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Working in the Schr6dinger representat ion and Ao = 0 gauge, an approximate 
Yang-Mil ls  ground-s ta te  wave functional qS[A] is constructed in the following way: we 
begin by constructing the vacuum wave functional N0[A] of an Abelian gauge-field 
with global SU(2) symmetry,  and then modify and generalize No[A] so that it becomes 
invariant under  local SU(2) gauge transformations.  This ansatz leads to a solution of 
the Schr6dinger equat ion HqS[A] = EoW[A] for the Yang-Mil ls  vacuum, which, 
al though approximate,  may correctly describe its confinement properties. 

Given ~ [ A ] ,  it is argued that the vacuum expectation values of the Wilson loop 
integral A(C) and of 't Hoof t ' s  flux-tube operator  B(C) satisfy the Wilson- ' t  Hooft  
criteria ( A ( C ) ) - e  . . . .  ( C ) ,  ( B ( C ) ) - e  perimeter (C), for the confinement  phase of a gauge 

field. The confinement  mechanism is essentially identical to the one discovered by 
Polyakov in 3-dimensional  compact  QED.  The reason for the similarity is that there is 
an "analog-gas"  approximation 'to fixed-time vacuum expectation values (qs]oN~): the 
analog gas in this case is a plasma of smoothed  W u - Y a n g  monopoles.  

1. Introduction 

It is generally recognized that the confinement properties of a non-Abelian 
gauge theory are intimately related to the structure of the ground state, o r  
"vacuum", of the theory. In fact, it has recently been shown by 't Hooft [1] that 
the phases of a quantized gauge field can be classified according to the vacuum 
expectation values (VEVs) of two operators A(C) and B(C), where A(C) is the 
Wilson loop integral for the closed curve C, and where B(C) acts on states like a 
singular gauge transformation, creating a line of magnetic flux along the curve C. 
The confinement phase of a gauge field, with no spontaneous symmetry breaking, is 
characterized by 

(A (C)) - e -area~C), (1. i a) 

(B(C)) - e p e r i m e t e r ( C )  , (1. lb) 
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If the curve C is chosen to lie entirely in 3-space at fixed time t, then the VEV of 
A(C), B(C), and in general the VEV of any operator Q evaluated at fixed time, 

depends only on the ground state of the theory, since 

(O)t = (~IQIW), (1.2) 

where ( )t denotes the fixed time (or, for N-point functions, equal times) VEV, and 
where 't t represents the ground-state wave functional. 

The purpose of this paper is to construct an approximate non-perturbative 
expression for the Yang-Mills ground-state wave functional ~,  and use this 
expression to test the confinement properties of the theory. We will work in the 
Schr6dinger representation with a pure Yang-Mills field, SU(2) gauge symmetry, 
canonically quantized in the Ao = 0 gauge. The problem, then, is to solve for the 
ground state of the Schr6dinger wave-functional equation 

i f  d3x{ $2 6ACk(x)2 + B~k (x) 2 }~[A] = go~[A], (1.3) 

subject to the Ao = 0 gauge subsidiary condition (Gauss's Law) 

b 6 0 [6aCOk +geabcAk(x)] ~ * [ A ]  = . (1.4) 

Our approach to solving (1.3) non-perturbatively is guided by the following 
considerations: if we were to set the bare coupling g to zero, then (1.3) would 
reduce to the Schr6dinger equation of an Abelian gauge field. Also, for arbitrary g, 
(1.4) implies that q~[A] is invariant under local, infinitesimal, SU(2) gauge trans- 
formations. So it is reasonable to construct trial wave functionals based on the idea 
that the form of the ground-state solution of the Abelian theory should be 
combined with the requirement of local gauge invariance in the'simplest possible 
way. The strategy adopted in this paper is therefore to begin by solving for the 
vacuum wave functional ~o[A] of an Abelian gauge field with global SU(2) sym- 
metry, and then modify and generalize this state so that it becomes invariant under 
local SU(2) gauge transformations. By a careful choice of parameters in the trial 
wave functional, this approach leads to an approximate solution of the Yang-Mills 
Schr6dinger equation (1.3), which also satisfies the Gauss' law constraint (1.4). 

Using this expression for the ground-state ~[A], we verify that the confinement 
criteria of eq. (1.1) are satisfied. The physical mechanism underlying the 
confinement phenomenon is essentially identical to the one discovered by Polyakov 
[2] for compact QED in 2 + 1 dimensions. The reason for this similarity is that 
fixed-time VEVs in the 3 + 1 dimensional Yang-Mills theory are found to be closely 
related to the vacuum-to-vacuum amplitudes of Yang-Mills theory formulated in 
3-dimensional Euclidean space. In fact, the basic result of our analysis will be that 
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a first approximation to the VEV (Q), at fixed time is given by 

I @A(x)Oexp[-l l d3x[B~(x)] 2] 
<,I,I o[,I,> (1.5) 

ff ~A(x)exp[-% I d3x[Bck(x)]2] ' 
# 

where the exponent (1/~)~ d3xB 2 is the action of the 3-dimensional theory. The 
residual gauge freedom in (1.5) must be extracted by the standard techniques. As in 
3-dimensional compact QED there is an analog-gas approximation to (1.5); in this 
case the analog gas consists of a plasma of smoothed Wu-Yang monopoles. This 
picture is not unlike Mandelstam's [3] picture of the vacuum as a coherent state of 
monopoles, and is also probably compatible with the meron picture of Callen, 
Dashen and Gross [4]. 

The organization of this paper is as follows: in sect. 2 we quantize and solve the 
free Maxwell field theory in wave-functional formalism. Nothing new is contained 
in this section, but since the wave-functional formalism is rarely used and may be 
unfamiliar to the reader, the solution of the Abelian theory is carried out in detail. 
In sect. 3, non-Abelian, locally gauge-invariant wave functionals are constructed, 
and a solution for the Yang-Mills ground state is obtained. In sect. 4 we set up a 
crude analog-gas approximation to (1.5), verify the confinement criteria, and discuss 
the physical picture associated with our vacuum wave functional. 

2. The Abelian vacuum 

The Hamiltonian of the free Maxwell field Ak(X) is given by 

n = ~ f dax[E~(x)+ b~(x)], (2.1) 

where 

bk (X ) = a.kiiOiAi(x ) . (2.2) 
In quantizing the Maxwell field in Ao = 0 gauge, we impose the equal-time com- 
mutators 

[Ei(x), Aj(x')] = i6ifi3(x -x'), (2.3) 

and seek solutions to the Schr6dinger wave-functional equation 

HqZ[A] = i~  ~ [ A ] ,  (2.4) 

subject to the Ao = 0 gauge subsidiary condition 

[akE~ ]qS[A] = 0. (2.5) 
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Working in a basis where Ak(X) is diagonal, the conjugate momentum operator 
Ek has the form 

8 Ek(X) = i - -  (2.6) 8Ak(X) " 

So the problem is to find solutions to the time-independent Schr6dinger equation 

½ f d3x[ 82 t-bk(x)2]gr[A]=g*[A], (2.7) 
8Ak(X) 2 

with 

8 
O , ~  'tr[A] = O. (2.8) 

Separate Ak(X) into transverse and longitudinal parts 

A,(x) = A~(x)+A~(x) 

1 I - ( 2 ~ . ) 3 / 2  d3k [AT(k)+A~(k)] e 'kx, (2.9) 

where 

O,A T = 0, A~ = O,~o. (2.10) 

Then 

H=a f d3k{ 82 82 4_k2A~(k)A~(_k)} 
8a~(k)Sa~(- k) 8a~(k)Sa~(- k) 

(2.11) 
The subsidiary condition becomes 

8 
Ok6~k(X) W[a ] = O, 

which implies that ~[A] = ~[AT], and therefore 

H*=~ f d3k[ 

= g~. 

Now introduce 

a2 +k2AT(k)AT(_k)]~ 8AT(k)aAT(- k) 

~/2k L6Ai (-k) ' 

a +(k, a) = ~ E~ (k) ~ k A T ( -  k) , 
fiAT(k) 

(2.12) 

(2.13) 

(2.14) 
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where ~1, ~2 are polarization vectors orthogonal to each other and to k so that 

[a (k, A ), a +(k'; A ')] = 6A~,~3(k - k'),  

AT(x) = (2~.)3/----- 5 1  f ~ d3k ~-1 ~ e[(k)[a(k'A)eikX+a+(k'A)e ik.x] , (2.15) 

2 
H= d3kk Z [a+(k,A)a(k,A)+~63(O)] • 

A--1 

The creation-annihilation operators in (2.14) supply the correspondence between 
the usual formalism and the wave-functional formalism. 

Eq. (2.13) is simply the Schr6dinger equation for an infinite-dimensional 
harmonic oscillator; the ground-state solution is easily seen to be 

't%[A]=N exp[-½ f d3kkA~(k)ATs (-k)  1 

[ ; 1]  
1 d3x2 d3xl b n ( x 2 ) b n ( X l ) ~  (2.16) = N  exp -47r--- 5 

This solution is given by Wheeler [5]. Excited states are constructed by operating 
successively on q~o[A] with the creation operator a +(k, A) of eq. (2.14). 

Generalization of (2.16) to the case of an Abelian field theory with a global 
SU(2) invariance is trivial. In that case the Hamiltonian is 

H=½ f d3x[ 62 ~-bCk(x) 2] (2.17) 
~A~(x) 2 

where superscript c = 1, 2, 3 is the isospin index, and the ground-state wave 
functional is just 

q % [ A ] = N e x p  d3x2d3xl T r [ b , ~ ( x z ) b n ( X l ) ] ~  , (2.18) 

where 

b,, (x ) = E n i i O i A i ( x  ) = b 2L, = b ~ lr~ , (2.19) 

with r ,  the Pauli matrices. Eq. (2.18) is the starting point of our work in the 
following sections. It can be readily verified that 

H * o f A ]  = ~o'~o[A] 

= {1× 2~spin)× 3(isospin~ × 63(0)  X j d3k k}XPo[A], (2.20) 

which is the appropriate zero-point energy for this free-field theory. 
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3. The Yang-Miils vacuum 

We now confront the problem of solving the SchrSdinger equation for the 
Yang-Mills field: 

~ ff d3x[ 32 ~-BCk(X)2]~[A]=~o~[A] (3.1) 
6A~k(X) 2 

where 

B,~ = B~L,, = e,,#(OiA i - igAiAj) , (3.2) 

subject to the Ao = 0 gauge subsidiary condition 

b 6 [6°oak +ge,bcAk(x)] ~ qr[A] = 0. (3.3) 

Our approach is to reconcile the form of the Abelian vacuum (2.18) with the 
requirement of local SU(2) gauge invariance imposed by (3.3). This leads to the 
following ansatz for the Yang-Mills ground state: 

qt[A ]= N exp [ - f d3x2 d3x1 Tr [Bn(x2) V21Bn(Xl) V12]~(x2, x1)] 

= N e -R~A~ , (3.4) 

where N is a normalization factor, and where Vab is the path-ordered line integral 

Vab = V(xa, Xb, A(x))~Pexp ig Ak(z)dz  k , (3.5) 
b 

with the path between xa and Xb chosen to be a straight line. The function 
~b(x2, xl) is to be determined. 

Substituting the trial wave functional (3.4) in the Schr6dinger equation (3.1) 
gives 

[ 62R 8R 2 ~ 2 

In the Abelian case, the zero-point energy g~o comes from the 62R/SA 2 term, 
while the quadratic (&R/&A) 2 term cancels the "potential energy" B 2 term. Before 
evaluating (3.6) in the non-Abelian case, we first introduce some notation: 

~BI==_ ~Bn(zl) f~(z~)r -ig[Ai, Lc]}~3(x-zl)  
- -  __  E n i  k "ttl i 1- ,  c ~A~(x) 

6V(z2, Zl, A)6A~(x) - - 6  [ f f ~  ] 6V21 -~ -6n~(x~Pexp ig A k d z  k . (3.7) 
1 

To evaluate 6V21, let (r, p)~-(r, r, 0) represent coordinates in a cylindrical coor- 
dinate system centered on the line passing through points Zl and z2. Coordinate r 
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runs along this line, with 7-1 ---- 7-(zl) < 7"2 = 7"(Z2) ,  while p = (r, 0) labels the position 
perpendicular to this line. Then 

6V21= ig I£2dz" Snk63(z- x) exp [ ig f,:~A " dz']L~ exp [ ig f£ A " dz '] 

f~ z,z 2 2 exp[igf[2A Iz]A.dz, ] 

[ I /  ] [Izl A ] =tg]k o tP~)exp ig A . d z '  Lcexp ig .dz '  , (3.8) 

where the line integrals are path-ordered (the P is omitted for simplicity) and 

dzk(r) 
-fi,~' (r). (3.9) 

dr 
f~, z2 0") 

Then, 

6R 
~a~Ix) 

f 
- -  = 2 J d3x2 d3Xl Tr [8B2 V21B1 W12 +B2~V21B1 V12]~b(x2, xl),  (3.10) 

where we have used &(z2, Zl) = &(zl, z2), since O(x2, xl) is necessarily an even 
function, so that altogether 

HRt[A] = { I d3x2 d3xl d3x4)(x2, xl) 

x {Tr [~B2 V21~B1 W12] [ZPo] 

+Yr [Bz~(6Vzl)B1 V~2] [ ZPl ] 

+Tr [B26V21B,~V12] [ZP2] 

+ 2Tr[B2{ V2,aB, aV12 + a V21 aB 1 V12}] } [ZPs] 

_2 f dSx2dSxldsx,2d3x~ 3 , , d x&(x2, Xl)&(x2, Xl ) 
J 

x{Tr[~B2V21BIV12]Tr[6B2,V~21BrV~2] [Oo] 
, ! t +Yr [Bz6VzlB1 V12] Tr [Bz,6VzlB1, V12 ] [Q1] 

+2Tr[$BzVz1B1V~e]Tr[Be,$V'2~BvV]2]} [O2) 

+ f d3x Tr [B,, (x)B,, (x)]} * [ a ] .  [PE] (3. 1 1) 

At this stage, it may look doubtful that all the terms multiplying 'It on the r.h.s. 
of (3.11) would add up to a constant; moreover, terms ZPa and ZP2 are highly 
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singular. In fact, 

ZP1 = J d3x2 d3Xl d3x Tr[B262 V21Bl  V12]~b(x2, Xl), (3.12) 

where 

6 
(~2 V21 _ (~ACk(x) ~W21 

= (ig)2(f~2f~2)82(px)g2(px)O(rx) 

"x exp[ig fxX2A.dz](1LcLc+ lLcLc)exp[ig f~i A.dz] 

[I? ] = 3g282(O)S2(px)O(rx ) exp ig A • dz , (3.13) 
1 

with 
1, TI < Tx < T 2 

0(rx) = 0, otherwise' (3.14) 

so that 

ZP1 = -]g282(0) I d3x2 d3xt Tr [B2 V21B1  Wa2]q~(x2, Xl)  J d3x 82(px)o(rx) 

= -3g282(°) I d3x2 d3xl Tr [B2 VzlB, V12]~h(x2, Xl)lX2 -Xll. (3.15) 

Likewise, 

ZP2 = I d3x2 d3xl d3x Tr [Bz6Vz1B1~Vlz]~)(x2, Xl) 

f 3 12 21 2 2 = (ig) 2 d3x2 d3xl d x(fk fk )6 (px)8 (p~)O(rx) 

×Tr[B2exp[ig fX2A.dz]Lcexp[ I~I A • 

xexp[ ig I~l A . dz]L~ exp[ ig f~i A . dz]] , (3.16) 

and, using 

Tr [B2 exp[ ig I~  A " dz]L~ exp[ ig f~i A " dz]Bl exp[ ig f X' A " dz]Lc 

x ex A.  dz 
~x 2 

1 = -~ Tr [B2 V21B1 V12], 
f l  2¢21 k jk = - 1 ,  (3.17) 



.LP. Greensite / Yang-Mills vacuum wave functional 477 

ZP2 becomes 

ZP2 ~ -lg262(0) J d3x2 d3X1 Tr[B2 V21BI V12](~(x2' Xl)]XE-Xll, (3.18) 

and therefore 

ZPl + ZP2=-g262(O) f d3x2d3xl Tr[B2V21Bi V12]d)(x2, xl)lX2-X1]. (3.19) 

So already the simple form (3.4) has led to an area singularity in (3.11). Apart 
from this short-distance singularity in (3.11), there is also the possibility of diver- 
gences from the integrations over large distances in (3.19). Suppose, for example, 
that ~b(x) decreases like Ix[ -2 at large distances, as in the Abelian theory. Then 
R[A] is finite, and likewise ~[A]  is non-zero, only for configurations A(x) falling 
faster than [xj 1. On the other hand ZP1 +ZP2 is (infrared) finite only for A(x) 
falling faster than Ix[ -3/2. So there are configurations for which XP[A] is non-zero, 
while ZP1 + ZP2 diverges (the fact that the Yang-Mills energy density of the axial- 
gauge perturbation vacuum is infrared divergent, and the relevance of infrared 
finite states for confinement, was first pointed out by Mandelstam in ref. [3]). In 
order to avoid such infrared-divergent contributions to the energy, ~b(x) can be 
chosen to fall off exponentially at large x. In fact, if ~b(x) is a function sharply 
peaked at x = 0, there is the hope of cancelling ZP1 and ZP2 against the potential 
energy ~B 2 term. 

In order to proceed it will be necessary first to regularize the terms in (3.11), 
and then to show, as in perturbation theory, that all infinities can be absorbed into 
infinite rescalings of the bare coupling g and field A(x). We will regularize by using 
the definition [6] of the functional derivative 

6 , F[A] = lim lim 1 {F[A}'(z) _ + e6ik 6 ac6,3 (z - x)] -F[A ~' ]} (3.20) 
6Ak(x) ~ o  ~ o  • 

where 6~3~(z) is a 6-sequence which is chosen such that 

62(:)=0, I:j>A, 

f d 3 z 6 3 ( z ) = l .  

It will be convenient to use 

] 1 
4-- 3~ 6](z)= ~rr,~ 

(0, 

Now define 

& 

6xA~(x) 

]:l<a, 

_ _  a c  3 a - -  F[A] = lim 1 {F[A~(z)+ ESjk8 6~ ( z -  x)]-  F[A i ]}, 
+~0 • 

(3.21) 

(3.22) 

(3.23) 
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and let 

H = lim HA A~0 

=lim Id3  [ A-~o 6AA~, 6A~, " (3.24) 

It is not hard to show that HA, like H, is a hermitian operator. First note that 

(Xtfl' i ~ x I / 2 ) :  f ~AXIf~[A]idxIf2[A~-~(~3] e=o 

i d = de I ~A**[A-e6~,]*2[A] ~=o 

= f ~ A { - i ~  ~ff*}*z{ A] 

8A 

so that iSA/SAA is hermitian. Further, by expanding an arbitrary functional F[A] in 
a functional Taylor series, it is easy to see that 

8 i ~  F[A] = 0 (3.26) i6A(x ) , 

Since i6A/SAA is hermitian, and commutes with i8/8A, it follows that HA is hermi- 
tian. On the other hand, HA breaks gauge invariance to order A. This is an 
unpleasant feature of our regularization scheme, but it will not introduce any 
special difficulties in what follows. 

Having introduced the regularized Hamiltonian HA, the problem is now to find a 
sequence of wave functionals Ta[A]  satisfying 

lim HA~A[A] = lim ~ P A [ A ]  = $o~'[A]. 
A~O A~O 

That is, for each A, 

HA TA[A] = (~A + nA[A])~A[A], 

where, for any A(x) 

(3.27) 

(3.28) 

lim ~7~ [A]~A [A] = 0. (3.29) A--*0 
The approximation in this procedure is due to the fact that, for each A, ~A[A] is an 
eigenstate of HA only up to a functional ~A[A]. And while ~?A[A] is small for any 
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given A(x), it may nevertheless have an infinite expectation value. In other words, 
eq. (3.29) does not imply that 

lira (r/;,[A])= 0. (3.30) 
A ~ 0  

For this reason, it is not necessarily true that ~o of eq. (3.27) is the exact vacuum 
energy, or that ~ [A]  is the exact eigenstate. On the other hand, a solution ~[A]  of 
eq. (3.27) may be an exact eigenstate of H ;  and in fact it is quite simple to con- 
struct examples of a sequence xp~ converging to a known solution ~o of a soluble 
theory, satisfying (3.27) but not (3.30). One such example is given in the appendix. 
The point is that in systems with infinitely many degrees of freedom, a small devia- 
tion of the wave functional ~ from the true solution can produce infinite cor- 
rections to the energy expectation value. But providing that ~ [A] is significant 
only for the very high frequency components of A, a solution ~x[A]  of eq. (3.27) 
should be an excellent approximation, at least in the infrared regime, to the true 
solution of the Schr6dinger equation. 

It will be simplest to first state the answer to the problem posed above, and then 
verify it. The solution to (3.27) is provided by the sequence of wave functionals 

xIrA[A] = N~, e x p [ -  I d3x2 d3xl Tr[B~(xz)V2,B,(xl)V12] Z• J '  

(3.31) 

where 

1 e -xz/~ 
~'.2(Ix/) : 2 , W 3 / 2 1 2  X 2 , 

I d3x ~b,2(x) = 1, (3.32) 

and where Z, a dimensionless constant, and #, a constant with dimensions of mass, 
are related to t2 and to A 1 = A by 

A = 1 1  = 1 / ( p . Z 4 / 3 ) ,  

12 = a/(txZ 2/3) ~'- 1 1 2 2 ~ t  1 , (3.33) 

with a another dimensionless constant whose value will be determined below. 
Evidently Z ~ o e  as 1 ~ 0  (/x is fixed). To make sense of ~ [ A ]  in the A ~ 0  limit, 
introduce the rescaled coupling gr and field A r defined by 

A = - , ~ A  r , 

1 
g = ~ g r ,  (3.34) 
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so that, in terms of the rescaled quantities 

~x[Ar]= Nx exp[ - f d3x2 d3x1 Tr[Br (xe) Vzl 

×Br( X1)V12] 2..r.3/2A2 ( x : - x l )  2 ] J '  

; [ "1 6A 6 +-zBre] (3.35) Hx = 1 d3x Z ~xA r ~A r 

From here on we will drop the superscript "r", and let A(x), g denote the rescaled, 
rather than bare, field and coupling. The scaling behavior in (3.33) is different from 
what one expects in the weak-coupling regime, which again suggests that ~A [A] is 
correctly describing only the infrared behavior of the theory. 

It must first be shown that qsA[A] is normalizable, i.e., that 

R[A] = J d3x2 d3Xl Tr [B2 V21B1 V12](/~A2(X2 --Xl)/[d~ 

= 2 ~ d3x d3XYr [Bn(X-x) V21Bn(X+x)Vlz]OA2(2x)/Iz > 0 .  (3.36) 

Make the change of variables 
x - ,  (x, 0, ~)  = (x, ~ ) ,  

X - ,  X ~ :  [R(O, ~ ) ] X  

(X"l, ~ = X2,  X3 ), (3.37) 

where R(O, ~) is a rotation matrix chosen such that the X~ n axis points in the (0, ¢) 
direction, while vectors X~  (0, n n -= X2,  X3 ) are perpendicular to this direction. Then 

R[A]  =2  dO. dX~ d X ?  x2dxTr[B.(X?-x ,X~)V21 
¢:X3 

× B. (X? + x, X~ ) V12]~x2(2x)/tz 

f i f? = d a d X ~  dX~ n dxTr[B.(Xa~-x, Xn~)V21 

x Bn(X~ +x, X~ ) V~2]x2d),~2(2x)/,. (3.38) 

Now along any given line corresponding to fixed values of X±, f~ there exists a 
gauge transformation such that V21 " ~  1 and B~ (X~ + x, X ~  ) ~ B" (X n + x, X~ n. 1~) 
along this line". Then it is always possible to re-express (3.38) as 

=1 f dO dX~ dX~ dxBT(Xnl -x,  X n, R[A] f~) 

/z 27r3/Z)t2 e (3.39) 

~' In other words, suppose L is a line in 3-space. Then it is always possible to find a gauge 
transformation A(x)~A'(x)= U 1A(x)U + iU alTU such that A'(x). eL = 0 for x ~ L, 
where ~i_ is a unit vector in the L direction. But if the component of A'(x) parallel to L 
vanishes for x on L, then Va2~ 1 for all points (xl, x2)~L. There will, of course, be a 
separate gauge transformation for each line L. 



J.P. Greensite / Yang-Mills vacuum wave functional 481 

The elimination of the line integrals V21 from (3.39) has, of course, a price: B~ is 
not a function of five variables (position + orientation), rather than three (position 
only). Now let 

.-.. t-~- 1 + x ,  X ± ,  ~)) = ( 3 . 4 0 )  dkB. (k, X ±, 1~) 

Then 

R[A]= 1 f df~dX~ a dk~lq,~( k v a  o ~ , , ,  (327r)/x ~ . . . . . . .  ~, .o,._,. (k, X n, fl)} e -x~k2/" . 

(3.41) 

First recompute ZPa and ZP2: 

&l 8V21 
(~AI~V21 &,A~(x) 6A~(x) 

Ix x2 = ig dzg63(z -x )  - -  
1 

(3.42) 

< . d+ ex+gI Add] 

But since the integrand in (3.41) is positive definite, it follows that R[A] > 0, 
Q.E.D. So a sufficient condition for R[A] > 0, and therefore for normalizability of 
q(A] in (3.31), is simply that the one-dimensional Fourier transform of x24~ (x) be 
positive definite; this condition is satisfied by 4~ in (3.32). 

To verify that q~[A] defined by eq. (3.35) is a solution to (3.27), let HA operate 
on ~ ,  and find 

HA ~x[A ]= { z  l d3x2 d3xl d3Xld)x2(x2- xl) 
tx 

x {Tr [&IB2 V218Bt V12] [ZPo] 

+Tr [Be&I(6Vel)B1 V12] [ZP1] 

+Tr [B2&, V2~B16V12] [ZP2] 

+Tr[B2{V218xlB18V12+t~g216xlB1V12}+(t~x,~-~)]} [ZP3] 

I 3 1 , , 2 d3x2 d3Xl dax; d3x~ d x--g4)a:(x2-xl)g)~(x2-Xl) 
Z # 

x {Tr [&IB2 V2aB, V12] Tr [8B2, V~21B1 , V~2 ] [(~0] 

+ Yr [Bz&I V21B1 VlZ] Tr[Bz,6V'21Bv V]2] [Q1] 

+(Tr[8a~B2V21BI V~2]Tr[B2'SV'zlBrV~2]+(6Al~--)6))} [02] 

+ Z f d3x Tr [B. (x)B,,(x)]}~x [a] .  [PE] 
3 
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=ig I~7~dzk63(z-x){ig f~=dz'k63,(z'-x)exp[ig fT=A.dx']Lc 

xexp[ig f~'A exp[ IxlA d x ' ] i g  • 

i ~ L x~ f~ 

× exp ig ~" } [ i A.d~']. (3.43) 

Now, 

exp [ ig f~7=A " dx']&a2(x2- x,) = {l +O(a2)}4)a~(x2- xl) , 

LcLc =~4.1. (3.44) 

So 

L 
x 

3 • 2 2 ~ t ~,XlX2O3 
~ x l c ~ W 2 1 - = 4 ( l g )  ~ ( p x ) O ( T x )  aZl, l'k Oa,(Z'-X)[I+O(A2)] 

1 

=_3g2a2(pDO(r~) 1 2a 111 + 0(/~ 2) ] 
~ 7"/'a 1 

9 
- 8rrg2C$2(px)O(rx) I1 +O(a2)]. (3.45) 

Then, 

ZPx =1 f d3x2 d3Xl d3x Tr[B26h,(6V2,)B1V12] L ~h2(x2-x1) /z 

1 9g: 1 f - Z 8~r /zA~ d3x2 d3xl Tr[BzB1]&A2(Xz-Xl) 

x y d3x 62(p~)O(rx){1 -~- O(a2) } 

_ 1 9g 2 1 I d3x2d3xlTr[B2]cb*=(x2-xOlx2-xl]{ll+O(a2)} 
Z 8rr iza 2 

1 9g 2 a2 2)}, 
- Z 87r 3/=/za~{f dSx Tr[BZ]+o(A (3.46) 

where, since terms of order A2 inside the integral are odd under x2 ~ x2, (x2-X1) --~ 
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-(Xz-Xx), surviving higher-order terms are O(A22). Next, 

1 ZP2 =~-~ f d3x2 d3Xl d3x{igf~'~282(px)O('&)} 

x Tr[B2LcB16~, V12]~A2(X2 -- x~)(1 + O(A2)) 

f / ;" } (ig)2 d3x2d3xl d3x f l2 (~2(px)O(Tx  ) , 3 --X) = dz k6 ~, (z' 
Z / , ~  - -x2 

x Tr[BzLcBiLc]qbx2(x2- xl)(1 + O(12)) 

_ (ig)2 _ 1 f d3x2 d3xl Tr[BzB1]c~x2(x 2_xl) 
Z #  4 J 

× I daxf~2,2(px) fxildzk631(z-x)(l +O(A2)) 

_ 1 3  g2 A2 { I  d3xWr[B2]+O(A2)} (3.47) 
Z 8 77" 3/2 /d,/~ 2 

The leading contribution of the ZP3 term is basically the same as ZP1 and ZP2, 
differing only by a numerical factor. ZP3 is given by 

1 f d3xTr[Bn(x2) 6A1 V12}]~A2(X2__Xl)q_(~AI<..~6 ) ZP3 =~-~- j d3x2 d3x1 - -  {V218B1 
6~,A~(x) 

= + f  dax2d3xld3x{igfxi2dzm,mk~31(z-x)} 

x e,ik Tr[B, (x2) V2xLcVxl(OiL,- ig[Ai, Lc])x183(x -xl) V12 

- B,  (x2) V2~(0~L~ - ig[A~, L~ ])~,83(x - x~) VlxLc Vxa]6,a(x2 - Xl) + (6x, ~ 8), 
(3.48) 

which after some manipulations is found to be 

1 3g 2 (A2-¼x/~A1)/ fd3xTr[B.(x)2]+O(A~)}.  ZP3- (3.49) Z 477 -3/2 /,zA 2 t d  

So now we have 

ZP1 + ZP2 + ZP3 + PE 

1 
=[Z Z4r3/2 - -~  j f  , (3.50) 

where we have again added the subscript "r" to emphasize that it is the finite, 
rescaled coupling that appears in (3.50). In order to have the r.h.s, of (3.50) vanish 
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in the A ~ O, Z ~ 0o limit, let 

477. 3/2 
a - e (3.51) 

9gr 

in eq. (3.33), so that 

Z 2 - 9gr 2 (a2--~2X/ '~ ,~l )  
477.3/2 //'3" 12 , (3.52) 

and therefore 

Z P I + Z P 2 + Z P 3 + P E = O + O ( Z  1/3). (3.53) 

The ZPo term contains, in the Abelian theory, the zero-point energy of eq. 
(2.20). In the present case it is given by 

1 /" 3 
ZPo =-~-~ j d x2 d3Xl d3x Tr[8xlB2 V21~B1 V12]~/~a2(X2- Xl)  

113 = ~  d x2d3xld3xTr[(OiLc-ig[Ai,  Lc])x28]~(x2-x)V21 (3.54) 

× (O~Lc - ig[Ai, Lc])xl83(xl - x )  V12] 

x ( E ~ ) ~ 6 . ~ ( x 2  - x l ) ,  

which becomes, after some integration by parts, 

1 ~ 3 2 3 
ZPo = ~ -  -- d3x2 d Xl(~:nik) {Tr(LcV21LcV12]SA1 (X2--X1)(--O2)t~)A2(X2 --Xl) 

+ Yr[Lc (Oi - igAi)~ VzlL~ V12]$3~ (x2 -xl)O~dA~(x2 - x l ) (  + like terms) 

+Tr[L~(Oi - igAi)~ V2l(0~ - igA~)~ V121631 (x2 - x~)4,h~(x2 -x l ) (  + like terms)} 
(3.55) 

But notice that 

{(Oi - igAi)x2 V 2 1 } O i ~ ) A z ( X 2  - -  X1) = 0 .  (3.56) 

This is because, if we let 011 denote differentiation in the x2-Xl  direction, and let 0z 
denote differentiation in the orthogonal directions, then (0jl-igAlO V2~ = 0 and 
0±~x~(]x2-Xl]) = 0. Furthermore 

{(Oi - igAi)~2 V21}qS~2(x2 - x l )  
1. 12 9 

= [0 + (~tgenikB,,(x2)fk)IX2 -Xll + O(Ix2 -Xll-)]~ba~(x2 -Xl ) ,  (3.57) 

SO that 

ZPo = ~;~ + O ( Z  1/3), (3.58) 
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where ~A, the zero-point energy, is given by 

32f  3 ~ = d XSAI(X)(-V2)~2(X) 

= ZS(a@3/2) Vtz4 , (3.59) 

which diverges as A ~ 0 (V is the volume of 3-space), as expected. 
Of the remaining terms, O1 and Q2 go to zero faster than 1/Z, since both terms 

contain a factor 

1 
f d3x2 d3Xl Tr[B28V21B1 V1214~x2(x2-xl) F= z 

ig f 
= ~ j d3x2 d3xlf~282(p~t Tr[B2LcB2],bx~(x2 - x l t  + O(,~2/Z). (3.6O) 

But note that Tr [B~(xz)LcB~(x2)] = 0; therefore F = 0+O(A2/Z),  and likewise 

O~ : 0 +O(,~2/Z),  

02 = 0 + O(Az/Z).  (3.61) 

Finally, there is the Oo term (which, in the Abelian theory, with ~h(x~-x2) 
1/(Xl-X2) 2 would cancel the potential energy b2(x) term) 

2 
f d XC~x2(X2--XI)~A2(X 2 --XI) O0 = - - ~  d3x2 d3xl d3x,l d3x; 3 , ; 

x Tr [(~lB2 V2~Bt V12] rr[SB2, V'2~B1, V'~2 ] 
[ 1 ¢. 

= t - Z #  - - ~  ] d3x Tr[{OiB~ - ig[A .  B~ ]}{0iBm -ig[Ai, Bin]}] 

x E,,ike,~ik } + O(A 2/Z) .  (3.62) 

So Oo is O(1/Z) .  
Putting everything together, we have 

Hxgrx[a] ={T,~ + O ( Z  '/3)+O(Z-1)+...}xtrx[a], (3.63) 

where g~x is given by eq. (3.59). The other terms in brackets in eq. (3.63), which are 
all on the order of various inverse powers of Z, correspond to r/A[A] in eq. (3.28). 
Inspection of the actual terms in r/x[A] shows that the product r/x~x is infrared 
finite in the sense that the functional rla[A]q~A[A] is finite regardless of the long- 
distance behavior of A(x). If r/x[A] diverges (which occurs for A(x) falling as x -~/2 
or slower) like (Volume) e, then ~[A]--, 0 like exp{-(Volume)e}. For any 
sufficiently smooth configuration A(x), the product r l x [ A ] ~ [ A ] ~  0 in the A ~ 0, 
Z--, oo limit, so that eq. (3.29) is satisfied (although the expectation value (r/x) is 
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infinite). The restriction to "sufficiently smooth" (in this case twice differentiable) 
configurations is necessary for this reason: if the derivative of the non-Abelian 
magnetic field Bn(x) is not everywhere finite, then it is possible for Qo[A] to be 
infinite while qS[A] remains finite, violating eq. (3.29). But with this one restriction 
to differentiable field-strengths, it has been shown that the sequence of gauge- 
invariant wave functionals q~x[A] in (3.35) does indeed satisfy (3.27), and in the 
sense of eq. (3.27) represents an approximate eigenstate of the Yang-Mills Hamil- 
tonian. 

To summarize: we have found that satisfying Gauss' law exactly as a constraint 
on states introduces new, infinite contributions (ZP1 and ZP2) to the energy 
density, so that a gauge-invariant version of the perturbative ground state (i.e., 
q~(x2, x l ) ~  1 / ( x 2 - x l )  2 in eq. (3.4)) is a very poor choice for the Yang-Mills 
vacuum. However, with the ansatz (3.4) and a scheme for regularizing infinities and 
rescaling the bare field and coupling, it is possible not only to eliminate the 
unpleasant infinite terms, but even to construct a wave functional which is an 
approximate eigenstate of the Yang-Mills Hamiltonian. As in renormalizable 
perturbation theory, the regularization is to be removed only at the end of a cal- 
culation; it can be seen, for example, that 

lim H ~ , ,  ¢ [ lim H~,] [ lim * ~ ] .  (3.64) 
A~O L A ~ 0  -I LA~O 

In fact, since the bare coupling g is 0, taking the A ~ 0 limit prematurely would 
reduce the non-Abelian theory to an Abelian one. 

4. Confinement properties of the Yang-Mills vacuum 

The non-Abelian ground state ~x of eq. (3.35) is, in the usual terminology, a 
periodic 0 = 0 vacuum. This fact was guaranteed at the outset, since q~x, or any 
wave functional of the form (3.4), is invariant under any finite, non-singular, gauge 
transformation*. This means in particular that if g , (x)6  SU(2) is a time-indepen- 
dent topologically non-trivial gauge transformation in the nth homotopy class 
(gn : 53  ''> 53), then 

~ x [ g o  A] = qtx [A],  (4.1) 

which is just the definition of 0 = 0 vacuum periodicity. 
The ansatz (3.4) does not specify the function ¢(Xl, x2), which can only be 

found by explicit calculation. In sect. 2 it was found for the Abelian theory that 
= 1/2rr2(x2-xl)  z, while for the non-Abelian theory we have seen that ~ = 

¢~,(x2-xx)/Iz.  This has an immediate consequence for the long-distance behavior 

* The Gauss' law constraint requires only that q?" be invariant under infinitesimal gauge 
transformations. 
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of vacuum fluctuations. A comparison of q ' tAbel ia  n of eq. (2.18) and q~A[A] of eq. 
(3.35) shows that, for the Abelian theory, only configurations falling faster than 1/r 
at spatial infinity have non-zero amplitude, while for the non-Abelian theory it is 
only necessary to fall faster than 1/x/r. Now it is believed that configurations with 
1/r (non-pure-gauge) long-distance behavior are necessary to satisfy the Wilson 
confinement criterion. Such configurations are suppressed in the Abelian vacuum, 
but are present with finite amplitude in the Yang-Mills vacuum. This fact is 
suggestive concerning confinement, but not yet conclusive. The test of whether a 
non-Abelian gauge field is in the unbroken confinement phase is whether or not the 
Wilson-'t  Hooft criteria of eq. (1.1a) (confinement) and (1.1b) (no symmetry 
breaking) are actually satisfied. 

Let Q[A] be an operator which depends of A(x)  only at a fixed time t. Then, 
using (3.35), the fixed-time VEV (Q[A]) is given by 

(Q[A]) = lira (x~ [ Q ] ~ )  

I J = l i m N ~  @A(x)O[A]exp  - -  d3x2d3x1Tr[BzVzlBiV12]~bA~(x2-xl) . 

(4.2) 

Of course, eq. (4.2) is only as good as the sequence ~ ,  which may itself only 
approximate the true ground state. Let us now make a further approximation to 
(4.2) by taking the limit A -~ 0 inside the functional integral 

; I ] 

The validity of this last step is hard to estimate; in sect. 3 it was seen that taking 
the A ~ 0 limit prematurely can be dangerous. But hopefully for those operators 
Q[A] which are mainly sensitive to the large wavelength-long distance structure 
of the theory, eq. (4.3) is a reasonable approximation. In other words, one expects 
(4.3) to be valid when the scale of Q[A] (e.g., the dimensions of a Wilson loop) is 
in a regime where the effective coupling is large. The residual gauge freedom in 
(4.3) must be extracted by the standard techniques. 

Eq. (4.3) is identical to an expression for the VEV of Q[A(x)] in a three Eucli- 
dean dimensional Yang-Mills theory*. A rather similar problem has been studied 
by Polyakov, in the context of three-dimensional compact QED (QED embedded 
in the three-dimensional Georgi-Glashow model). The important feature of the 
Georgi-Glashow model is the existence of 't Hooft-Polyakov monopoles, which are 
pseudoparticles in the 3-dimensional theory. The functional integral corresponding 

* The coupling is grp 1/:. There is no loss in generality in setting gr= 1. 
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to (4.3) can be evaluated for this theory by saddlepoint methods around multi- 
monopole configurations, and the result 

(A(C) )~e  ~,s(cl (4.4) 

is obtained, where y is constant and S(C) is the surface area enclosed by C. The 
behavior (4.4) implies the confinement of electric charge in the three-dimensional 
Georgi-Glashow model. 

The case Of 3-dimensional Yang-Mills theory is very similar to that of the 3- 
dimensional Georgi-Glashow model. As in the Georgi-Glashow model, the 
functional integrals are to be performed around multi-monopole configurations. 
However, the pseudoparticles of 3-dimensional pure Yang-Mills theory are Wu-  
Yang, rather than 't Hooft-Polyakov, monopoles, and this leads to a few compli- 
cations. Wu-Yang monopoles, of the form 

Xi 
A~(x)  = ekia ~ ,  (4.5) 

r 

are infinite action solutions of the Euclidean field equations, due to the singularity 
at r = jxl = 0. These solutions correspond to maxima, rather than minima, of the 
Euclidean action. For the purpose of constructing analog-gas approximations, it is 
necessary to consider instead a smoothed Wu-Yang monopole 

a Xi 
Ak(X) = ekia ~ f(r) , (4.6) 

r 

where 

f(0) = 0,  

f(r) = 1, r > R .  (4.7) 

Banks, Myerson and Kogut [7] have shown that a function f(r) exists such that 
(4.6) is a solution of the Euclidean field equations everywhere except on a shell 
r = R. The Euclidean action of the smoothed monopole is finite and depends on the 
smoothing radius R;  it will be denoted SR. By an appropriate gauge transformation 
the non-Abelian magnetic field due to (4.6) can be made to point along any arbi- 
trary direction ~ in isospace, so that the transformed field at r > R is 

a a XiHj 

A k  =qw EkiJ 47rr (r_x .  d) ,  

a Xk iQ, string Bk = q w a ~ + ~  , (4.8) 
r 

where ~ is a unit vector pointing along the string direction, and q = +1. Now 
consider a superposition of N monopoles (qi = +1) and antimonopoles (qi = -1 )  
which are all aligned in the same direction k of isospace, and centered at points 
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{xi}. Because of the alignment in isospace, the superposition of monopole-anti- 
monopole configurations is itself a solution of the Euclidean field equations, in the 
regions where Ix-xi] > Ri. Providing the monopole separations ]xi- xil are much 
greater than the monopole smoothing radii, the action of this configuration is 

N qiqi 
SN z i=l ~ SR'4-/3 i--~i y~ IX~--XiI ' (4.9) 

where/3 = 8~r/#. 
Because the monopole smoothing radii R must be extracted by collective coor- 

dinate methods, and because allowance should be made for variation in monopole 
isospace alignment over large (relative to monopole separation) distances, the 
quantitative evaluation of eq. (4.3) by analog-gas-saddlepoint methods is arduous 
(although not impossible). But qualitative information may still be obtained from 
(4.3) with the help of the following "semi-Abelian" simplifications. We consider 
only those multimonopole configurations in which (i) all monopoles of a given 
configuration are exactly aligned in isospace; and (ii) the smoothing radius of each 
monopole is smaller than a fixed cutoff radius R~.. These restrictions may not be too 
unrealistic. If a multimonopole configuration is to be an approximate solution of 
the field equations, it is necessary that the variation of isospace alignment be very 
gradual, and the monopole smoothing radius small, on the scale of average mono- 
pole separation. In that case the monopole interaction has the Coulomb form of eq. 
(4.9), and depends only on positions Ixi-xi], and charges qi. 

Let Am represent a single monopole configuration of the form (4.8), centered at 
point Xl, with smoothing radius Ra. The contribution of quantum fluctuations about 
Am to the 3-dimensional vacuum-to-vacuum amplitude is 

Z1 = f ~a(x) e SIAm+a] 

3 82S 
~ f  ~ a ( x ) e x p [ - S n l - ½ f d 3 y d x a ( Y ) ~ A m a ( X ) ] ,  (4.10) 

where 

S[A]=Zf dgz Tr[B2]. (4.11) 

The operator ( 62S/aA21A m has zero modes corresponding to translation invariance 
and global gauge rotations. There is also a negative eigenvalue corresponding to 
variations of the smoothing radius. Integration over these modes can be replaced, 
via the collective coordinate technique of introducing appropriate constraints [8], 
by integration over Xl, R~, and ~. Gauge-fixing by the Faddeev-Popov method is 
also required. The result is simply 

Zl= f d~ f dxlK, (4.12) 
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where K, a constant depending on ~ and Rc, can be calculated in principle. For N 
monopoles, we have approximately 

KN exp[ qiqi ] ZN~ I dg' f dxl...dxN~(~,~. ~q.,Y" L -3  i ~ i ~ J  ' (4.13) 

and finally the contribution from all multimonopole configurations is 

K N 
z fd~E~.f~Idx~exp[-13 q'q' l = E - -  (4.14) 

k=l  ,>~ lx , -~ , [J  " {q.} 

Eq. (4.14) is just the grand partition function for a Coulomb gas, which in this case 
is a plasma of magnetic monopoles [2]. So in this rather crude analog-gas approx- 
imation, eq. (4.3) becomes 

(O[A])~Z[O]/Z 

= l i d  ~ ~_K~f  ~ dxkQ[,~lAm'(X)]exp[-~ ~ [r.~--r.jqiqj I (4.15) 
{q,} 

where Arni(X) is the potential, of the form (4.8), due to the ith monopole. 
Eq. (4.15) can now be used to evaluate the Wilson loop (A(C)) and 't Hooft 's  

operator (B(C)). We have 

=Nf ~A Tr[Pe  i~adl] e sral (A(C)) 

~Z[A(C)]/Z. (4.16) 

Now, 

( x - x , )  ~ .  11 T r [ P e x p [ i ~ A m , ' d l ] ] = T r [ e x p [ i ~ q i f d S . ~ W L a j j ,  (4.17) 

and therefore 

K N 

{q.} 

1. (x-xi)] exp[_ /3  Y. q.G ] (4.18) 
. t , > , F x , - , , I J '  

where we have used the fact that 

a L n { , n even, Tr[(w a) ]=  "21 " 
0, n odd, (4.19) 

and the fact that, because of the sum over {qi}, products of an odd number of qi in 
(4.18) must vanish. The integral in eq. (4.18) has been evaluated by Polyakov; the 
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details are presented in ref. [2]. The final result is that 

(A(C) ) -  e ~,s~c~, (4.4) 

and so (1.1a) is satisfied. 
The 't Hooft operator acts on states like a singular gauge transformation, so that 

(B(C)) = ('trlB(C)]'t t) = ('tr[a][gr[a']) 

=N I ~Aexp[-l fdSxTr[B,,B,,+B'nB;,]], (4.20) 
# 

where 

A~,(x)=fl  l(x)Akfl(x)+ l-fl lOkfl, (4.21) 
g 

and 

~(0 = 2zr) = e~"~(0 = 0), (4.22) 

where 0 ~< 0 ~< 2rr parametrizes a curve winding once around C. Operator B(C) 
acting on physical states creates a tube of non-Abelian magnetic flux along the 
curve C. The excited state B(C)~ must also be gauge-invariant (i.e., physical). In 
the monopole-gas approximation 

S[A']=l fdSxTr[B',(x)Z]=snuxloop+S[~Am,], tx 
= ~L(C)+ S[~ AI ] (4.23) 

There is no interaction between the flux loop and the monopoles since, if B~ °n is 
the magnetic field due to a set of isospin-aligned monopoles, the interaction would 
be proportional to the loop integral 

c B ~  °" dx k = 0.  (4.24) 

S~,× loop is just the 3-dimensional Euclidean action of the flux loop, which is pro- 
portional to the length L(C) of the loop. So, in the analog-gas approximation to eq. 
(4.20) 

{B(C)) = e ~Llc~. (4.25) 

This means that (B(C)) has a perimeter-law falloff, and so eq. (1.1b) is satisfied. 
Thus, according to the arguments above, the expression (3.35) for the Yang- 

Mills vacuum satisfies both the criteria (1.1) for the unbroken, confinement phase 
of a quantized gauge field. Apart from the simplicity of this expression, it also 
provides an attractive picture of the confinement mechanism in terms of the color 
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magnetic properties of the vacuum. A basic property of a plasma of magnetic 
monopoles is the tendency to screen magnetic fields, and it can be seen that in the 
analog-gas approximation 

(A(C)) = (Tr [P e i~a .dx]) = e ~ .... , (4.26) 

where ~loop is the energy of an electric loop inserted into a monopole plasma (note 
that, since all monopoles in a given configuration are aligned in isospace, the situa- 
tion is essentially Abelian). By Ampere 's  law, a current loop sets up a magnetic 
field, which is screened by the plasma by formation of magnetic dipoles on a sur- 
face enclosed by loop. The energy ~loop required for screening is therefore propor- 
tional to S(C), and this is the physical explanation of the result (4.4). 

It is likely that the wave functional qs~ of (3.35) has much in common with the 
trial ground state proposed by Mandelstam [3], which represents a coherent state of 
smoothed Wu-Yang monopoles. Callan, Dashen and Gross have also speculated, in 
their meron picture, that the vacuum wave functional is dominated by monopole- 
like configurations [4]. In fact, the general idea of non-Abelian charge confinement 
via the mechanism outlined in the last paragraph has been around for some time; 
the wave functional (3.35) simply provides a specific realization of this idea. The 
confining properties of wave functionals Gaussian in B(x) have also been discussed, 
in the context of 2 + 1 dimensional QCD, by Halpern [9], who has noted that wave 
functionals of the form 

~ - e x p [ - f  d2x Tr[B2]] (4.27) 

will satisfy the Wilson criterion in the 2 + 1 dimensional theory. 
The results achieved so far are encouraging. Starting from first principles (i.e., 

the Schr6dinger equation + Gauss' law), we have been able to construct an approx- 
imate ground state of the theory and to verify the confinement criteria. However, 
these results were arrived at by a series of approximations whose reliability is as yet 
unknown. In particular: 

(i) The analog-gas manipulations leading to (4.15) were not an actual cal- 
culation, but only an argument regarding how the real calculation should go. This 
argument needs to be checked quantitatively, to insure that the various assumptions 
implicit in the analog-gas approximation are realistic. 

(ii) The functional integral (4.3) is not identical to (4.2). Taking the a ~ 0 limit 
inside the integral sets V12 ~ 1, and this can have a drastic effect. We have seen, 
e.g., that (62/ ,~A2)~ differs from (62/aA 2) lim;,~o ~ ,  by an infinite amount. So 
the extent to which (4.3) is a good approximation to (4.2) is unknown, and will no 
doubt depend on the form of Q[A]. 

(iii) Suppose (4.3) were an exact expression for (Q). This would lead to the 
following contradiction [ 10]: let D3 (x~ - x2) and D4(x ~ - x ~') be gauge-invariant 
2-point functions corresponding to the VEV (Q~Q2) in the 3- and 4-dimensional 



J.P. Greensite / Yang-Mills vacuum wave functional 493 

Yang-Mills theories, respectively. Then according to (4.3), 

D3(x2-Xl) - -D4(x~-x  ~ ~1 o o Z l l X l = X 2  - 
(4.28) 

But, on general principles, D3 and D4 should both have spectral decompositions of 
the form 

D3(x) = f dm2p3(m2)A3(x' m2)' 

D4(x •) = f dm2p4(m2)An(x~, m2), (4.29) 

where 

A,,(X, m 2) = I d"K ei"~ K 2 + m 2. (4.30) 

But if D3 and 04 have the standard analytic structure in terms of cuts and poles, 
then (4.29) is incompatible with (4.28). Now we have seen that (4.2) and (4.3) are 
not identical, so hopefully this problem does not occur for N-point functions cal- 
culated via (4.2). Until this resolution can be demonstrated, however, analyticity 
remains a potential problem. 

(iv) The extent to which (Q) in (4.2) depends on the choice of &sequence, and 
on how closely ~x approximates the true ground state, is also unclear. Again, this 
dependence will probably vary for different operators. 

(v) It has been shown that ~x approximates an eigenstate of the Yang-Mills 
Hamiltonian, but this eigenstate is not necessarily the ground state. Nevertheless, 
the extreme simplicity of ~x, and its similarity in form to the Abelian vacuum, 
favors the idea that ~x is in fact the ground state. 

(vi) The consistency of the limiting procedure used in sect. 3 needs to be 
investigated further. It would be interesting, for example, to see if eq. (4.3) could 
be recovered in a lattice formulation, where gauge invariance is preserved in the 
regulated Hamiltonian. 

Dangers exist; but assuming that our approximations are justifiable, gains in 
understanding the confinement phase have been made. It is hoped that the approx- 
imate ground state found here will lead to further insight into the confinement 
phenomenon, and other properties of quantized Yang-Mills fields. 

I would like to thank Professors Richard Brower, Sidney Coleman, Martin 
Halpern and Michael Nauenberg, for helpful discussions and critical comments. I 
am especially indebted to Professors Joel Primack and Jorge Willemsen for many 
helpful discussions. 
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Appendix 

In this appendix we do two things: first, we show by a simple example why the 
condition (3.30) is too strong to impose on a sequence of wave functionals q~A 
when dealing with a system of infinitely many degrees of freedom. Secondly, we 
construct another exact  solution of the Yang-Mills Schr6dinger equation (1.3) with 
finite bare coupling g. This solution is non-normalizable and therefore does not 
correspond to a physical state; nevertheless, it is remarkable that an equation of 
such complexity has such a mathematically straightforward solution. 

Consider a denumerably infinite system of uncoupled harmonic oscillators {xi}, 
where xi is the displacement of the ith oscillator from equilibrium, and where 

H : +½ax~ (A.I) 
• 2 m  Ox 2 

is the Hamiltonian of the system. The ground-state wave function of this system is 
just 

[1 • o[{xi}]=Nexp -~mo) xi  , (A.2) 

with to = ~/a /m ,  and zero-point energy 

~o : ~ lo). (1.3) 
i 1 

Now consider the sequence of wave functions 

q& [{xi}] = N exp - 2.(~mo)xi + Axe)  . (A.4) 
1 

It is clear that lima ~o ~A = ~o. Let HA = Ho,  and substitute into (3.27). The result 
is 

HA ~A [{xi}] = (g~o + rlA [{xi}])*A [{xz}], (A. 5) 

where ~fo is given by (A.3), and where, to lowest order in A, 

~ / (6  2 4wx4)+higherorder  s (1.6) T~A[{Xi}] = A . - - ~ X i  

Although it is true that 

lim 7~A[{Xi}]~ztA[{Xi}] : O, ( A . 7 )  
A~o 

it is also true that, for any A arbitrarily small but non-zero, 

(r/A [{xi}]) : co, (A.8) 
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since (r/A) involves an infinite sum of terms of order a. Thus, while ~a smoothly 
approaches the exact solution ~o, the expectation value of the deviation (7/,) is 
unbounded. For this reason, the condition (3.30) is too strong to require of a 
sequence qz, converging to an exact solution XPo of a system with infinitely many 
degrees of freedom. 

The second task of this appendix is to display another solution of the Yang- 
Mills Schr6dinger equation (1.3). The solution is (go = 0) 

xF[A] = e x p [ - f  d3x Tr[e,ik(A,OiAk-~AiA,Ak)]] , (A.9) 

which may be readily verified by plugging (A.9) into (1.3) and doing a little algebra. 
This functional also satisfies the Gauss' law condition (1.4), since the exponent is 
invariant under infinitesimal gauge transformations. In fact, the exponent in (A.9) 
can be recognized as the expression for the winding number x 8~r 2 in the Ao = 0 
gauge. As in sect. 3, the wave functional (A.9) is arrived at by starting with a 
solution of the Schr6dinger equation for the Maxwell field (2.1): 

qZo[A] = e x p [ -  I d3x Tr[Ei,kAiOjAk]], (a.10) 

and then modifying %~ so that it becomes invariant under local, infinitesimal SU(2) 
gauge transformations. 

Neither of the functionals in (A.9) and (A.10) are normalizable, since the 
exponents are not negative definite. There are analogous solutions in quantum 
mechanics. For example, the two-dimensional harmonic oscillator 

[ - 1 ~  [ c)2 q-Z'~ +1K2(x2 q- y2)J~(X, y)= ~(X, y) (A.11) 
2m 2 \ax 2 Oy 2} 

has a solution 

O(x, y) = e ~,,¢~-y:)/2, (A.12) 

which is not normalizable, and therefore does not correspond to a physical state. 
The solution (A.10) is very analogous to (A.12), with the x and y directions 
replaced by field components of definite polarization. 

So, because ~'[A] of eq. (A.9) is non-normalizable, it is probably of no physical 
importance whatever. Still, it is quite remarkable that eq. (1.3), which is a partial 
differential equation in infinitely many variables, and for which there is no obvious 
way of separating variables, can have such a simple solution for finite, non- 
infinitesimal coupling g. We regard this as further evidence of the value of using 
exact gauge invariance plus the solutions to the Abelian theory in finding solutions 
of the non-Abelian theory: 
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