.49)
with different operator orderings is

(6.49)

6i/d3xlim 3.0°(x—y), (6.51)
y=>x

which vanishes if defined as the limit of integrals like
(6.51), with 8%(x—y) replaced by a Gaussian which is
more and more peaked.?® This concludes the proof of
self-adjointness of (6.25) with respect to the scalar
product (4.4) and, therefore, of the Lorentz invariance
of this scalar product. The self-adjointness of 79« also
shows (4.4) to be invariant under spatial rotations, since
for localized good states, the angular momentum opera-
tor may be expressed as

Maﬁ=/d3x(TUax5_TUﬂxa), (6.52)

i.e., the orbital expression; the spin part has been re-
moved by a manipulation like the one shown in (6.23)
and (6.24).

26 This consideration falls somewhat outside the theory of
tempered distributions, but it is consistent with a well-known
method of dealing with & functions (Ref. 23).
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VII. RESULTING RULES

We now collect our results. In the Schrédinger
picture, and using the Schrodinger representation, the
Yang-Mills field, interacting with itself but not with
other fields, is quantized according to the following
rules.

States are represented by functionals W[b,] of the
spatial Yang-Mills potentials b,%(x), a= 1, 2, 3, which, in
turn, are real functions over all of three-dimensional
space. The time-space components of the Yang-Mills
field are represented by functional derivatives,

Boe,(x)= —1i6/8b.4(x), (7.1)

acting on the state functionals. Good states are repre-
sented by gauge-invariant functionals W¥[bd,.], i.e.,
functionals which are invariant under all gauge trans-
formations (2.2), subject to condition (3.26) at spatial
infinity.

The Hamiltonian on good states is

H=/dﬁx(%Bn“iBOai—iBaﬁiBaﬂi) ) (7.2)

where the Bg® are given by (1.1).

The scalar product of good states is given by the
functional integral (4.4) over the tubelike region R of
configuration space, R being defined by (4.10), in which
S(x) is the gauge transformation which maps &, (which
lies on ) into &. The scalar product has been expressed
this way in order to prove invariances. In practice, one
would contract the tube R to zero radius; in the limit,
the scalar product becomes a functional integral over
the manifold Z, involving a measure which may be
calculated from the limit process. The resulting scalar
product does not depend on the choice of E. Observables
are represented by gauge-invariant functional dif-
ferential operators; their matrix elements between good
states are scalar products between good states, and are
expressible as functional integrals over the manifold .

These rules give Lorentz- and gauge-invariant results.
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