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We report a detailed investigation of absorptive corrections in Good-Walker and Deck-type models for
production of three-body final states in diffraction dissociation processes. Beginning with an input elastic
diffractive amplitude which is central in impact parameter, the model generates naturally a peripheral
structure for inelastic diffraction. For pp —(nw*)p and np—(pm~)p, at small excitation mass, absorptive
effects create significant dip structure in the production momentum transfer distribution do-/dtdM near t~ —0.3
(GeV/c)?, in agreement with data from Fermilab and the CERN ISR. Similar behavior is predicted for
mp— A,p and Kp— Qp, but at larger | t|. Distributions in other kinematic variables are much less affected
by absorption. We provide a decomposition of the total do/dtdM into partial cross sections for the various
angular momentum and helicity states which comprise the low-mass diffractive enhancement. The s-wave
amplitude is dominant in both absorbed and unabsorbed models. A pronounced mass-slope correlation is
present both in the total do/dtdM and in the s-wave part alone.

I. INTRODUCTION

The prominence of diffractive excitation in in-
elastic hadronic reactions is a striking experi-
mental result with significant theoretical impli-
cations.! Although the processes were observed
at conventional accelerators, it was only with the
extended range of energy available at the CERN
Intersecting Storage Rings (ISR) and at the Fermi
National Accelerator Laboratory (Fermilab) that
their diffractive nature could be verified unambig-
uously.! Several investigations at both labora-
tories are in progress aimed at establishing fur-
ther properties, in both exclusive and inclusive
reactions.

Exclusive diffractive processes with the lowest
multiplicities are the easiest to examine in de-
tail.)~* Among these we may list

pp ~p(n), (1a)

np~(p7)p, (1b)

pp=p(pr*m), (1o
and

Tp—~@Bm)p. (1d)

The excited system is indicated in parentheses.
The cross section is concentrated at relatively
small mass M of this system,?~* M <2 GeV, al-
though the excitation spectrum may well extend to
very high values. Resonances may be present in
the data as well as a broad continuum. In analyz-
ing such reactions as effective quasi-two-body
processes, one usually defines a quasielastic dif -
ferential cross section in terms of the momentum
transfer ¢ to the isolated proton. The cross sec-
tion is confined sharply to small ¢ values.

Notable constrasts are apparent when the (quasi-

12

elastic) ¢ dependence of do/dtdM is compared with
that of do/dt for elastic scattering. In elastic
scattering at ISR energies,® do/dt falls in feature-
less, roughly exponential fashion by over six or-
ders of magnitude from its maximum at {=0, be-
fore encountering a sharp minimum at |#|~1.4
(GeV/c)®. When recast in impact-parameter lan-
guage, these data imply that diffractive elastic
scattering is a central process,® concentrated
about zero impact parameter. In contrast, in in-
elastic diffraction at small values of excitation
mass, M, Fermilab data® on reaction (1b) and ISR
data?® on reaction (la) show a dip or at least abreak
in do/dtdM at |¢|~0.2 (GeV/c)? (after a precipitous
fall from the maximum at ¢£=0). A dip at such
small |#| implies peripheral structure in impact
parameter,® with the cross section peaking at about
1 Fermi. Although a break near |#|~0.2 (GeV/c)?
has been observed in some lower-energy data,”
below 30 GeV/c, the possibility existed that the
effect was a nonasymptotic, nondiffractive pheno-
menon. The ISR and Fermilab results demon-
strate the diffractive nature of the inelastic struc-
ture. They compel the conclusion that quasielas-
tic scattering is peripheral in impact parameter,
whereas elastic scattering is central.

The Deck model® has been used extensively to
interpret the production and decay characteristics
of nonresonant low-mass enhancementsinthe (ra*)
system in diffraction dissociation reactions of the
type

ap ~(a*np. 1(e)
Here, a is an incident hadron from the set K*, 7*,
K° K° p, p, n, and so forth. The model has en-
joyed a considerable measure of at least qualita-

tive success,® although difficulties become appa-
rent in detailed experimental comparisons.® In
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particular, according to the model, the distribu-
tion in momentum transfer to the diffractively
scattered proton should resemble that for elastic
scattering, thus showing no structure at |#|~0.2
(GeV /c) in reactions (1a) and (1b). A related
problem concerns the variation with mass M of the
small ¢ slope of do/dtdM. A marked decrease of
slope is observed in the data as mass M is in-
creased above the threshold value (m, +m,x).
While explained qualitatively by the model, this
“mass-slope” correlation has not been satisfac-
torily reproduced quantitatively in calculations to
date.®

In addition to these difficulties in practice, there
are questions of principle which lead one to reex-
amine the model. In inelastic two-body and quasi-
two body reactions, absorptive corrections!® are
found to be often important. Such effects should a
priori be included also in a proper calculation of
two- to three-body reactions of type (1). The role,
indeed, necessity of such absorption terms is fur-
ther apparent when one adopts the optical interpre-
tation of diffraction dissociation.*!

In this article we report a detailed investigation
of absorption corrections to Deck-type models of
diffraction dissociation. Our approach is similar
in spirit to that of Tsarev,? although we differ in
choice of absorption terms and in quantitative re-
sults. We begin in Sec. II with a discussion of
which single- and double- (absorptive) scattering
amplitudes are important. Arguments based on
both the optical approach and the double-peripheral
model lead to similar conclusions. Adopting a
simple exponential parametrization of the single-
scattering terms, we show in Sec. III that the loop
integrals involved in obtaining the absorptive cor-
rections can be evaluated analytically. The re-
sulting absorbed diffraction dissociation ampli-
tudes are used to compute various mass, momen-
tum transfer, and angular distributions. We also
present a partial-wave decomposition of our am-
plitudes.

We show that absorption of the expected strength
produces significant structure in the momentum
transfer distributions, similar to that observed
in the data from reactions (1a) and (1b). In par-
ticular, our differential cross sections do/dtdM
show a pronounced break, whose position moves
to larger |#| as M increases. We analyze our low-
mass enhancement into the contributions from the
different spin and helicity (L, ) states of which it
is composed. An examination of the partial differ-
ential cross sections doZ*/dMdt shows that for
each component, the dip location is not fixed in |¢/,
but moves to larger |t| as M increases. This ex-
plicit result is in contrast to assumptions made in
some models® based on “universality in impact-

parameter space.” In our approach, the mass-
slope correlation is present in the dominant
(L=0, A=0) partial cross section, as well as in
the total.

In addition to its dramatic influence on the ¢ dis-
tribution itself, absorption accentuates the mass-
slope correlation and provides good agreement
with experimental determinations of the slope.
When we compare other distributions integrated
over ¢ (e.g., mass, decay angles), we find little
difference between our absorbed and nonabsorbed
results.

In Sec. IV we drop the exponential parametriza-
tion and study more realistic models for momen-
tum transfer dependences. Dropping the exponen-
tial parametrization results in somewhat more
complicated expressions, which can nevertheless
be evaluated numerically. We treat amplitudes
appropriate to the experimental situations NN
— (N®N in Sec. IVB and mp —-(pmp or Kp —(K *m)p
in Sec. IVC. Detailed results are presented.
There are no undetermined parameters in our ap-
proach. The agreement we achieve with data sup-
ports the Deck interpretation of diffractive thres-
hold enhancements, as well as the necessity for
absorptive corrections to the model.

In Sec. V we summarize our conclusions, and
we comment briefly on polarization and cross-over
predictions in the absorbed Deck model.

II. MODEL FOR DIFFRACTIVE DISSOCIATION

In this section we develop heuristic arguments
to justify the set of single- and double-scattering
graphs which we employ. We present two different
methods of reasoning, which lead to essentially
the same conclusions. First, we discuss the sin-
gle-scattering terms (IIA) and then the absorptive
corrections (IIB). Appendixes A and B supple-
ment the material of these subsections. In Sec.
IIC we give an explicit integral expression for
the absorbed Deck amplitude.

A. Single-scattering terms

As a direct generalization of exchange dynamics
appropriate in two-body reactions, one may expect
that two- to three-body processes are described
by a set of double-peripheral graphs typified by
Fig. 1(b), where R, and R, denote allowed ex-
changes. This graph would be expected to be dom-
inant in the kinematic region defined by “small”
¢, and t,, as well as “large” s, and s,. Our inte-
rest is in the high-energy double-peripheral de-
scription of the diffractive reaction (le), at small
values of the (7a*) mass and small momentum
transfer ¢,. Because the (7a*) mass is small, we



3450 EDMOND L. BERGER AND PEKKA PIRILA 12

should expect, in the context of an exchange model
description, that there will be significant effects
in the data attributable to both the “Z-channel” and
“u-channel” graphs drawn in Figs. 2(a) and 2().
Indeed, experimental checks show that character-
istics of both are present, in roughly equal weight.®
This is not to imply, however, that one has learned
how to properly add amplitudes corresponding to
t- and #-channel exchange effects. A third graph
may also contribute, although its role is highly
ambiguous. This graph is sketched in Fig. 2(c).

An argument to suggest that all three graphs
may play a role in hadronic production was made
by Fox.!* Closing one’s eyes to the profound dif-
ferences between the Pomeron (whatever it is)
and the photon, one can quickly convince oneself
that if the wavy lines in Fig. 2 were photon lines,
and all hadrons were elementary particles, then
all three graphs would have to be computed. More-
over, their sum vanishes at £, =0. Surely this
analogy is at best qualitatively instructive, and in
the realistic hadronic situation the weights of the
three graphs are not determined easily.

In Appendix A we develop the semiclassical op-
tical approach™ to diffraction dissociation. This
approach is very different in conception from the
double-peripheral model discussed just above.
However, it is gratifying that the two methods
lead to the same set of three single-scattering

a p
(b)

FIG. 1. (a) Diagram illustrating the independent
Lorentz~-invariant kinematic variables for ap —a*np .
(b) Double-peripheral exchange graph for ap— 123.
Symbols R; and R, denote exchanges.

graphs, sketched in Fig. 2.

The parametrization of the pion-exchange graph,
Fig. 2(a), is relatively unambiguous, because the
7 is not far off the mass shell (Sec. IV). Treat-
ment of the “u-channel” a*-exchange graph is less
clean, but its qualitative effects are clear.® The
third graph, with a direct channel, off-shell scat-
tering of particle a, is an enigma. Its role is un-
certain from a duality point of view and, as of yet,
no direct evidence for or against the effects of
graph (c) has been identified in data. For these
reasons, we will not treat it quantitatively in this
article. However, we note here that the (a*m) sys-
tem produced by this graph (c) has the same spin,
parity, and s-channel helicity as the initial state
a. For mp ~(pm)p and Kp —(K *m)p, therefore,
graph (c) provides J¥=0-(pn) and (K *1) enhance-
ments, respectively, whereas graphs (a) and (b)
provide predominantly J¥ =1* waves (Sec. IV). The
Ilinois group®® made a detailed comparison of
partial-wave decompositions of the m-exchange
Deck amplitude and data. They found that the pion-
exchange Deck graph is in substantial agreement
with data, save that there is a factor of 2 too much
0~ cross section in the model. Graph (c), with
the negative sign suggested by the optical model,
would remedy this discrepancy nicely.

Before turning to absorptive corrections, we
remark that the three graphs in Fig. 2 are to be
understood as nonresonant “background” graphs.
Identified resonances are present in several dif-
fractive reactions [e.g., 4, in mp— (p7)p and K ¥,
in Kp — (K*1)p]. We do not treat these resonant
contributions. Moreover, there may be other
resonances not yet disentangled from the (ra*)
low-mass background enhancement. Indeed the
search for the J¥=1"A, and Q resonances remains
an important experimental pursuit.®

B. Absorptive corrections

Ignoring graphs which correspond to vertex cor-
rections, we may identify a considerable number
of second scattering absorptive amplitudes. These

(a)

FIG. 2. The three pole terms for the diffractive pro-
cess ap —a*mp. The wavy line labeled P denotes elastic
scattering. (a) The ‘¢-channel” pion-exchange pole
graph; () the “z-channel” a *-exchange pole graph; (c)
the direct “s-channel” graph.
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are drawn in Fig. 3 for the pion-exchange single-
scattering term of Fig. 2(a). The wavy lines in
all instances represent diffractive scattering of
the two particles joined by the line. A similar set
is associated with Figs. 2(b) and 2(c). As de-
scribed in Appendix A, in the optical approach to
diffraction dissociation, only the graphs (c) and
(@) of Fig. 3 ave instrumental. The others do not
contribute. The same conclusion may be reached
in the context of the double-peripheral approach,
as we will now show. Readers not interested in
this rather long but necessary discussion may skip
to Sec. IIC.

We begin by classifying the graphs in Fig. 3 in-
to four sets. Graphs (a) and (b) are termed “ini-

(e) (f)

(i) (j)

tial-state” absorption. They involve the elastic
scattering of the incident particles a and p. As
demonstrated by a detailed technical argument in
Appendix B, these graphs do not contribute sig-
nificantly at high energy. The essential physical
reason for this is that the dissociation a - a*7
occurs in the center-of-mass frame a long time
before the system (a*r) interacts with the target
proton. [The lifetime of the (a*m) state is pro-
portional to y =E, /M,.] Graphs (c) and (d) are the
“final-state” absorption corrections. Together
they provide the dominant absorptive effect and
are discussed in detail below. Graphs (e)-(h) are
absorptions associated with the pion-exchange
line. Because the subenergy s, is not far above

(k) (£)

FIG. 3. The 12 lowest-order absorptive correction terms for the “f-channel” pion-exchange Deck graph. All wavy

lines denote elastic scattering.
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threshold, it is unclear what these terms signify.
In any case, absorption of the 7 (or a*) is best
handled by the traditional (although not compelling)
techniques of two-body scattering. An investiga-
tion of such corrections to the pion-exchange Deck
graph was reported by Berger and Irving.'®* The
conclusion is that absorption of the pion (in this
sense) does not significantly modify properties of
the unabsorbed amplitude. We will assume hence-
forth that in the parametrization of the amplitudes
we use, standard two-body /-dependent effects
associated with absorption of the pion are effec-
tively included.

The fourth set of second scattering terms, Figs.
3() -3(1), represents elastic absorption of the
ot p =~ mp amplitude. However, as is customary in
practical applications of the model,® we interpret
our Deck amplitudes as already incorporating the
full (off-shell) elastic scattering amplitude, There-
fore, these four terms are effectively included in

our parametrization of the single-scattering graphs.

Having disposed of most of the graphs in Fig. 3,
we now turn to an analysis of the important two
graphs, Figs. 3(c) and 3(d). K we employ ele-
mentary particle propagators in the intermediate
state of the “box diagrams” drawn in Fig. 3, the
same argument (cf. Appendix B) which led to sup-
pression of graphs (a) and (b) permits us to use
on-shell propagators for the particles a* in graphs
(c) and (d). Moreover, the sum of the amplitudes
for graphs (c) and (d) contains the full on-shell
propagator for the intermediate-state proton. The
off-shell parts cancel. The sum is then well rep-
resented numerically by either graph (c) or d),
with the full on-shell part of the propagator for p.
These last statements are true to the extent that
the ratio (M,x,/V's) is a small parameter. Since
our interest is restricted to values of M, 4, just
above threshold, the requirement is satisfied.

We admit that the above arguments lack funda-
mental rigor and are subject to doubts similar to
those raised concerning the absorption approach
in general.®

C. Variables and parametrizations

The amplitude for a two- to three-particle re-
action A, depends in general on five independent
kinematic variables. Our set (s, s,,S,, t;, £,) is in-
dicated in Fig. 1(a). The elastic scattering ampli-
tude A, depends on two variables, an appropriate
s and !, We use primed quantities for interme-
diate-state variables, which are integrated over.
Following the discussion at the end of the preced-
ing section, we express the absorptive amplitude
corresponding to Fig. 3(d) as

. d’
Aabs =1 @%)%Agl*p(slzy t3)A0(S, t]fy tzl’ slly szl)

X2w0(pa2 —m2)2w6(pi% -m2). (2

Variables are defined according to Fig. 4. Four-
vector momentum is conserved at each vertex.

$19= (P]_ +P2)2-

Another expression may in principle be written
for Fig. 3(c). However, it differs from Eq. (2)
only in terms which are of order (M,«,/Vs ) and,
moreover, as remarked above, the use of the on-
shell propagator is justified only for the sum of
the two amplitudes. Thus, Eq. (2) serves as our
full absorption term.

After some uninspiring algebra and integrating
to remove the two delta functions, consistently
dropping correction terms of order (M,4,/Vs),
we obtain

i - ,
Aabs = 2 fdzquAgl*p(sl.zr t3)A0(S, tll.’ tz’ sll’ Sé),
8m%s,,
®

with
t3 = —ast ’ (4)
t=t, = (G +28gr * Bur), ®
1 - - -
ty=ty =~ ~(Gar® = 287 " Bar), ®
Xg=sz/pCM=2p2L/‘/-s-’ (7)

$1=8 "'631‘2(1 "'}’>
Xz
- > 1.,
+20Qg7 * | Pyr +— Par) - ®
Xz
The two-dimensional transverse vectors D, and
D,r are the transverse components of the momen-
ta of final-state particles p and a*, respectively;
b, is the center-of-mass longitudinal component
of a*. Equation (3) is rather general. To make

|
P 1P P,
*
a |
AVAVAVAVAVAVA
1., t
MR R
"__1;———4(\/}{\/\?
2 |
a p(l pD

FIG. 4. Diagram illustrating the kinematic variables
for the absorptive graph of Fig. 3(d).
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further progress, we must adopt specific param-
etrizations of the Deck and elastic amplitudes.
These issues are taken up in Secs. III and IV.

III. EXPONENTIAL PARAMETRIZATION OF AMPLITUDES
A. General analysis

A conventional asymptotic exponential parame-
trization of elastic scattering, which we adopt
also, is

A (s, t) =is0™exp(B,1), ©)

where 0 stands for the ab total cross section.
For the moment, secondary Regge terms of order
s!/2 are ignored; we comment on their role below.
The essential kinematic ingredients of either the
m-exchange or the a*-exchange Deck amplitudes
[ Figs. 2(a) and 2(b)], which lead to a strong en-
hancement of the cross section near threshold in
the (a*m) subenergy, are expressed simply as®

A (S ps biaks tpy) =181 (e )0 ™S €D (B t,,)  (10)
and
Agr =iy 4ty 0% 5,5, XD(Byal,p) - (11)

The functions g, and g,x, which stand for the
particle propagators, decrease in magnitude as
their respective (-¢;) increase. The factor
is;,0™exp(B,1,,) represents the essential struc-
ture of the (off-shell) np diffractive elastic scat-
tering, likewise for is,,0%*’exp(B,xt,,). More
sophisticated parametrizations for the elastic
amplitude (including rotating phase Regge terms)
easily come to mind. Reggeization of the 7 and a*
improves fits to data,® while also increasing the
complexity of Eqs. (10) and (11). In this section
we adopt the simplest stripped-down parametri-
zation of the single-scattering terms. We set

Er (taa*) = exp(thaa*) . (12)

As a result, we are able to evaluate explicitly
the integrals in Eq. (3). Since these simplified
expressions contain the kinematic essence of more
complete formulas, we gain in analytic under-
standing while sacrificing little. In Sec. IV we
examine results in which

&r = (= Lgux )/ 2exp(tyx)/ (M 1% ~ 1,,%) (13)
and
Er= (m'n'z - aa*)-l . (14)

Inserting Eqs. (9), (10), and (12) into Eq. (3),

we obtain
o.a*P
A= —Ao(sp tz’ tl)_s?g

1 - 1 - \
Xexp B Blplr"—lx-zl'szzr —J, (15)

with
B=Bl+ﬁBz+Ba. (16)
X2

The unabsorbed Deck amplitude, which appears
in Eq. (15) as a factor, is

A(sy, by, t,)=i0"?s,exp(B,t, + Byt,). 1
The full scattering amplitude is
A=A)+Aus. (19

In interpreting Eq. (15), it is useful to notice
that to leading order in s, the momentum trans-
fer t, and 4, are given by ([x,/=1

t = "51T2 ’ (19)
1 -
ly= "mpsz +m 2 (1 = [x,|)

+ma*2(1—1/‘X2I)- (20)

Therefore, the exponential factor in Eq. (15) is
an increasing function of (-¢,) and (-1£,). We ob-
serve directly the expected result that the double-
scattering or absorption amplitude has a weaker
dependence on ¢, and ¢, than the unabsorbed am-
plitude. Since the two amplitudes differ in sign,
one expects cancellation to occur and, therefore,
a zero of the full amplitude A, at some well-de-
fined values of ¢, and /,.

B. Structurc in momentum transfer ¢,

The most dramatic effect of absorption is ob-
served in the momentum transfer distribution
do /dt, for production of the low-mass diffractive
enhancement. This result can be seen directly
from Eqgs. (15)-(18). At the threshold My,
= (ma* +My )7

- mgx -

P2 = (m,,*+m,,) Paxr » (21

where P *, (=-D,) is the momentum of the (a*r)
system. Therefore,

.f)zT: - |X2'§1T1 (22)

and the exponential factor in Eq. (15) becomes
expl - (1/B)(B, +B,)*t,]. Consequently, the full
amplitude, Bq. (18), passes thvough zevo at
10 W%z)z 1n<-§—a”*—1f> . 23)
We now select the specific dissociation process
pp—~pr*) at 100 GeV/c in order to specify param-
eters and determine the value of t(f). For small
values of M,,+, the typical value of Vs, is Vs /2
and s,,~s. Thus, the elastic scattering param-
eters B,=4.5 (GeV/c)™® and B;=5.5 (GeV/c)™2
are reasonable, with 0™ =38 mb=98 GeV~2. An
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exponential is not a very decent approximation to
the pion-exchange ¢ dependence of (- #,)'/2exp(Z,
-my2)/(m, 2 -1,) (cf. Sec. IV). However, at the
typical vs, ~v5/2, an exponential form with B,=3
(GeV/c)~? does adequately over a reasonable £, in-
terval. With these values we find

tO=~_0.3 GeV/cP. (24)

A similar result was obtained by Tsarev.? Ex-
perimentally there is evidence for a dip or, at
least, break in the distribution do/df, when the
mass M, .+ is near threshold. The position of this
structure in the data®? is close to —0.2 (GeV/c).
The zero we obtain is at somewhat too large |/,
indicating that the absorption term (at M,,+ thres-
hold) is perhaps too weak.

At values of M, ,, above its threshold, the equality
given by Eq. (22) no longer holds, and one must
integrate over allowed values of P,;. The result
is that the predicted dip in do /dt, disappears grad-
ually as M, is increased. This is illustrated in
Fig. 5. Owing to this variation of dip location with
mass, essentially no structure in f{ is expected in
do /dtdM if a relatively large interval (e.g., AM
20.5 GeV) in M is averaged or integrated over, as

4
10 F1— x E
> . + i
£ 10°F pp—p(nr’) |
2 = 100 GeV/c 3
ca |
o 0 = 3
T F .
e L
= | i
N
~° 10E 3
L ]
Ll

0l 03 05 0.7
It [(GeV/c)z]

FIG. 5. Double-differential cross section d%c/dM,, +
dt,, for pp—~pnr* at 100 GeV/c averaged over four in-
tervals of mass: (1) M, .+ =<1.2 GeV; (2) 1.2<M, 1+
=1.3GeV; (3) 1.3=M, .+ =< 1.4 GeV; 4) 1.4=M, 1+ <1.5
GeV. All curves are normalized to give the same value
when integrated over ¢,,, These curves are obtained
from the exponential model of Sec. III.

is often the case in bubble-chamber analyses, or
in experiments with poor mass resolution.

Because meson-nucleon total cross sections are
smaller than 0™, we expect absorptive effects to
be less important in diffractive reactions induced
by a meson beam, e.g., mp ~A,,~(omp, Kp ~Qp
- (K*mp, and nmp -7 (Nm). The position of the dip
or break in do /df, moves out to larger |t,], as
shown explicitly in Sec. IVC.

It is useful to recast the results of the above
paragraphs in impact-parameter language. The
elastic-scattering amplitude and the urabsorbed
m-exchange Deck amplitude have roughly exponen-
tial dependence on momentum transfer ¢, and ¢,
respectively [ cf. Egs. (9) and (17)]. Therefore,
both are approximately Gaussian functions of im-
pact parameter, and represent “central” colli-
sions. Absorption generates a zero at £, ~—0.3
(GeV /cP, as discussed. When translated to im-
pact space, this means that the central partial
waves are depleted. At small values of the mass
of the excited system, the resulting diffractive in-
elastic absorbed Deck amplitude has a peripheral
impact-parameter structure.

The parametrization for elastic scattering which
we adopted in Eq. (9) is equivalent to describing
the process by a fixed pole Pomeron (a,=1+a't
with a’=0). This means that we abandon from the
start any pretention to “predict” a logarithmic (or
other) energy variation for the position of the dip
in do/dt,. On the other hand, the parameters se-
lected to describe the ¢ dependence of elastic scat-
tering are taken from the data. Therefore, B, and
B, in Eqgs. (16) and (23) increase linearly with In
s, implying that |[#{?| should decrease as (In s)~%.

C. Other effects of absorption

In the preceding subsection we stressed the most
dramatic effect of absorption. It increases the
slope of the production differential cross section
do /dt,dM at small ¢, and produces a mass-depen-
dent dip/break structure near |¢,|=0.3 (GeV/c)?.
Other properties may also be recognized by in-
spection of the simple Eq. (15). We collect a few
of these general observations here, leaving quan-
titative details to Sec. IV. Readers interested pri-
marily in results of immediate relevance to data
are advised on first reading to skip directly to
Sec. IV,

1. Integrated cross sections

Because of the cancellation which occurs in Eq.
(18), absorption obviously reduces the integrated
cross section. Inpp —pmn®), the reduction is
roughly by one-half. Since absorption is some-
what weaker in 7p - A,p and Kp —@p, the reduc-
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tion is less. In practical comparisons with data,®
the unabsorbed 7-exchange Deck amplitude is var-
iously found to yield between 0.3 and 1.5 of the ex-
perimental cross section. More cross section
would be obtained if the contribution of the unab-
sorbed “u-channel” graph [e.g., K* for Kp - Q*p,
n for pp — plar™)] would be added to the Z-channel
m-exchange graph. Properties of these “u-chan-
nel” terms are observed in the data,® and, by use
of the ¢, selection procedure described in Refs.

8 and 17, their integrated contribution can be esti-
mated. Results for the ratio 0,x/0, lieinthe range
3 to 1. Because the exchanges are relatively far
off the mass shell, procedures for parametrizing
the u-channel amplitudes are inherently uncertain.
The addition of Z- and #-channel exchange ampli-
tudes or cross sections is also fraught with am-
biguity. For these reasons we do not explicitly
treat the u-channel contribution of Fig. 2(b) in this
article. Our detailed analysis is reserved to the
m-exchange (or {-channel) amplitude Fig. 2(a) and
its absorptive corrections.

Contributions from the “u-channel” graphs could
well offset the loss of cross section resulting from
absorption, so that we do not consider the absorp-
tive reduction a serious liability. The f{-channel 7
and u#-channel a*-exchange amplitudes both yield a
predominantly s-wave threshold enhancement and
have similar dependences onthe variable?,. There-
fore, our neglect of the a*-exchange graph should
not compromise the major conclusions of our
study.

2. Mass slope correlation

At least two distinctive features characterize
the mass-dependent behavior of the slope of the
production differential cross section do/dt, for
several high-energy exclusive inelastic hadronic
processes of the type ab— 1(23). First, when the
mass M,, of the (23) pair is near its thresholdvalue
(my+my), the slope is particularly lavge (as much
as twice the slope of elastic scattering at the same
beam momentum), Second, the value of the slope
falls rapidly as M,, is increased above the thres-
hold. Crudely, a factor of 2 drop in slope over an
M,, mass interval of 0.5 GeV above threshold is
followed by a rather gradual decrease, or even
rough constancy. This pronounced mass-slope
correlation near threshold has been recognized
for some years®'® in data from exclusive reactions
of the diffraction dissociation class, for example
in Kp - (Knm)p, mp -~ (3m)p, and pp - (Nw)p.

In the unabsorbed Deck model, this near-thres-
hold mass-slope correlation emerges naturally.®
It is a consequence of the double-peripheral struc-
ture in the momentum transfer of the graphs in

Figs. 2(a) and 2(b). Indeed, near threshold, the
momentum transfer ¢, and f, are linearly related,®

2
1, = Paxtitmemd) (25)

2 (m 5 +m;)
Substituting Eq. (25) in Eq. (17), we find that the
dependence on ¢, of the unabsorbed Deck amplitude
near threshold becomes

” .
Ay exp{[Bl +B, (;”—*ﬁ‘—ﬂﬂ tl} . (26)
Using the parameters quoted in Section IIIB, we
obtain A, exp(7.1¢,), tobe compared to the elastic
Agxexp(4.5t,) at the same energy. At large (M, x,),
the constraint no longer holds and

A,xexp(4.5t,). A}

The net effect yields a slope of do/dt, which is
particularly large near the threshold in M,,,. The
slope then decreases rapidly as M4, is increased.
The result derives from the structure of A, in the
t variables. No assumptions are necessary con-
cerning dependence on subenergy variables.

Absorptive effects enhance the mass-slope cor-
relation by sharpening the distribution do /dt, near
threshold. It was demonstrated above that absorp-
tion provides a zero in d%0/dt,dM, x, at ¢, ~—0.3
(GeV/c)? when M, + = (m, +m,). Numerical calcu-
lations show that the zero of the amplitude moves
slowly to larger |f | with increasing M,,. Because
the location of the zero depends also on the other
two kinematic variables (£, and s,,), the dip in
d2¢/dt,dM,, gradually transforms into a break (by
M,.=1.3 GeV), Fig. 5. It disappears altogether at
higher M,,. Correspondingly, the slope of do/dt,
in the small ¢ region 0 <|f,| < 0.2 (GeV /c)? changes
from roughly 20 (GeV/c)™? at threshold to 10
(GeV/c)? at M, =1.5 GeV, in this example. The
value 20 is to be compared to 14 for the unab-
sorbed model. Comparisons in Sec. IV show that
the absorbed calculation is in much better agree-
ment with data.

As described above, the mass-slope correlation
arises in the pion-exchange Deck model from a
convolution of momentum transfer dependences.
This is true also of the absorbed model. The
mechanism can be tested by analyzing the data in
the full four-dimensional space.® In the model this
effectively removes the convolution effect and the
mass-slope correlation disappears.

It has been found that the variation of slope with
mass in the data is essentially the same for the
two methods. Thus, the model explanation is at
best incomplete. It works for do/dt,dM, but it
fails in the four-dimensional analysis. Absorption
does not remedy the problem. As far as we can
determine, no model in the literature has been
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shown to survive the four-dimensional test. We
believe that the mass-slope correlation effect in
the full four-dimensional space can be obtained
properly only after both the #-channel and f{-chan-
nel graphs, Figs. 2(a) and 2(b), are included in
the calculation. Preliminary analyses verify this
conjecture. We expect to report the results else-
where.

3. Structure and properties of the low-mass enhancement

Although absorption produces mass-dependent
structure in the production momentum transfer
distribution do /dt, and reduces the integrated cross
section, it modifies the shape do/dM,,, of the low-
mass diffractive enhancement very little. Absorp-
tion appears not to yield the sharpening effect
which might be desirable in improving fits to data.?

The Deck model predicts that the low-mass dif-
fractive enhancement is predominantly in an orbi-
tal angular momentum L =0 state, in substantial
agreement with data.'® Other waves and nonzero
helicity states are also present. The Deck am-
plitude for the process ap —a*mp specifies the
relative contributions of these partial amplitudes.
We may decompose the amplitude 4, as

A, S5 by, 815 £5) =) Gy a (8, 8o, 1)Y; 2 (6, 9.
A
’ (29

Here (0, ¢) are decay angles in the s, =M, 4,2 rest
system, and L, are orbital angular momentum
and helicity, respectively. We may work with
either s-channel angles and helicities (6, ¢, A,) or
t-channel quantities (6;, ¢;,A;). For the s-channel,
the quantization axis is the direction of the final-
state nucleon p, whereas for the /-channel, the
axis is the direction of incident hadron a. In both
cases, the production plane normal is 2Xp. In
Eq. (28) the five independent kinematic variables
are (s, s,, ¢, ¢, and 6). The invariants s, and ¢,
may be reexpressed simply in terms of these five,
by use of formulas found, for example, in Ref. 8.
We remark that in the present discussion we are
implicitly treating all hadrons in gp - a*mp asspin-
less. Spins and helicities (L, ) refer only to the
orbital angular momentum of the (a*m) system.
Thus, appropriate care must be taken in translat-
ing our comments to the experimental situation.

Corresponding to partial-wave analysis of Eq.
(28), we obtain the decomposition

do < dott
dt,dM &~ dt,dd

(29)
I8N

It is interesting to examine the ¢, and M struc-
ture of each oZ**, for both the absorbed and un-
absorbed models. We do this explicitly in Secs.

IV. Here we confine ourselves to a few general
remarks. Because absorptive effects are greatest
for states with s-channel helicity A;=0 absorption
increases the ratio o%>°/c*s=%, However, since
the L=0, partial cross section is so dominant,
both before and after absorption, we observe little
change in the (a*n) decay angular distributions

do /dcosf and do/d¢ themselves. This last remark
is true for distributions integrated over all ¢, or
for distributions restricted to small |#,|. If one
chooses a value of |Z,|at which the absorbed L=0
wave vansihes (f; = -0.3 (GeV/cP), the remark is
obviously not correct. The detailed analysis of
Sec. IV may be consulted regarding expectations
for the f/, dependence of the various L and A com-
ponents of the diffractive enhancement.

One significant conclusion of this study is that
the strong mass-slope correlation is present in
the dominant L=0 partial wave, by itself, in both
the absorbed and unabsorbed amplitudes.

4. Nonasymptotic terms

The full diffraction dissociation amplitude A,
+Aabs is

A=Ag+A ®A,. (30)

Here we have replaced the convolution integral Eq.
(3) by the symbolic expression A, ®A,. Decom-
posing A, into terms with different dependence on
energy, we may express it as

AulSig t)=Ap +Ag +Ag +7%+, (31)

where A,xs,,, ApxS;,%R, ap,~0.5+%;, and ag,
~0,0 +¢;,. Similarly, the Deck amplitude may be
written as a series of terms with different depen-
dence on the 7N subenergy

Ao=Ao,p+Ao R +Ao Ryt ", (32)
where

Ay, p=Sis, (33)

Ao g (s13)°R . (39

Upon substituting into Eq. (30), we obtain
A= [Ao,P+AP ®A,, sl

+{Ao,r, +Ag ®Aop+Ap® Ag g |

+eee, (35)

The forms chosen for the energy dependences of
A, and A in Sec. II A resulted in our retaining
only the first term in square brackets of Eq. (35).
It is the Pomeron pole plus Pomeron-Pomeron
cut piece of the total amplitude, Save for logarith-
mic factors which we ignore, this term has the
same total s and subenergy dependences as the
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unabsorbed A, p term, Eq. (17), viz., A, pxs, ~s.
It is the dominant asymptotic contribution. The
term in the second square brackets of Eq. (35) is
the sum of the leading Regge (ay=20.5) pole part of
the Deck amplitude, plus the two Pomeron-Regge
cut terms. In applications of the Deck model to
data in the conventional accelerator range of 5 to
30 GeV/c, the full 7N elastic amplitude is used.
Thus, in practice, these nonleading s,%%*‘1 pole
terms are retained and are relevant. The Pome-
ron-Regge cut terms have the s and s; depen-
dences of

s
1/2
S.172 and s;"’%,
12

respectively. Because {s,,)=~s and{s,)xs, the
Pomeron-Regge cut terms behave not unlike the
Regge pole s,°® contribution in their effective s
and subenergy dependences. Correspondingly,
even after the Pomeron-Regge cut pieces are in-
corporated, we can again expect that absorption
will yield at most minor modifications of, for ex-
ample, the structure of the low-mass enhance-
ment in the distribution, do/dM, .,

The major effect of the Pomeron-Pomeron cut
amplitude is to alter dramatically the momentum
transfer distribution do/dt,, as we described
above, because it produces a zero in the full am-
plitude near ¢, =~ -0.3 (GeV/cf. The addition of
the Regge and Pomeron-Regge terms enhances
this result, inasmuch as these terms should also
have a zero near the same (perhaps even smaller)
value of |#,|. To arrive at this conclusion, we
have only to examine the ¢ dependences of the var-
ious Regge terms. The f, Regge amplitude is re-
puted®® to have a ¢ dependence similar to that of
the Pomeron. If so, we may repeat the same cal-
culation done for the Pomeron term, with thesame
resulting #, structure. The peripheral Regge ex-
changes (w, p, A, and, perhaps, f,) have a non-
spin-flip amplitude'® behaving in ¢, approximately
as A~ (f,+0.2 GeV?). Owing to this zero in the in-
tegrand, the convolution integral Eq. (3) will be
small, thus leaving the zero in the total ampli-
tude.

Because the behaviors of the asymptotic and non-
asymptotic terms are similar in the essential /-
dependent features of concern to us in this paper,
we continue to work only with the leading asymp-
totic [A,,p +Ap®A, p]term for the remainder of
this article.

IV. MODELS FOR NN - NN7 and Kp —> K*mp

In Sec. III we used an exponential parametriza-
tion for the ¢ dependence of the pion propagator in
the Deck amplitude. As a result, we were able to
express the absorptive corrections in a simple
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closed analytic form, whose qualitative and quan-
titative properties could be extracted almost by
inspection. In this section we study amplitudes
incorporating more realistic expressions for the
pion propagator, Egs. (13) and (14). We begin in
Sec. IV A with a derivation appropriate to an arbi-
trary function g(#,) for the pion’s #, dependence.
In Sec. IVB we specialize to the reactions pp —p
(nm*) and pn—~p(p7n~). In Sec. IV C we treat Kp

-~ (K*m)p and mp ~ (pm)p.

A Arbitrary pion ¢ dependence

We write the pion-exchange Deck amplitude cor-
responding to Fig. 1(a) as

A(Sy, by, t)=1i0"g(2,)s, exp (B, ¢,). (36)

Examples are given in Eqs. (13) and (14) of the
function g(,) which expresses the pion propagator
dependence on £, as well as factors which arise
from the coupling at the (aa*r) vertex. We ignore
Reggeization of the pion, which would introduce
dependence on s, into Eq. (36), as well as a f,-de-
pendence phase variation. These omissions are
discussed below. They are inessential to the ma-
jor conclusions of our present investigation. Re-
taining Eq. (9) for the elastic amplitude, we obtain
from Eq. (3)
T a*p
A (S, B3 1) =“‘%%—§L

x | P8raltexp(B,1] +Byt).
(37

Expressions for f{, f;, and ¢, are given in Eqgs.
(4)-(7). We define a new variable for convenience:

> > B -
= =2
V =Pur + @, + 5y Pir- (38)

As in Sec. I, D, and P,p are the transverse com-
ponents of the center-of-mass momenta of the fi-
nal-state hadrons p and a*, respectively. After
minor algebraic manipulations and a change of
integration variables in Eq. (37), we perform an
angular integration analytically. The result is a
one-dimensional integral expression for A,:

a*p
-0 A (s ;t 2 t )
Aavs (84, by 1)) = 8w ——Q-Z"(_tj——l—

- B.%t -,
—=h
Xexp[ B +B, (Bl+B3)V2}

x f dU?IL[2(B, + By)UIV|]

x g(t3)exp[ — (B, + B,)U?], (39)
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1 .
fi =l T (Par” = 09)

1
=—|—x-|-U2+ma2(1 = Xal) +m 2 (1 =1/|x,]).  (40)
2
In Eq. (39) the function I, is a modified Bessel
function. It enjoys the properties

I(x)=1as x-0
and

I(x)=exp(x)/(@mx)*/? as x—<o.

The expression (39) for A,,, contains a one-dimen-
sional integral which must be evaluated numeri-
cally. In Secs. IVB and IV C we select specific
forms for g(¢;), and discuss results. Beforehand,
however, we comment briefly on modifications of
Eq. (39) which result from Reggeization of the pion
exchange.

Reggeization® of the pion introduces a factor of
the type

[3(sy = wy)]*re~*Ton (41)

in the unabsorbed Eq. (36). Here, a, is the pion
trajectory

a,=ap(t, -m?), (42)
with slope @, and
Up= =S, =Ly tl +mE+mys®+m 2, (43)

Note that this factor brings dependence on s, into
Eq. (36) as well as a /,-dependent phase variation.
The Regge dependence on s, is instrumental in
sharpening the theoretical distribution do/dM x .,
bringing it more in accord with data, and it also
generates the required asymmetry in the Trei-
man-Yang angular distribution in the final mp rest
system.® Experimental tests of the e~i"%r phase
variation are also discussed in Ref. 8.
Unfortunate technical disadvantages in the ab-
sorption convolution arise from including a factor
of the type (41) into Eq. (36). As a result of the
extra complexity, neither of the integrations in
the two-dimensional convolution Eq. (3) can be
done analytically. It is essentially for this rea-
son that we have worked with the stripped-down
version of the 7-exchange Deck model, Eq. (36).
Nevertheless, even if the Reggeized form were
used in the convolution, important results would
not change appreciably. For Kp — K *mp at 40
GeV/c, we have computed distributions in mass,
momentum transfer, and various decay angles
generated from Eq. (36) and from the complete
Reggeized amplitude. The momentum-transfer
distributions, which are the most crucial in the
convolution integral Eq. (3), are essentially in-
distinguishable quantitatively. The same remark

applies to decay angular distributions in the (K *r)
rest frame. The only spectra affected seriously
are do/dMy, and the Treiman-Yang angle men-
tioned above. Therefore, we suggest that a con-
venient and reasonably reliable method for rein-
troducing Reggeization effects into the absorbed
unReggeized calculation is simply to insert ex-
pression (41) as a multiplicative factor on the
right-hand side of Eq. (39).

B. NN - NNm

For pp ~pnr* [or np - (pr~)p], the factor g(t,)
in Eqgs. (36) and (39) is

g(tz) = ‘[:t—z-exp(tz)/(m 1r2 - tz)- (44)

The important terms in Eq. (44) are the pseudo-
scalar coupling factor V-7, and the pion propaga-
tor (m,% -t,)"'. We ignore over-all coupling con-
stants in this article. In Figs. 6-9 we compare
various results obtained from our unabsorbed and
absorbed models for pp —p(nr*) at 100 GeV/c. The
parameters B, =4.5 (GeV/0)%, B,=5.5 (GeV/c)™3,
and 0"”~38 mb=98 GeV~2 are taken directly from
elastic and total cross-section data. Therefore,
the dip position in Figs. 6 and 7 and the slopes in
Fig. 8 are absolute predictions. The agreement
of the slopes in Fig. 8(a) with recent Fermilab
neutron dissociation data® is excellent, and would
seem to support the absorbed Deck picture strong-
ly. We now turn to a more detailed examination
of Figs, 6-9,

1. Helicity decomposition

In Fig. 6 we present the differential cross sec-
tion do/dtdM versus momentum transfer for the
production of an (nr”) system of mass M =1.3
GeV/c. Shown in Fig. 6(a) are the unabsorbed re-
sults, obtained from Eqs. (36) and (44), and in Fig.
6(b) the absorbed results obtained from

A=Ay+A

absy

with A, given by Eqs. (39) and (44). For both the
absorbed and unabsorbed differential cross sec-
tion, we show the total do/dtdM, as well as a de-
composition of this quantity into the portions for
each of the spin and helicity states which contri-
bute to the system of mass M (cf. Sec. III C3). In-
deed, the recoil system M in pp ~pM is not in a
state of unique spin, although the s-wave compo-
nent is certaintly dominant. Our Deck amplitudes
specify the relative strengths of the different spin
states.

In Fig. 6 the partial-wave decomposition is pre-
sented in terms of s-channel helicities of system
M (the quantization z axis is the direction of the
final proton). In Fig. 7 the same decomposition is
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FIG. 6. Double differential cross section do/dtdM for pp —p(rn7*) at 100 GeV /c and its decomposition into partial
cross sections for individual spin-helicity states of the (#7") system. Curves are obtained from the model of Sec. IV B.
The states are labeled by the orbital angular momentum L and s-channel helicity A; of the (n7") system, with the in-
trinsic spins of the nucleons ignored. For A; # 0, curves denote the sum of cross sections for (L, A;) and (L, —A,).
Results for the unabsorbed model are given in part (a); those for the absorbed model in (b). The over-all normalization
is arbitrary, but the relative normalization of curves within part (a) and within part (b) is fixed by the model. The rel-
ative normalization between parts (a) and (b) is also determined by the model.
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FIG. 7. As in Fig. 6, except that states of the (#7*) system are labeled by the f-channel helicity A; instead of A .
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made in terms of #-channel helicities [quantization
axis along the initial proton which dissociates into
(nm*)]. We have ignored intrinsic spins of parti-
cles. Therefore, the spin, helicity labels refer

to orbital angular momentum only in the rest sys-
tem of M. The quantity labeled o'! is the sum of
o' and o' L,

A comparison of Figs. 6(a) and 6(b) shows that
the amplitudes with s-channel helicity [x,|>1 are
not much absorbed. The states with A =0 suffer
the greatest absorption. At M, 4, =1.3 GeV, in the
state (L=0,1,=0), a zero of the full amplitude is
generated at |#|=0.37 (GeV/c)®.. The zero loca-
tions of some other amplitudes are listed in Table
I, for three values of mass. These explicit zero
locations correspond crudely but not exactly to
positions conjectured in ad koc geometric mod-
els.® 13 Most notable is the fact that all zero lo-
cations move to larger |¢| as M increases. In im-
pact-parameter language, this means that for
fixed (L, ) states of higher mass are produced
less peripherally in our model. As a result of this
motion of the zero location with M, structure in
do /dtdM is washed out if a relatively large inter-
val (e.g. AM=0.5 GeV) in M is averaged or inte-
grated over. Thus, even do%'*s/dtdM for a speci-

| T l_ T |
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2al- (@) o pnrt 100GeV/c |
20 \ -+ I;errﬁik:b-
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FIG. 8. Logarithmic slope of the momentum transfer
ty dependence for nucleon dissociation Np — (N7)p at
100 GeV/c as a function of the mass of the (N) system.
Results are shown for (a) the total cross section do/dtdM
and () the (N7) s-wave component. Data from Ref. 3
on neutron dissociation are listed in (a).
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FIG. 9. Absolute values of the unabsorbed Deck ampli-
tude A, the absorption term A, and the net amplitude
A, +A,, as a function of the momentum transfer ¢,, .
The fixed values of the other variables are listed. The
vertical bars denote the boundaries of the kinematically
allowed region. Note the turnover in A at small ¢,,
which arises from the (—t,,)Y? factor.

fic (L,2,) state may show little or no structure in
t if too large an interval in M is selected in the
data.

In Fig. 6(b) we note that the (L=1,x,=1) ampli-
tude fills in the pronounced dip in do/dt near ¢=0.4
(GeV/c)? which would occur if only the (L =0) state
were present. The dip is partially removed by a
state of different s-channel helicity. In the unab-
sorbed results, Fig. 6(a), the ratio 0°°/c* is
roughly 6 at |#|=0.4 (GeV/d?. However, roles are
entirely reversed in the absorbed model, with the
(L=1,x,=1) state being overwhelming near this
value of [¢|. At small |¢|, say £=-0.1 (GeV/c)?,

TABLE 1. Locations in |¢;| of the zeros in the ampli-
tudes for producing various states of s-channel spin and
helicity (L,A;) are given as a function of mass M of the
(n7*) system, from our absorbed Deck model of pp
—p(nt) at 100 GeV/c. The first column lists values of
(L,As). Dip positions [in (GeV/c)?] for three different
mass values are listed in columns 24,

L)\S\Mm,+ 1.1 GeV 1.3 GeV 1.5 GeV
00 0.29 0.37 0.43
10 0.33 0.47 0.63
11 0.48 0.67 0.80
20 0.17 0.33 0.45
21 0.63 >1 >1
22 0.66 0.93 >1
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we note that in our unabsorbed model, the ratio of
helicity 1 cross sections is roughly 14 (factor ~3.7
in amplitude) whereas in the absorbed model the
ratio is 6.6 (factor of 2.6 in amplitude).

We note that the two dominant amplitudes in Fig.
6(b) have (L,A,)=[0,0] and [1,1]. Because the
[0, 0] amplitude vanishes near ¢=- 0.4 (GeV /c)?,
the interference term in the cross section between
the [0, 0] and [1, 1] waves changes sign at this
value of {,. Therefore, a prediction of our model
is that the moment { Y;,) of the cross section
changes from positive to negative (with our con-
vention for defining angles) close to this value of
t,. Statements about other moments are ambigu-
ous because many small partial waves contribute.

In the {-channel helicity decomposition of Fig.
T(a), apparently bizarre effects show up in the un-
absorbed model. Indeed, the (L=1,x,=0) and (L
=2,1,=0) unabsorbed amplitudes both vanish at |¢|
=~ 0,1 (GeV/cd?. These appear to be largely kine-
matic accidents to which we attach no significance.
We do not comment in detail on Fig. 7, but we in-
clude it here for completeness. A series of re-
marks analogous to those made above for Fig. 6
could be repeated.

2. Mass-slope correlation

In Fig. 8 we present the variation with M+ of the
small ¢ slopes of do/dtdM,,+. The slope b is de-
fined through the parametrization

d;% « exp(bt).
Fits were made over the range 0.05<|#/< 0.2 (GeV/
c)®. The comparison of absorbed and unabsorbed
results in Fig. 8(a) indicates that absorption in-
creases the threshold value of the slope by roughly
9 units, but causes only a modest increase at M+
=~ 2 GeV. Absorption accentuates the pronounced
mass-slope correlation already present in the un-
absorbed model (cf. Sec. III C for a qualitative dis-
cussion). On Fig. 8(a) we have placed slope values
obtained in a recent Fermilab experiment® on #p
= (p7m7)p. The excellent agreement with our abso-
lute predictions in the mass range up to 1.4 GeV
seems to support strongly the Deck interpretation
of kinematic nature of low-mass threshold en-
hancement, as well as the need for absorptive cor -
rections in the model. At larger M,,-, from 1.5
to 2.0 GeV, the model disagrees with data. How-
ever, we call attention to the fact that in this re-
gion, obvious resonance effects are observed in
the data. They are not included in the model. The
resonances appear to be produced with a ¢ slope
which is substantially smaller than that of the dif-
fractive Deck background.

In Fig. 8(b) we present the slope of do®/dtdM.

This is the differential cross section for produc-
ing the s-wave part only of the Deck enhancement.
We observe that there is a pronounced mass-slope
correlation in both the unabsorbed and absorbed
results. Although perhaps of somewhat esoteric
interest now, we include these results in the ex-
pectation that data will soon be available. The re-
sults of Fig. 8(b) demonstrate that in our model
the mass-slope correlation is present already in
the dominant L=0 partial wave, all by itself.

An alternative interpretation®!® of the mass-
slope correlation has been suggested repeatedly.
In these approaches the mass-slope correlation
owes its existence to the presumed growth with M
of higher L and A states, produced with system-
atically smaller slopes b. For a given (L,) ), the
slope b is assumed not to vary with M, While per-
haps intuitively appealing, the approach suffers
from a surplus of undetermined parameters and
has not been tested quantitatively. It seems to us
unlikely that the data (particularly the distribution
in ¢,) would tolerate an increase of A, with M suf-
ficiently rapid to achieve the result desired. In
any case, the issue can be resolved experimen-
tally. Some data on the mass-slope correlation in
the L =0 partial wave in 7p — (omp at 40 GeV/c
have been published.’® A decrease of slope from
12+ 1 to T+ 1 (GeV/c)™2 is observed (cf. Table 1,

p. 157 of Ref. 19) from M, =1.1 to 1.3 GeV. There-
fore, available results, while sketchy, surely are
consistent with our viewpoint that the mass-slope
correlation is an intrinsic property of each partial
wave.

3. Distribution in ¢,

The unabsorbed amplitude Eq. (44) vanishes as
V=1, as I, approaches zero. As a result of ab-
sorption, this effect is partially removed. In Fig.
9 we present curves which show the magnitude of
the unabsorbed and absorbed amplitudes as a func-
tion of |¢,,| for the process pp —p (nr™) at 100 GeV/
c. The fixed values selected for the other three
invariants are indicated. The physically allowed
interval of £,, is denoted by the vertical bars. At
M,+=1.3 GeV and the (rather typical) |£,,|=0.1
(GeV/cP, |Awsl=0.3|4,|, as may be seen by com-
paring Figs. 6(a) and 6(b). Figure 9 shows that
|A | is fairly constant in £,,, dropping only grad-
ually as |t,,| increases. Owing to the different Z,,
dependence of the unabsorbed amplitude, the net
effect of absorption is to generate a fairly steep
¢,, dependence in the full amplitude |A|=|A,+A, .
Indeed, it is amusing to note that the net ampli-
tude in Fig. 9 falls with ¢, roughly as m,/(m,?
—t,,) in the physical region, just as if the full ef-
fect of absorption were to have been the simple
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replacement?® of V=1, exp(%,) by m, in the unab-
sorbed amplitude. We regard this numerical coin-
cidence as purely fortuitous. It makes little if any
sense physically. Moreover, at larger |¢,,|, where
the absorptive effects are much greater, the al-
gorithm may not even work numerically.

C. 7p — pmp and Kp > K*mp

The structure in momentum transfer £, of the
pion-exchange Deck amplitude [ Fig. 2()] for Kp
- K*mp or for mp -pnp is relatively simple. In
addition to the pion propagator (m,%—1%,)7, there
may be a mild (e.g., exponential) form factor, but
there is no significant coupling factor as in NNV
— NNm which alters the behavior near #,=0. There-
fore, for g(,) in Eq. (36) and in Eq. (39), we take

1
gt)= m,2-1,)"

Results of our numerical investigation for Kp
- K*mp at 40 GeV/c are presented in Figs. 10-12,
The parameters appropriate in this case are B,
=4 (GeV/0)™®, By;=4 (GeV/9)™2 and 0%, ~0,,=18
mb =46 GeV. In selecting B; and 0gx,, we used ex-
perimental values for the Kp elastic and total
cross sections at 40 GeV/c. The value B, =4 is the
experimental slope of the mp elastic differential
cross section at s, ~s/4=20 GeV?,

As noted in Eq. (39), the strength of the absorp-
tion term is proportional to 0***, Because ¢*? <%
o™, absorptive effects are weaker for Kp — K *mp
than for pp —pnr*. One practical result of this
difference is that the absorption dip in do/dt,, is
displaced from [£,,[=0.4 to 0.6 (GeV/¢)? in the
model, as is seen from a comparison of Figs. 6(b)
and 10(p).

In Figs. 10(a) and 10(b) we compare do/dtdM for
our absorbed and unabsorbed models of Kp = K *mp
at 40 GeV/c. The chosen value My 4, =1.3 GeV is
roughly the central point of the low-mass (K *n)
enhancement (Q bump) generated in the model. The
decomposition of do/dtdM into portions associated
with different (L, 1) values of the (K *r) system is
also presented. For this reaction we limit our
presentation to a figure with the /-channel helicity
decomposition. Remarks analogous to those made
above for the helicity decomposition of pp - pnr
may be repeated here.

In Fig. 11 we show the (K *r) mass dependence
of the slope of do/dt for both our absorbed and un-
absorbed models. Again, there is a pronounced
mass-slope correlation for the total amplitude, as
well as for the dominant s-wave part. Absorption
accentuates the correlation. Data points in Fig.
11(a) from a Serpukhov experiment® are in closer
agreement with the unabsorbed expectations. In
this connection, we remark that an examination of
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FIG. 10. Double differential cross section do/dtdM
for Kp —K *mp at 40 GeV/c and its decomposition into
partial cross sections for individual £-channel spin-hel-
icity states of the (K *m) system. The spin of the K * is
neglected. States are labeled by orbital angular momen-
tum and £-channel helicity A;. Results correspond to the
model described in Sec. IV C; part (a) for the unabsorbed
model, and part (b) for the absorbed version.
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the s-channel azimuthal angular distribution of the
K * from 8-14 GeV/c K p -~ (K*r~)p data suggests
equal contributions from the K * and m-exchange
Deck graphs.® The K* graph has a much weaker
mass-slope correlation. When both K * and 7 con-
tributions are properly included, the unabsorbed
and absorbed curves in Fig. 11(a) should both drop.
Similar depression is not expected to be significant
in the NN— NN case because the baryon exchange
“u-channel” contribution appears to be less than
half as great as the pion contribution.

In Fig. 12 results are presented as a function of
the (K *r) invariant mass. Cross sections have
been integrated over #,. Displayed in Fig. 12(a),
for the unabsorbed model, is the decomposition of
the cross section into contributions from various
s-channel partial waves. The L =0 wave is domi-
nant over the full range shown, Myx, <2 GeV, with
the (L=1,1,=1) wave in second place. The effects
of absorption on these two leading amplitudes are
presented in Fig. 12(b). The cross section in the
L =0 state is reduced by nearly a factor of 2,
whereas the (L=1,)1,=1) cross section decreases
only to ~85% of its unabsorbed value.

I [ ] I*o T
i Kp—K wp
20 40 GeV/c |
+ CERN-IHEP -
16 TOTAL -

ABSORBED

201 s WAVE -

SLOPE OF do/dt (GeV™2)
H

ABSORBED

12 -
r_ -
8 UNABSORBED -
I N N B I
472 14 16 18 20
MK*"(GeV)

FIG. 11. Logarithmic slope of the momentum transfer
t,p dependence for Kp — (K *m)p at 40 GeV/c as a function
of the mass of the (K *m) system. Results are shown for
(a) the slope of the total do/dtdM and (b) the (K *m) s-
wave portion. Data from Ref. 21 are indicated in (a).
Slopes are determined over the ,, interval 0.05=|t,,]|
=0.30 (GeV/c)2.

V. CONCLUSIONS AND DISCUSSION

In this article we investigated in detail absorp-
tive corrections to the Deck model for diffraction
dissociation. After establishing which absorptive
terms are appropriate physically, we demonstra-
ted that absorption of the expected strength re-
produces quantitatively the mass-dependent struc-
ture in momentum transfer observed in the Fer-
milab data® on diffractive neutron dissociation np
- (p7m~)p and ISR data® on proton dissociation pp
—~pmr*). This agreement supports the Deck in-
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FIG. 12. (a) Relative cross sections for the produc-
tion of different (L, A) states of the (K*w) system in
Kp —K *p at 40 GeV/c are plotted as a function of (K *n)
mass. These values are obtained from the unabsorbed
m-exchange Deck model of Sec. IV C. The label (11)
denotes the sum o!! +¢!+ 1, and (21) refers to o* +o?: -1,
(b) The reduction of the cross section as a result of
absorption is shown as a function of (K *r) mass for the
total cross section and for the two dominant partial
cross sections.
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terpretation of the kinematic nature of diffractive
threshold enhancements and the necessity for ab-
sorptive corrections to the model. There are no
undetermined parameters in our approach. The
structure in do/dtdM at small ¢ indicates that dif-
fraction dissociation is a peripheral process in
impact parameter, whereas elastic diffraction is
central.

We decomposed our full amplitude for the pro-
cess ap —Mp into partial amplitudes for each of
the angular momentum and helicity states which
contribute to the system M. We showed how ab-
sorption affects each of these partial amplitudes
individually. For the dominant L=0 amplitude,
absorption generates a zero at small |#/, which
moves to larger |#| as M increases. At fixed M,

a pronounced minimum at a well-defined |¢| value
is predicted for the dominant partial cross sec-
tion doZ=°/dtdM, At fixed M, this dip is partially
filled in by contributions from higher-L states,
when the full distribution do/dtdM is examined.
Whether one selects a partial cross section or the
full do/dtdM, the structure predicted in ¢ is washed
out if too large an interval in M is averaged over
in the data. This happens as a result of the dis-
placement of structure to larger |{| as Mincreases.
High-statistics data with good mass resolution are
crucial.

In examining do/d¢dM at small ¢, we find that
there is a pronounced decrease of the slope in ¢
with increasing M. This mass-slope correlation
is present in the unabsorbed Deck model, but it
is considerably accentuated in the absorbed model
(Figs. 8 and 11). We note also that the mass-slope
correlation is a property of the dominant L=0
partial wave in both the absorbed and unabsorbed
models. In other words, in our model a strong
decrease of production slope with mass occurs
even if only the dominant L=0 wave were present
in the data. This contrastswith other approaches®:?
in which the mass-slope correlation owes its ex-
istence to the presumed increase with M of con-
tributions from states of higher L and helicity.
The two viewpoints can be tested by partial-wave
analyses of inelastic diffractive data. Present
sketchy results'® support our viewpoint.

As just summarized, the most dramatic effects
of absorption are seen in the production # distri-
bution do/dMdt. The integrated mass distribution
do /dM shows little modification in shape in the
small M region of interest here. The over-all in-
tegrated cross section is reduced to roughly one-
half its unabsorbed value. At small ¢, the decay
angular distributions in the rest frame of M are
essentially unchanged by absorption. At larger
|t], [20.3 (GeV/c)?], where the absorption term
and the unabsorbed amplitude are of comparable

magnitude, the predicted partial-wave structure
is modified appreciably. Figures 6, 7, and 10
may be consulted for numerical estimates. Inso-
far as statistics allow, it is advisable to perform
experimental partial -wave analyses of the system
M in several different regions of |#|. If all |4 val-
ues are included, little difference is seen between
the absorbed and unabsorbed models.

In our calculations, we worked with somewhat
simplified versions of the pion-exchange Deck
amplitude, and we considered only elastic absorp-
tion. If inelastic intermediate states are intro-
duced into the absorption convolution, the over-all
effect of absorption becomes stronger. On the
other hand, if Regge phases and all spin effects
are included in the Deck amplitude, the resulting
incoherence reduces the final absorptive effects.

Certain predictions based on the unabsorbed
Deck model must be reevaluated in the light of our
present conclusion that absorptive corrections are
necessary. Several of these issues have already
been treated above. We include brief remarks
here on two other questions. Nucleon polarization
effects were discussed by Berger and Fox.??"® As
a result of absorption, the effective Pomeron in
inelastic diffraction has structure in ¢ which is
considerably different from that in elastic scatter-
ing. The inelastic Pomeron amplitude passes
through zero near |£|=0.3 (GeV/d?, whereas the
elastic Pomeron amplitude is apparently feature-
less out to |f{~1 (GeV/cd?. This structure is re-
flected in the ¢ dependence of the inelastic polari-
zation. Thus, rather than the positive polariza-
tion, with a double zero near |£[~0.6 (GeV/c)?,
expected previous?'® for pp —p (nr”), we now ex-
pect a change of sign of polarization from positive
to negative near |#|=0.3 (GeV/c?. The location of
this zero moves to larger |¢{| as M,,+ is increased.
When integrated over |¢|, the polarization as a
function of M, + will also be smaller, owing to this
sign change. This may explain the small polari-
zation?® observed in inclusive reactions pp —pX at
small My. We can only urge again that detailed
polarization data as a function of ¢ and M in selec-
ted exclusive inelastic diffraction dissociationpro-
cesses should be of great assistance in further
defining the dynamics of quasielastic reactions.
Experiments with the Argonne polarized proton
beam are of obvious interest.

The second remark pertains to crossovers in ¢
of the differential cross sections observed when
data are compared for pairs of reactions related
by charge conjugation in the 7 channel. A detailed
study of this subject was published!” in the con-
text of the unabsorbed Deck model. An interesting
example is the pair K% - Q% and K% - Q%, for
which the unabsorbed pion-exchange Deck graphs
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are given in Fig. 13. These pion-exchange Deck
graphs predict that at £=0, do/dt (K°)>do/dt{(K°),
because o(rp)>0(m*p). They also predict that the
slope of do/dt(K°)> slope of do/dt(K°), because
this is true of the slopes of the 7*p elastic scat-
tering amplitudes which are imbedded in the Deck
graphs. These two expectations disagree with
data,?? for which just the opposite results are true.
Absorption involves rescattering of the final K*p
and K * systems. Because the nonexotic K *p
total cross section is presumably greater than the
exotic K *'p total cross section, just as o¥™?
>0¥"? we expect the absorptive effects to be
stronger in the K% reaction than in K%. These
reduce the =0 value of the K% cross section rel-
ative to that for K%. Unfortunately, this goes in
just the wrong direction to remedy one of the dis-
crepancies with the data. Absorption increases
the slope of do /dt(K°) relative to that of do/dt(K°),
counteracting the tendency of the unabsorbed am-
plitude, but its effect on the magnitude of the cross
section destroys the cross-over. In our view,%'?
a proper description of the cross-over requires
including both the K *- and m-exchange Deck am-
plitudes. This conclusion is, if anything, strength-
ened by our present demonstration that absorption
alone is not the answer to the cross-over problem.
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FIG. 13. Pion-exchange Deck graphs for the processes
(@ K% —K**1p and ) Kb ~K*"1*p.

APPENDIX A: OPTICAL PICTURE OF DIFFRACTION
DISSOCIATION

In this appendix we derive a model for the dif-
fractive production of particles at high energy
based on the Good and Walker!! picture of diffrac-
tion dissociation. Our approach here is similar in
some respects to that of Bialas, Czyi, and Kotafi-
ski.!! We consider the scattering of any hadron a
on any target, f{, so that the initial state consists
of a and £, For convenience, we make certain
simplifying but inessential assumptions. We imag-
ine that target ¢ has no diffractive excitations.
Second, we assume that hadron @ can couple dif-
fractively to itself, ¥,, and to only one other state
¥p. [As an explicit example, a=p and b = (n7")].
Finally, we work in only one dimension.

Diffraction is defined to be pure shadow scatter-
ing of orthogonal states ¢, and ¢,, which means
that under diffraction ¢, -7;¢; where the n; are
real numbers, 0<7;<1. The states y, and ¥, are
linear combinations of ¢, and ¢,:

Z)Da= a1¢1+a2¢2)

Pp=—0p0, +0,0,.

We have chosen the phases such that «, and «, are
real. All states are normalized, a,®+a,2=1,

If the initial state ¢, =9, itis transformed un-
der scattering into

Your = 04N @y + QM 2P 5 +Pype (A2)

The nondiffractive wave ¢y, is orthogonal to ¢, and
¢,. The elastic scattering amplitude is obtained
in the usual fashion as

A = I(Zpout - lpa)
=n,-1. (A3)

(a1

Here,
Ng=a2 M, +05°1, . (A9)
Similarly, the inelastic diffractive amplitude is
AP = 9] Yo,
=a,;0,0; ~1,). (A5)

Note that the inelastic diffractive amplitude is zero
unless 71,#71),.

We assume next that o, >>a,, which is to say
that states ¢, and ¢, are approximately equal to
Y, and ¥,, respectively. By virtue of the normali-
zation condition, this means o, =1, n,=9,, and
N, 21N,=a,%7, +0,%n,. Note that 1, and 71, and,
hence, A? are determined quantities once the elas-
tic scattering amplitudes are measured for ¥, and
¥p. The assumption a, >> a, is motivated by the
fact that the inelastic diffractive cross section to
state b is smaller than the elastic cross section.
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In order to connect the above discussion to the
processes ap — (a*m)p of interest in this article,
we identify i, as the incoming hadron state ¢ and
P, as the (a*n) system. To achieve the one-dimen-
sional picture, we take the a* and 7 to be in a state
of fixed longitudinal momenta and fixed relative
transverse position. At high energies, this rela-
tive position does not change appreciably during
interaction with the target. Finally, we must fix
the impact parameter b of the collision. F the
fractional longitudinal momenta of a* and 7 are
X2 = Dox/D, , and X3= Py /Do, the equation

b =x,0, +X5 05 (A6)

relates the impact parameter of incident hadron
a to those of hadrons a* and 7.

The amplitude for (a*7) elastic scattering is not
known, of course. To get around this problem, we
assume that the transmission strength of the (a*m)
system is the product of the strengths of the par-
ticles individually:

Ny =M% (0,) 1 (D5) . (AT
Equation (A5) can then be rewritten as
iAD(Xp Xz,gv Bz) = az(Xn X2» 517 Bz)

X[0,%(B)7 ;(By) =1, (B)].

(A9
This expresses the diffractive amplitude for pro-
ducing the (a*nm) state. Possible dependence of the
7; on X, and X, has been suppressed. Replacing the
7; by the elastic scattering amplitudes [ cf. Eq.
(A3)], we rewrite the term in square brackets in
Eq. (A8) as

na*nw =M, =Z(AC1: +A§l* - Ail) - Acﬂl’A:l* . (Ag)
The factor @, in Eq. (A8) contains both the aa*r
coupling constant and the two-dimensional Fou-

rier transform of the propagator of the (a*m) state.
For elementary particles this propagator is

A=M 5,2 =m2)"t, (A102)

Straightforward calculations allow A to be reex-
pressed at high energies as

= X3
A P (A10D)
or as
A=—=%X2 (A10c)
Myx™ — Uy

where the momentum transfers f, = (f,x ~ $,)?, and
Uy =(py — p,)%. Equations (A10b) and A(10c) are
just the propagators of the off-shell 7 and a*, re-
spectively, in Figs. 2(a) and 2(b). Consequently,
the first three terms in Eq. (A9) can be identified
with the single-scattering graphs (a)—-(c) in Fig. 2.

The last term in Eq. (9) is the sum of the absorp-
tion graphs Figs. 3(c) and 3(d). (Both time order-
ings are clearly included.)

In this picture we observe that absorption graphs
Figs. 3(a) and 3(b) correspond to a situation in which
the transition a— (a*n) occurs inside the target, a
case which is clearly not important at high energy.

APPENDIX B: CALCULATION OF SOME
ABSORPTION TERMS
In this appendix we discuss the calculation of

absorption terms represented by Figs. 14(a)-14(d).
The calculation is done to leading order ins. We
include only the elastic intermediate state, mean-
ing that intermediate-state particles a, a*/ and p’
are represented by an elementary particle propa-
gator,

1

I
Ay =x)=06(y, - °)f_(§4'7€)—46—m(y T

= 9(y0 - xo)

x_[(;;e"'"'(""‘)zﬂié(llz _miZ)e(pO)éBl)

where m; is m,, m,x, or m,.

The 6(y, - x,) function is included because we
want to retain the contribution only of the particle
pole, atp,=+(m;2+P%)'/2. The first expression in
Eq. (B1) leads to the same final result (to leading
order in s) with or without this 6 function, but this
is not true for the second expression. Therefore,
inclusion of the 6 function is essential.

FIG. 14. Kinematic variables for the four absorption
graphs discussed in Appendix - B.
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At high energies it is useful to use light-cone
variables:

1
by =W(Poil)3),

1
Xy =W(x°:t x3). (BZ)
For fast forward moving particles,
b+ zpo‘/_z_y
p_z (7’}’!2 +pT2)/2p+ ’

%, =const + %,V 2,

(B3)

x_=const. (B4
For backward moving particles, the roles of p.
and p_ (x, and x_) are interchanged. We work in
the center-of -mass frame with particles p and p”
moving backward and @, a* and 7 forward. In
terms of light-cone variables,

p2=2p.p_-pr?, (B5)
P x=p.x_+p %, =Pr* Xr. (B6)

The 6 function 6(y, - x,) can be replaced by 6(y.
—x,) (0(y_ —x_)) for the forward (backward) mov-
ing particles.

Excluding corrections of order 1/s due to the
small differences in the momenta of p and p”, we
see that graphs (a) and (b) differ only by the sign
of the argument in the 6 functions 6(y, - x,) and
6(x,~1y,). Therefore, their sum contains no 6
function in (y, —%,). It can be represented by graph
(a) with a simple on-shell propagator for particle
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p’. A similar result is true for the sum of graphs
(c) and (d). Because the p, component of the mo-
menta p,, p;, and p} are of order 1/V's, we find
also that the momentum transfers q, ; ~1/V's, and
43+ ~1/Vs. Therefore, the cutoff in g,., provided
by the ¢, and g, propagators, does not occur until
g;~V's. (We select g, as the independent integra-
tion variable, ¢q,=p, -p, +¢,.) Transforming back
to space-time, we see that

z+—u+~J}§. (BT

This result can be understood heuristically as a
consequence of the Lorentz contraction of particle
a. The momentum component p,, of the final-
state pion is of the order Vs (although reduced by
a factor of order m,/m ). Because q,. is small,
we see that g,, = p,, is large; ¢,_ has to be small
to keep g,® small. It follows that the exchanged
pion is moving forward, and only the time ordering
u, > v, gives an important contribution. (In other
words, only the particle pole at g,.~0 - ¢€ is im-
portant, while the contribution of the antiparticle
pole at g,. ~0 +2€, q,- largeand negative, is strongly
suppressed.) By Eq. (BT . > v, leads to 2,2 v,.
Therefore, graphs (a) and (b), which contain the
factor 6(v, —z.), do not contribute to leading or-
der in s. On the other hand, the factor 0(z, —v,)
in the sum of graphs (c) and (d) can be dropped be-
cause the argument of 6 is always positive. On the
basis of the above arguments, we describe the to-
tal contribution of graphs (a)-(d) by Eq. (3) of Sec.
II.
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