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It is shown that the hypothesis that the imaginary parts of exchanged Regge contributions must cancel in
channels which contain no resonances implies restrictions on the way in which SU(3) may be mixted and
broken in the vector and tensor meson nonets; for example, the mixing angle should satisfy tan2 6 = 1,

There is an intriguing possibility that S matrix
principles, such as analyticity and crossing, may
imply restrictions on the possible symmetry
groups of strong interactions (e.g. ref.1). In this
note, we explore some consequences of a con-
sistency condition recently proposed by Harari
(ref. 2), and also implied by work of Van Hove
(ref. 3) and Henzi (ref. 4), which is an extension
of the idea of exchange degeneracy (ref. 5). In
particular, we calculate the mixing angles for the
vector and tensor meson nonets.

It has been suggested by Harari (ref. 2) that
the contributions of Regge trajectories, exclud-
ing the Pomeron, in the / channel may be built up,
in the sense of finite-energy sum rules, by res-
onances in the s channel. In this note we are in-
terested in a special case of this suggestion:
when there are no resonances in the s channel,
then the sum of the imaginary parts of the ex-
changed trajectories (again excluding the Pomeron)
should vanish. This requirement is a generaliza-
tion of the hypothesis of exchange degeneracy
proposed by Arnold (ref. 5), and may be con-
sidered to be a consistency condition which s
channel information can impose on the / channel
trajectories.

This condition can also be motivated, without
any reference to finite-energy sum rules, from
ideas discussed by Van Hove (ref. 3) and Henzi
(ref. 4). These authors compare elastic scatter-
ing amplitudes, such as the pp (or Kp) elastic
amplitudes, with the amplitudes for the # channel
reactions pp (or Ep). They argue that the part of
the overlap function which survives at infinite
energy comes from those inelastic channels which
can be produced by exchange of vacuum quantum
numbers, and so is the same for pp and pp; in
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addition, there is a part of the pp (or Kp) over-
lap function coming from baryon (or strangeness)
annihilation channels which has no counterpart in
pp (or Kp), and which must disappear as the
energy increases. Thus they predict that the
overlap functions, and hence the total cross-
sections in channels such as pp or Kp have a
much smaller energy-dependent part than they do
in channels such as pp or Kp. When this beha-
viour is described in Regge language, it implies
that the imaginary parts of the exchanged trajec-
tories (excluding the Pomeron) cancel for those
channels which do not permit annihilation. Since
(at least in the examples we shall consider), the
channels which do not permit annihilation are
those which do not contain resonances, we are
led back to the consistency condition proposed by
Harari (ref. 2). We shall now show that, in the
approximation that this condition is satisfied
exactly, there are restrictions on the mixing and
breaking of SU(3) for the vector and tensor nonets.

In a reaction in which, for example, only the
p and the Ag trajectories may be exchanged, we
have, at high energies

Als,t) = 8,() {1 -exp (—iwozp(t))}sap(t) N "

+ BAz(t) {1 +exp (i1mzA2 (t))}SaAz ®) .

The condition Im A(s,¢) = 0 then requires i ap(t) =
=0A, (#), and Bp(?) = BAz(t)- In the following, we
do not specify the value of the variable f, since
our results will be valid for any ¢ (including for

I We note that the inclusion of Regge cuts does not
change these results, at least if the cuts are calcu-
lated according to the hybrid model we have proposed
earlier (ref. 6). To first order in inelastic transi-
tions, the amplitude is real if and only if the Regge
pole term is real.
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example ¢ = mz) at which the consistency condi-
tion is validT.” When we apply this requirement
to baryon-baryon scattering, and assume the ab-
sence of states with baryon number 2 T1, we ob-
tain the exchange degeneracy proposed by Arnold
(ref. 5): the trajectories (p,A2), (K*K**), (v,f9)
and (¢,f°') are pairwise equal, and their coup-
lings to the baryons are also pairwise equal.

We consider now pseudoscalar meson-pseudo~
scalar meson scattering and initially assume the
validity of SU(3). The exchanged trajectories are
those of the vector and the tensor mesons. As
observed by Harari (ref. 2), if we assume the
absence of resonances in the [10] and the [27]
representations, the consistency condition tells
us that there must be a tensor SU(3) singlet
degenerate with the tensor octet. Allowing then
a tensor nonet (in addition to the Pomeron), the
absence of [10] and [27] resonances allows us to
compute the relative magnitude of the couplings
of the vector and tensor octet and the tensor
singlet to the pseudoscalar mesons (the vector
singlet does not couple at all). This enables us to
determine what linear combination of tensor
singlet and octet does not couple to (r7). The re-
sult is that if we define the state

If') = sin6|fy) + cosflfg) , (2)

then for {f‘) not to couple to (n7) requires tan2 6 =3.

This result would also be expected in a model of
the tensor mesons as [ excited states of two
quarks.

We can get further information on the coup-
lings of the trajectories to baryons by consider-
ing pseudoscalar baryon scattering. Since we ex-
pect no resonances in the (KN) system in any
charge state 1, the imaginary parts of the con-
tributions of the I = 0 and the I =1 trajectories
must separately cancel. The possible I = 0 tra-
jectories are the w8, the f1 and the fg. We have
already determined the couplings of these trajec-
tories to the mesons; from examining the baryon-
baryon problem we see that the couplings of the
baryons to wg and to {8 are equal. We can then
use the absence of resonances (or annihilation) in

7 On the other hand, one might be most willing to be-
lieve in the validity of the consistency condition for
t not too far from zero.

1 What about the deuteron ? It is quite possible that
there are no channels which are absolutely free of
resonances. A reasonable criterion for applying the
the consistency condition is that there be many few-
er strongly coupled low-mass states (or many fewer
available inelastic channels) in the s than in the
u channel. This criterion should be understood when
we write, for brevity, that a channel contains no
resonances.

the (KN) system to solve for the (relative magni-
tude of the) coupling of the £y to nucleons. This
in turn determines the combination of f1 and fg
which does not couple to nucleons, which turns
out to be the same combination [tan2 6 =} in

eq. (2)] which is decoupled from (77). Since we
know from the baryon-baryon problem that the
baryon couplings of the vector and of the tensor
meson trajectories are the same, we can see that
this same angle will decouple a linear combina~
tion of w1 and wg from nucleons. Similarly, it
can be shown, by letting the vector mesons be
also external particles, that this same combina-
tion of w1 and wg does not couple to (7p). Again,
these results would be expected in a quark model.

So far we have shown that linear combinations
with tan? 6 = & will decouple from (r7), (7p) and
(NN), but we have not yet shown that this should
be the actual mixing angle. To do this, we go
back to the example of meson-meson scattering.
We consider the exchange of nonets of vector and
tensor meson trajectories, but do not now as-
sume SU(3) relations for the trajectory functions
or residues. By applying the consistency condi-
tion in 7+7t scattering, we see that some physical
f, say the fO, has the same trajectory function
as does the p. Combining this information with
what we can learn from baryon-baryon scattering,
we see that the trajectories fall into three
groups ~ (0,A2, w, £9), (¢,£0') and (K*, KK**) -
with the trajectory functions within each group
coinciding. If the particles of the first group had
the same trajectory function as those of the sec-
ond group, the mixing angles would be undefined.
But in fact the fO' trajectory does not coincide
with the fO trajectory, and by remembering that
the consistency condition implies a cancellation
of the contributions of trajectories which do coin-
cide, we shall now calculate the mixing angle by
demanding cancellations among the trajectories
of the first group.

In 7t#* and 7+KT scattering, we must have
cancellations between the imaginary parts of the
contributions of the p and the f9, and in KK
scattering with I; = 0, between the imaginary
parts of the contributions of the w© and the O,
The required cancellations in these three reactions
can only occur if

2 2 (3)
8pOKK = SwKK
where the g's are the couplings of the trajectories
to the external mesons; if we choose = m2 =
= mg), then the g 's are the actual coupling con-

stants. So far we have not used SU(3), but if we
now write the physical w as |w) = cos 0 wy)+
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- sin|lwg), then since |w)) does not couple to
(KK), eq. (3) allows us to determine the value of
9. The result is tan26 =1; this angle should
therefore be constant along the trajectories.

Similarly, one can show that the actual mixing
angle for the tensor meson trajectories is given
by tan2 0 = 4. We now know that the physical f'
and ¢ decouple from (77), (7p) and (NN). Also,
assuming the usual relation between mixing angle
and masses and the Gell-Mann-Okubo formula,
we can turn our "coupling-constant mixing angle"
into a mass formula:

2 2
M, =t M%), (4)
and of course we have
2 2

similarly for the tensor mesons. These relations
are well satisfied experimentally 1.

Clearly one can obtain other interesting re-
sults. For example, the consistency condition
imposes constraints, such as eq. (3), on the
Regge residue functions which could be used to
simplify high-energy analysis. Also, eq. (4) and
eq. (5), which should be true along the trajecto-
ries at any fixed (not necessarily integral) spin,
can impose restrictions on possible parametriza-
tions of the meson trajectories. We record here
a linear parametrization of the trajectory func-
tions, which satisfies egs. (4) and (5) and closely
reproduces the observed particle masses:

o _ _(w) {
QAg =@p =%0 =% =\1 08/ * 1.08

~ 0.44 + 0.93 ¢/,

T Using the masses given by A.H. Rosenfeld et al. (Jan.
1968), eq. (4) reads (in GeVZ2), 0.80 = 0.81 for the
vector mesons. and 2.01 = 1.99 for the tensors, while

0.33\ ¢t
Upenx = Ogc = 135 )t 115~ 020 £ 0.87¢, (6)

_ o (048y ¢
and a0 =2y =(T33) + 713 ~ 015+ 0.82 L

We have shown that dynamics can restrict the
way in which SU(3) can be mixed and broken. Of
course, SU(3) might be violated slightly and
violate the consistency conditions slightly. But
if the violation of SU(3) is sufficiently great so
that it must respect the consistency conditions,
we then obtain the restrictions (4) and (5).

In summary, we have shown that the consis-
tency conditions, which is an extension of the
hypothesis of exchange degeneracy, has as con-
sequences:

1) The vector and tensor trajectories occur in
these groups: (p, w,f0, As) (K*, K**) and (¢, 0').
Within each group the trajectories are degenerate,
but the groups need not be. The trajectories as-
sociated with different groups must be equally
spaced for fixed a [eq. (4)].

2) Under the assumption of SU(3) symmetry
for the couplings, the physical f°' and ¢ are de-
coupled from (77), (wp) and (NN). The result
fO' 4 77 is independent of SU(3).
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