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INTRODUCT ION

I would 1ike to review some recent work on lTattice gauge
theories. First, we discuss the possibility that these theories
lose their quark confining property when placed in extreme environ-
ments such as high temperature!:=? or density.?® The second topic re-
views duality transformations of Abelian and Zy Tattice gauge
theories which relate them to more familiar physical systems whose
qualitative properties are known. For example, Abelian lattice
gauge theories can be mapped onto the theory of interacting closed
threads® which is in turn related (approximately) to conventional
scalar electrodynamics.®

The first topic, confinement in exireme environments, may have
astrophysical implications. The large baryon density in some neu-
tron stars and the high temperatures present in the early stages of
the universe may be sufficiently extreme environments so that
strongly interacting matter is better described as quarkium than as
nuclear matter.® Recent work on lattice gauge theories indicate
that as the temperature T is increased, a critical point T¢ is
reached where confinement is abruptly lost.'»? 1In an Abelian lat-
tice theory with no quarks the potential energy V(R) of an external
static quark antiquark pair whose members are a distance R apart
changes from linear,

V(R)

const. |R{, T< T¢ (la)
to Coulombic,

V(R)

n

0%/ [R|, T>T, (1b)
above the critical point. The phase transition at T_ is second
order. An even more interesting phenomenon occurs i% non-Abel ian
lattice gauge theories of pure giuonic matter: below T. Eq. (1a)




appiies, but above the transition the force law become short-ranged,

V(R) ~ e HIRI T>T, (2)

How is it possible that quarks which are in the fundamental repre-
sentation of the gauge group can be screened by gluons which 1ie in
the octet representation? This behavior is analogous to placing a
charge of arbitrary strength in a plasma and finding that there is no
residue of Coulomb's Taw. Apparently the charge fluctuations of the
medium are sufficient. to screen any 1mpur1ty,even its charge is in-
commensurate with the fundamental charges in the medium. So, Eq. (2)
teaches us that the non-Abelian gluon medium forms a non-Abelian
plasma which can screen gquarks of any color.

One would guess that the critical temperature is on the order
of kT % 1 GeV, a typical hadron mass. If so, this phase transition
m1ght have only been relevant in the earliest stages of the creation
of the universe. Extreme environments of a less remote variety may
occur in the interiors of neutron stars--here the baryon density is
suspected to be several times that of ordinary nuclear matter. In
this environment the nuclecns are overlapping considerabiy so one is
led to suspect that quarks are more relevant to a description of the
system than protons and neutrons. To address this question one would
1ike to place QCD into an environment of variable baryon density b
and search for qualitative changes in the theory's character as b
ranges from zero upward. Such a study has been made in 1+1 dimen-
sional mode]s of confinement and a rich spectrum of phenomena have
been found.® The qq potent1a] weakens continuousiy as b increases in
some of these models, i.e. without an abrupt phase transition.
Systematic studies of lattice gauge theories in 3+1 dimensions in the
presence of a background baryon density have not been carried out.

In this talk we emphasize lattice gauge theories and some models
of confinement. But the questions posed here have been studied in
continuum QCD as well. It has been argued that at high temperature
and/or high density many properties of these theories can be
analyzed using renormalization-group-improved perturbation theory.
The reason for this is, roughly, that high temperature or density
bring a Targe momentum scale into the problem (through large kinetic
energies ~ kT, or a huge Fermi energy) about which renormalization-
group-improved perturbation theory can be performed. Since these
theories are asymptotically free such calculations are reliabie.
Among the results obtained in this way is the computation of the
equation of state (free quarks plus calcuiable corrections) for QCD
in a large baryon density and a derivation of the plasma phase of QCD
at high temperature. The lattice and model calculations add more
detail to these results, e.g. the behavior of the theories at all
temperatures and densities, precise predictions in the vicinity of
phase transitions, etc. In ref. 7 I have attempted to collect a
partial 1ist of contributions to the continuum QCD studies. (It is
not possible to compile a complete 1ist--1 apologize in advance to
any author whose work I have carelessly omitted.)

Before discussing these topics in detail, one should realize
that the results cited above mean that QCD in extreme enviranments



becomes rather conventional. 1In ordinary environments QCD presumably
confines the quanta created by its fundamental fields. However, at
high temperature, for example, this will not be the case. This fact
undermines a frequent criticism of QCD which objects to any theory
whose fundamental quanta cannot be isolated. The advocates of this
view claim that "if the fundamental quanta cannot be isolated then
they must be irrelevant .... a more direct, simpler version of strong
interactions should be formulated without the excess baggage of
quarks and gluons.” Since QCD liberates its quarks and gluons at
high temperatures, these quanta are manifestly "real" and this objec-
tion loses much of its impact.

EXTREME ENVIRONMENTS

Let's consider the argument that Abelian lattice gauge theory
undergoes a second order phase transition at finite temperature from
a quark confining to an ordinary theory.1’? The strategy of the
analysis consists in relating this model to a simpler, more familiar
spin lattice whose phases are known. Then the calculation of the qq
potential is mapped into the calculation of the spin-spin correlation
function and the results of Eq. (1) and (2) are read off. The corre-
spondences are:

Lattice Gauge Theory & 3-dimensional XY Model
Partition Function Partition Function

Temperature <€ Inverse Temperature (3)

'qﬁ'Potentia1 &> -4n[Spin-Spin Correlation
Function]

These correspondences establish a duality relation between the two
models. Since it is known that the 3-dimensional XY model has a
second order phase transition at T*, the correspondences imply the
existence of a phase transition in the Abelian lattice gauge theory
at a temperature T.. At a temperature in the XY model above T*, the
spin-spin correlation function <s(R)s({0}> decays exponentially with
R. Using the correspondences, this means that the lattice gauge
theory confines for T < Tes

V(R) ~ -2n <s(R)s{0)>
v o~2n e”“lRi (4)
"~ u{R]

Similarly, at a temperature below T* in the XY model the spin-spin
correlation function approaches a constant, the magnetization squared,

‘at a rate determined by spin wave analysis, <s{R)s{0)> ~ mze'C/|R|,
as R~ «. This means that for T > TC in the lattice gauge theory,



V(R) ~ -2n <s(R)s{0)>
n o -2n{m e_c/]R’)
v ¢/|R] + const. (5)
which reproduces Coulomb's Jaw!
Let's establish the first part of the duality relations. The

Partition Function for Abelian lattice gauge theory at finite
B = 1/kT is

2(8) = 7 o~ B lenergy of state) _ Tr o B (6)
physical physical

where H is the Hamiltonian of the theory (time is continuous and
there are 3 discrete spatial axes: The lattice spacing is "a"). The
restriction of the sum  1in Eq. (6) to "physical states! is important.
To appreciate it recall the construction of the Hamiltonian form of
the theory.® Space is discrete with sites labelied r, a triplet of
integers, and directed links (r,n), which begin on site r and point
one lattice unit in the R direction. The degrees of freedom of the
theory consist of phases .
i¢{r,n)
e (7)

defined on 1inks, and there aré variables E{r,n) conjugate to the
angular variables ¢{r,n),

[o(r,n),E(r',0")] = 18, 6 (8)
(¢ is related to the vector potential A of QED, ¢(r,n) - ¢A(r)-ha,
and E is the electric flux operator, E(r,n) + E{r)-na%. One can
check that Eq. (8) reproduces the canonical commutation relations
between A and the electric field E of QED formulated in the A, =0
gauge when the continuum 1imit a >~ 0 is taken. )

The Hamiltonian of the lattice theory consists of two pieces: a
lattice analog of the electric field squared, and a lattice analog
of the magnetic field squared. The first term is easily constructed
since E(r,n) is the operator which measures the electric flux passing
from site to site,

pd
1inks

n,n'

2 An interesting lattice form of the square of the
q’ ! magnetic field makes use of the phase variables
T introduced in Eq. (7). Consider four Tinks 1,2,
3, and 4 which form a closed square, Fig. 1.
Associate with each square the product of phases,
Fig. 1 .
A plaguette exp 1{e{1) + ¢(2) + ¢(3) + ¢(4))



Then a possible correspondence is®*1°

VP ax s T costoll) + 5(2) + 6(3) + 64)) (10
ag® squares

(One can check that this correspondence becomes an equality in the
classical continuym 1imit. To do this, observe that Stokes' law and
the relation ¢(r,n) - gA(r)-fa imply that the sum of ¢'s around a
square is proportional to the magnetic flux passing through the
square, and that if ¢ is a smooth field and the a + 0 1imit is taken
only the quadratic term in the cos term survives in Eq. (10).) The
Jattice Hamiltonian now reads®
2 2, a2
H=% 1 i) --5 ] cos{e(l) + ... +0(4)) (1)
Tinks ag~ squares

The important features of this expression are that it has exact gauge
invariance for any lattice spacing, and that ¢ is effectively bounded,
-7 < ¢ < M.

This formulation of the theory is fully specified once the physi-
cal space of states is defined. Recall that the guantization of
electromagnetism in the class of gauges AO = 0 regquires a subsidiary
condition. It reads

7 E(r,A)|physical state> = 0 (12)
fl

which is a discrete form of Gauss' law. This constraint and the
gauge condition reduce the number of independent degrees of freedom
of the gauge field dewn to two. Eq. (12) atlows us to picture physi-
cal states as closed Toops of electric flux constructed so that
electric Flux is conserved at each site. Furthermore, since E(r.fi)
is conjugate to an angular variable ¢(r,fA) the spectrum of E(r,A)
consists of just the integers--electric flux is quantized in this
theory. So, the flux a link can
e be 0, *1, 2, etc. This allows the
{, *r physical states to be enumerated in a
N : countable fashion. Some examples are
*/ *\ - S shown in Fig. 2.
. ! *\ *r Now we can turn back to the
e expression for the Partition function,
¢ e Eq. (6}. The sum over physical states
can be replaced by a constrained sum

Fig. 2 Physical states over all states
Z(g) = ST E~B(energy of state) (13)
ann r VE(rDS0
states

The Kronecker symbols enforce the constraints of Eq. (12). Now let's
simplify the problem of computing Z{g): replace the Hamiltonian by
just the electric flux term,

TN E2(r,R) (14)



This replacement is justified because the electric term in H guaran-
tees confinement at T = 0. Using Eq. (14) we shall still find that
the theory loses confinement at a finite T.. Therefore, the inclu-
sion of the magnetic term, which weakens tﬁe confining potential at
T = 0, can only reduce T.--it could not change the argument that a
finite T, exists. Reca]? how the electric term in H leads to con-
finement. Place a static quark at position r = 0 on the lattice and
a static antiquark at position r = R. To be physical this state must
satisfy Gauss' law. This means that a unit of electric flux must

, - connect the qg pair. The lTowest
q X¥ + >3- x>+ 209 energy configuration of flux is
given by the shortest path be-
tween the pair, Fig. 3. But
according to Eq. (14} each link
on this path costs an _energy gz/Za and there are R/a 1inks, so the
total energy is g J2al + R?——the 1inear confining potential.

At this stage the Partition function is

Fig. 3 Static quarks and flux

2(8) = ] £ 5 Bem) (08)
B) = I, exp[—B E-{r, ) 5
all r v-E(r),0 2a Tinks
states

This is the Partition functicn for a three-dimensional system of
closed (V+E = 0) threads. The aficionado of spin systems will recog-
nize Eg. {15) as the partition function of the XY model in three di-
mensions*®llo-the correspondences in Eq. (3) are immediate to him and
"he is done. Let's work out these connections.

Consider a three-dimensional lattice whose sites are occupied by
two dimensional spins,

{cos®
str) - (<2260 ()
The Hamiltonian consists of nearest neighbor ferromagnetic couplings.
In terms of 6{r) we have

H=9d § {1- cosAue(r)) (17)
r

in an abbreviated but suggestive notation in which is a discrete
difference operator {4,f(r) = f(r+fia) - f{r)) in the direction u
(4=1,2,3) between sites. The statistical mechanics of this model
follows from the Partition function,

™
2(8) = 1 | @ exp[-g § (1 - costy 0| 0®)
v L r M g
r s U
=T

This expression is difficult to work with so we will replace 1@ by a
simpler model which has been analyzed in detail. To motivate it, we
note that the integrand of Z(g) is a periodic function of g(r).
Therefore, it can be written as a Fourier series. For Targe B (sma]]
temperature) the Fourier transform of exp(cosﬁpe(r)) is well approxi-

mated by a BGaussian,



exp(ﬁcosﬁhe) - 7 _exp(+?£ﬁAﬁ@)GXP(“25/4B) (19)

gu-—-—oo

The right-hand side of this replacement preserves all the important
features of the original spin Tattice and 1s numerically precise for
low temperature. But the right-hand side is well-defined for all B
and is more easily analyzed because of its Gaussian form. It is
referred to as the Villain model’? and has been studied in its own
right. We now concentrate on it and show that its partition function
is dual to the Abelian lattice gauge theory at finite temperature.
Making the replacement £q. {19) in the Partition function Eg. (18),
we see that each €(r) integral can be done and that each generates a
familiar constraint, &,%,(r) = 0. Now, Eq. (18) becomes

p
Z= I3 exp(- 1/48 25(r)) (20)
ﬁﬂ(r§=-m ro B% ()0 ﬁ?u H

Comparing Eq. (15} with Eq. (20) we have established the first part
of the duality relation: Z{lattice model) -~ Z{spin system) if
T(lattice model) -~ 1/T (spin system). Since the Villain model is
known to have a second order phase transition at T, < 6.2,'% we Tearn
that the lattice model also has two phases. We shall now see that
the phases can be labelled by different qualitative behaviors of the
gq potential and that the potential is dual to the spin-spin corre-
Tation function of the Villain model.

To calculate the gq potential we must compute the Partition
function with a source of one unit of flux at r = 0.and a sink of one
unit of flux R Tattice sites away. Now the expression for Z is the
same as in Eg. (15) except the constraint at r = 0 reads Sy.g,1-and
that at r = R reads Sy.p _q. ’

qq _ o {8 2

77 = T8, exp|-8 Yy E (r,n))(Z])
a%l p VE(r),Q0r) P % Tinks
states

where Q(r) = 6r,R

The inter-quark potential is the free energy of this system minus the
free energy of the theory without the external quarks,

VR) = - 3 [an 299 - a0 73 = - 4 an(2%2) (22)
Keeping this result in mind we now turn to the spin-spin correlation

- function in the Villain model. Consider the function,

C(R) <s1(R) + isz(R),s1(O) + 152(O)>

- i[8{R)-8(0)], (23)

In the spin system Fa. (18) C{R) becomes
C(R) = Z(R}/Z (24a)

- Gr 0 is the charge density of the external quarks.

S CT——r oA e e e oo e



where

i .
Z(R) =1 i ggéil-exp[-ﬁ ) (i-cosAyﬁ(r)) + T(S(R)-B(O))} (24b)
. r YLH

=T

Making the ¥illain replacement, Z(R) becomes more simply

m
I I T CO N 1 20 A oupl s -
Z(R) = I { 2ﬂr . (rgz_mfxpk— 78 rgu Rv(r)]exp[1 rgu zu(r)auetrf
| (0)

- '
x exp|i[8(R)-0(0 ]} ' (25)

p
A1] the integrations aver 8(r) can be done as before except at the
special sites r = 0 and v = R. The additional factor exp(i8(R)) at
the site R replaces the constraint by 4%, = 1, and the factor
exp(-i6{0)) at the site 0 produces the constraint &,y = -1. So, we
have

=2}

ZRY = § 16 1y 42 2
2p(r7¢-w r Auﬁu(r)’Q(r)exp[ 48 r%u u(r)J (26)

where the "charge” Q(r) = &p p-8y g- Thus Z{R)} is just the partition
for the lattice gauge theory in the presence of a static quark at R
and an antiquark at r = 0! So, now we have the last line in the

Duality relations of Eq. (3},
V(R) ~ -2n C(R) (27)

where the temperature of the spin system maps onto inverse tempera-
ture of the lattice gauge theory. The force laws then discussed in
the Introduction foliow and we are done.

The arguments for the moere interesting non-Abelian theory are
similar--the gauge theory computations are mapped Onto properties of
a non-Abelian spin system in an external field. "This system's phase
diagram is also well known. The resylts of this analysis have been
discussed above.

Now let's turn briefly to envivonments at ordinary temperatures
but large baryon density p. Since the Fermi surface is pushed to
high energy as p increases, one would guess that many features of the
theory resemble the theory of free quarks. Is there a phase transi-
tion at a critical density p. at which the theory passes from one of
confinement to something qua?itatively different? This question has
not been answered in lattice gauge theory. However, several models
of confinement have been studied in detail.?® One model was the two
species massive Schwinger model-QED in 1 time-1 space dimensions with
massive fermions. One species is given an (Abelian) color charge +g
and the other -g. The spectrum of this theory consists of "hadrons”
_-colorless bound states of fermions--which interact locally via an
interaction density whose strength 1s proportional to the fermion
mass m. An environment which is colorless but rich in baryon number
can be constructed and the force Taw between & static gg pair studied
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in the usual way. For large baryon density p, the potential behaves
as

V(R) m@géh-si,nztn g)-[m (28)

where e is the color charge of the static quarks. The strength of
the linear potential falls to zero smoothly as p increases indicat-
ing the absence of a phase transition. Of course, the equation of
state at high p is given by that of 2 species of free quarks plus
small, calculable corrections., It would be interesting to calculate
some dynamical properties of the 2 species Schwinger model at finite
baryon density p to see the interplay between the "hadron™ character
and "quark" character of the theory. Of course, one dimensional
models of neutron stars may not be particularly good guides to the
real world (!}, but studies beyond renormalization-group-improved
perturbat1on theory have not been done in QCD and lattice gauge
theories have not been considered at high density.

PHASES OF ABELIAN GAUGE THEORIES

The last topic I would 1ike to describe is (unfortunately) aiso
esoteric. Its aim is to understand the phases of Abelian and Zy
lattice gauge theories!® by relating them to other more familiar
models. This work was motivated by the fact that Abelian lattice
gauge theory confines for strong coupling. Hewever, for weak coup-
1ing it reduces to conventional continuum QEDR. Therefore, somewhere
in the intermediate coupling region a phase transition {or something
similar) must occur to separate these two qualitatively different
behaviors. Ideally one wants:to find an expression for the Parti-
tion function of the model which yields a useful physical picture of
the critical region. One approach to this problem takes advantage
of the recent analyses of Abelian spin systems alluded to in the
previous section. In particular, a similar conceptual problem
existed a few years ago in the 2 dimensional XY model. At high tem-
perature general theorems assure us the system is disordered and the
correlation function of a spin at r = 0 and one at r = R falls ex-
ponentially with R. However, high temperature expansions indicated

< that the theory's susceptibility d1—
e ' verges at a non-zero temperature.!
In addition, low temperature analyses
~ \. indicated that spin waves are the only
! £ relevant excitations in the system.’
But spin waves produce a spin-spin
/ﬁ T correlation function which vanishes
v W as a temperature-dependent power of
: R. The chailenge then was to find
. -3 o the excitations responsible for the
gualitative change in the spin-spin
correlation function in the critical

Fig. 4 A vortex region. Those excitations turned out
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to be vortices--spin configurations which, roughly speaking, have
non-zero winding number®® (Fig. 4). These vortices effect the spins
over all of space and clearly tend to disorder the system. A famous
energy vs. energy argument'® indicates that vortices are only impor-
tant in the statistical mechanics of the system above a critical
temperature T.. Using the Villain approximation and a renormaliza-
tion group analysis!’, these ideas have been piaced on relatively
sound footing and an appealing physical picture of the phases of the
model has been obtained: For T < T., only spin wave excitations are
important and the spin-spin correIa%ion function is power-behaved.
The vortices are bound into small vortex-antivortex pairs and cannot
disorder the system. This is the Tow temperature "dielectric" phase
of the model. As T approaches T. from below the entropy of the
system increases until the vortex pairs become unbound (TF is an
jonization point) and the vortices become free. In this "conducting
phase" the vortices disorder the system completely.

This bag of tricks can be played on the Abelian lattice gauge
theory. Beginning with the space-time symmetric version of the
theory'® (space and time are discrete), the Partition function,

Tr ~
Z= 1 J Qi—(Elﬂ-exp[— —%— Z A [1—cos(vﬁ¢(r,ﬁ)—aﬁ¢(r,ﬁ))]J
. 2.0

2
r,n 9 Py Xy

{29a)

can be written as"
oD

[z
Z= 1 m s expl~- — m {r)V{r-r) (r')} (29b)
o mE;:p AR ROR [ 2 M m,
In Eq. (29a) the unit vector n ranges over the four directions of the
Tinks in the space-time lattice. The index u serves the same purpose
in Eq. (29b). In that expression V is the four dimensional Coulomb
potential. $o, Eq. (29b) has changed the problem of understanding
the Abelian lattice gauge theory written in termg of the lattice
version of Ffy into the probiem
of understanding a four dimen-
sional system of closed current
loops interacting through a
Coulomb potential, Fig. 5. These
loops are analogous to the vor-
tices of the XY model. The spin-
spin correlation is analogous to
the expectation value of

Fig. 5 Closed threads, mﬁ(r) Wilson's 1ine integrall?®
exp[i } ¢(r,ﬁ}]. The read-
closed
contour

er should recall that this line integral is the path integral ex-
pression equivalent to the computation of the static qq potential dis-
cussed earlier. In fact, choosing a ciosed rectangular contour
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having spatial dimension R and temporal dimension T, then

V(R) = - Tim %rﬁn <expli J¢(r.n)]> (30)

T+

Following the usual terminology of spin systems, {f <exp[i y¢(r,n)]>
is short-ranged in R (i.e. ¥{R) ~ |R[), then we say the gauge theory
is “disordered®, whiie if <exp[i F¢(r,R)] 1is power-behaved (i.e.
V(R) is short-ranged), then the theery is “ordered". The eariier
discussion of the Abelian Tattice gauge theory at finite temperature
i1lustrates the general rationale behind these words.

Working from Eq. (29b) and inspired by the two dimensional XY
model, a physical picture of the phases of Abelian Tattice gauge
theory resuits:

1. For g < g., the current loops m (r) are small and irrelevant.
The perioaic character of the theory is irrelevant and it re-
duces to free electromagnetism. There is no quark confinement.

2. For g > g., the current loops are unbounded in size and are
relevant. They disorder the system making the Wilson 1ine
integral correlation function fail at an exponential rate in
R. Quark confinement follows.

This 1s an appealing physical picture. It also has many ele-
ments in common with some recent more general work by 't Hooft on
quark confinement.'® Unfortunately, the Partition function Eq. (29b)
is difficult to use for quantitative calculations for several rea-
sons. First, one must be able to enumerate closed current Toops on
the lattice. (It is possible to estimate the number of closed Toops
of a certain length from computer studies of constrained random
walks.) Second, each element m {r) of each loop interacts via a long
range potential V(r-r') with aT% the other elements m {r'). As in
the lattice Coulomb gas problem, screening effects are essential 1in
understanding the high temperature phase of this system.!?7 Both of
these probiems have surfaced before in statistical mechanics--the
counting problem appears in studies of dilute polymer solutions and
the long range interactions between elements of closed threads
appears in some models of the phases of “He.*?® One is led to con-
sider constrained random walks in external fields which account for
the long range interaction. The counting problem can then be written
as a functional integral solution to the diffusion equation in an
external field. M. Stone and P. Thomas® have carried out this pro-
gram in an approximate fashion and have rewritten Eg. (29b) as scalar
QED,

JPrue? 2.M2, 2 *, V2744
7~ d[Au]d[d)]d[‘b*] e J([!’&FU\)'i' (V¢) M +A{$9) Jd%x (3]')

where MZ, the mass of the scalar field, is computed to be negative
for large coupling g and positive for small g. This theory has two
distinct phases: for MZ< 0, a Higgs mechanism occurs and the yacuum
supports the Meissner effect; for Me > 0, the vacuum is normal. 1f
we were calcuiating the expectation value of the Wilson Tine integral
in the Abelian lattice gauge theory, then after the duality trans-
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transformations Jeading to the scalar QED formulation of the problem, -
we would be left with the calculation of the action of a pair of mag-
metic monopoles. But if the theory resides in the MZ < 0 sector, the
magnetic flux emanating from the poles forms fiux tubes which gener-
ate a linear confinement potential. If MZ > 0 there is no confine-
ment. This is the correct picture of the phases of the theory, and
the final reasoning is familiar, simple and reliable. It also bears
out the intuitions of Mandelstam and 't Hooft whc gave rough argu-
ments mapping the problem of the confinement of colored quarks in QCD
onto that of monopoles in a superconductor.?! But Eq. (31) is not
without difficulties. If the same approximations leading from Egq.
(29b) to Eg. (31) are applied to the XY model in 3 dimensions one
obtains scalar QED in 3 dimensions in place of Eq. (31). But this
theory has a first order phase transition at its critical point
while it is known from other analyses that the spin system has a
second order transition. It would be useful to improve the arguments
of ref. {5) and to pinpoint the source of the error.2! Even though
this approach is not quantitative in the immediate neighborhood of
Jcs it is interesting and suggestive.

Using Eq. (31) we can consider lattice gauge theory at finite
temperatures again. We must consider scalar QED in a heat bath.
This problem has been studied in detail in other contexts and it was
established that if the theory resided in the Higgs' phase (spontane-
ously broken symmetry) at Tow temperatures, then there will be a
finite temperature T, where the symmetry is restored.?? In the
language of the original lattice gauge theory this means that the
theory will be guark confining up to a finite temperature T. where
the property will be abruptly lost. This is our earlier result now
obtained from a different perspective.

CLOSING REMARKS

In all of the topics discussed in this review the concept of
duality of statistical mechanics played an essential role. It is
clear that this tool will be playing an increasingly important role
in exact and approximate analyses of gauge theories. This powerful
method, which predicted the c¢critical point in the two dimensional
Ising model years before Onsager solved it, will certainly be help-
ful in the quark confinement problem of QUD and, I belijeve, in our
perception of gauge theories in general in the near future.
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