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0. Introduction

The study of diffractive processes has always been one of the main sources of information on the
properties of the strong interactions of hadrons at high energies. The classical example of a diffractive
reaction is small angle elastic scattering, which has now been well studied in a wide energy region. In
the past few years considerable progress has also been achieved in the field of inelastic diffractive
processes.

Clear separation and detailed study of these reactions has become possible due to considerable
extension of the energy range, accessible for experiment. Many new interesting experimental results
have been obtained. This has stimulated theoretical investigation of the diffractive production of
particles. Several different approaches to this problem have been proposed and the results compared
with experimental observations.

In this review recent experimental results on inelastic diffractive processes are discussed in terms
of the various theoretical approaches to high energy diffractive scattering. The first part of the paper
(sections 1 and 2) is devoted to discussion of the theoretical approaches. They can be roughly divided
into two categories. The s-channel picture of inelastic diffraction was proposed long ago in the
classical papers of Feinberg and Pomeranchuk [1] and of Good and Walker [2]. Diffractive scattering
is in this approach the consequence of the absorption of the incident hadronic wave. This is due to the
existence at high energies of many open inelastic (nondiffractive) channels. The composite structure
of hadrons leads to diffraction dissociation. In this framework the impact parameter representation for
diffractive amplitudes provides the basis for the construction of geometrical and optical models. Some
bounds on the cross sections of the inelastic diffractive reactions, which follow from s-channel
unitarity and the shadow character of diffraction, have been obtained in the past few years [3-6].
These results and their experimental implications are described in section 1. Models for diffraction
scattering, based on the quark-gluon picture of hadrons are also discussed in this section.

Another approach to diffractive processes is connected with the ¢-channel point of view. This is
most clearly expressed in terms of Reggeon exchanges. It gives the possibility to consider from a
unified point of view both two-body and multiparticle reactions. Applications of Regge theory to
inelastic diffractive processes are discussed in detail in section 2. The Drell-Hiida-Deck model is used
for the description of dissociation vertices. The predictions of this model for both inclusive and
exclusive diffractive reactions are considered. The exchange of several Reggeons in the ¢-channel,
which correspond to Regge-cuts, can be important in diffractive scattering at high energies. The
Reggeon calculus method for the evaluation of Regge-cut amplitudes and the eikonal approximation
are described in section 2. The problems of Regge-theory in the asymptotic limit s >« and models
with the Froissart type asymptotic behaviour of the scattering amplitudes.are briefly discussed at the
end of this section*. Thus, different theoretical approaches (which, however, need not be in
contradition, but rather may complement each other) to diffraction are possible and we can ask what
is the proper definition of diffraction? I shall consider the process as diffractive, if it is determined at
high energies by the Pomeranchuk singularity at j =1 (which can, in principle, differ from a simple
Regge-pole). This definition is sufficiently general and it is valid for both the s-channel and f-channel
type models.

It follows from the definition of diffraction, that the main property of the diffractive mechanism,
which allows one to separate it from other scattering mechanisms, is a weak energy dependence of the

*A more complete discussion of this subject can be found in reviews (7, 8).
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cross sections for these reactions. If ap(0) = 1, then the cross sections of diffractive processes can
have only a logarithmic dependence on energy.

It is usually assumed also that the Pomeranchuk singularity has vacuum quantum numbers, positive
signature o, even C-parity and isospin I =0.* The amplitudes of diffractive processes are mainly
imaginary at ¢ = 0.1 This characteristic feature of diffraction follows from the assumption that o = +1 and
ap(0) = 1.

The second part of the review (section 3) is devoted to experimental information on diffractive
processes at high energies. The properties of diffraction, which follow from the analysis of elastic
reactions, are briefly discussed. The most complete knowledge of the properties of diffraction
dissociation comes from a study of exclusive diffractive reactions. Interesting effects have been observed
recently in such processes. The available experimental data on exclusive diffraction dissociation are
compared with the predictions of the Deck model with absorption and with factorisation relations. It is
pointed out that an approximate factorisation of the cross sections for these processes takes place.
Results on the inclusive diffractive production of particles are discussed in the framework of the
triple-Regge model. The most important experimental result, which has been obtained from the study of
these reactions, is the discovery of the diffractive production of hadronic systems with large masses. This
phenomenon is interpreted in terms of the triple-Pomeron interaction. The triple-Regge analysis of the
experimental data is carried out and the effective triple-Pomeron coupling constant is determined. This
constant plays an important role for the Regge approach to the asymptotic behaviour of strong
interactions. The processes of double diffraction dissociation and double Pomeron exchange, which can
give new insight into the properties of diffraction, are discussed in section 3%.

1. Theoretical description of diffractive processes from the s-channel point of view

1.1. Impact parameter representation

Diffractive phenomena at high energies from the s-channel point of view have the shadow
character and are due to the strong inelastic interaction of colliding particles (absorption). This
approach is based on the unitarity equation in the s-channel

§'S=1 (1.1

or for the scattering matrix T(S=1+i1T)
Im Tab= %z f Tan . T:n dTn (1.2)

where dr, = 27)*8(p.— pu)I1}-, d’p/2w;(27)’ is the phase space factor.
The well known optical theorem follows directly from the unitarity equation (1.2)

Im T.u(s,0) = 2pV's "%(s) (1.3)

where p is the center of mass momentum of the colliding particles, s = (p, + p,)’.

*If the Pomeranchuk singularity is not a pure Regge-pole and moving branch points are also important, then, generally speaking, it does not
have definite parity. However the relative contribution of the parity-odd part decreases logarithmically with energy.

1The ratio Re T(s, 0)/Im T(s, 0) decreases logarithmically as s —» .

1The field of investigation referred to as diffractive scattering is too vast for us to consider all it’s aspects in this review. In particular the diffractive
production of particles off nuclei is not discussed here. The reader interested in this subject should refer himself to the review articles [9, 10]. Some
questions relevant to diffractive dissociation, which will be only shortly mentioned in this article are discussed in more detail in reviews [10-14].
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It is convenient to consider the unitarity equation for each partial-wave amplitudes f,(s)

fs,)=LED 13 2141) £(5) Putcosh,)
87Vs

fi(s) =% I f(s,2) P(z)dz;  z=cos 6. (1.4)

Unitarity leads to the following inequalities for the partial-wave amplitudes of elastic scattering
Imfi(s)=|fi(s), ie.|fls)<1. (1.5)

The amplitudes f;(s), which satisfy these inequalities can be written in the form
() =™ -1 Im3(5)=0. (1.6)

At high energies and small scattering angles* large values of / are important, so it is convenient to use an
impact parameter b = (I + 3)/p-representation

T(s,)=16m 2 fi(s) Pi(cosb.) 2(I +3)

=167 f fi($)o((1+3)8,) d(I +2)° = 4ms ff(b, s) Jo(q.b) db>. (1.7

Taking into account, that

2n

1 iz cose
]o(z)=ﬁ I e de
0

we can write the impact parameter representation (1.7) in the following form

T(s,t)=8ns ff(s, b)e'® d{’f (1.8)

where b is the transverse impact parameter vector, d’b = b db de.
The elastic scattering amplitude, written in the impact parameter space, is given by the expression
286, 5) _ ¢
2

The function 2i8(s, b) = —Q(s, b) is the eikonal.
The unitarity equation for the amplitude f(s, b) has a simple form

f(s,b)= Im é(s, b)=0. (1.9)

Imfo (s, )= |fuls, D)+ 2, |fa(s, b) . (1.10)

The inelastic overlap function Gi,(s, b) = 2,|f.(s, b)]* determines the contribution of inelastic proces-

*In this kinematical region the momentum transfer g = p;— p, is perpendicular to the direction of motion of the colliding particles: ¢ ~ ¢, and
t=(ps-py=~-qi.
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ses to the unitary sum. If we define the partial cross sections a’(b, s) by the relation

a¥(s)= f a”(b, s) d’b (1.11)
then

(b, 5) = 4Imfu(b, s); b, 5)=Hfulb, O (b, 5) =4 Gnlb, 5). (1.12)
It follows from the unitarity equation (1.10) that

(s, b)=1-e"™*?, (1.13)

The positivity condition for Im 8(s, b) leads to the inequality o“”(s, b) <1 (Gin(s, b) <3).

1.2. Geometrical models. Scattering on a black disk and a ring.

The impact parameter representation is often used to provide a geometrical interpretation of high
energy scattering. In this section we will consider some models of diffraction, which use such notions
of geometrical optics as an opacity and a radius. The simplest model is the scattering on a black disk
of radius R. It corresponds to the maximum value for the cross sections for inelastic processes
o"™(b,s)=1 for b <R (Im &(s, b)> 1, full absorption). The elastic scattering amplitude in b-space
(fig. 1.1a) can be written as

f(s,b)={1/(2)’ ’;i’;. (1.14)

The scattering amplitude T(s, t) is purely imaginary and is given by the expression

T(s, t)= i47rR2]—1((lg-}&s; a“’(s) = 0™(s) = 30 “°"(s) = 7R>. (1.15)

L
The differential cross section for elastic scattering shows a sequence of diffractive minima and
maxima (fig. 1.2). The width of the diffraction peak is ~1/R>. A model with scattering on a black disk
with a sharp edge is over simplified and can give only a quantitative idea on the character of elastic
diffractive scattering. The realistic amplitude f(s, b) has the form shown in fig. 1.1b with a smooth
edge and some ‘“opacity”. A natural generalisation of eq. (1.15) for amplitude T'(s, t), which takes

these effects into account is given by the expression

T(s, t)= isA(._f)L‘“Ierxp(—R%qi); g=h. (1.16)
q. So
i {Imf(s.b) 11 Imf(s b)
05 0.5
R b R b

b)

a)

Fig. 1.1. Impact parameter distribution of Im f(s, b), (a) for scattering on a black disk, (b) realistic case.
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6 VFR

Fig. 1.2. Differential cross sections, as functions of g2 for elastic scattering on a black disk (full curve) and inelastic diffractive process (dashed
curve).

The function A(¢) depends on the “opacity” of hadrons. The quantity R, characterizes the width of
the edge. In the limit R >0, T(s, t) has a gaussian form, which corresponds to f(b) ~ exp(=b*/4R?).

If the elastic scattering amplitude is purely imaginary at high energies, then the function f(s, b) can
be directly obtained from the experimental data on do/dt. The result of such an analysis [15] of the
experimental data on elastic pp-scattering at Vs = 53 GeV is shown in fig. 1.3. The functions o“°"(b)
and o“’(b) have approximately gaussian form and differ from the black disk values (c“°°(b) =2,
o“?(b)=1). On the other hand o“(b) for small values of b is rather close to the upper limit
(c“™(0) = 0.94) and has a weak energy dependence.

Consider now the geometric picture for inelastic diffractive processes. If the absorption of the
incoming wave is strong enough for b <R then inelastic diffraction can arise only from the edge

i
2

Im fel(s’l’)

VS =53 Gev
PP - scattering

-

0 0.5 0 5
b (fermi)

Fig. 1.3. Im f(s, b), |f(s, ) and Giu(s, b) for the elastic pp-scattering at Vs = 53 GeV [15].
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Fig. 1.4. Impact parameter distribution of Im £ in the case of strong absorption.

region b = R and the amplitude for this reaction as written in b-space has a peripheral form (fig. 1.4).
The amplitude T(s, ¢) can in this case be approximated by the following expression

TH"(s, t) = is B(£) Jo(q.R) exp(— g1 R3). (1.17)

The value of R,~ R, is connected with the width of the distribution in b-space (fig. 1.4). In this
case the differential cross section for the elastic diffractive processes has the form shown in fig. 1.2 by
the dashed line. It shows a first diffraction minimum at a value of [¢| which is smaller than for the
elastic scattering.

Thus the impact parameter profile in the case of strong absorption (for example for the scattering
of hadrons on heavy nuclei) is central for elastic reaction (scattering on a disk) and is peripheral for
an inelastic diffractive process (scattering on a ring).

Most of the geometrical and optical models for diffractive scattering at high energies [15-19] are
based on these ideas. This approach is simple and physically appealing but it has a serious drawback:
the main parameters, which characterise the functions f(s, b) namely the radius of interaction, the
opacity and the width of an edge are usually unknown theoretically and are determined from a
comparison with experiment. In particular in order to predict the cross section for diffractive
processes at high energies it is very important to know the energy depence of the radius. Analyticity
and unitarity impose only a rather weak asymptotic bound on the value of the radius R < C In(s/s,) [20].

1.3. Bounds on amplitudes for inelastic diffractive processes from s-channel unitarity

The s-channel unitarity equation allows one to derive some bounds on the amplitudes for inelastic
diffractive processes. Consider the submatrix of the scattering matrix f,..(s, b) —iDy(s, b) (i, k < N),
whose elements describe diffractive transitions. If the amplitudes f; for diffractive reactions are
purely imaginary then D is a real matrix. It’s elements can be expressed in terms of the partial cross
sections according to eq. (1.12) as follows

N
o®(s,b)=4Dy;;  o“(s,b)=4Di;  o$(b,s)=4 > Diy;
k=2

N
(s, b) + o (s, b) = 4 X D3, = 4D, (1.18)
k=1

The real and symmetric matrix D can be transformed by an orthogonal matrix Q to the diagonal form F
F=Q'DQ; F;=Fd;

D= QFQ"; Q"Q=00Q"=1. (1.19)
The physical diffractive states ¢; are the linear combinations of the eigenstates ¢,
¥ = ; Quer- (1.20)

Only elastic scattering exists for the states ¢.
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Following Good and Walker [2] we can interpret inelastic diffractive scattering in the following
way: the initial state ¢, is a superposition of the “bare” eigenstates ¢, which undergo elastic
diffractive scattering with amplitudes F,, which are different, generally speaking, for different ¢,. So
after scattering we have another superposition of ¢, and the final state consists not only of the state ¢,
(elastic scattering), but also of some admixture of other physical states ¢; (i=2,...N), that
corresponds to the inelastic diffractive scattering. From this point of view diffraction dissociation is
analogous to the well known phenomenon of K; - Kg regeneration, where K° and K° are the *“‘bare”
eigenstates.

Note that diffraction dissociation arises only because of the difference in values of the eigenam-
plitudes F,. If for some values of b full absorption takes place (all F, =3), then inelastic diffraction
disappears in this b-region. A bound on the cross section for diffractive processes

(b, 5)+ oAb, 5) < 20“(b, 5) (121

based on the assumption, that the eigenamplitudes F, do not exceed the “black disk limit”: Fy <3,*
has been derived by Pumplin [3]. It follows directly from egs. (1.18) and (1.19).

o“(b,s)=4Dn =43 QiF;  o(b,5)+a™(b,5)= 4D =43 QWFi. (1.22)
X k

The Pumplin’s bound leads to strong restrictions on the cross sections for inelastic diffractive
processes. The upper bound on oi5(b) for pp collisions at V's = 53 GeV have been obtained in ref. [4]
fig. 1.5. For the integrated cross section it is about 13 mb. We can see from fig. 1.5 that the bound has a
peripheral shape and it is most restrictive at small b.

An elegant interpretation of such relations between o“°?(b) and o5”(b) has been given in ref. [6].
The quantities Q3; determine the probabilities of finding the eigenstates ¢, in the decomposition of the
initial state ¢, and we can interpret the total cross section o“°”(b) as the average value of the
eigenamplitudes 4F, = o,(b) weighted with probabilities p, = Q3.

(b, s) =4 Zk QLF.= Zk piox = (o). (1.23)

The total inelastic diffractive cross section considered in these terms is obtained as the square of the
dispersion of the spectrum of the eigenamplitudes that couple to the corresponding initial state (fig. 1.6)

o8(b, 5)=4 S QiuFi- 4(; Q%ka) = (oD~ ()] = 557, 5). (1.24)

If all the eigenamplitudes are equal, so that their spectrum is a 8-peak, then 2 =0 and o3’ =0. In
order to obtain large values of o> (b) it is necessary to have a large variation of absorption among the
different ¢,. The saturation of the Pumplin’s bound corresponds to a distribution, which consists of
two 8-peaks, one at o, =0 and another at the maximum value of o, (fig. 1.7).

Let us consider in more detail the example of two diffractive channels. In this case the matrix D

has the form

(a“’(b)/4 \/olz(b)fz)
Vou(b)2 o®b)4

*This assumption is satisfied in the multi-channel eikonal models. For unitary models of K-matrix type the inequality F; < 1/2 is not in general
valid. The exact consequence of unitarity: F, < 1 leads to a trivial inequality ¢“*(b, s) + o f”(b, 5) < (b, 5).
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Fig. 1.5. Upper bound from eq. (1.22) for inelastic diffractive cross section versus b for pp-interaction [4].

and the condition 0 < F, <3 leads to the inequalities [4]
o)< aP(b)-a®(b)/4 (i)
e (b)) <(1-3¢PBN1-307((b)). (i) (1.25)

The Pumplin’s bound is then saturated if both inequalities (i) and (ii) are simultaneously saturated.
This happens, when o(b)+ oc®(b)=2 and F,=3, F,=0 (maximum dispersion). However in the
large b region, where o (b) are small the condition o’(b)+ 0®(b)=2 cannot be satisfied. The
assumption that *’(b) is a monotonically decreasing function of b leads to a more stringent bound on
o, [4].

It should be emphasized that while the inequality (1.25i) follows only from the positivity of F, the
inequality (1.25ii) is based on the extra assumption, Fy <3.

Consider now the bounds, which can be derived using only the exact consequence of unitarity and
positivity for the eigenamplitudes F,. If we have only information about the diagonal elements of the
matrix D — o®, then for N diffractive channels this bound is rather weak [5]

N
(in) 1 (D k)
o iB(b)<30"(b) 3, 7“(b). (1.26)
k=2
|
2 -2
Z— Zma:l |
|
|
|
0 2 e
Fig. 1.6. Cross sections and distribution of probabilities Q3; of the Fig. 1.7. The distribution of Q}, which corresponds to the maximum

eigenamplitudes. value of o™,
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It is equivalent to a sum of inequalities (1.25i) for the cross sections o'*(b) for inelastic diffractive
transitions from channel 1 to the channels k.

This bound can be improved if more complete information on the structure of the matrix D is available.
The necessary and sufficient condition for the matrix D to have nonnegative eigenvalues (F, = 0) is that
the determinants of D and it’s main submatrices are all nonnegative.

Let us apply this theorem to an interesting class of diffractive processes: the photoproduction of
the p and w vector mesons. The three channel (y, p, w) matrix D has the form

W W)
4D = 2V g™ a® 0
2V g 0 a’

Transitions pew are forbidden by G-parity conservation applied to diffractive processes. The
condition that the determinants of D and it’s submatrices are nonnegative leads to the following
bounds

TP <GP g Ot g < g P4 (1.27)
eGP 4 g G@ < GNGO @y (1.28)
For o® = ¢’ the bound of eq. (1.28)
(c™(b) + ™) < 5 "(b)o *(b)/4 (1.29)

is twice stronger than the sum of bounds (1.27), which is equivalent to eq. (1.26). Taking into account
the inequality

( f VeP BV a®(b) dzb)z < I o (b) b f oO(b) &b

and using eq. (1.29) we find a bound on the differential cross sections for the reactions yp - wp and
yp->p’patt=0

d d
[d—‘:(vp ~>wp)+4{yp~> p°p)J

1 (tot

) __(tot)
o = 167 T (yp) O (0°p)- (1.30)
t=

Experimental data on photoproduction of vector mesons show that this bound is nearly saturated for
(tat) — (to&) ﬁ 1 8
T (%) 0'(.',, P) ( g. 1. ) .
Saturation for eq. (1.28) means that one of the eigenvalues of matrix D is equal to zero and that the

states p, w and vy are related as follows

[7) = Yolp) + va|w). (131)

The elements of the D-matrix are also connected

a® o Ie5) 2 (P, 2 (&
Dy =YD =% Diw=YDuo=veg 0 =7,0" 47,07 (1.32)

The relations (1.32) are the same as these obtained in the vector dominance model.

Inequalities of the type (1.27)—-(1.30) can be considered as bounds for the total cross sections of
interaction of an unstable particle (p, @) with a proton. This method can also be used in order to derive a
bound for the total cross sections for the photoproduction of charm.
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Fig. 1.8. Comparison of the bound (1.30) with experimental data,

Assuming that the imaginary parts of the amplitudes for ¢-meson photoproduction and ¢N-elastic
scattering are determined by those intermediate states, which includes charmed quarks C and C, we
obtain the following bound

16 d tot
Oscex > Ty g7 N> ¥N) ol ol (1.33)

Where ay = RC TYN_"yN(S, 0)/ImT.,N_..,,N(s, 0)

gy is the total cross section for ¢-nucleon interaction. Using experimental data on the values

of (dofdt)(yN- ¢yN)|,-o [21] and o$’ [22] and assuming, that for E; = 100 GeV a’ <1, we find a
rather strong bound, — o ,n-cex 2 250 nb.

Analogous inequality connects the cross section for photoproduction of strange particles with
¢-meson photoproduction (if we assume that the ¢-meson consists of strange (A) quarks). This reads

167 d tot
Oonnix > T a2 g (PN = oN)li=ol R0, (1.34)

Experiment shows that the bound (1.34) is approximately saturated.

Analysis of experimental data on inelastic diffraction for purely hadronic processes indicates that
also for these reactions some of the F,’s are close to zero. So it is very interesting to understand the
dynamical mechanism which leads to a saturation of unitarity bounds.

1.4. Quarks, gluons and diffractive scattering

A simple geometrical picture of diffractive scattering is closely connected with the constituent
structure of hadrons. The space-time description of high energy scattering allows one to express the
amplitudes in terms of parton distributions inside hadrons. The best candidate for a dynamical
description of strong interaction is the theory of quarks and gluons, i.e. quantum chromodynamics.
This theory has asymptotic freedom and is most adequate for the description of processes with large
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momentum transfer. Application of this theory to hadronic processes with small transverse momenta
faces the serious problem of quark and gluon confinement. This problem is not solved yet though some
ideas as how to obtain colour confinement have been proposed. So semiphenomenological approaches
are usually used for the description of high energy scattering in terms of quarks and gluons. The
additive quark model [23, 24] is the most simple and widespread one. In the framework of this model it
is assumed that bosons consist of quark q and antiquark § and that baryons are bound states of three
quarks. These quarks are on the average far from each other (R ~1fm), while the radius of
interactions for two quarks is comparatively small (at present energies 7i,. ~ 0.2 fm). The amplitudes
for hadronic scattering are expressed in terms of the qq(qd) scattering amplitudes and the wave
functions of hadrons. The simplest diagram, which corresponds to a single scattering of quarks is
shown in fig. 1.9a. The addivity assumption for quark scattering leads to a number of relations
between amplitudes for different hadronic processes {23]. One of the most well known relations of this
type is [23]

a(mN)=36(NN)  (5(aN) = 3(oun + oan)) (1.35)

which is in a reasonable agreement with experiment.

In the framework of this model, which considers a hadron as a loosely bound system of almost free
quarks, it is possible to explain the increase of the total cross section for pp-interaction at high
energies and to describe the structure of differential cross sections for elastic reactions [24]. In
particular the minimum in dg/dt¢ for elastic pp-scattering at high energies is connected with the double
scattering of quarks (fig. 1.9b).

An interesting quark-glue model, where gluons inside hadrons play an active role in processes with
small momentum transfer has been proposed in refs. [25-27]). We have seen in a previous section that
the large value for the cross section for inelastic diffractive processes indicates a strong variation in
the opacity of the eigenamplitudes F,. This behaviour is difficult to understand in the framework of
the standard quark model, in which all eigenstates correspond to the same configuration of valence
quarks and should have opacities of the same order. In the quark-glue model this property of the
eigenamplitudes is connected with the variation of the glue parameters in the incident hadrons (gluons
inside hadrons have some distributions in longitudinal momenta and in impact parameters). In this
approach diffractive scattering can be considered as the shadow of gluon scattering. The authors of
ref. [26] are led to the conclusion that it is necessary to have full absorption for the glue-glue
interaction at small impact parameters in order to obtain the correct value of o”. In the framework
of this model it is possible to describe the differential cross section for elastic pp-scattering in a wide
t-range [27].

The connection between the Pomeron and gluon exchanges in the ¢-channel has been discussed in
papers [28, 29]. It has been argued in the framework of QCD that gluon exchanges lead to a positive
signature singularity with j=1 at t=0. If the Pomeranchuk singularity is indeed related to the

Hon

a) b)
Fig. 1.9. Additive quark model diagram (a) for the amplitude of elastic 7N-scattering; (b) double rescattering of quarks.
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structure of the gluon interaction, the study of diffractive processes at high energies may then provide
important information on the gluon structure of hadrons and on the properties of gluon-gluon
interaction [30].

2. t-channel models of diffraction. Regge approach

2.1. Regge-pole model

The complex angular momentum method (Regge theory) [31] has a solid theoretical basis and is
widely used in the phenomenological description of hadronic processes at high energies. In the
framework of this method scattering amplitudes are expressed in terms of singularities in the
complex j-plane of the t-channel partial wave amplitudes ¢(j, t). The simplest singularity in the j-plane
is a moving pole a(t) (Regge pole) [32]. Regge pole exchange in the ¢-channel (fig. 2.1) is a natural
generalization of single particle exchange. It leads to a scattering amplitude of the form

T(l)(s’ t)
87TS()

a(t)
= 5(t) n(a(®)) (si) 2.1)

where n(a(t)) = — {1+ o exp(—ima(t))}/sinma(t) is the signature factor, ¢ = *1 is the signature of the
pole, y(t) = ga.(t) gua(t) is the factorized residue, s, is a constant scale factor (s,=1GeV?). We will
also use the amplitude

M(s,t)=T(s,)/8ms; M5, t) = y(t) n(alt)) (s/s0)*®". (2.2)

In the same way as ordinary particles, Regge poles have definite conserved quantum numbers,
parity, isospin, strangeness etc.

The connection of Regge poles with particles and resonances for positive ¢ allows one to determine
the parameters of Regge trajectories from information on the spectrum of hadrons. The leading meson
trajectories p, A,, w, f have &;(0)~0.5 and o/ ~1GeV 2. The =-Regge pole with a.(0)=0 is also
important for a phenomenological description of binary processes. The Pomeranchuk pole ap plays a
specially important role in Reggeon theory. It has been introduced in the theory in order to provide an
approximate constancy of the total cross sections. Scattering amplitudes for an exchange of
the Pomeranchuk pole with ap(0) = 1 are purely imaginary at ¢t = 0 and total cross sections are energy
independent. Thus in the Regge pole model diffractive reactions are described by P-pole exchange in
t-channel.

Let us consider now the impact parameter picture of scattering in the Regge pole model and
calculate the amplitude f(s, b)

2
fis, b= [ M(s,pe oS4 3)
a_L* ¢
o (t)
b ghs d

Fig. 2.1. Graph of a Regge-pole exchange in the ¢-channel.
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Fig. 2.2. Multiperipheral diagrams and their contribution to a two-body process amplitude.

In the small ¢-region, the contribution of a Regge pole to the scattering amplitude M(s, t) can be
parametrized in the form

MP(s, 1) = y(0) n(a(0)) (s/50) > -exp(A(s)t) (2.4)

where A(s)= R>+ a'(In(s/so) —3im), a(t)=a(0)+a'-t. The parameter R> characterizes the t-depen-
dence of the product of residue functions and of the factor 1/sin(7a(#)/2) (o = £ 1) or 1/cos(ma(t)/2)
(e=-1).

We find from egs. (2.3), (2.4) that the amplitude f(s, b) has a gaussian form

l _ YO na(©@) (s\“" (b’
ran=T55 ) el me) @

It follows from eq. (2.5) that, for P-pole exchange (with ap(0)= 1), the amplitude f(s, b) decreases
logarithmically at b*<A(s) and the effective radius of interaction increases asymptotically as
Va'In(s/se). So the Regge pole model gives definite predictions for the energy dependence of the
opacity and of the radius.

From the point of view of s-channel unitarity this picture of interaction corresponds to the
multiperipheral mechanism of multiparticle production [33). The imaginary part of the Regge pole
amplitude for a two body process is connected with the contribution of the multiperipheral intermediate
states in the s-channel unitarity equation, fig. 2.2. Experimental studies of the multiple production of
particles have confirmed the main predictions of the multiperipheral approach, i.e. the logarithmic
increase with energy of the average multiplicities of particles, the small and practically energy
independent values for the mean transverse momenta, the scaling behaviour of inclusive spectra, the
flat rapidity distributions in the central region of spectra, important short range correlations (see, for
example, the review papers listed under ref. [34]).

Therefore it seems reasonable to assume that at present energies diffractive scattering can be
described in a first approximation by the exchange of a simple Pomeranchuk pole with ap(0)= 1.
Complications due to the possible existence of Regge cuts will be discussed in subsection 2.5.

2.2. Drell-Hiida-Deck model

Multiperipheral models can be successfully used not only for the explanation of the general
properties of the multiparticle production but also for a detailed description of the exclusive
processes. One of the models, widely used for this purpose, because of it’s predictive power, is the
OPE-model. It takes into account the exchange of the lightest particle in the ¢-channel namely the
w-meson, figs. 2.4, 2.5. The diagrams of the OPE-model include amplitudes for =« and 7 N-scattering
and the #NN coupling constant, which can be obtained from the experimental data. The only
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Fig. 2.3. OPE-model diagrams for the reactions pp— pa=* (a) and Fig. 2.4. OPE-model diagrams for the reactions NN -» NN## (a) and
a p>m w'n(b). (b), sN - 7w N (c).

arbitrariness of the model is connected with the off-mass shell dependence of the amplitudes. The
off-mass shell effects are usually described by phenomenological form-factors [36] and (or) reggeiza-
tion of 7-exchange [37,38]. The w-exchange model with a small number of free parameters gives a
good description of experimental data on both exclusive and inclusive processes in NN, NN, #N and
KN interactions [38, 39].

How does diffraction dissociation emerge in this model? Consider for example the process
pp— (n7")p (fig. 2.3a). At intermediate energies s = (P, + $,)° < 10 GeV? the mass of the system p7*
s»=(p,+ k)? is rather small and resonances are important in the blob associated with #*p scattering,
which is a part of the OPE diagram. As the energy s increases the effective values of s, increase also
and diffractive scattering becomes important for elastic 7 p-scattering. If we approximate diffractive
scattering by P-pole exchange, the diagram of fig. 2.3a can then be represented in the region of large
s, $, by the diagram of fig. 2.6a. So the OPE-diagrams of fig. 2.3, 2.4 contain both resonance production
and diffractive dissociation. Resonance production is important at low and intermediate energies,
while diffraction dissociation is the dominant mechanism at high energies. This change of regime is
clearly seen in fig. 2.5, where experimental mass distributions for the = *p-system observed in the

Naw
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)Dob=55 1
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Fig. 2.5. Distribution in mass M ,+, for the reaction pp—>pn=" at different energies. Full curves are the predictions of OPER-model [38).
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Fig. 2.6. DHD-model graphs for the nz*-system diffractive production in pp-collisions.

reaction pp—~>n#'p for different energies are compared with the predictions of the reggeized pion
exchange model (OPER) [38]. The model provides a description of exclusive reactions in a wide
region of energy. A comparison of the OPER-model predictions (in absolute normalization) [38] with
the total cross sections for some exclusive processes is shown in fig. 2.7.

Diffractive excitation of an incident particle can be interpreted in the framework of the OPE-
model (fig. 2.5a) in a somewhat different way: the incident nucleon dissociates first into two particles
(N, 7) and the virtual pion then diffractively scatters on the target-nucleon. From this point of view it
is natural also to take into account the other pole graphs (fig. 2.6b, ¢), which correspond to the elastic
diffractive scattering of the produced nucleon (fig. 2.6b) and of the incident nucleon before dis-
sociation (fig. 2.6¢). The diagrams of fig. 2.6 describe diffraction dissociation in the Drell-Hiida-Deck
model [40]. At high energies and small ¢ the diagrams of fig. 2.6b and fig. 2.6¢ give contributions to the
amplitudes, which have different signs and are close in magnitude. Therefore these diagrams are
mutually canceled as ¢ >0 and the diagram with 7-exchange, fig. 2.6a gives the main contribution to
the cross section for this process. However the diagrams of fig. 2.6 (b and ¢) can still be important in
certain kinematical regions.
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Fig. 2.7. Cross sections for the reactions pp—>pnz*, pp>A**n, #“p-> 7" 7" 7 p, pp~>ppr* 7, pp->Pp7* = as functions of incident laboratory
momentum. The curves are the predictions of the OPER-model [38].
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The contribution to the amplitude of the diagram of fig. 2.6a has the form
T =GV2i,ysu, ﬁz T ,+o(s2, 1) F(t)) (2.6)

where G is the pion-nucleon coupling constant (G*/47 = 14.6). F(t,) is a form-factor, which takes into
acount off-mass shell effects. T ,+,(s,, ¢) is the amplitude for 7 'p elastic scattering on mass shell,
which, for large values of s,, is described by Pomeron exchange

T (52, 1) = 1yp(0) (52/50) €XP(Ap(s2)1).
In the double-Regge region s,, s, > m? the following kinematical relation holds*
s1°82= s(u’+ k7) 2.7)

where ky is the transverse momentum of the produced pion. Therefore at fixed energy s, the amplitude
T decreases with s, as 1/s,. The differential cross section d’o/dt ds, is concentrated in the region of
small masses s, ~ m” and decreases as 1/s7 for large values of s,. A rapid decrease of d®c/dt ds, as s,
increases also takes place for all the diagrams of fig. 2.6.

Let us now briefly discuss how to reggeize the pion exchange contribution to multiparticle reactions
amplitudes. The simplest way to do that [38] is to replace the product of pion propagator and
form-factor F(¢)/(t — 1?) in eq. (2.6) by the function

A

2 n(a"(tl)) F(tl’ 82, k%)

where
2y _ 2, S_(kM) _ z]
F(t.,sz,kT)—exp[(R,,+a,, In — (tHi=u9} (2.8

This expression satisfies to the following natural requirements

. ; 1
) T 00) F(t, 5o kg astiop”

ii) A double Regge behaviour T ~ (s,/50)*""" (52/56)*" exists for s, > m> s, > m>.

iii) In the region s,~ m?, s, > m’ the amplitude has a usual single Regge behaviour T ~ (s/s5)*"“".
(This region of phase space corresponds to the quasi two-body processes induced by the m-Regge
pole.)

Equation (2.8) can be considered as an interpolation formula which gives a reasonable description
of the amplitude both for large and small values of s,. The quantity R? is the only free parameter of
the model.

The same procedure has been used [38] for the construction of amplitudes for reactions with more
particles in the final state (of the type shown in fig. 2.4).

2.3. Diffractive production of particles. Triple-Regge approach

Regge theory is formulated for both exclusive and inclusive diffractive processes. Study of
inclusive diffractive production gives important information on the properties of high-energy scat-
tering.

*This relation is approximately valid even for not too large masses of the diffractively produced system.
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Fig. 2.8. Graph of diffraction dissociation of particle b. Fig. 2.9. Rapidity distribution for diffractive production of particles.

The inclusive process for single diffractive dissociation to a state with effective mass Mx = Vs,
namely a+b—a'+ X is described by the P-pole exchange diagram shown in fig. 2.8. If the value of
s, is large (s, > m®) then the invariant s,, which defines the energy for diffractive scattering is smaller
than s. For the multiperipheral configuration of the diffractively produced final state the kinematics is
analogous to the case of single pion production, considered above and, according to eq. (2.7), s, ~ s/s;.
The Regge pole description is valid for s,> m? or sa/s;> 1.

The convenient variables for the inclusive reactions are x = pL./p. and (p2)’=p3. At high energies
and small ¢ the following relations hold

2 2 2
jox=Sizm L ,=_p_L_(1_x)(&_m§), (2.9)
S X X

The Regge approach can be used in the kinematical region (1—x) ‘<\1, t =—p?=<m® The rapidity
variable |

[
T=1n m (m _\/m +pJ.)

4

is also widely used for a description of inelastic reactions. The rapidity distribution of particles in
diffractive process is shown in fig. 2.9. A large value of s, (or (1-x)<1) corresponds to a large
rapidity gap A between the rapidity of the particle a’ and that of the other particles. Although the
values of s, and A are not directly connected to the inclusive variable x their mean values (after
averaging over the momenta k; of the produced pions) in the region of large s, are related*

sz—mzziﬁisi _Tl— p2=p’+ ki =(0.1-0.2) GeV?;
s,—m? 1 7
n2—2 ~in +C; C=h#s (2.10)
Mo, I-x m,

The amplitude, which corresponds to the diagrams of fig. 2.8, can be written in the same form as
done for a binary reaction?

-87}'—;(; T(S, S, ta Tn) = g:a’(t)vn(sly t9 Tn)(s/sl)ap(t)n(al’(t)) (211)

*Equation (2.10) is written for the case s, > m>.
tHere and in following the normalization used in papers [7, 8, 41] is also used.
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where v,(s),t, 7,) is the vertex for n-particle production in Pomeron-particle interaction, 7, are the
variables, which characterize the diffractively produced system of particles.
The differential cross section for the inclusive diffractive process has the form

d’o _x d’o _m d’o =_1_r_E_d30'
ds;dt~ sdxdpl sdydp, sE’E

2(ap(t)—1)
_2(gaa(t))< ) L(LI:L’ZL L ZIdTn|Tp.,_,,,(s1,t )P 2.12)

where pr_,,,(sl, t, T,) = \/850 Un(S1, Toy t) is the amplitude for the transition from Pomeron-particle b
to n-particles.

The last factor in eq. (2.12) can be interpreted as the total cross section for interaction between the
Pomeron and particle b (fig. 2.10).

(10')( §1, t) - _z IdTn ITPb—bn(sla t» Tn)lz- (2-13)
The differential cross section can then be written as
& o
3¢ 47 = &m0 [Gr(€, OF o261, 1) @19

where &, = In(s,/m?), & = In(s/s,)
Gol(&, 1) = (s/5)™ 7" n(ap(t)) = exp(—ap€'p 1) nap(t)).

It should be noted that the Pomeron-particle cross section contrary to the total cross section of
interaction for usual particles cannot be directly measured experimentally. The function oy’ is
connected with the physical quantity d’o/d¢, dt by eq. (2.14), which determines it’s normalization. The
definition of o5p” by eq. (2.13) is convenient because ooy has a usual Regge form in the region of large s,
namely;

ak(0)—1
o851, 1) =8 3 g3HO) 10 (5 ) 2.15)

where rgb(?) is the two Pomeron-reggeon k vertex (in particular rpp(t) is the triple-Pomeron vertex).
Diffraction dissociation into a state with large mass is thus described by the following triple-Regge
formula [42—44]

2(ap(t)—1) ap(0)—1
=4r3 gt (t»(gaa(t)frs:,(t)ln(ap(t»lz(sil) (s—) . (2.16)

So

d§ dt

It corresponds to the diagrams of fig. 2.11.
It should be emphasized that eq. (2.16) is valid only in the region s, > m?, s > s, or m*/s <(1-x) <

Fig. 2.10. Representation of the differential cross section for the diffractive process and for the Pomeron-particle total cross section (part indicated by
a dashed line).
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Fig. 2.11. PPq, for aninclusive cross section. A cross on a line means Fig. 2.12. Triple-Regge diagram.
that the discontinuity of the corresponding Green function should be
taken.

1. This kinematical region of inclusive spectra is usually called the triple-Regge region. It exists at
sufficiently high energies s = 10> GeV>.

For a phenomenological description of inclusive spectra in the triple-Regge region it is necessary to
take also into account the nondiffractive background, which is connected with the contributions of
secondary (f, o, p, A,, 7) poles. Formula (2.16) can be easily generalized to this case and the invariant
inclusive cross section f = E d’a/d’p can be written in the form

f=2 Gult) (1 = x) OO0, (g g )o@ (2.17)
ijk

where Gi(t) = 4508aa(t) gan(t) go6(0) ran;(t) n(ai(t)) n*(a;(¢)). In the limit s > at fixed x only the
terms with a;(0) = ap(0) = 1 survive in eq. (2.17) and lead to a scaling behaviour of f. It is a remarkable
property of eq. (2.17) that the x dependence of cross sections is uniquely determined by trajectories of
Regge poles, which are well determined from the analysis of the two-body reactions. The behaviour at
t = 0 of some triple Regge terms, which are usually used for a description of inclusive spectra, is given
in table 1. The summary contribution of the secondary trajectories (f, w, p, A;) with a;(0)=0.5 is
denoted by R. The triple-Pomeron term is the only scaling term which rapidly increases as x - 1. It
corresponds to the diffractive production of large mass states. The triple Pomeron vertex plays an
important role in Regge theory at high energies.

The OPE-model, discussed in subsection 2.2, allows one to calculate inclusive processes at high
energies [38,45]. In particular it predicts the values of the triple-Regge vertices ras,. Consider, for
example, the inclusive process pp— pX. The production of fast protons in this reaction is described by
the diagrams shown in fig. 2.13. All the particles, which are not emitted at the upper blob of the
multiperipheral diagram, can be considered together and, after integration over their variables and
summation, their role is simply summarized in terms of the total cross section for #N interaction. The
diagram 2.13b corresponds to the w#P-term in terms of the triple-Regge model (fig. 2.14b). The value

Table 1
Dependence on s and x of the triple-Regge contributions to the invariant inclusive
cross section

Triple-Regge terms s-dependence (fixed x) x-dependence (fixed s)
PPP const. 1/(1-x)

PPR Vs TV -xy

RRP const. const.

RRR Vs V(1 -x)
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Fig. 2.14. Diagrams of OPE-model for triple Regge terms PPP (a) and =#P (b).

of s,,,in fig. 2.13, is large as x > 1 (s,,, ~ A+/(1 — x)> m®) and the elastic diffractive mp-scattering ampli-
tude at the upper blob of the diagram 2.13a leads to the triple-Pomeron graph of fig. 2.14a. The value of
the triple-Pomeron vertex is uniquely determined by the 7w P-residue and the parameters of the form-
factor for a virtual pion. These parameters are fixed from the description of the exclusive processes in the
OPE-model. This model allows one also to define in a more quantitative way the range in 1 — x, where the
triple-Regge description is reasonable. The analysis shows [38], that the triple-Regge region corresponds
to 1 — x < 0.05. In the region 1 — x > 0.05 the spectra of protons are determined mainly by the resonance
region of the wp-amplitudes (the A-isobar production and subsequent decay is especially important).

Let us calculate now the total cross section for the diffractive production of high mass state
(51 =5, & = & = In(5/m?)). If the vertex rip(t) does not tend to zero as ¢ - 0, we can parametrize Gppp(t)
for small values of ¢ in terms of an exponential form, Gppp(0) exp(R2¢) and, for the contribution of the
PPP-term to the cross section, we have [46]

tmin Bs

o= obp = 4m(g0(0))> g 5(0) rpp(0) f dtf%exp[(R§+2a’plnsil)t]

—o0

R +2ap(£ — é)

- _77' P 2 P P
= aé(gaa’(o)) gou(0) rep(0) lnm (2.18)

where B <1 determines the boundary of the region where the Regge approach is valid, A, =In(1/8) =
2-3.

This cross section increases slowly (as In £) as s > . It will be shown in the next subsection that
the cross sections for diffractive production of several high mass states rise more rapidly with energy.
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Fig. 2.15. Graph of double diffractive dissociation. Fig. 2.16. Rapidity distribution for double diffractive dissociation.

2.4. Production of several showers of particles. Multipomeron exchanges

We have considered the simplest diffractive process, single diffraction dissociation, where only one of
the colliding particles is excited. It is clear that double diffraction dissociation, where both of the
initial particles are excited, is possible (fig. 2.15). The rapidity distribution, which corresponds to this
reaction is shown in fig. 2.16. It has a large gap A’ between the two groups of produced particles.
Pomeron exchange gives a dominant contribution to the amplitude for this process for large values of
g=In(sm?lsis)=€—&-&~A-2C (& = In(sim?).

If the Pomeron is a pole and the amplitude has a factorized form, then the differential cross section
for double diffraction dissociation is connected with the cross sections for single diffraction excitation
and that for elastic scattering by the relation

dO'DD(ab I X1X2) _ d(TD(ab - aXl) dU'D(ab —> Xzb) dcre,(ab) (2 19)
ds, ds, dt ds, dt ds, dt dt - ’
The differential cross section for the diffractive production of two states with large masses s,, s, = §
is described by the diagram of fig. 2.17 and has the form
do

ur P P P 2 , 2
df] dfz dt 47Tgaa(0) gbb(o) (rPP(t)) IGP(f ’ t)l . (220)
The total cross section for this process has the following energy dependence (for £ > 2&,+ A,)
£—Aop—&o [ 3ad-Y i 31
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Fig. 2.17. Graph corresponding to diffractive production of two high L‘ﬁg

mass states. Fig. 2.18. Multipomeron production of particles.
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Fig. 2.19. Diagram for the contribution of double-Pomeron exchange to Fig. 2.20. Rapidity distribution in double-Pomeron exchange.

the cross section of the reaction ab—aXb.

In eq. (2.21) we have neglected the t-dependence of rpp. Experimental data show that rpp is
practically ¢-independent (see section 3). The cross section o, increases with energy faster than o,
but at present energies, s < 3 x 10> GeV?, it is small ¢, < 0.1 mb.

Let us note that the factorisation condition (2.19) is valid only for differential cross sections at fixed
values of s,, s, and ¢. Cross sections, integrated over phase space, are not factorizable in general,
because of differences in ¢-dependences and in the limits of the & integrations (compare, for example,
eq. (2.18) for oy, eq. (2.21) for o, and o4 = 27ga(0) gE(0)/(R?* + abf)).

Up to now we discussed the processes of diffraction dissociation of incident particles, which
correspond to a single Pomeron exchange. In the framework of Regge theory the processes of
multipomeron production of particles, fig. 2.18 must also exist [47-49]. These processes correspond to
configurations in rapidity space which have several large rapidity gaps between groups of final
particles. One such example is the double Pomeron exchange (DPE) process in the reaction ab—
a'’Xb', fig. 2.19. The rapidity distribution, which corresponds to this process is shown in fig. 2.20. The
existence of a DPE-mechanism for particle production can be easily understood from the point of
view of the OPE-model. Consider, for example, the reaction corresponding to two-pion production in
NN-collisions, which is described by the diagrams of fig. 2.4. For large masses sj, s; of the
wN-systems in the diagram 2.4a (this corresponds to large rapidity intervals) Pomeron exchange
describes the amplitudes for 7 N-elastic scattering and we are led to the DPE-diagram of fig. 2.21. It is
analogous to the well known double-photon exchange diagram of QED.

The kinematics for the DPE process fig. 2.16, is similar to that discussed in the case of a single
P-exchange, eq. (2.9)

(s2/8)=(1—xp);  (sifs)=(1—xa)

M= M+ pl =22 = 5(1 - x) (1= ) Q)
where My is the effective mass of the central cluster of particles, p, is it’s transverse momentum.
N N o o
F
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Fig. 2.21. Diagram of the OPE-model for the double-Pomeron
contribution to the reaction NN -» N##N. Fig. 2.22. Double photon exchange in the reaction e*e” »e*(e*e )e ™.
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There are simple relations analogous to eq. (2.10) between the average values of si, s3, A, A; and
the variables 1— x,, and 1 - x,,.. They read:

-z -2
1 _ 2z EJ_ R o Zz E_L
$1 m ’ S2—m
1—xy 1—x.

! . ~ 1
M=lng=—+C; A=y —+C. 2.23)
The fact that the rapidity gaps A,, A, differ by a constant = —1 from In 1/(1 — x,,) should be taken
into account when comparing theoretical predictions with experimental results where DPE candidate
events are isolated out using cuts in rapidity.
The rapidity interval over which to find the produced particles, is

2 2
Ao~tn MacnMi 20— -a, 2.24)
Mo m

The region of validity for DPE is determined by the conditions s}, s3> m” or A,, A,> 1. In terms of
the variables x., x, this means

m*ls<1-x,<1 (i=a,b). (2.25)
Conditions (2.25) can be satisfied only at sufficiently high energies. For example, it follows from eq.
(2.22) that if we take (1 - x;) <0.1, then it is possible to study the region M>~ 1 GeV? at s > 100 GeV>

only.
The amplitude for the DPE process of fig. 2.16 can be written in the form

2
T(s, 51, S2, 1, G2, Tn) = £22Aq2) ge6(a3) (5/51)°" P n(ap(g?)
X (8/52)** P (ap(@3) Va(q1, g2, Mx, 7n) (2.26)

where ¢,=p .., @2=P.v; §:=~—t1, g3=—t2, Va(q1,42, M%,7.) is the vertex for PP - n-particles
transition, 7, are the variables which characterize the particles in the central cluster.
The differential cross section for the DPE process is given by the formula

do L )1 = x4) do _ M2E,E., do
d&dg dq g, U Y T ™k dxy dg dg. . s dpadpy
1 tot
= (277') Ea’(qll’) g:b’(q%))z |GP(§’1’ q%) GP(f&y q%)lz O'(PP )(§Ma ‘h, q2) (2'27)

where £ = In(s/s;) = In1/(1 - x,); & = In(s/s2) = In1/(1 - xv); ém = € — €1 — &5 The quantity

(tot

1 -
Opp )(§Ma q1,92) = 2_1‘7: 2 J’ dr, lTpP-m(fM, q1, 92, ‘Tn)|2
s
(TPP—n:(fM’ qu q29 Tn)= ssgvn(fMy qh q29 T")) (2'28)

is the “total cross section” for PP-interaction. It should be noted that the dependence of the differential
cross section on &}, & is connected not only with the usual Regge-factors Gp(£},q?) but also with the
&v dependence of o(éwm), because év = € — €1 — &. So the DPE behaviour of the cross section should
be tested at fixed values of MZ.

The situation simplifies in the region of large M, where the dependence of opp on M can be
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described in the framework of the Regge pole model by a formula

(tot)

aon (Em, 41, 42) = (l(m- SWZr b(t1) reb(t2) exp [(ai(0) — 1)éml. (2.29)

Inserting this expression for opp into eq. (2.27) we obtain

BT Ta = SEh(t) ghV n(as(t)n(a )]

X rpp(ty) rev(tz) €xpl(ax(0) — D¢ + Qap(t) — ax(0) — DE + Qap(t) — o, (0)— &), (2.30)

This cross section corresponds to the “beetle diagram”, shown in fig. 2.23a.
For arbitrary reggeon exchanges i, j (fig. 2.23b) eq. (2.30) can be generalized as follows

do _
df; dfé d2q1 d2q2 - ijk;n Fijklm(th t2)

X expl(ax(0) — DE + (e (1) + ; (1)) — aw(0) — DEi + (au(t2) + am (£2) — ar(0) — 1)§2]
= > Fijum(t1, t2) expl(@c(0) — én + (ai(t)) + a;(tl) 2)é1 + (ault2) + am(tz) — 2)63] (231

ijkIm

where
Fiam(ti, ) == g (11) € 22(81) 8o (£2) 8 oolt2) F e (E1) P e (£2) M (i(£1)) m*(i(21)) M{ei(£2)) ¥ (m(£2)).

For large enough M? (¢ém> 1) only P-pole can be kept in the sum over k and the differential cross
section has the form

dz, dfédda-qu o = lz F ijpim (1, t2) expl(ai (1) + a;(t)) — 2)€7 + (au(t2) + am (t2) — 2)€3]. (2.32)

Comparing this expression with eq. (2.17) for the single particle inclusive spectrum (for k = P)

d§’ 248 2 (t1) 8ak(tr) 8b(0) 7y (t1) Ml (£1)) *(ey(t1)) expl(alts) + a;(ty) — 2)€'] (2.33)

we see that the following factorization relation exists

do 1 da do'
A& dgdq dPg, o0 deid’q, d&sdqy

(2.34)

Fig. 2.23. Graph for the cross section of double-Pomeron production of high mass state,
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Thus the double-Pomeron production of a state with large mass is given by the formula

az dféd(;ql &0 = %(gfa'(tl) gonl(t)) |n(ap(t)) n (Olp(tz))|2
X rpp(t:) ree(ts) exp[2(ap(t) — D&+ 2as(ts) — DEL. (2.35)

The contribution of the large mass region (&y = &) to the total cross section of DPE has the form

&—Ao—&o £—Ao—¢§]
0= 2mELO) 8RO 0 [ de; f 9 R T TENRTIIED
Ap
[ Yt 1

_T P P P o2 déi Ry +2ap(¢ — £~ &)
=T g1(0) g5(0) rEe(0) f R el (2.3

For present energies s <3 x 10° GeV? we have 2ap(£ ~ £min) < R2w), Where £min = 280+ & is a threshold
for the process. In this energy region o, can be approximately written in the form

(0) g bb’ (0) r PP(O)) e 2
’ T 2apho) (R2+ 2aphg) &~ Emin) 2.37)

In the practlcally inaccessible limit of ultra-high energies, where 2ap(¢ — &min) > R, we obtain

Wg 2(0) g5(0) rep(0) Iné)’. (2.38)

In the small mass region for the produced system M%<1GeV? egs. (2.29), (2.31), based on the
triple-Regge model are not valid. For small values of M the central cluster decays however mainly
into two pions, i.e. the exclusive processes ab—a’wwb’ give the main contribution to the inclusive
cross section. The OPE-model is then usually used in order to describe the DPE in these reactions
[41, 53-56]. In the framework of this model the reaction amplitude is described by the diagrams shown
in fig. 2.21. The differential cross section has the especially simple form for ¢, =~ ¢,=~0

3(g%.(0) g5u(0) [ .
i d,gzd v - g0 genO) v f Fo (k)2 + k%) di? (2.39)

7 (M%)

where F,(x?) is the form-factor (see eq. (2.6)), « is the transverse momentum of the produced pion.
The factor 3 in eq. (2.39) is due to the three possible types of = meson exchanges (7%, 7, 7°). The
interference between the different 7-exchange graphs has been neglected in eq. (2.39). More accurate
calculations of the DPE cross sections in the OPE-model, which take into account the interference of
the diagrams, absorption effects and final state interactions among the produced pions, have been
performed in refs.[55, 56].

It follows from eq. (2.39) that the differential cross section of the exclusive reaction rapidly
decreases with My for large M%. It has a maximum in the region My~ 400-500 MeV. Besides this
“kinematical” maximum the DPE cross section may have the maxima, which correspond to the DPE
production of resonances, with the isospin I = 0 and positive G-parity, such as f, f’ etc. Investigation
of the DPE-production of resonances can give an important information on the internal characteristics
of the Pomeron, such as it’s SU(3)-structure.

We have discussed the production of particles for the two-Pomeron exchange interactions.
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Iteration of this process in the t-channel leads to the multipomeron production of particles, shown in
fig. 2.18. The multipomeron production of small mass states has been studied first in refs. [47,48]. In
the limit £ - oo the cross sections for these reactions behave as o ~ (In £)*~'/¢ (where k is the number
of exchanged Pomerons) and their sum grows with energy [48, 49]. The multipomeron production of
showers with large masses leads to a more rapid increase of cross sections. According to the rules
formulated above, the amplitude for the multipomeron production of N clusters, shown in fig. 2.18
can be written in the form

T(f, §l" f:, q:) = v:l(fb q%a Tnl) Vnz(§2’ ql’ q2’ Tnz) e VnN_l(gN—l’ qN—Z, qN—l’ TN—I)
X USN(ﬁN, q;zvvl, Toy) €Xplap(t)éi+. .. + aP(thl)f;\lfl)(SWSO)N_InP(tl) oo me(tn ) (2.40)

where ¢ = In(si/m?) (for s,>m?” ¢ is the rapidity interval occupied by the particles of ith cluster),
&> 1 are the rapidity gaps between the clusters i and i+1 (£=2{L,&+27'¢D, q7=—t; is the
square of the transverse momenta in the i-th part of the multipomeron chain. The vertices v2® and V,
are determined by eqgs. (2.11), (2.26).

The differential cross section for an n-clusters production can be expressed in terms of the total
cross sections for Pomeron—particle and Pomeron-Pomeron interactions

do 1
B G dE g gy T, @y el 4D ourlEn i) 241

X Coe(€a 01,42 - TonEn-1 a2 an-) Golt, €) . Goltw-r, En-08(6 - 3 &= 3 ).

Using the Regge-asymptotic forms (2.15), (2.29) for these total cross section in the regions & > 1 we
obtain the following form for the differential cross section of N large mass showers production
do
dé,..dén dE) . . dén-_, d’q, .. d°qn-

x (%Q)Iq‘lmp(t,,gi)...Gp(tNﬁl,&_])Izo(f—:EI&—I:Z_: £). e

= 8782.(0) g(0)

For the diffractive production of two heavy clusters eq. (2.42) coincides with (2.20).
The total cross sections for the diffractive production of N-heavy clusters (& = &, & = Ao) in the
limit of ultrahigh energies £ » N&,+ (N — 1)A, have the following energy dependence*
P N-1 N-1
on = $mgha0) g5 () el 2.43)
In the framework of the Regge pole model this rapid increase of the multipomeron cross sections as
¢ > » leads to an inconsistency, since it contradicts to the assumption that the total cross section is
asymptotically constant (for ap(0) = 1). Note that the energy dependence of on (2.43) leads even to a
violation of the Froissart bound (¢“°” < £%), which is a consequence of analyticity and unitarity. So it
should be changed (at least in the limit £ —» ) in any realistic theory. The simplest way out of this
difficulty is to assume, that rEp(g?) >0 as q°— 0 (for example rip(q®) = Ag® as q>—0). In this case
(the so-called weak coupling theory) the diffractive production of large mass states leads only to the
renormalization of the “bare” Pomeron pole and the theory can be consistent with the asymptotically

*These cross sections are very small at energies s < 10° GeV? due to strong kinematical limitations and the smallness of triple Pomeron vertex (see
section 3).
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Fig. 2.24. Graph for the cross section of diffractive production of high mass states.

constant total cross section [57, 58]. More detailed analysis of the weak coupling theory [58, 59] shows
that in order to satisfy s-channel unitarity and the t-channel constraints, all the inelastic Pomeron vertices
should be zero at very small transverse momenta. The differential cross sections for inelastic diffractive
processes should vanish at g, — 0. This theory has been interpreted in terms of the parton model [58] and it
has been shown that in this approach all the total cross sections o“*? should be equal in the asymptotic
limit s - . Experimental data on diffractive processes do not confirm the predictions of this approach at
present energies and it can be consistent with experiment only if large corrections due to Regge cuts are
taken into account [60].

The versions of Regge theory, where rpp and other Pomeron vertices are different from zero at
q. =0 are in a better agreement with experiment. The role of Regge cuts is very important for such
theories in order to obtain the self-consistent asymptotic solutions.

2.5. Regge cuts and eikonal models

Regge poles are not the only singularities in the j-plane. There are moving branch points, which are
connected with the exchange of several Reggeons in the t-channel (fig. 2.25). A Regge pole can be
interpreted as corresponding to single scattering while Regge cuts correspond to multiple scatterings
on constituents of hadrons. The positions of the branch points, which is connected with the exchange
in the t-channel of n Pomeranchuk poles ap(t) is given by the formula

anp(t) = nap(t/n®)—n+1. (2.44)

The location of these branch points at £ =0 is the same as that of the pole (for ap(0) = 1), and they
are to the right of the pole for ¢t <0. So the contributions of the branch points to scattering amplitudes
are important at very high energies.

Pa Pe y

A L

p P

s &L
P 5 Lz 2y
b o b)

Fig. 2.25. Graphs corresponding to Regge-cuts.
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Fig. 2.26. Regge-cut amplitudes and rescattering on constituents of hadrons.

A general method for the evaluation of Regge cut contributions has been proposed by Gribov [63].
Though a certain class of Feynman diagrams has been used for the derivation of the Reggeon
calculus method [63] the rules of the Reggeon calculus are neither sensitive to the details of the
underlying field theory nor to the details of the hadronic internal structure.

Let us illustrate this method using as an example the two Reggeon exchange amplitude, shown in
fig. 2.25a.*

The set of all the Feynman graphs, which corresponds to the two-Reggeon exchange diagram of fig.
2.25a, can be written using the usual Feynman rules in the form

- ) ap(kD+apg—k)?) @ 7@
P 5'(_2_7 J» &k molk?) me(q - k))< ) (8mso) T (2.45)

where Tf({,) is the Pomeron-partlcle scattering amplitudet. The “Green-function” of the Pomeron-
(s/so)"""" (ap(k)) 87s, is associated with each Pomeron line of momentum ki(k,=q — k,, ¢ = p.—
p.). The factor 2! in eq. (2.45) appears because of the identity of the two exchanged Pomerons.

It is useful to change from the integration variables ko, k, to the variables s,, s,, which are the
energies of the P-particle scattering amplitudes at the upper and lower blobs of the diagram 2.25a

Sa= (Pat kP2 =m2+k*+Vstko— k),  so=(pPo—k)’=mi+k*~Vs(ko+k,). (2.46)

Eq. (2.45) can be written as follows

. 2 apkD+ap(g—k)®)
T, t)(z—!;)i—fz’%‘;—)r f &’k ds.ds, ne(k*) ne((q - k)’)(sio) TR T2, (2.47)
The integration contour C over the variables s; in eq. (2.47) is shown in fig. 2.27. The amplitudes T,
have the usual singularities in the s;-plane, poles and branch points on a real axis, connected with the
real intermediate states in the corresponding channel.
If the functions T, decrease sufficiently fast at large s, then the integration contour C can be
deformed into a contour C’ (fig. 2.27), which enclose the right-hand singularities of T$,. In this case we
obtain the following expression for the two Reggeon exchange amplitude

@ &2k ap(ki)+ap(a—ki))—2
TRt M5, 1= 5 [ S matkDy etk - ) (£) NPk, @) NP(k, 9)
(2.48)

*A detailed discussion of the Reggeon calculus can be found in reviews [7, 8].
These amplitudes are connected with the functions F&}, introduced in ref. [7] by the relation TQ,= F ol Saoy-

Fig. 2.27. Contour of integration in eq. (2.47).
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Fig. 2.28. Some “‘enhanced” graphs for the two-Pomeron exchange amplitude.
where

1
N fa?)) f dSaw) Ta(b) (2.49)

At large values of s; the amplitudes T3, are proportional to (sifse) *@?P&I~*r@=8" where a,(q?)

is the position of the rightmost singularity of the amplitude T, in the j-plane. For a; = ap(t) and
small ¢, k the decrease of the amplitudes TS, is not fast enough in order to consider only the
contribution of the finite s;-region. The contributions of the regions of large s; ~ es (¢ < 1) correspond
to the “enhanced” diagrams, shown in fig. 2.28.

In this subsection we will be interested mainly in the contributions of the “nonenhanced” diagrams,
which correspond to finite s; and are described by egs. (2.48), (2.49).

The unitarity equation is valid for the Reggeon—particle scattering amplitudes

8,12 =ImT =3 [ Tup a0 ks 70) T (g = ko), 72) (2.50)

The amplitudes Tycyp_n(Sa, k3, 7.), Which describe the Pomeron-particle transition to n-particles, are
connected with the vertices v,, introduced earlier in eq. (2.11) by the following relation

D7D 92 (s, k2, 7). (2.51)

Thus the quantities N %, can be expressed according to egs. (2.49), (2.50) as a sum of contributions
from the real intermediate states. Isolating the single particle (pole) contribution we have

N? =gl (k]) grl(q—k))+AND, 2.52)

where AN'? corresponds to the multiparticle intermediate states*. An analogous formula is valid for
N, Inserting eq. (2.52) into eq. (2.48) we can express T as a sum of elastic and inelastic diffractive
rescattering in the s-channel (fig. 2.29). The contribution of the pole term in eq. (2.52), which
corresponds to elastic rescattering, has an especially simple form

d2k

TaP—-n(sa, ki, Tn) = (so/S

M5, 1) = 55 [ M@l k) MLl (g ~ 1)) 253

*The contribution of the particle c-state (for ¢ # a) is included in AN .

a caacaaca§ g

b d r—t—o +H—d b—b—-<d b
Fig. 2.29. Rescattering graphs which determine the value of the two-Reggeon exchange amplitude.
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where MV is the Regge pole term M. .y = gacgva(s/50)™ ". The approximation of N %, by the pole
term contribution, which leads to eq. (2.53), is equivalent to the well known absorption model {64-66].

For the case of elastic scattering (a=c, b =d) at ¢ = 0 the expression for ImT®(s, 0)/s, differs only
by sign from the total cross section of diffractive processes (including elastic scattering), calculated in
the Regge pole approximation. This can be seen if we take into account that np =~ i and compare the
expression for ImT (s, 0)/s, eqs. (2.48)—(2.52) with the diffractive cross sections

¢)) _ P2y oP 2022 (S HapkD—1 2 2d2k¢
O'ab—bab(s) - 47T (g aa(k_l_) gbb(k.L)) So : |77P(kJ_)| 9
. _ d2k 2(ap(kf)—l) - 1 1 ) )
O = 47 | —Hg (kD) ( ek DI — | dso5 2| Top-sn(50r kL, 7a (2:54)

zk seaf§ 2AapkH—1) - s
—4n f “gLkP(2) ek AN P(k),

&k /s 2(ap(k})—1)
o Roxacs) =47 [L(E) T me kD AN AN,

Thus the value of the two Reggeon exchange amplitude for elastic scattering at ¢ = 0 is determined
by the cross section of diffractive processes. Diffractive production of large mass states s., sp > m’
corresponds to the enhanced diagrams of fig. 2.28.

The n-Pomeron exchange amplitudes have a structure analogous to that in eqs. (2.48), (2.49) {7, 8]

n—1 ar+. . +apg—n 2 2
M, =V [ NP NP () ey e, it Llnrs (2.55)
n: So T K
(n) - (n) dsa; dsa(n—l)
Na (IIu) - LI Ta (Qu, Sa1s ey sa(n l)) 27” o 27,,1 (256)
C

where a; = ap(q:.), g:. is the transverse momentum of the ith Pomeron.
The integration contours over s,; in eq. (2.56) are of the same type as in eq. (2.47). Deformation of
contours C; into C; in order to enclose the right-hand singularities of T{ leads to the formula

n d a d ain n n
NO(qo= [Ln | Sacngoon | 70, s sunn) (2.57)

where 8% " ¢ o TS(gi 1, Sars - - - »Sam—1) is the multiple discontinuity of the function T ¢ on the right hand
cuts.
If only the pole contributions to these discontinuities are taken into account, one has

N(") N(") YP(CIu_) YP(qiL)' (2.58)
The n-Pomeron exchange amplitude can then be written in the “eikonal”’form [67]

a1 2 2
MG, t)=_(l) ] IMS’(s,q?L)---MS’(s,qiL)d T ESIT

m
(21’)1' fM(l)( qlL) M“)(S, q"l)—q—l(aTg’h ( gl qu.)- (259)

It was noted above that the P-pole contribution to elastic scattering amplitude is connected with a
multiperipheral inelastic process in the s-channel (fig. 2.2). In other words this means that the unitarity
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a) & ¢

Fig. 2.30. Diagrams corresponding to the unitarity cuts of the two Reggeon exchange amplitude.

cut of the Regge-pole graph corresponds to the multiperipheral structure of the inelastic intermediate
state. Consider now the unitarity cuts of the n-Pomeron exchange amplitudes of fig. 2.21. The total
imaginary part of the Feynman diagram is equal to a sum over all the possible cuttings of this diagram
in the s-channel. The graphs for the physical processes, which correspond to the unitarity cuts of the
two Pomeron exchange amplitude of fig. 2.21, are shown in fig. 2.30. These are the diffractive
processes, fig. 2.30a (which are connected with the cutting of the diagram 2.21a between the Pomeron
lines), the effects of absorption (screening) for the multiperipheral processes (cutting of one of the
Pomerons), fig. 2.30b and the production of two multiperipheral showers (simultaneous cutting of both
Pomerons) respectively. According to the rules, formulated by Abramovskii, Gribov and Kancheli [68]
the contribution of the corresponding cuttings to the total cross section Im T,,(s, 0)/s are determined
by the following relations:

A= Opis. = — 02; os = 40?; gc=—-20? (2.60)
where 0@ = ImT®(s, 0)/s is the contribution of the two Pomeron exchange to the total cross section.

The quantities o4 and o determine cross sections for physical processes and hence are positive,
whereas oy characterizes an interference effect, the decrease of the multiperipheral cross section due to
absorption. The total contribution of the two Pomeron exchange to the total cross section o is
negative and, as we have seen before, it’s modulus is equal to the P-pole contribution to o 4.

Cuttings of the n-Pomeron exchange diagrams of fig. 2.25b lead in particular to the graphs of fig.
2.31, which correspond to absorption corrections to amplitudes for inelastic diffractive processes.

Thus the AGK-cutting rules allows one to find a connection between the Reggeon calculus
diagrams and s-channel unitarity.

Let us now estimate the contributions of the n-Pomeron exchange terms to scattering amplitudes.
We can use eqgs. (2.53), (2.59) in order to understand the structure and the main properties of the
n-Pomeron exchange amplitudes. These expressions correspond to elastic rescattering, but for s »
they differ from the more general formulae (2.48), (2.55) only by the coefficients C™(g%), which take
into account inelastic intermediate states. Using the parametrization (2.4) for the Regge pole
contribution and performing the integration over the transverse momenta of Reggeons in egs. (2.53),
(2.59) we obtain the following expressions for the two Pomeron exchange amplitude

: 2 2 2
M5, 47 = 3O LAZONEE (12500 ) @s1)
P$-$p

Fig. 2.31. Exchange of several Pomerons in amplitudes for inelastic diffractive reactions.
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where

ap(0)—1
€= (i) . Ap(s) = R3+ a;,(())(lni i E)
So 2

So

and for the n-Pomeron exchange amplitude

M, 4?) = (1)" ' (ye(0) n(ap(0) €r)" p<_ Aeq’ ) 2.62)
A p n

Consider the properties of the two-Pomeron exchange amplitude. It follows from eq. (2.61) that (for
ap(0)=1)

1) The P-pole and PP-cut contributions differ by a sign at ¢ = 0 (because n(ap(0)) = i);

ii) The two Pomeron exchange amplitude decreases logarithmically with s at t = 0;

iii) The amplitude M® falls less rapidly with q°, than the pole contribution M*";

iv) The relative value of the PP-cut contribution is determined by the factor yp(0)/4Ap, Which is
~=1/4 at present energies.

In the weak coupling theory the total cross sections tend to the asymptotic limit from below due to
the decrease of the negative PP-exchange contribution [57].

Note that the n-Pomeron exchange amplitudes as well as the P-pole have positive signature and
positive G-parity, an isotopic spin equal to zero, but contrary to the P-pole they do not have, generally
speaking, definite parity.

The sum of the n-Pomeron exchange amplitudes in the eikonal approximation, egs. (2.59), (2.62),
can be written in a closed form, using an impact parameter representation

n s g _ (218(s, b))
(n) - n) 2 b
f (s,b)—fM (s,q)e " 5 =" (2.63)

where
g2
85, b) = [ MV, gy e S = s, b)

Thus

2i8(s, b) l

uw—Eﬂhm—i——f (2.64)

The total nonenhanced part of the two Pomeron exchange amplitude differs from the eikonal
approximation —67(s, b)/i by the factor C$’(0) = 1+ a5™/o "' * where o3 and 0" are the P-pole
contributions to the cross section for inelastic and elastic diffractive processes respectively, eq. (2.54);
o™ corresponds to the diffractive production of not too large masses (large mass diffraction
production is accounted for by the enhanced diagrams). The assumption that C$’(q%) = (C$’(0))""" for

the n-Pomeron cuts leads to a “‘quasieikonal’ approximation for the elastic scattering amplitude [69]:
- ~(1) _
£(s,b) = cxp{21Cp. (0()1)8(s, b)} 1

Let us discuss now the effects of the Pomeron cuts for the amplitudes of inelastic diffractive
processes. The Reggeon calculus and the AGK-cutting rules let one to describe elastic and inelastic

(2.65)

*It has been assumed that C(q%) = C(0).
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diffractive processes from a single point of view and show that these reactions are closely connected.
Consider for example the two-channel model, where the diffractive inelastic states are approximated
by a resonance a* (for simplicity we take a="b). The diagrams which correspond to this model are
shown in fig. 2.32.

They contain the vertices g..«, g.a, €.+ Which can be written in the matrix form

5 = 8aa 8aa* — 1+« B )
8a (ga“a ga'a‘) g()( B 1-a (266)

where B = 28..+/(8aa + Zava)s @ = (8aa— Zavas)/(8aa + Garar); 80 =2(gaa+ avar). The amplitude f(s, b) is
also a matrix and has the eikonal form

. 2i8(s, b) _ 1
f(s,b) =~ (2.67)
where
Au al 2
S pyo 8a8arm(ap) €p (__b_)
(s, b . exp i) (2.68)

The matrices of the residues g3 and £4 in eq. (2.68) correspond to the upper and lower particles in fig.
2.32. Equations (2.67), (2.68) have been obtained under the assumption that all residues have the same
t-dependence. (A difference in t-dependence among residues can be taken into account [8], but the
resulting formulae are more complicated.)

The matrix elements of f can be evaluated [8] and the elastic scattering amplitude has the form

faamsals, D) = o (F52) expf1+ v+ (L=212) expi1 - v12i60)

2 2
Y —«&

+ -y exp{(1 — y?)2ido} - 1]. (2.69)

For the single diffraction dissociation amplitude we have

f ansaa(S, b) = _&I' | (+aly) 20!/}’) exp{(1+ y)?2i8o} — (1_—?%!@ exp{(1—y)?2i80} — % exp{(1—- 72)2i60}].

(2.70)
The double diffraction dissociation amplitude is written in the form
1 2 . . .
faaoaras(s, b) = Z(-Z%) [exp{(1+ v)*2i8,} + exp{(1 — )*2i8o} — 2 exp{(1 — y*)2i8o}] .71

where y = V&’ + B%; 8 = {gin(ar)ep/2Ap} exp(— b*/4Ap). Formulae (2.69)-(2.71) can be generalized to
the multichannel case, and also for a#b [8). Let us note that the quasieikonal approximation, eq.

a a*a . a a a* q g
a a aFa¥a a a a a*
a) b) c)

Fig. 2.32. Diagrammatic representation of eqs. (2.67), (2.68).
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(2.65), corresponds to a special choice of the vertices ga, which satisfy the relation ga,ga«+ = g2.+(y = 1).
This leads to a saturation of the unitarity bound (1.25 i). The amplitudes for diffractive processes have
in this case a simple form

e -1 1—aegf-1 1-ae?—]

faa—»aa(sy b) = 21C 5 faa—»aa*(s9 b) = m_ 21C = faa—»a*a*(sy b) = 1 +a 2-]C (272)

where

. . 2 2 in e
X0=216aa=21(1+a)2’o‘0; C= (m) =1+o3"c®.

Note that in this special case the amplitudes for all diffractive processes have the same b-
dependence and satisfy the factorization relation (faasaa*(s, b)) = faa-saa(8, b) faaarax(s, b). The situation,
where B and a are <1, i.e. the cross section for the diffractive production of resonance is much smaller
than the cross sections for elastic aa and a*a scattering and oS = o=, seems to be more realistic. Then

(for a =0, B <1, vy =) we have

faa—-»aa(s9 b) = %(eﬁﬁo - l)a faa*aa*(s, b) = saaaaa"(sy b)'eziaoa faa—»a*a"‘(s, b) = 8aa—>a*a*(s’ b)'eﬁ‘50
(2.73)

Where 8.aaar(S, b) = B8o, Saasasar(s, b) = B80.

Expressions (2.73) are equivalent to the formulae of the absorption model.

If absorption is important, —Im 8o(s, ) = 1 in a region b’ 4Ap, then the amplitudes for inelastic
diffraction will be strongly suppressed for these values of b. This is due to the factor exp{—2Im &} in
eq. (2.73). In this model the amplitudes for inelastic diffractive processes contrary to the amplitude for
elastic scattering have a peripheral form in b-space. Thus the n-Pomeron exchanges leads to
important effects in diffractive processes, if Im 8, = 1. In particular factorisation is violated.* At present
energies 8o(s, 0)=0.7 to 0.8.

The method of evaluation of the n-Pomeron exchange amplitude for the nonresonance diffractive
production of particles (fig. 2.31) does not differ in principle from the one we have already discussed
above. But in this case we must deal with more complicated objects, amplitudes for n-Pomeron-m-
particles transitions, fig. 2.33. Consider for example the process of one pion production in NN-
collisions. Taking into account only the pole contributions to these amplitudes, in accordance with the
prescription shown in figs. 2.34, 2.35, we obtain the diagrammatic representation of the two-Pomeron
exchange amplitude, shown in fig. 2.36. Expressions analogous to eq. (2.53) correspond to these
diagrams. The sum of the diagrams 2.36a and 2.36b, which are the same, can be expressed in the form
d’k

M(Z) = lf ngz—*pp(s’ kZ) M:alg—bp(n‘rrﬁ(s’ Sty %5 k%) _7T—. (274)

*1t should be taken into account however, that in some cases the observed deviations from the factorization relations can be numerically small

(70, 71].
{
: n

P P

Fig. 2.33. Graph representing the two-Pomeron-n-particle transition amplitude.
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Fig. 2.34. Graphs for the discontinuity of the amplitude PN > PNr.

_=__‘§_7_ _T”"?_, A

Fig. 2.35. Graphs for the coupling of the Pomeron to an N z-system.

where
k=¢q.—k; kiy=q,+k; 41 = Pn— Pp1; q2= Pp3~ Pr2-
Using the impact parameter representation

. . d2q 1 d2(h
fpp—bp(nﬂ+)(s, S1s bl’ b2) = J' Mpp—»p(n-n-+)(sa S1s ¢I1> 112) exp{—lqlbl - 1¢I2b2} 211_ T (275)

we obtain the simple expression for the function (s, s1, by, b2)
ff)zp)*p(mr*)(s’ 815 b1, B2) = Sppmpant($, 81, by, b2) (2i8pp—>pp(s’ bz)) (2.76)

where b = b, + b,; functions §; are the Fourier transforms, egs. (2.63), (2.75) of the corresponding
Regge pole amplitudes.

The summation of all the graphs with elastic rescatterings of nucleons in the initial and final states
leads to the expression

fpp—»p(m-r*)(s9 §1, bl, b2) = 6pp—>p(n11+) (ss S1s b19 b2) exp{Ziapp*pp(sa bz)}’ (277)

is analogous to eq. (2.73) written for the diffractive production of resonance.

In the framework of the OPE-model for diffraction dissociation vertices, diagrams with rescatter-
ings of the final pion can be also described by eq. (2.77), but the function 8,,.pm~*) should now be
considered as the Fourier transform of the amplitude of fig. 2.3a with T,y calculated in the eikonal
approximation (2.64).

Expressions of the type (2.77) are usually used for practical calculations of rescattering effects in
inelastic diffractive processes [72-74]. This approximation is rather simple and may be useful for
estimates of absorption in diffractive scattering but it should be noted that it’s accuracy is unknown
theoretically and contributions from inelastic intermediate states to the amplitudes N™ can be
important.

Fig. 2.36. Diagrams for two-Pomeron exchange in the reaction pp—>pn*, in the eikonal approximation.
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2.6. The problems of Reggeon theory at s > . Models with Froissart type asymptotic behaviour for
amplitudes

In the previous subsection we have discussed the rescattering effects which are connected with
diffractive excitations of small mass, s; ~ m” and have neglected the enhanced diagrams (of the type
shown in fig. 2.28), which are proportional (at ¢t = 0) to the cross sections for large mass excitations.
This can be a reasonable procedure at present energies, because the enhanced diagrams are rather
small for £ < 10 due to the smallness of the triple Pomeron vertex rpp (see section 3). However in the
limit £ —»c the contributions of the enhanced diagrams, which take into account the interaction of
Pomerons (figs. 2.28,2.37,2.38), are very important. Summation of all the diagrams of Reggeon field
theory is a very difficult problem. However it can be solved in some special cases. I shall discuss only
the main properties and physical consequences of these solutions (the method of calculations and the
results of recent developments in Reggeon field theory are discussed in detail in reviews [7, 8, 75, 76)).

One of the most significant parameters of Reggeon theory is the value of the intercept of the “bare”
Pomeranchuk pole (P-pole without selfinteraction of the type, shown in fig. 2.28¢c). If the value
A=af(0)—1is less than A = {(rbp)’/4ab} In{4ap/(rip)’}, then the renormalized pole ap(0) is to the
left of unity in the j-plane, Regge cuts are unimportant asymptotically and ¢ decreases as s**”™" as
s — . This asymptotic behaviour is difficult to reconcile with the observed rise of o“”. The case
where A = A and the renormalized Pomeron intercept ap(0) = 1 is more interesting. This *‘critical”
Pomeron theory was first studied in refs. [77, 78]. The diagrams with triple Pomeron interactions play
a main role in this case. The equations of Reggeon field theory have a scale invariant solution with
anomalous dimensions. Total cross sections then rise ~£” as £ » . The quantity % can be estimated
using the method of e-expansion and is found to be =1/6 [77, 78]. The interaction of Pomerons leads
to screening effects for inelastic Pomeron vertices and allows one to solve the problems of Regge
pole models with the too fast increase of the inelastic diffractive cross sections [77, 79]. The relative
contribution to the total cross section of the multipomeron kinematical region of phase space is
unimportant asymptotically [77, 79] and the main contribution to exclusive diffractive processes comes
from configurations of final particles with only one large rapidity gap A~ ¢ [79]. Cross sections for
such diffractive processes have the same energy dependence as 0", they decrease as 1/¢% (with
a =3%) due to the shrinking of the diffractive cone. It can be shown [77,80] that absorption effects,
connected with the enhanced diagrams, remove the inconsistencies of the Regge pole model also for
inclusive diffractive reactions. Thus the “critical”’ Pomeron theory with ap(0) = 1 is consistent with the
s-channel unitarity [77-80].

Fig. 2.37. Graphs of Reggeon calculus with triple-Pomeron inter-
actions. Fig. 2.38. Graphs with multi-Pomeron interactions.
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Versions of Reggeon theory with A>A_: were studied recently in many papers [81-87]. The
interest to the case A > A_;, is connected mainly with two reasons:

1) There are at present no theoretical arguments for a¢(0) to be exactly at the critical value (for
example in the framework of the multiperipheral model the bare Pomeron intercept a(0) depends on
the number of exchanged particles and the strength of their interactions in the low energy
(resonance) region and can have any value).

2) Estimates of rbp(0) from the triple-Regge analysis of diffractive processes give for A the value
~1072. This shift of the bare pole is too small to explain the observed rise of the total cross sections in
the framework of the standard Reggeon calculus approach. It should be noted however that a
reasonable modification of the formulae of Reggeon theory, which takes into account the influence of
the “threshold” effects at present energies [89] allows one to explain the behaviour of “*” even for
A = Acrit-

If A> A..i: then the renormalized pole is to the right of unity in the j-plane (ap(0) > 1) and all the
diagrams of Reggeon field theory should be taken into account.

The hypothesis that the intercept of the Pomeranchuk pole is larger than unity has been proposed
several years ago by Cheng and Wu [90]. These authors have also assumed that unitarity in the
s-channel is restored by an eikonalization (2.64) of the pole contribution*

2is(s,b) _ 1 42 ap©0)-1 2
T(s, 1) = 87s f C—T—l e"’"-di—:—; 8(s, b) = 220 "11’6(2(:{;‘;)_ exp( __b ). @m®

This leads to a Froissart type asymptotic behaviour of the elastic scattering amplitudes. The amplitude
f(s, b) is equal to i/2 at s> in the region of b, where Im &(s, b)> 1, i.e. for b*>< R3¢*, where
R:=4a3(0)A.1 For larger values of b the amplitude decreases exponentially with b and the width of
the edge is ~ Vap/A, fig. 2.39a. Thus in the limit £ > « the impact parameter distribution is the same as
for scattering by a black disk of expanding radius Roé with a sharp edge (fig. 1.1). In this case the total

cross sections ¢*°” = 8ma’'A-¢* and the slopes of the diffraction cone
_d, do|l o
B=ginGr| ~abOn¢

are universal for all hadronic processes.
*In the Cheng and Wu model {90] the ¢-dependence of ap(t) has been neglected (Ap = const).

tFor a linear form of the P-pole trajectory (ep(f) = ap(0) + ap - ) and a gaussian parametrisation of the residue function, Im (s, b) becomes ~1
according to eq. (2.78) at somewhat smaller values of b: b* = 4ap(AE” - ¢Ing).

Umf,e(ﬁb)

05 | |

Im £ Tsb) }*E——l

b) Vs 8 b

Fig. 2.39. Impact parameter distributions in theories with ap(0) > 1; (a) for elastic scattering, (b) for inelastic diffractive processes.
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The amplitudes for inelastic diffractive processes in the same eikonal approximation (egs. (2.73,
2.77)) are peripheral in b-space and are concentrated only in the edge-region due to the full absorption
for b <R. The cross section for diffractive excitation at a fixed mass varies as o5’ ~ £.

We have discussed so far only eikonal graphs, but generally speaking there are no reasons to
neglect diagrams with Pomeron interactions of the type, shown in figs. 2.37, 2.38. The theory of
interacting Pomerons with A > A_,;. has been studied in refs. [81-87]. Reggeon field theory with triple
Pomeron interaction has been studied in several papers [82]. It has been found [82] that the solution
corresponds to the Froissart asymptotic behaviour for scattering amplitudes. However all the
n-Pomeron interactions are equally important in the case A > A, So it is natural to ask the following
questions: a) whether the same solution is valid in the general case for arbitrary interactions of
Pomerons? and b) is the solution consistent with ¢t-channel and s-channel unitarity? These questions
have been studied in refs. [84] under the assumption that the vertices for the transition from
n-Pomeron to m-Pomerons are analytic functions of the variables n and m. This approach to Reggeon
field theory with ap(0) > 1 has been proposed by Cardy [81]. The main object (initial element) in the
approach is the sum of eikonal type rescatterings in the s-channel, ‘“Froissarton” [84]. General set of
Reggeon graphs can be written in terms of the Froissarton graphs. The Froissarton contribution is
factorizable [81] and the multi-Froissarton contributions are determined by the usual rules of Reggeon
calculus.

It has been shown in refs. [84, 85] that the sum of all the diagrams of Reggeon field theory leads to
the Froissart type asymptotic behaviour and does not violate t-channel and s-channel unitarity
equations. A consistent solution can be obtained only if the singularity of the Pomeranchuk trajectory
ap(t) at the point t =4u’=t, is taken into account [85]. This effect has been usually neglected,
because, in the versions of Regge theory with ap(0)<1, the impact parameter region b’>~ ¢ is
important and the threshold singularity of ap(t) has no influence on the amplitudes in this region.
However, in the case ap(0)>1 the region b*>~ ¢ is very important and the behaviour of the pole
amplitude 8(s, b) depends crucially on the singularity of ap(t) at t = 4u’. For example if the Pomeron
trajectory is parametrized in the form ap(t) =1+ Ao+ apt + €(to—t)’, then the function (s, b) in the
region b <2a'ty¢ is given by eq. (2.78), but for b > 2a’t,¢ and A, > apt, it has another representation [85]

_ .. €Xplk(Roé — b)] 279
5s,b)=B g\/i)—(b —2apk€)""! 7)
where
B 2y(0)(si)ap( ) .%%(ZK)7+1/2F(7 +1); k=V1= 2.

The most important consequence of the eq. (2.79) for the pole contribution is the change in the
behaviour of the scattering amplitude in the edge region of b. The effective radius of interaction in this
case

R =2Vaph¢ - (lk_—’Li) In¢ (2.80)

is less than that for the usual representation (2.78). In the region of very large b, where |8(s, b)| =
[f(s, b)] <1 the scattering amplitude f(s, b) decreases now as exp(—«b). The partial amplitude in the
t-channel as a function of @=j—1 and k=V—t has a singularity of the type (o *iRok)™" at
w - *iRok and for t = t, the power v is negative (the singularity is “‘soft™”) due to the influence of the
(to—t)” term in the Pomeron trajectory [85]. This allows one to preserve t-channel unitarity.
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Let us now discuss the inclusive diffractive production of large mass states and the multipomeron
processes in Reggeon theory with ap(0)>1 [86,87]. Exclusive multipomeron reactions have been
studied in ref. [86] in the framework of Reggeon field theory with triple Pomeron interaction and it has
been found that due to absorption effects the total cross section for inelastic diffractive processes is
consistent with s-channel unitarity. The “Froissarton” approach gives the satisfactory solution for the
cross sections for large mass diffractive excitations only if the threshold singularity is introduced in
the Pomeron trajectory. Consider for example the exclusive process of 2z-production in the double
Pomeron region of phase space. The Pomeron-poles are replaced by the Froissarton lines in the
diagrams shown in fig. 2.40. The simplest graph of fig. 2.40a gives a rapid increase with energy ~ £’ for
the cross section for this reaction and violates the unitarity condition. However on account of the
absorption due to the graph 2.40b changes the situation completely. The sum of the diagrams 2.40a
and 2.40b can be written in b-space in a form analogous to eq. (2.77)

fpp-’Ppﬂ+'rr_(£’ Y bl, b2’ Mz) = a'pp—>pp-rr+-n-‘(§a YIs bl; b2, Mz) ezm(f, bh (281)

where 8,pppn (& Y1, b1, by, M?) is the impact parameter representation for the double-Froissarton
exchange diagram of fig. 2.40a, 8(¢, b®) is the b-space amplitude for Pomeron exchange, it is given by
eqs. (2.78), (2.79). M? is the mass of the 2x-system, y, is the rapidity interval, which corresponds to
one of the Froissartons (y,=£—-y,), b= b, + b..

The quantity exp{2i8(¢, b*)} = 1 - 2|f.||, where f., has the Froissarton impact parameter distribution
of fig. 2.39a, is equal to zero asymptotically in the region b < R(¢).

If we approximate the Froissarton amplitudes by the distributions with a sharp edge at b = R(¢) =
Ro£ — BIné, then the function 8(¢, yi, by, o, M?) in eq. (2.81) is different from zero in the regions
|b:| < R(y1), |b2] < R(€—yy), |b] < |by| + |b2] < R(y\) + R(£ — y,) < R(¢) and it follows from eq. (2.81) that
the amplitude for inelastic diffraction vanishes because the function exp{2i8(¢, b%)} is equal to zero in
this b-region. Therefore it is necessary to take into account the width of an edge and the amplitudes
for the inelastic diffractive processes are concentrated in the edge region b = R(¢) (fig. 2.39b). The
energy dependence of the cross sections in this region depends critically on the parameter B
(R(€)— Ry ¢ = B In¢) and the form of the elastic impact parameter distribution. For example in the
case, where 8(¢ b”) has the form (2.78) (linear parametrization of ap(f)) the cross section of the
reaction considered above after an integration over the variables b,, y, increases indefinitely in the
region b~ R(£) as ¢—>. This contradicts the unitarity equation (1.10). On the other hand if the
singularity of ap(t) is taken into account using the expression (2.79) for b > 2a'toé then for the values
of y > 1* the diffractive production of states with more than one large rapidity gap is small in the
region b =~ R(¢) and s-channel unitarity is not violated.

It should be noted that the Froissart type asymptotic behaviour of amplitudes in theories with

*This condition seems to be reasonable, because in the usual Regge pole model y = ap(to) +3 > 1.5.

rp o e___o
L_”_ I b‘l”
+::: bg {f &=
xr
dl F &8
y2)
£y Py P

Fig. 2.40. Double-Froissarton production of particles (a) and graph, corresponding to absorption (b).
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ap(0) > 1 is set at super higher energies, where A-£ > 1. Estimates of A give the value =0.1, so the
the relevant energy region, ¢ > 10, is unaccessible for experimental investigation.

Concluding this section let us discuss briefly the theory of “heavy” Pomeron, which has been
proposed by Gribov [91]. It has been assumed that ap—>0 and at present energies R’>= apf <R32,
where R, ~ 1/2u is the radius of the usual hadronic interactions. The Pomeron is “heavy” because in
Reggeon field theory the quantity 1/ap plays the role of the “mass”. In this approach the nonen-
hanced cuts are small (1/£°) even in the preasymptotic energy region 1 < £ < R3/a} and the behaviour
of scattering amplitudes is determined mainly by the pole and the enhanced cuts. The general
properties of this solution are similar to the ones for the strong coupling solution of the “critical”
Pomeron (A = A.;). This scheme leads to the following experimental consequences:

a) The physical picture for elastic scattering is analogous to the scattering on a black disk with
slowly increasing radius R ~ In£. Thus the total cross section rises with energy as (In¢)” and the ratio
Tl 0o 1S CONstant.

b) An approximate factorization is valid for elastic and inelastic cross sections.

c¢) The effective triple Pomeron vertex is small ~ ap.

This picture is in a qualitative agreement with experimental data. However it is not clear whether
the energy region, where this approach can be used exists? Analysis of experimental data shows that
at present energies apé ~ R,

3. Experimental information on the properties of diffraction

(tot)

3.1. Elastic scattering and o

Investigation of elastic scattering and total cross sections o“’(s) at high energies gives important
information on the characteristic features of diffraction. It has been pointed out above, that elastic and
inelastic diffractive processes are closely connected, so only the study of all the diffractive
phenomena allows us to find out the main properties and the actual mechanism of diffraction.

Let us enumerate some important results of the experimental study of ¢“*? and elastic reactions.

a) Total cross sections for hadron-hadron interactions o“°" rise with energy at E = 100 GeV (fig.
3.1). This rise is probably a universal feature of all hadronic interactions, but the energy where it starts
depends on the type of colliding particles. An early rise of " (at energies ~20 GeV) is seen in
K "p-interaction. The total cross section for pp-interaction, which is investigated in the widest energy
range increases by ~10% from E ~ 10> GeV to E =2 x 10> GeV. Let us note that all the differences
between particles and antiparticle total cross sections Ac“ have a power low decrease with energy
which starts at relatively small energies. This behaviour corresponds to the Pomeranchuk theorem and
the predictions of Regge theory.

b) The ratio a =ReT(s,0)/ImT(s,0) of the real to the imaginary part of the forward elastic
scattering amplitude is small at high energies for all the investigated processes. But the behaviour of «
at large s does not correspond to a monotonic decrease with energy, which would be characteristic of
a pure Regge-pole model. For many elastic reactions (pp, K'p, #*p) the function a(s) actually
changes sign at energies ~100 GeV (fig. 3.2).

Such a behaviour of the real parts of the elastic amplitudes is in agreement with the predictions
of dispersion relations. It follows from the simple relation,

- 1 lT__d_ — (tot)
as:wmz(ifa' €3] 3.1
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where

a = a(ab)+ a(ab); & = o(ab)+ o(ab)

which is a consequence of analiticity and crossing. The change of the sign for the function & takes place at
energies, where ¢“°° has the minimum. The positive values of @ at very high energies are closely
connected with the rise of o“°”. The accurate measurements of a,(s) at ISR [94] point out that the rise of
oS continues up to the energies of ~10° GeV.

¢) The slope of the diffraction cone B = (d/d¢)(In(do/dt)) increases with energy. The dependence of B
on s for pp-scattering is shown in fig. 3.3. At energies =50 GeV this dependence is approximately

logarithmic
B(s) = By + 2aj In(s/s,).

The value of ap or the effective slope of the Pomeranchuk trajectory is equal to (0.278 + 0.024) GeV*
(at [t]<0.1 GeV?) [96]. Let us note, that the values of B and «j depend on t. For example at
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Fig. 3.2. a =ReT(s,0)/ImT (s, 0) for elastic pp-scattering [93, 94].

~—-0.2GeV? ap=0.13+£0.02 GeV> [97]. Experimental data on other elastic reactions do not
contradict the assumption that the dependence of B on s is universal at energies =50 GeV.
d) Both the total cross sections and the diffraction slopes rise with energy at large s, but their ratios
a""(s)/ B(s) are practically energy independent. Experimental data on o“°*(s) and B(s) for all elastic
reactions are in agreement (see fig. 3.4) with the relation [70]

(tot)
o (S)CP -4 (3.2)
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Fig. 3.3. Energy dependence of the diffraction slope for elastic pp-scattering at (—¢) <0.1 (GeV/c)? [95-97].
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Fig. 3.4. Comparison of the relation (3.2) with experimental data.
where the quantity Cp = 1+ o 57(s)/0*"(s) (see section 2.5) does not depend on energy at E = 50 GeV.
It can be determined from the analysis of inelastic diffractive processes and it has been found that
Cp()is equal to 1.4 + 0.1 for NN scattering, 1.6 + 0.2 for #N and 1.7 = 0.3 for KN-scattering [70] (C is the
same for scattering of particles and antiparticles).

Taking into account, that 0“°°(s) ~ Im f(b, 5)|»<z - R’(s) and B(s) ~ R’(s), where R(s) is an effective
radius of interaction, we can conclude from the abovementioned properties of elastic scattering, that
Im f(b, s)|»<r does not depend on energy. From the geometrical point of view this means that at high
energies the radius of interaction increases with energy, but that the opacity is energy independent
and is nearly equal for ab and ab interactions (but it is different for the #N, KN and NN-interactions).
The value of the opacity is probably connected with the cross section for inelastic diffractive
processes.

These properties of elastic scattering can be described by the model of “geometrical scaling”
[98-100]. In the framework of this model the amplitude f(s, b) is written in the form

2i5(s, b) _
fo.b) =5 s b)=yF(gs)  FO=1 (3.3)

where v is a constant, which depends on the type of reaction considered.
In this case

d_o' _ (a(tot)(s))Z

T(s,0)=T(s,0) FR(s)),  qr=""qe—fx)

3.9
where x = ¢“(s)-t.

Such a behaviour of differential cross sections, the dependence of {1/(c“°”)*} do/dt on the variable x
is in agreement with experimental data on elastic pp-scattering in a wide region of ¢ [98], including |t| ~ (1
to 2) GeV?, where do,,,/dt has a characteristic structure with a minimum and a secondary maximum. The
assumption that the amplitudes for 7N, KN and NN scattering differ only by the value of the constant y in
(3.3) and that the function F(b/R(s)) is universal leads to a good description of the data on 7N and
KN-scattering at energies = 100 GeV [101].

So, the investigation of elastic reactions at very high energies leads to an important conclusion in
favour of the “geometrical” character of elastic diffractive scattering.

Let us now discuss the properties of elastic scattering from the point of view of the theoretical
approaches to diffraction. In a Regge theory with ap(0) = 1 the rise of o“°"(s) is usually connected with
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the logarithmic decrease of the PP-cut contribution. But detailed calculations in the framework of the
eikonal approach [69, 88] (with due account of inelastic intermediate states) leads to too slow an
increase of o“?(s), which contradicts experimental data*. That is why models with ap(0) > 1 were used
recently for the description of the data on ¢“* and differential cross sections for elastic reactions
[88, 102, 103]. These models have the Froissart type asymptotic behaviour, but at present
energies the pole term is still a dominant contribution. The asymptotic regime sets in at extremely high
energies £A> 1 (A= ap(0)— 1=0.1) and the present situation is very far from the asymptotic one.

Note that in the framework of the existing theoretical models geometrical scaling can be valid only
approximately and must break down at higher energies. For example in the eikonal model with
ap(0)>1 (2.78) the opacity or 8(s, b) at b> < R*(s) is approximately constant at present energies
because

S\ s S\ 1+Aln(s/se) 1
8(s,0)~ (s—0> / (R°+ apln so) " RY1+ (ap/R)In(s/so) R;

for realistic values of Rj~ ap/A. So the interesting question is whether the geometrical scaling is
“accidental” and will disappear at higher energiest or is it a fundamental property of diffractive
scattering, which is not yet understood theoretically?

3.2, Exclusive diffractive processes

From the theoretical point of view any process with fixed number of particles in the final state
should correspond to a diffractive mechanism at s —». Exceptions are those reactions, where the
contribution of the Pomeranchuk singularity is forbidden by quantum numbers conservation (for
example = p- #°n, pp—iin). The range of energy §, where scattering starts to show a diffractive
character, depends on the number of particles n in the final state and on the mass M of the
diffractively produced system. It moves to higher energies as n or M grows.

In recent years information on the properties of exclusive diffractive processes was greatly
improved due to a considerable extension of the energy range, accesible for the experimental study
and to the high accuracy of the data. The results of investigation of exclusive reactions with a small
number of particles in the final state, —-NN->N(N=), 71N> 7(N7), KN->K(N7), n“p>7n "7 7 p,
pp—oppr 7, K*p>K*7 n p etc. give a rather complete picture of the properties of diffraction
dissociation:

a) The cross sections for these reactions (both total and differential) have a weak energy
dependence at E; = 50GeV (figs. 2.7, 3.5, 3.6). Note, that at energies <30 GeV these cross sections
decrease with energy and this dependence is much more pronounced than for elastic reactions. In
Regge theory this decrease of the cross sections is connected with the contributions of secondary
trajectories P’, p, , 7 etc. It would be very interesting to study whether the rise of (do/dt)|,~,, seen in
elastic reactions, takes place also for inelastic diffractive processes. It has been noted in section 2, that
models with a Froissart-type behaviour for elastic amplitudes lead also to a logarithmic rise of
inelastic diffractive amplitudes and (d°o/dt dM?),~o ~ In’(s/so) as s - . At the same time models with
asymptotically constant total cross sections predict the decrease of d’o/dt dM? at small ¢t with energy,
because for such models d°of/dt dM>~¢t as t—>0 and s—>». So the detailed study of the energy
dependence of differential cross sections for inelastic diffractive processes can give important

*It is possible to describe the rise of o with ap(0) = 1 if the threshold effects (see section 2.6) are taken into account [89].
tIn the theory with ap(0)> 1 geometrical scaling is restored again at practically inaccesible energies ¢ ~ 100 (when £A > 1).
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Fig. 3.5. Cross sections for the reactions pp—(nz")p, np—{(p7 )p
(a) and pp—(pm* # )pw* #), {107] (b) as functions of incident
P,_ (GeV) laboratory momentum.

information on the character of the asymptotic behaviour of the theory. The abovementioned rise of
the cross sections for inelastic diffractive reaction in most of the cases will probably take place, at
higher energies than for elastic reactions. This is due to the large contributions of secondary
exchanges. Nevertheless, it is possible to point out some reactions, where an early rise of the cross
sections (at E; =30 GeV) can be expected. For example the reaction K*'p—>K " (n#") is described in
the DHD-models by the diagrams shown in fig. 3.7, which are determined by the amplitudes for elastic

*#* and K*p-scattering. Both of them have exotic quantum numbers in the s-channel. So the con-
tribution of secondary exchange is expected to be small. The same arguments can be applied to the
reaction pp—~>(p7m 7)) (pr' 7 )>(A""#") (A" #") and the experimental data [107] indicate a sub-
stantial increase of the cross section for this process in the ISR energy range, fig. 3.5b.
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Fig. 3.6. Energy dependence of differential cross sections for the reaction np - (px")p for different mass intervals of the (p=)-system [104, 105].
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—n p . 7

Fig. 3.7. Diagrams of the DHD-model for the reaction K*'p—->K*(n7").

b) The mass spectra of diffractively produced systems are concentrated in a region of rather small
masses, i.e. M <2GeV (see figs. 3.8, 3.9). At higher masses the differential cross sections decrease
rapidly with M (fig. 3.10). The form of the mass spectra depends weakly on the initial energy and on
the type of colliding particles (figs. 3.8, 3.9). In the threshold region d’o/dt dM? has a maximum, which
is in agreement with the predictions of the DHD-model. The structures, corresponding to the
production of resonances with the same isospin (or G-parity for the nonstrange bosonic systems) as
the initial particle, are seen, as well, in the mass spectra of diffractively produced systems. For
example the nucleon resonances with I =3, N*(1520) J© =3, N*(1688) 3* and N*(2100) are produced
in the nucleon diffractions dissociation N - N#. The amplitude analysis of the diffractively produced
systems [108-110] allows one to study the properties of diffraction dissociation in more detail. It has
been found that the threshold enhancements in (pw), (f7), N#), (Aw) systems have mainly non-
resonance character (the phase of the corresponding partial wave amplitude has a slow variation in the
region of the maximum). This is in agreement with the explanation of these enhancements in the
DHD-model. In most of the cases the quantum numbers of the diffractively produced systems satisfy

T T T T T T T T T

fho - .
— Kp— K" (ny*)

o 1688 V8 = 83 Gev 4
O2<it 1 <10 GevZ2

n

~-np ——(pm)p 2
12 5 VB £24.GeY
02sit, l<1.0 Gevé _

dN""/dm (NTr)

24 30
M(NT) Gev

Fig. 3.8. Mass spectra of the Nw-system for the reactions np— (p7)p, [104} and K"p—> K™ (n#*), [106].
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Fig. 3.9. Mass spectra of the pm* 7~ system for the reactions pp— (p#* 7 )(pm*7), (107) and K'p->K (p=*="), [106].

the relation AP-(—1)* = + 1, where AP and AJ are the changes of parity and of angular momentum in
the diffractive transitions a— a* (the Morrison rule [111]). It should be pointed out however that there
are some diffractive transitions which do not satisfy this rule. For example the transitions 7 —
A5(1310) (quantum numbers of A, J¥ =2%) or the s-wave amplitude (J* =37) in the N-system
diffractively produced in the reaction #N - 7(N=), [109].

¢) The momentum transfer ¢ distributions depend strongly on the mass of the produced system.
The slope B of the differential cross section rapidly decreases as the mass M increases (slope-mass
correlation), fig. 3.11a. The strongest dependence of B on M is observed in a threshold region. The
amplitude analysis shows [110], that this correlation takes place also for final states with definite

quantum numbers.
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Fig. 3.10. Mass dependence of the cross section for the process np— (pm)p in the region M ,-,> 1.8 GeV, [104].



206

A.B. Kaidalov, Diffractive production mechanisms

PP— pP(NTt)  V5:45Gev
a) b)

‘3?_ ®-03<co0s8, <03 s f3em<ias
3 0-03<cos8 <40 9o
28 + 28
26 26—
24 + + 241
gl
20 20
18— w 18
% 6 3 76
o 14 S
12— 12—
N |

10 \\—4>+ 10}

81— N 8
6 e ¢ 61—
He 2

) VO Y T VY IO [ A I |

(g 14 16 18 20 22 24 - U 1
m (i) Gev cos §

Fig. 3.11. Dependence of the slope B on M .+ and cos8; for the reaction pp— p(nw "), [112]. Dashed curves are the results of calculations, based
on the pion Deck model (fig. 2.5a). Full curves are obtained taking into account all the diagrams of fig. 2.5 and the effects of absorption (fig. 2.36),
[74}.

d) The slope B depends not only on the mass M, but also (at fixed value of M) on the cosé; of the
diffractively produced particle in the c.m. of the produced system (#; is the polar angle in the
Gottfried-Jackson system). This interesting effect means that there is a correlation between the
production and the decay of the hadronic system. It has been observed in the reactions NN -
N(N#w), aN->x(N7) [104,112,113], fig. 3.11.

e) There are dips and breaks in the ¢-distributions for the diffractive production of N7 and N##
systems with small masses [112, 104, 106]. These structures depend both on the mass and the value of
cos@, and are closely correlated to the dependence of the slope B on M and cos6,. The differential
cross sections do/dt dM” have dips at |t|~ (0.2-0.3) GeV?, which are most clearly seen in the region
M < 1.35GeV and cos@, = 0. This is shown in fig. 3.12.

From the impact parameter space point of view the t-distribution of the type, shown in fig. 3.12a
can arise, if f(b) has a peripheral form (fig. 1.4) with R = 1 fermi. The simplest model based on the
assumption that b-space distributions for inelastic diffractive processes have a universal peripheral
character has been proposed in ref. [19]. In the framework of this model the dependence of the slope
B on M is connected with the increase of the angular momentum of the produced system and growth
of the number of helicity amplitudes with A\ # 0 as M increases. The contributions of these helicity
amplitudes to do/dt have diffraction minima at higher values of |f|, so at M > 1.4 the minimum in
do/dt practically disappears and the slope decreases. However, the dependence of B on M for a state
with definite J and the correlations between ¢ and cosé, distributions contradict this simple model.

Let us now discuss an interesting question: whether the properties c)-e) of inelastic diffractive
processes correspond to the one Pomeron exchange and are connected with the structure of the
vertex (N— N) or the peripheral character of the b-space distributions points out to the important
role of absorptive effects (moving cuts)? In the framework of the DHD-model, which takes into
account only the pole graphs of fig. 2.6, it is possible to explain qualitatively the properties c)-e) [74,
114-116]. In this model the minima in the differential cross sections at ¢t-values which depend on M
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Fig. 3.12. Momentum transfer distributions for the reaction np - (p7")p for various ranges of the pm -mass and coséy, [104]. Full curves are the
predictions of the DHD -model with absorption {74].

and cos@, are connected with the mutual cancellation of the graphs of fig. 2.6 in the corresponding
point of phase space [114, 115] (the graphs a), b) and c) have different signs). The sharp backward
peak, observed in the cosé, distribution of the reaction NN - N(#N), [116] in the region of small
masses for the Nw-system (the established resonances do not contribute to this region of M),
indicates the important role of baryon exchange (diagram 2.6b). It is also possible to describe
qualitatively the dependence of the slope B on M in the DHD-model. An interesting dual generaliza-
tion of the DHD-model, which provides the possibility to include in an economic way into the scheme
production of nucleon resonances has been proposed in ref. [115]. This model reproduces the
structure with minima of the differential cross section for the reaction NN - N(N 7). However a good
quantitative description of the experimental data (including normalization) for the reactions NN -
N(N#) in the region M <1.4GeV (full curves in figs. 3.11, 3.12) can only be obtained [74] if
rescattering effects to the pole diagrams of fig. 2.6 are taken into account. Thus the analysis of
experimental data for some exclusive diffractive processes indicates that: i) the DHD-model is a good
first approximation for the amplitudes of these reactions and ii) both P-pole exchange and many
Pomeron cuts should be taken into account.

If the moving branch points give an important contribution to the cross sections, then the
factorization property, generally speaking, does not take place. However the data on exclusive diffractive
processes show that:

e) An approximate factorization of the differential cross sections is observed in diffractive
reactions.

The experimental observation of independence of the M and ¢-distributions on the type of colliding
particles in the reactions ab—ab* (figs. 3.8, 3.9) points to the factorization of amplitudes. More
complete tests of factorization in single diffraction dissociation processes can be carried out using the
following relation

do */d_ff s k) — 97 /d_v o
dt(ab—>ab) dt(ab—>ab )—dt (ap—ap) dt(ap—»ap). (3.5)
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Fig. 3.13. Comparison of the experimental data on N* (1688) production in pp and mp-collisions with the factorisation relation (3.5).
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For all studied reactions this relation is approximately satisfied at |t| < 0.6 GeV? (see for example

fig. 3.13). Deviations from factorization in this region do not exceed usually =20%.

Another test of factorization, which is more sensitive to the contribution of rescattering, is the
comparison of the differential cross sections for double and single diffractive dissociation (2.19). Because
of the low statistics of present experiments for double diffraction dissociation processes (which have
very small cross sections) a relation between the cross sections integrated over M and ¢ is usually

used

T ab—sa*b* —
T ab—ab

_ OTabsa*b” T abrab*

. B ab—-)a'b'B ab—ab*
B ab—a*b*’ B ab—ab

10°1

A I

0

10 20 30 40 50
VS (GeV)

(3.6)

Fig. 3.14. Cross sections for the double diffraction dissociation reaction pp— (pm 7 ”) (pm* 7 7): *, [107} and the factorisation predictions:,f‘.
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scattering.

Within rather big experimental errors eq. (3.6) is in an agreement with the data, see fig. 3.14. It
should be noted, that the differential cross sections are much more sensitive to deviations from
factorization predictions than the integrated quantities.

If the factorization relation (2.19) is valid, then the slopes measured in different diffractive
processes are related namely:

B ab—a*b* + Bab—»ab = B ab—a*b + B ab-»ab*. (37)

This relation is in an agreement with experimental data on the reactions pp—>(p7m 7)) (p7’7"),
pp— (pm" # )p and pp-> pp, fig. 3.15.

A comparison of the factorization relation (2.19) with experimental data at the ISR [118, 119] on
differential cross sections for the processes np—(p7 )p and nn—(p7 )p# ") is shown in fig. 3.16.
Factorization is satisfied up to [t| ~ 1 GeV>.

In subsection 3.4 we shall see, that factorization also takes place for inclusive diffractive processes.

Thus factorization is approximately satisfied for inelastic diffractive processes at [t| <0.5 GeV’. It
should be noted however that, up to now, a detailed test of the factorization relations (3.5), (2.19) for
different M, cosé; and t-intervals has not been carried out. In particular it would be very interesting to
study the dependence of the value t,, the position of the dip of the do/dt dM d cos 6, differential cross
section in the reactions aN—»>a(N#), NN—>(N#x)(N7), on the type of colliding particles. If the
minimum is connected with rescattering effects the value of ¢, should differ for different reactions.

3.3. Inclusive diffractive production of particles and the Pomeron-proton total cross sections

Investigation of exclusive diffractive channels allows one to obtain complete information on the
properties of inelastic diffraction. However it is more convenient to study some important charac-
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teristics of diffraction using the inclusive approach to the diffractive production of particles. This
approach is especially suitable for the production of large mass states, which decay into many
particles. In the past few years many interesting experimental results have been obtained in this field
[120-135).

The study of the inclusive spectra of particles in the reaction a+b—a’'+ X near the kinematical
boundary x - 1 (or s, = M%< s) gives the possibility to determine (according to 2.14) the total cross
section for Pomeron-particle interaction. In the case of the reaction pp—pX at s >

d2 P t 2 2(ap(t)—1) ‘ot

The contributions of secondary exchanges (with a;(0) < 1) at fixed values of s, decrease as some
powers of s. So, if the differential cross section at ¢ =~ 0 is parametrized in the form

d’ec

&, di A(S1)+Z Bi(s))/s™ (3.9

Then the quantity A(s)) = (g5,(0))°o50"(s1, 0)/2s, is the P-pole contribution and the parameters B; are
connected with secondary Regge-exchanges (for the w-pole y=2(1—a,(0)=2 for P', w, p, A,
y = 2(1 - ar(0)) = 1, the interference term PR gives y = ap(0) + ar(0) ~2=0.5).

The results of the analysis of experimental data, based on this procedure [41, 70] are shown in fig.
3.17. The value of the parameter y is found to be ~1 for all masses (except the region s, ~ M3,
where the #-pole contribution is important). This points to the smallness of the interference (RP)
term. The following parameters for the P-pole contribution to elastic pp-scattering have been used in
the calculations of o$e” at t#0,: ap=0.3GeV 7, (gh(t))’ = (25:(0))* exp(R3,1); (g5,(0)° =4 GeV 2,
RZ,=4GeV . The total cross section for the Pomeron-proton interaction has maxima in the small
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Fig. 3.17. The Pomeron-proton total cross section.
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Fig. 3.18. Momentum transfer dependence of the cross sections for the reaction pp— pX (a) at incident momentum 205 GeV/c, s, <5 GeV> - upper
points, 10 < s; <25 GeV2 - lower points (multiplied by 1/10) [122] and (b) at incident momentum 42.5 and 52.5 GeV/c [133].

mass region (due to resonances at M =14 to 1.5GeV and M =1.7GeV) and a smooth Regge
behaviour for M > (2 to 3) GeV,

To0(s1, 1) = 87(gh(0) rhp(t) + go(0) rip(t) Vsolsy).

The asymptotic value of opo (s, t) = 8mgh,(0) rip is close to 1 mb and is practically independent on t.
Experimental data on the behaviour of diffractive production cross sections d’g/d¢ ds, in the small
t-region (see for example fig. 3.18) show no evidence for a minimum in the forward direction (as can
be expected in the weak coupling theory). We shall therefore assume in the following that rps(0) # 0
We thus have for the triple-Pomeron coupling rip(t) = rpp(0) = o5o?/8mgp,(0) = (0.05 £ 0.01) GeV ™'
In order to determine the parameters of Pomeron interactions and the value of the nondlffractlve
“background” for the large mass region of inclusive processes it is convenient to use the triple Regge
model (2.17)

a(®—ait)—aj(t) [ S @t
f= 553; S Gun(1-x) (so) .
At very high energies (s = 10’ GeV) scaling terms with a,(0) = 1 are the only important ones in this
sum.
Experimental data on inclusive cross section

1 d’o -E o
rdtdM?fs)y — dp

for the reaction pp—pX at ISR energies [121] are shown in fig. 3.19. It can be seen from this figure
that:

a) The function f = E d’a/d’p does not depend on energy for fixed values of M?/s =1 — x; within
the errors of 5-10% scaling takes place at s > 500 GeV>.

b) In the triple Regge region x - 1 the spectra have a pronounced peak, which is consistent with
the behaviour f ~ 1/(1 — x), expected for the triple-Pomeron interaction (see table 1).
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Fig. 3.19. Inclusive cross sections for the reaction pp— pX at ISR [121].

c) The function f decreases with (1 —x) less rapidly in the region (1 - x) > 0.05 and for (1-x)=0.1
the spectra are practically x-independent. From the point of view of the triple-Regge model this is
connected with the important role of the secondary exchanges RRP, 7#P etc. in this region of x.

Triple-Regge analysis of experimental data on inclusive reactions have been carried out by many
authors [136-141, 41, 46, 124, 131}. The Pomeron terms PPP, PPR and the secondary Regge-terms
RRP, RRR, ##P, n#R are usually taken into account (sometimes the interference terms PRP, PRR
are also included in the analysis). The 7-exchange contribution (77 P and wwR-terms) to the reaction
NN - NX can be expressed in terms of the total cross section for wN-scattering

3 2 _
(EFD) = G= ot (102 8001 - x) () (3.10

The t-dependence of the form-factor F(t) is determined from the analysis of exclusive processes or
from the inclusive reaction pp—nX, where m-exchange dominates in the region 0.4 <1-x <0.95,
[142, 38].

The triple Regge-model allows one to obtain a good description of inclusive spectra at high energies
in the region 1 - x < 0.2. The parameters of the model (triple-Regge vertices) are determined from fits
to experimental data. The PPP-contribution, which is the most interesting one from the theoretical
point of view, is reliably determined from this analysis and the value of rpp(0) is found to be
(0.05+0.01) GeV~". This value is in an agreement with the prediction of the OPE-model, based on the
diagram of fig. 2.14a [38, 45]. Let us note that secondary exchanges are usually important in the region
of not too small (1 - x) and may describe for (1 — x) = 0.1 the average effect of other mechanisms as for
example the production and decay of resonances. For small values of 1—-x ((1-x)<0.05) the
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Fig. 3.20. Triple -Regge description for the reaction pp— pX. PPP, PPR and RRP terms are taken into account. Parameters of the model are given
in table 2. (Cross sections, obtained from the data on the reaction pd— Xd under the assumption of factorisation [124], were multiplied by the
normalization factor 1.2, which takes into account shadow corrections in deuteron[124].) ¢ - E=150GeV, & - E=275GeV, ? - E=385GeV,;
t =-0.05GeV?c™

nondiffractive “background” due to RRP, RRR, ##P-terms should be taken into account in order to
extract from the data the diffractive PPP and PPR-contributions. The condition, that s, d’a/ds, dt =~
const for s, > m’ and a fixed energy (or a narrow energy interval), which is often used as a signature
for the dominance of the PPP-term, is insufficient in order to determine reliably the PPP-contribution.
An energy extrapolation of the data (as given by eq. (3.9)) should be carried out for this purpose. This
is connected with the fact that at the energies E ~ 100 GeV and s,~ 10 GeV? the RRP, RRR terms
give a significant contribution to s, d’o/dt ds,, which increases with s,. These terms plus PPR
contribution to s, d’ofd¢ ds, (which decreases with s,) imitate the approximate constancy of the
differential cross section in some interval of s, (the minimum of s, d>o/d¢ ds, moves to larger values
of s, as E increases). In this case the differential cross section at fixed s, decreases with energy to it’s
asymptotic value (see fig. 3.20). Quite contradictory results can be obtained if the triple-Regge analysis
is carried out in a limited range of kinematical variables E and s,. For example in ref. [131] the PPP

Table 2

The parameters of the triple Regge description of the inclusive proton
spectra. Functions Gy (t) are parametrized in the form Gyx(#)=
G (0) exp(R% ). This parametrization is valid in the small t-region,
|t <0.2GeV? The RRP-term also takes into account effectively RRR-
contribution, a good description of the data can be obtained for a large
enough RRR-term if the value of Grre(0) is decreased and ar(0) =0.4.
The m-exchange contribution (77 P, 77 R) has been chosen in agreement
with eq. (3.10)

G (0) R 'zik @
(mb/GeV?) (GeV™?) (GeV™Y
PPP 0.67 4 0.3
PPR 2.2 4 0.3

RRP 10.8 2 0.75
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Fig. 3.21. Triple-Regge description of the data on the reaction pp - pX at energies 500 GeV (a) [128] and 140-175 GeV (b) [131], the upper curve for
(-t)=0.1 (GeV/c)?, the lower one for (—t) = 0.225 (GeV/c)>.

contribution is overestimated (rpp(0) = 0.15GeV ') on the contrary it is claimed in ref. [128] that the
triple Pomeron contribution is negligible. The data of the both groups can be successfully described
with rpps(0) = 0.05 GeV ™' taking into account the effects discussed above (fig. 3.21).

The relatively small value of the triple-Pomeron constant has important implications for the
structure of Regge-theory at present energies. The dimensionless constant (rpp(0))’/4ap(0) which
enters the loop diagrams of Reggeon calculus (of the type shown in fig. 2.28), turns out to be very
small ~1072. The characteristic expansion parameter of the theory is {(rps(0))*/4a s} In(s/so), so for
present energies (and all practically accessible energies) the triple Pomeron interaction is small and
can be taken into account. using a perturbation expansion.

It should be noted however that the value of rpp(0) has been obtained from experimental data in the
pure Regge pole model, without absorption corrections. The accuracy of the data on inclusive spectra
does not allow one to separate the pole and cuts contributions and the value of the rpp should be
considered as an “effective” one, which also takes into account rescattering effects. The estimates of
these effects in the eikonal model (fig. 3.22a) shows that the “effective” value of rpp(0) can be 2 to 3
times less than the true value of rpp(0), [143]. The graphs of fig. 3.22b (in the eikonal approximation) lead to
an extra increase of rop(0) by a factor of two to three. In this case the value of (rpp(0))*/4a s becomes so
large that all the diagrams with triple Pomeron interaction should be taken into account at present
energies. The eikonal model probably overestimates the many Pomeron amplitudes in inelastic diffractive
reaction. So we must understand better the role of Pomeron rescattering in inclusive diffractive processes

¥
I

o

Fig. 3.22. Graphs, corresponding to absorption in the triple-Regge limit.
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in order to decide whether the “bare” triple-Pomeron coupling is really small and the perturbation
expansion in rpp(0) is valid or the strong coupling solution should be used.

3.4. Factorization and inclusive diffractive processes

Tests of the factorization relations in inclusive diffractive reactions allows one to estimate the
effects of absorption for these processes. The factorization relations of the type of eq. (3.5) exist for
the diffractive excitation of the shower of particles due to P-pole exchange

fab~aX) __d%o /dza sy 2 97 /4 e
f(a’b—>a’X)-dtds1(ab—>aX) dtdsl(ab—»aX)—dt(ab»ab) dt(ab—>ab). (3.11)

These relations are valid for arbitrary masses V's; of the excited system (s, <s). It has been shown in
subsection 3.2, that the factorization relations (3.11) are in agreement with experiment in the small
mass region and for |t < 0.5 GeV>. These relations have been checked also in the triple-Regge region
51> m?. It has been shown in ref. [131] that the function s,{d’c(ap— aX)/dt ds,}/{do(ap - ap)/dt} at
energies E = 150 GeV does not depend within errors on the type of particle a (a= 7", K", p, p) in the
region 2.4GeV><s,<9GeV® and 0.05GeV><|t|<0.6 GeV’. Thus factorization is approximately
satisfied even for large masses of the excited system. It should be noted however that nonfactorizable
contributions due to Regge cuts and secondary exchanges can cancel to a large degree in the ratios of
cross sections (3.11).

If the total cross sections for reggeons-particles interactions in the large mass region s, > m’ are
determined by P-pole exchange the following factorization relations should take place

flab=aX) _oie

flab~>aX) ~ ol G142
In particular
fGmp->pX) _ 0‘5223; fXKp-pX) _ o) o.13)

fep->pX) oGm  fEP-DPX) o

The functions f(7p— pX)(f(Kp— pX)) describe the diffractive dissociation of 7(K)-mesons into large
mass states. These reactions correspond to protons with x =~ —1 in the c¢.m. system (slow p in the lab.
system). The relations (3.12), (3.13) also agree with experiment (with an accuracy~20%).

It has been already emphasized in subsection 3.2, that the double diffraction dissociation processes
are especially suitable for factorization tests. If factorization is valid, the differential cross section for
the inclusive diffractive production of two showers in pp-collisions can be written in the form

s_m2>2(ap(t)—l)
$1°82 '

d 1 . )
ds, gls)f 3= 16 TP 51 1) o5 (52, 1) (

(3.14)
The analysis of inclusive single diffraction dissociation shows that o$2”(s,, t) practically does not
depend on ¢ for s;=3GeV>. This means that the differential cross section for double diffractive
production of two large mass states must have a weak f-dependence with a slope B=
2ap In(s-m?[s,s,) (for s-m?[s,-s,~20, B =2).

The investigation of the double diffraction dissociation of large masses states (&), & > &) is very
difficult at present energies. This is due to kinematical limitations (£ > 2&, + Ao) and to the smallness of
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the diffractive contribution, which should be separated from a large nondiffractive background. This
cross section in pp-collisions, calculated according to eq. (2.21) with rpp(0) =0.05GeV™" is only
~0.1 mb at s ~ 10° GeV? while it reaches the value of 1 mb at s ~ 10° GeV.

Double diffraction dissociation is now studied in the processes pp - (p7 7 )X, pp— (A’°K™)X [135]
for not too large masses of one of the showers (pm* 7~ and A’K" systems are mainly concentrated in
the region s, ~ (2 to 4) GeV?). Inclusive distributions as functions of x = 2p/V's, where p; is the total
momentum of the p7* 7~ or A°’K" system, have a pronounced peak at x - 1, which can be interpreted
as a manifestation of the diffraction excitation of the systems p7 7 (A°K™) and X. In agreement with
the factorization prediction, the mean value of the slope in the process pp—(pm 7 )X is small
B =(2.2%0.2) GeV [135]. More detailed comparison with factorization has been carried out in ref.
[135]. If factorization is valid then all ratios R; = {do(pp— ip)/dt}/{do(pp— iX)/dt}, where i is any
hadronic system (i=p, p7 7, A’K™), should be equal. The comparison of this factorization
prediction with experimental data is shown in fig. 3.23. Factorization is satisfied in the region
0.15<|t|<0.5GeV>. There is an apparent violation of the factorization relation R,= R,.+.~ for
[t|> 0.5 GeV?>. It is mainly connected with a fast decrease of do(pp— pp)/dt in this t-region.

The agreement of the factorization relations with experimental data on inelastic diffractive
processes indicates that the cut contributions are possibly less important in the region [¢| < 0.5 GeV?,
than predicted by the eikonal model. However more detailed tests of factorization for different mass
intervals of the excited systems are needed before a final conclusion can be reached. It is also
interesting to study from this point of view the region of very small ¢ (|t <0.1 GeV?).

3.5. Energy dependence of the total inelastic diffractive cross section

The total cross section for diffractive production of large mass states increases with energy and it is
interesting to face the question, - whether the rise of o5’ can explain the rise of the total cross
sections at high energies? Consider the case of pp-interaction which is studied in the largest energy
range. For pp-collisions the cross section for the diffractive excitation of low mass systems has a

weak energy dependence and is equal to (2.5 to 3)mb*. The cross section for the diffractive

*Here and in the following the numbers correspond to the diffractive production of particles in both hemispheres in the center of mass system.

L AN B S SRR S R L e S LA S S S |

4.0?) te -::(b) ]

; Y ;:__fu_*_[_m_@._@ag_

i ' 1 R
ST S
04? 4 +§— + ]

; oD+ X + E: + + -:05

: apy 7 +X + :- + .
o M S

(03¢} 10 72} 10

Momentum transfer-t (GeV?2

Fig. 3.23. Test of factorization in the inclusive processes of double diffractive dissociation [135].



A.B. Kaidalov, Diffractive production mechanisms 217

6y (x40f) mb 6sd(-x $005/mb.

9 9

N Gho N

7-’/”%:}: /i 2 i;//
6 + 61 //i/i/ﬁ

51 5

4 44

3 3

1 i 1
2 ¥ 6 103 0% 2 HF &5 00 2 7 S(Gevd)

=
S{GevY

Fig. 3.24. Energy dependence of the cross section in the diffractive region [121]. The curvature in the t-dependence of diffractive production of
high masses [121] is taken into account in theoretical calculation (full curve). The same curvature is assumed for low masses (M 2<4GeV?),
dashed curve.

production of a shower with large mass 5 GeV>< 5,<0.1 s — opp increases by ~3 mb as the energy
changes from E; =30GeV to EL =2x10°GeV and it seems at first sight that the rise of opp can
explain nearly all the increase of o{:""(pp), which rises by 3.3 mb in the ISR energy range. However
the main part of the increase of opp comes from the energy range E; < 200 GeV; over the ISR energy
range the rise of this cross section is relatively small =~1.3 mb. Moreover there are background
contributions in the “diffractive” part of the inclusive spectra (x = 0.9), which decrease with energy
(for example RRR and wwR-terms). So the rise of the inelastic cross section in the region |x|>0.9 is
about 1 mb in the ISR energy range. A calculation based on triple Regge phenomenology is compared
with the data of FNAL and ISR in fig. 3.24. The curve reproduces the absolute value and the energy
dependence of the single shower production cross section (the theoretical predictions have a scale
error ~10%).

The total double diffractive cross section can be calculated from the data on single diffraction
excitation using the factorization relation (2.19). It is found to be =~ (1.8 to 2) mb at s ~ 3 X 10’ GeV?**.
It rises by =0.7mb over the ISR energy range. Thus the total increase of the cross section for
inelastic diffraction from s = 5 x 10> GeV? to s = 3 x 10’ GeV? is equal to (1.5 to 2) mb.

3.6. Properties of diffractively produced systems of particles

Consider now the characteristics of the particles, produced in diffraction dissociation
processes. In the framework of the multiperipheral approach the shower of particles with a large
invariant mass s, > m” which is produced in a P-particle collision, must have the same structure as

*The value opp = (5.0 £0.8) mb, which has been found in ref. [135] seems to be overestimated because: a) non-diffractive background has not
been separated out, b) factorization relation for cross sections integrated over masses of showers, which is not valid for large masses of the
produced states, has been used in ref. [135].
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the usual multiperipheral configuration in hadronic collisions (small means transverse momenta, flat
rapidity distributions in the rapidity interval of the shower, i.e. lp(sllmbﬂr)). In this model such
characteristics of the diffractively produced shower as (n..), ., f> and so on do not depend on s. They
are determined only by the value of s, and are analogous to the corresponding quantities for particle
collisions at s = §,, [144-146}. In particular the mean multiplicity of particles logarithmically depends
on s, at large s,

(n)s,= aln(si/so) + b (3.15)

and the coefficient a must be equal to that found for 7p (pp) collisions. This should be compared with
the predictions of models, where diffractively produced clusters of particles decay isotropically
according to the statistical mechanism and (n), ~ V s,/ so.

Experimental information on the mean multiplicity of charged particles produced in the inclusive
reactions pp — pX as a function of the mass of the system X [34] is shown in fig. 3.25. It follows from
this figure that {(n) increases with s, approximately logarithmically (dependence of the type (n), ~
Vs1/s0 is excluded by the data) and practically does not depend on the initial energy. The full curve in
fig. 3.25 is the prediction of the pion-exchange model (OPER) [38].

Thus the behaviour of the mean multiplicity of the shower is a strong argument in favour of it's
multiperipheral structure. The analysis of experimental data on inclusive processes [146] shows that
not only (n),, but also other characteristics of the shower, such as multiplicity distributions o,,
correlation parameters, rapidity (or x) distributions are analogous to the corresponding characteristics
of the final states observed in standard particle collisions. The properties of particles produced in
Pomeron—-proton collisions are in particular similar to those found for yp-interaction (see fig. 3.26).
This observation points out to an analogy between the Pomeron and photon interactions [145]. The
following experimental facts also show that the interactions for these two objects of a completely
different origin may be very similar:

a) The dependence of the Pomeron residues on ¢ in pp-elastic scattering is close to the behaviour
of the electromagnetic form-factors of the proton.

b) Weak ¢t dependence of oo’ for s, =3 GeV>. This is similar to that observed in the process of
electroproduction. These two facts can be qualitatively understood in the framework of the quark-
parton model.

<n4h> L T T =T T T T T
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4 ’ | 1
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«-100 -v-
2r e -205 -»~
L a- 303 ~n- 4
PR | L " L PPN | N ) N
5 10 50 100 500

M* (GeV?)
Fig. 3.25. Mass dependence of the mean multiplicity of charged particles in the process pp—pX. The full curve is the prediction of the
OPER-mode] [38].
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Fig. 3.26. Comparison of inclusive =~ spectra in the reactions pp—pz X: §, 20 < M% <50 GeV2;§, < M%<20GeV? and yp— 7 X (full
curve) [146].

Interesting data on the characteristics of the particles of the diffractively excited shower have been
obtained at the ISR [147]. The rapidity distribution of charged particles for large values of s, (in the
diffractive region s,/s <1) has a central plateau, which is practically intependent on f. This fact
indicates that the mechanism of diffractive production does not change appreciably up to |t| ~ 1 GeV>.
As the relative contributions of the many Pomeron exchange amplitudes increase with |t| and each
P-pole can produce particles, we would expect that the mean multiplicity and the height of the plateau
for the excited cluster should increase with [t|, if the many Pomeron cuts were important. Thus
present experimental observation points to a dominance of the P-pole contribution up to [t|~ 1 GeV>.

Investigation of the azimuthal distribution of particles for the diffractively excited system shows an
approximate f-channel helicity conservation.

3.7. Double Pomeron exchange

In the preceding subsections we have considered experimental information on single Pomeron
exchange processes. One of the main results, which has been obtained in this field, is the experimental
discovery of the triple-Pomeron interaction. The very high energies available now at ISR, FNAL,
SPS make possible the experimental investigation of a completely new class of diffractive reactions,
namely double Pomeron exchange reactions. It has been already pointed out in section 2, that the
question of the existence of the DPE-mechanism is very important from the theoretical point of view.
Experimental study of the DPE-mechanism (if it will be firmly established) would help to clarify many
properties of the Pomeranchuk singularity.

In order to separate the DPE contribution from a nondiffractive background one should study final
state configurations with two large rapidity gaps A;, A,> 1 (fig. 2.20). We have seen already that a
clear separation of the diffractive mechanism is rather difficult even for the case of single Pomeron
exchange (one large rapidity gap). For the DPE process the kinematical limitations (the total rapidity
interval at present energies is less then 8) make this problem more difficult. It should also be kept in
mind that the experimental cuts, which are imposed in order to separate the DPE-mechanism
(A1, Ay>Aq or Ay, Ar=3£— &) not only reduce the nondiffractive background, but somewhat
distort the rapidity distributions and strongly influence the value of the cross section arrived at for the
DPE-events.
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It is convenient to describe inclusive double-Pomeron exchange in terms of the variables ¢ =
In1/(1 - x.), & = Inl/(1 — x,) [148]. The boundary of the physical region on the £, £5-plot (the line FG
in fig. 3.27) moves to the right as £ increases because £ + & = £ + &y. The kinematical region, where
DPE is valid is shown by a hatched area in fig. 3.27 (£ > Ao, & — £; > &)*. Lines of constant M’ are
parallel to the line FG.

In order to exclude the &y dependence of the amplitudes it is convenient to introduce the new
variables éy=£&—£&,— & and Y = X& — &) and to consider cross sections at fixed &y. Then in the
process pp— pXp the differential cross section for the production of a central cluster with “center” Y
and “dimension” £y has the form (at ¢, = ¢, =0)

d 1 tot,
g e e (GEORER

+ (85e(0) 850 o¥8(En2ch Y exp ~ 554 [ (g5,0)" 06w expl - (6 £} 3.16)

The PP, PR and RR-interactions are taken into account in eq. (3.16). At fixed values of &y and Y
the PR and RR terms decrease as 1/V's and 1/s correspondingly as the energy increases. The terms,
which are due to an interference between P and R-exchanges, can also contribute to the differential
cross sectiont. These terms decrease with energy (at fixed &y, Y) as s 4.

It is clear from eq. (3.16) that in order to determine the DPE-contribution it is necessary to study
the energy dependence of the differential cross section at fixed value of &y. The only contribution
which does not depend on energy is the DPE-term. Note that the PR-term, contrary to the DPE, leads
to a strong Y-dependence of the cross section. The PR and RR-contributions to eq. (3.16) can be
estimated for large M’ in the framework of the triple Regge model (fig. 2.23), using the vertices
determined from the analysis of the single-particle inclusive spectra. These estimates show (see for
example [149, 150]) that up to the highest ISR-energies the background contribution, connected with
PR and RR-terms is rather substantial. Nevertheless careful experimental analysis of the s and Y
dependences of the differential cross sections allows one to separate different terms and to determine
the value of the DPE-contribution.

The DPE has been studied at very high energies by several experimental groups [151-156]. The
results depend strongly on the experimental cuts, imposed on data in order to separate the DPE. Note

*The conditions £ — £} > & are automatically satisfied if A, is chosen to be sufficiently large. However in practice Ao~ 2 and it is necessary to
impose the conditions £ — & > & in order to exclude the non-Regge region.

*The analysis of single diffraction dissociation shows that the interference terms are not very important. An estimate of the P-P'-interference
terms for the DPE-processes can be carried out using the OPE-model (fig. 2.21). The calculation [55) points out that these terms are essential up to
ISR-energies.
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Fig. 3.27. Kinematical region of DPE (shaded area) on the £, £5-plot.
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that if the condition A,, A, > A, is used, then the DPE cross section must increase with s (at present
energies) due to the increase of the available phase space (hatched area in fig. 3.27). On the other hand
if the final pions are measured in a limited rapidity interval in the c.m. system (A, = 3¢ — a, a is fixed)
the behaviour of the cross section is then determined by the energy dependence of the matrix element
(does not depend on s for DPE) [13, 149, 157). The results of the experiments performed at ISR,
where the DPE mechanism has been studied in the reaction pp—~>ppm = are shown in fig. 3.28
together with the theoretical predictions. Experimental data show that events of the reaction
pp—>pp7 7 in the region |x;,|> 0.9 and [y,;| <1 satisfy to the criteria for DPE, i.e. a weak energy
dependence and a flat Y-distributions. It has been also observed, that: a) the momentum transfer
t,=—q} and t, = — g3 distributions are factorized and have a slope B = (6 to 7) GeV 2, b) there are no
correlations between the transverse momenta of the final protons, c) the mass distributions of the
m 7w -system have a threshold maximum at M =~ 0.5 GeV in agreement with the OPE-prediction, d)
the angular distributions of pions in their rest frame are approximately isotropic.

Thus the experimental data strongly indicate the existence of the DPE-mechanism with a cross
section which is close to the theoretical estimates. However a more detailed investigation of the
energy dependence of the differential cross sections at fixed values of M?, ¢, and g, is needed for a
final conclusion.

If the existence of the DPE would be firmly established it would then be very interesting to study
the following properties of the PP-interection.

a) The total cross section of PP-interaction o$3’(év) and different exclusive channels, —7" 7",
#°7°, KK, pp etc.

b) The behaviour of the DPE at small values of ¢,

c) The factorization relations (2.34) in the large M’ region. These relations are sensitive to
Regge-cut contributions.

d) The properties of the particles, produced in PP-interaction namely (n)y2, o,(M?), do;/dy and so
on.
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Fig. 3.28. Cross section for the reaction pp—>pp# "=~ in the DPE-region. Theoretical calculation (curves) takes into account the “background”
contribution and kinematical cuts of the experiments: } [154], A, = A, =3¢ — 1.5;9[156] and &[155], A, = A, =36 1.
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e) The phase shifts for the partial waves of the 77 (KK) system. The phase-shift analysis would
allow one to clarify the structure of the amplitude PP —» 77 (KK).

3.8. Summary and conclusions

In this article some of the recent experimental results in the field of inelastic diffraction, which have
important implications for the nature of the Pomeranchuk singularity, have been discussed. We have
considered theoretical approaches to the problem of diffractive scattering. Special attention has been
paid to Reggeon theory which provides a unified framework for the description of a large class of low
pr phenomena at high energies. One of the main problems of this approach is connected with the role
of Regge-cuts in the amplitudes for diffractive processes. The present situation is very peculiar, some
experimental facts (such as the “‘geometrical” character of diffractive scattering, structures in the
momentum transfer distributions etc.) point out to an important role of Regge cuts; on the other hand
an approximate factorization takes place. Thus the detailed test of the factorization relations is one of
the main experimental problems in this field. Investigation of the energy behaviour of the differential
cross section for inelastic diffractive reactions with a good accuracy (in order to establish reliably the
rise of these cross sections with energy at s ~ 10’ GeV?) and clear experimental separation of the
DPE-mechanism are also important issues for the theoretical understanding of diffractive scattering.

Gribov’s Reggeon calculus method allows one to study the properties of many-Pomeron exchange
amplitudes and to establish their connection with ¢-channel and s-channel unitarity. However many
important parameters (Regge trajectories, residues, reggeon vertices etc.) are not fixed by the theory
and a new method for reliable estimates of the unknown parameters of the Reggeon theory is
needed. This question is also closely related to the problem of the asymptotic behaviour of the theory.
It is possible that the solution of these problems will follow from the future development of quantum
field theory. The best candidate for the underlying theory of strong interactions is the quantum
chromodynamics: the non-Abelian gauge theory of quarks and gluons. In this theory the Pomeron can
be closely related to the gluon structure of hadrons and the character of the gluon-gluon interaction.
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