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INTRODUCTION

These lectures concern the properties of topelogical charge in gauge theories

and the physical effects which have been attributed to its existence.

No introduction to this subject would be adequate without a discussion of the
original work of Belavin, Polyakov, Schwarz and Tyupkinl), of the beautiful cal-
culation by 't Hooftz’a), and of the occurrence of 8-vacua“~®). Other important
topics include recent progress on solutions of the Yang-Mills equation of
motion7’8), and the problem of parity ané time-reversal invariance in strong

interactions?®’ [axionslc’ll), etc.].

In a few places, I have strayed from the conventional line and in cne impor-
tant case, disagreed with it. The important remark concerns the connection be—
tween chirality and topelogical charge first pointed out by 't Hooft?): in the
literature, the rule is repeatedly quoted with the wrong sign! If Qg is the
generator for Abelian chiral transformations of massless quarks with N flavours,

the correct form of the rule is
AQs = - ZN{Jropo]ocjica_l ckarﬂe} (1.1)

where AQ; means the out eigenvalue of Q. minus the in eigenvalue. The sign can
be checked by consulting the standard WKB calculationz’a}, retating to Minkewski
space, and observing that the sum of right-handed chiralities of operators in a
Green's function equals =AQ;. The wrong sign is an automatic consequence of a
standard but incorrect derivation in which the axial charge is misidentified.
These points are examined in Sections 7 and 8, and influence the discussion in
Sectioﬁ 9. Elsewhere, T discuss loopholes in the argument that finite Euclidean
action implies integer topological charge (Section 2), offer some opiﬁions about
the problem of integration over instanton sizes (Section 4), and include some
brief remarks (Section 6) about generalizing f-vacua to non-WKB situations (e.g.

to the real world).
Inevitably, some important topics have had to be omitted:

a) There is no explicit treatment of the U(L) problemlz), although related
issues, such as Eq. (1.1) and the derivation of anomalous Ward identies, are
discussed here., A full review would require my going far afield into current

algebra,

b) Nor have I considered meronsl3), which are best explained by the proponents

of the programlh).

c) I have restricted the discussion to Yang-Mills theories in four dimensions.
For topological considerations in gravity and the Schwinger model, and for
the underlying mathematics of fibre bundles, see the lectures of Schroer!®’

and Thirring!'®).




TOPOLOGICAL CHARGE

Let A;(x) be a Yang-Mills field. The gauge (colour) index a and Lorentz

index u are gauge-transformed as follows!’)

R:‘ta — (H:)'Ta G F\::TaG + ij_’ G 3‘MG (2.1)

where g is a coupling constant,
GIE) = exp %) 2.2)

. . . a a
is an element of the gauge group parametrized by functionms £°(x), T generate the

group in a sultable representation,
a b ' . abc _¢
T, 7T = te T {2.3)

and cabc are the structure censtants of the gauge group. The field~strength

tensor FuB and its dual F;B are given by
a a a abe b e
= -~ 2.4
s d A a@ﬂd +oqc A° A (2.4)

b « B
*
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{2.5)

Topological charge (or topological number, Pontryagin index, second Chern

class number, etc,) for Yang-Mills fields is given by the formulal’

% 1 «BY¥§ " a -3
v o= (gffent) e [d5 R0 R
(2.6)
2 z 4 *
= (ﬂ/3lﬂ)fclx F.F  (x)
This definition is valid in four-dimensional Euclidean space (metric 6UA;
u,A =1, 2, 3, 4) if the antisymmetric tensor E&BYﬁ is given by €123, = *1. The
same formula works in Minkowski space (metric gUA = (1, -1, -1, -1};
U,A = 0, 1, 2, 3) with
0123
¢ = - f = 4+ ] (2.7}

o123
The significance of v is:
1) It classifies configurations AS in functional integrals
m] .{ . }
j[dﬂﬂ exp 1 Action | .
Contributions with v # 0 are necessarily non-perturbative.

ii) It can appear as a new gauge—invariant term in the (Minkowskian) action of

gquantum chromodynamics (QCD)lB)



Secn(®) = Seer(0) = dv ¢.5

where ¢ is a coupling constant and

chn(o) = _[.O“x fQCD(x) (2.9)

is constructed from the QCD Lagrangian
N

2 - .
g = - iF 4+ L a (il - M:) 9
Qcp [ =g N
' H (2.10)
(q{ = quark freld y 1 Havour )-
The new term conserves charge conjugation C, but is odd under parity P and

time-reversal T,

Why call v a "topological charge"? At first sight, v appears to have a com-
plicated dependence on the field AU. However, consider the effect of a local

variation 6/6Au of the field

SRS(x)/$A ()

5“8 SQbéa(x - 14)

a b ab o ¥ ab . ¥ 4 (2.1D
Rgfsny) = T4 - D) Sy
where Dab is the covariant derivative
o
D, = 9, - {gA:TC (2.12)

evaluated in the adjoint representation. Equations (2.6) and (2.11) imply the

result

 Sv[A) /5"

(4°/87) D°E,"
= (

where the last line follows from the Bianchi identity. Therefore v[A] is a topo-

(2.13)

logical invariant: 1its value does not change wken AU is locally deformed. TFields

can be grouped in classes labelled by the value of the topological chargel).

Since v[A] does not change under local variations of AU’ it must be deter-—
mined by the large-scale properties of AU' Therefore we lock for a surface-

integral representation. This can be obtained from the divergence relation’»!?)
I 2 L *
K" = (q*/327%) F.F

I _ a 2 [T 1 a 1 abe . b 3

K" = (q*/3an’) € AS(F, 59¢ Ag Ay)

where K" is fixed up to the effect of gauge transformations (2.1):
J - o - - -
K= (K] = K"+ () T €6 70,6 679,6 67,6
+ (ig/8n") 9, v """ 9 G 67'A Y. 219

(2.14)
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In Euclidean space (to which the remainder of this section refers}, the result is

_ t (2.16)
y = m ka dcﬂ K, (x)

R— oo

where the surface integration 1s performed over the hypersphere in four dimensions

2
SR = I, x s X, X, = R } (2.17)
[The subscript 3 in §,(R) refers to the dimensiocnality of the surface of the
hypersphere.] 0f course, the limit R + « exists only if f d¥x F.F*(x) converges.

The inequality
2

~FPRFT | (2.18)

implies that [ d¥x F.F*(X) is absolutely convergent if the Euclidean acticn
L 2
S{A] - i de F™(x) (2.19)

is finite. [The finiteness of the classical action is relevant for the semi-
classical calculations of 't Hoofts); see Secticn 4.] Integration of (2.18) over

all x, yields the result!)

S[A] > &n* ’v[ﬂ]’/ga (2.20)

with equality if and only if Fuv is self-dual cor anti-self-dual:
*

Frs + F,

(2.21)

Note that S[A] is not a topological invariant, because
SSIAl/8R, = - D.Feg (2.22)

need not vanish. Fields corresponding to stationary points of the action are

sclutions of the equaticn of motien

D F = 0 (2.2%)

O(O(p

In particular, fields satisfying (2.21) are solutions because of the Bianchi

identity.
There is a non-rigorous (?) argument due to Belavin et al.!} that v[A] should
be an integer if S[A] is finite. The finiteness of S[A] implies
xXF (x) —> O (2.24)
My

N . . . a
as XU tends to « in almost every direction, so the field A}J should tend te a pure-

gauge configuration:



— 5 —
9 R:l'rm — 1 G_‘BPL G (2_.25)

K, — (24112)_1 EH“F? Tr G3.G G-'BBG G'3,G (2.26)

This asymptotic form for KM is conserved in regions where G(x) is non-singular,

sc the surface integral (2.16é) can be written

231 -1 -1 -1
(247 361: dd, Euape Tr G 3,6G74G G 9,G

v
(2.27)
= fndependenf of R

if R is large enough to avoid singularities of the integrand in Eq. (2.27).

This integrand can be regarded as the Jacobian of a mapping. For example,
in the simplest case of the SU(2) gauge group, the group elements can be para-
metrized as follows,

G

—— -

(x) - ioV(x) , (3

]
{_<

= Pauli mutrices) (2.28)

where the conditions

GGf 1 - (2.29)

I , det G

restrict VU to be real and to have unit length:

TR 2 2

Vi v o= vE o= (2.30)
Equation (2.27} becomes

(1211")"3@ do(x) €

v

wer Eonen K Vo V4 3V, 3,V, (2.31)

Now consider the mapping of the hypersphere S, in xu-space onto the hypersphere
v: =1 in Vu—space {(Fig. 1). For each sphere, there is a normal direction (iu or

VU) and three mutually orthogonal tangential directions. Let indices

1 3j’ o g N = 1 » 2 » 3

label the tangential directicns, and let Vi denote the derivative with respect tao

x in the it tangential direction. Then the Jacobian of the mapping is given by

adxegf (v Vj) = ¢ Eijk Etmn ViV ViV Vi Wiy (2.32)
Since Euugygu is the szme as gijk when (a,83,Y) are identified with (i,j,k), and

similarly for EQA@PVC’ Eq. (2,32) can be written in the equivalent form

I

§l,f3t (Vi\?) -16 Epapr Etasn ;F-‘ V: a«VA SFVE avv’l (2.33)



If the mapping is assumed to be differentiable, the Jacobian relates surface

elements on the spheres
delV) = ;(xest(vi\{;-) do(x) (2.34)

so Eq. (2.31) simplifies to the result

v o= (znl)"§ do(V) (2.35)

muflt
where the sign of integration carries a notatlon indicating that S, (x-space) may
be "wound" several times onto $;(V-space) -— in general, the mapping is not one-
to-one, Each winding corresponds to four-dimensional solid angle 272, so tv| must

equal the number of windings:

vV

integer (2.36)

The simplest example of a mapping is provided by the gauge—group element

G(x) =[x, - i?.?)/JxT (2.37)

which is well-behaved everywhere except at X, = 0. Here Va(x) equals %a, so the
mapping S; + 5, is one—to-one. Therefore, 1f G, is substituted for G in (2.27),
we expect V = 1, and indeed, that i1s the result obtained by direct calculation.

Tf we had substituted Gf = GII, the aznswer would have been v = -1. The minus
sign corresponds to a right-handed system of tangential coordinates on §,(x-space)

being mapped into a left-handed set on S;(V-space).

Equation (2.36} remains valid for any simple Lie group, given the same assump-
tions about smoothness of the asymptotic %) + » configuration. However, the analy-
s1s is less direct. It depends on the fact {discussed in the Appendix) that any

continuous mapping

83 e SI'mPIE gauge gY‘OU.P
can be continucusly deformed into a mapping
53 —  Sul2) subgroup
Then the result follows, because the formula (2.27) fer v 1s invariant under small

deformations &G of G,
-1 _ -
o= - (s 3(;0‘%%@? 9.{T 675,623,686}
= 0

and hence under the full ceontinuous deformation.

{2.38)

12,20)

There 1s an unresolved question about whether S[A] < = 15 really suf-

ficient to ensure v = integer for smooth fields AH' The analysis depends crucially



on the mapping from S, to §, being smocoth, i.e. the mapping is suppoéed to belong
to a homotopy class. However, the assumed smoothness of Ai(x)Ta is not sufficient
to ensure smoothness of the corresponding pure gauge configuration ig 'G7!5 G. It
may be possible to start with a completely smooth function Ai(x) which asymptoti-
cally approximates {(in almost every direction) a configuration which is not smooth.
For example, suppose the asymptotic configuration is a pure gauge term obtained

from the gauge group element

Gip = exp{— 1FEF§'|'§(|_1 arcos (x‘*/,\[—?)} (2.39)

— —-— . - - -,
If is not an integer, ig™’cC pB‘GP 15 singular for x = 0, x, £ 0. However, it
P g 1 %y g "

is still possible to perform the surface integration in Eq. (2.27) with the result
2y~ PY PP AR TRy AP
(267%)" ¢ do, £y Tr G746 GP3,G) 674, G

= p = (2m)7 sin(2pn)

(2.40)
which is not an integer for p # integer. I have not been able to close the loop-
hole or find a counter-example. For example, I looked at configurations A ob-
tained by substituting smooth functions for the ];!'k singularities of ig_lG;pauG?;

a typical substitution is

- -k -2 2 -2 2]-k/2 .

X — [X + piexp-AXTx (2.41)
The result is certainly a smooth configuration AS(X) which asymptotically approxi-
mates ig—lG:pauG? in almost every direction. Unfortunately, the appreoximation is
not good enough -~ the Euclidean action diverges. All attempts to construct a

counter-example gave the same result®).

It is certainly true that v must be an integer if the configuration Aa(x)
can be smoothly mapped onto the unit hypersphere in five dimensions, or onto any
smooth compact four-dimensional surface without boundary. Consider the hyper-
sphere (Fig. 2)

S, f. - 1} (2.42)

[}
ety
Ty

o
-
o
i
—
-
-
o
ey
s
1]
2~

*) Even if a counter-example should be found in the future, this would not neces-
sarily imply the existence of a counter-example satisfying (2.21) or (2.23).

Note added: Marine and Swieca [Cath. Univ. (Rie de Janeiro)} preprint
PUC-RIO-NC 78-7 (1978)] have shown that the action is necessarily infinite
for a large class of fields with asymptotic behaviour given by ig_IG;PBUGg.



The origin of Euclidean space R, is mapped*) onto the N pole of S,
£ = (0, 0, 0, 0, 1), and infinity is mapped onto a gingle point, the S pole of

S,,» irrespective of the direction in which XU tends to o

£ le/(1+x1) v lp o= 1, 8),

g ) X (2.43)
, = (1 - x )/(1 + x°)
The field on the hyperspherezl)
n - 1 2 _
HP(E) = (1 + x )AH Xg x, A, , .0

i
|

A (8)

points in a tangential direction

Xu F\P

£ flq = 0 (2.45)

The configuration ﬁa(g) is assumed to be regular in "gauge patches' (Fig. 3)
which cover 3., i.e. within the ith patch, the field is described by a regular
function R;i)(i), and in the overlap region between patches 1 and 2, A(1) and
2(2) are related by a smooth gauge transformation. This means that gauge-
invariant quantities are smooth everywhere on §,.

The fact that v i1s an integer Ls a consequence of the Atiyah—Singer index

theorem!®>22727)

, which is formulated for compact manifolds with gauge-patching.
It relates the number of zero eigenvalues of covariant operators DU to the topo-
logical charge of the field contained in DM' In particular, consider spin-%

3,-mappable solutions y of the Euclidean eguaticn

PV = (4 - {3}4.1)1# = 0 (2.46)

where Y transforms under the fundamental representation of the gauge group. If

right~handed and ny left-handed solutions, with

Au is §,-mappable, there are e

= _ 47
V nR 1r1L (2.47)

Since ny and n, are integers, so is V.

*) It is important to distinguish the mappings considered in Figs. 1 and 2.
Figure 1 refers to the three-parameter gauge group element asscciated with the
asymptotic x > « limit of the configuration, so there are three orthogonal
tangential directions on the surfaces of the hyperspheres. In Fig. 2, the con-
figuration itself is being mapped; it depends on (x;, ..., x,), so a hyper-
sphere 3, with four orthogonal tangential directions is needed.



Note: The Bjorken-Drell conventions in Minkowski space give

WRM = Y (2.48)
M ™M . o M
[Tu.ﬂ yv]‘,_ = 2’ﬂuv ) 75 = 'L()J ytyly?-)

for a right-handed spinor wR' The reotation to Euclidean space introduces

a minus sign

M 4 ™M E
(2.49)
E E E
V.o = - ¥ Y
if YE is defined in the usual way:
E E E
LAY - T W AN ¢ R A 2 2509
M E M eyal 2
Y, = 4 , r = 17
Mappability onto S, is a stronger condition than S[A] < «, Consider the pro-
jected field-strength tensecr ﬁabc given by21’27)
A
1 3
wA T 7 (1+ x )[ Xy Fa + % FRFL + Xy F;.w] (2.51)
A .
t CR T I R -
uvs = 3(1 + X )[2(‘ X)F_,u.v XMXRFW\ + xvaFpl]
and assume that the gauge-invariant quantity
A 2 A A
= _ 3 2\ 4

is smooth everywhere on S,, including the S pole and its neighbourhood. In

Euclidean space, this coerresponds to the asymptotic behavicur

xsl-(x)z — C , (x#—bw) | (2.53)

where C is zero or is a finite constant which does not depend on the direction in

which x 1s taken to o,

If Eq. (2.53) is not satisfied for finite S[A], F2(£Y has an integrable
singularity at the S pole. The problem is easily analysed in the Abelian case
by slightly smearing A to obtain an approximating smooth potential. However, this
method fails for non-Abelian fields because of the non-linear relation between

F and A.

3. SOLUTIONS OF THE EQUATICN OF MOTION

All known finite-action solutions of the Euclidean equation of motion (2.23)
are self-dual or anti-self-dual, or have.a trivial direct-product structure such

as



_lo.-..

A, 0O
_ i (3.1)
At - (o A,

for the gauge group G, ® §,, where A, and A, are (anti-)self-dual solutions for

¥ e .
%, and §,, respectively.

The simplest SU(2) solution, the instantonl}

H:(x) = % -qa}w(x - xo)o/[(x- xa)l + lz] (3.2)

involves a tensor nauc given byz’a)

nago nacg ’

i
———
—
-
(LY
H]
—
-
)
-
(P8
et
—~
L
.
L
p—

1 aij B gaij ’
Tlai4 = Sai

and five explicit arbitrary parameters, the instanton position (XO)U and its size
A. The solution (3.2) is self-dual, so v is positive. Direct calculation of the

volume integral (2.6), or the observation

* -1
gAdx. T  — LG 3G (x, — o) (3.4)
[where G, is defined in Eq. (2.3?)] leads to the result v = +1.

Of course, any solution which is gauge-equivalent to (3.2} is equally accep-
table. The solution (3.2) corresponds to the Landau gauge aUAH = 0. When quan-
tum amplitudes are being computed in this gauge, it must be remembered that the
choice (3.3) for the tensor nauc picks out a particular direction in colour SU{2)
space, Any x-independent rotatiom in colour space yields another Landau-gauge
solution. Thus the general Landau-gauge solution contains three additional para-

meters 5

Ut ! (3.5)

(A,.T) U (A, . )

8 para. § para.
where U(ﬁ) is an x-independent rotation through an angle 7 in SU(2) group space.
The anti-instanton is obtained by replacing nauc by naud in Eq. (3.2):
naﬂw = " Naou 9 nqq = Ewﬁ ’ Nagy, = -~ Q{ (3.6)

It is anti-self-dual, with v = -1. Equations (2.20) and (2.21) imply

S(A] 8112/32 (3.7)

for the instanton or anti-instanton.
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Solutions for which v is an arbitrary integer can be generated from the pre-
scription®®)
a - a
= X (3.8)
A § Mape % tnp(x)

Self-duality (or anti-self-duality if ﬁa

ug 18 replaced by naug) implies

9-1 82? = 0 (3.9)

i.e, 3%p vanishes everywhere except at the singularities of p(x). The general

solution of Eq. (3.9),
(v

plx) = Eo "\i/(x“xi) ’ (A°= 1) (3.10) -

due to Jackiw, Nohl and Rebbizg), includes special cases found earlier by Witten®®)
and 't Hooft?'), The result has singularities at x = X but these are pure-gauge
terms which can be gauge-transformed to infinity to obtain a completely smooth
representation in Euclidean space®?). For }v! =1, 2, some of the parameters
(Xi’ Ai) correspond to gauge transformations, The number of independent gauge-

]

invariant parameters in the solution (3.10) ig?%) 5 for [v- = 1,13 for \vJ = 2,

1
and (5/v| + 4) for [v! 2 3.

Equation (3.8) also provides an interesting connection between gauge theory
and scalar field theory with gquartic coupling., The equation of motion (2.23)

implies the restriction
-3 A2
?2 JA( 0 J ?) - 0 (3.11)

so non-singular solutions p(x) of (3.11) obey the equation of motion of an inter—

acting scalar field?®):
2 3
BP + CV = 0 , (C= constant ) (3.12)
The only known non-singular solution of Eq., (3.12)

-1

(8}\2/C)%‘ [(x-xojz + A (3.13)

p{x)
vields the anti-instanton in Eq. (3.8).

An application of the index theorem?*s*?®} shows that the most general (anti-)
self-dual SU(2) solution mappable onto 5, must invoive (8|v| - 3) gauge-invariant
parameters. The intuitive reason for this®*+3%) {s that for an appropriate choice
of its parameters, the general solution sheculd approximate a superposition of v
widely separated (anti-) instantons, each with a position Xey @ size Ai’ and an
SU(2) gauge orientation ﬁi; of these 8Iu! parameters, three correspond to the
over-all SU(2) gauge orientation, so there remain S\v[ - 3 gauge—-invariant para-
meters. This means that the prescription (3.8) is insufficiently general for
v 2 3.



- 12 -

A prescription for the general case which includes all compact classical Lie

groups
§

has been derived from fibre bundle theory by Drinfeld, Manin, Atiyah and Hitchin’»®)%),

SO(n), SU(n), Spn) (3.14)

Let T genarate § in the fundamental representation. Then all self-dual fields

mappable onto §, are given by the prescription
- igRST M), Mx)
M*'(x) M(x} I , (3.15)
M'(x) A(x) 0

where M(x) and A{x) are rectangular matrices with real, complex, or quaterniomic

a

elements (depending on §) subject to the constraints

Alx) B+ Cx , {(B,C

XP*iﬁdEPEﬂdEﬂt matrices ),

e
X = X, + 10.X , (3.16)

[4'd, & ] 0 \
(A*A)-i exjsts

{For anti-self-dual fields, replace x by X

+ . 1x
.) The matrices ‘40 generate an SU(2)
subgroup acting on the domain of A. As predicted previouslyzo), the result for

Ai(x) is a rational function of XU.
Remarks:

i) The dependence of the result on the instanton number 'v| arises when one
specifies the numbers of rows and columns of M and A. TFor the special case
G = 8U(2), M(x) is a column vector of (|v! + 1) quaternions [i.e. a (2|v| + 2) x 2

complex matrix] and A(x) 1s a (\vi + 1) x \v} array of quaternions.

ii) Gauge transformations G(x) in Eq. (2.1) correspond to the transformation
M(x) —  M(x)G(x) (3.17)

Lo . . a -

iii) The number of gauge-invariant parameters of AU can be counted by parametrizing
the constraint equations for A and taking the gauge freedom (3.17) into account.
Of course, the answer agrees with the prediction of the index theorem. How~—

.. a ,
ever, it is not clear that the dependence cof A  on its parameters can be
il

%) Details of the prescription and the construction of fermionic sclutions (2.46)
and propagators are explained in recent papers by Corrigan, Fairlie, Templeton
and Goddard35), Osborn37), and Christ, Weinberg and Stanton®®).



_]_3..
expressed in terms of simple functions as in FEq. (3.10). The general case
seems to invelve the sclution of coupled quadratic equations.

The proofs) of the complete generality of the construction (3.153) and (3.16)
is non-trivial, but it is not difficult to check its self-duality. Consider the

operators

p MM?
P o= 1 - a(aa)'a”
which project onto spaces orthogonal to A:
P> = p , P* - B
PA

I
O
1

me)
>

In fact, the identities

PP = P PP = P

imply that these spaces are identical, so P and P must be identical operatorsse'as):
I - MMY < af{ata)af (3.18)
As a result, the field-strength tensor can be written in the form
-ingaTa f?_‘uM*(I-MM*)JVM - {HHV}
MYA(A')T,ATM — {u e v]
Equation (3.16) implies 3.6 = €3 x, where 3 x commutes with (ata)=t:

- igRy Tt = MIC(dxd,xt - 3,x d,xT){A'N)C'M (3.20)

(3.19

The tensor
Guxdyx’ — dxdx' = 2iofrgy,

is self-dual and therefore so is Fiv'

A particularly elegant result has been found for the propagator A(x,y) of a
spin-0 field belenging to the fundamental representation of the gauge group. If
the covariant derivative Du is constructed from the field given by Eqs. (3.15)

and (3.16), the solution of the equatiom

.; D-?A(x,‘j) - g(x-lj) (3.2D)

36

is ,38)

Alx, y)

The construction of spin-% and spin-1 propagators from A(x,y), together with special

Mf(xJ M(y}/#nl(x _H)z (3.22)

cases of (3.22), were given previously by Brown et al.3?),
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The problem of finding Euclidean finite-action SU(Z) solutions which are
neither self-dual nor anti-self-dual seems to be very difficult. In fact, it has
not even been established whether such configurations exist or not. All that has
been provedka) so far is that they do not exist in the function space neighbour-
hood of {(anti-)self-dual fields. If solutions exist outside this neighbourhood,
they probably correspond to saddle points in the action, because the action of an
instanton-anti-instanton pair can be reduced below 16 T2/g® by deformation®!’.
The latest suggestion“z) is to search for sclutions by regarding the second-order
equation (2.23) as a projection of first-order equations in an eight-dimensionail

space.

WKB APPROXIMATION

Classical configurations become important in guantum theory when the path-
integral approach17’q3) to quantum amplitudes is considered. A quantum amplitude

is a sum over classical paths weighted by the factor

exp 1 [ Rction]

When dealing with Green's functions, it is often convenient to rotate to Euclidean
space. TField components and y-matrices [Eq. (2.50)] are slightly changed, because

the Lorentz group 0(3,1) becomes the orthogonal group 0(4):

quarks : (%, Q) — (%, q+)
gluens : (Ao,ﬁ) — (Lﬂq,ﬁ)

This tends to improve the convergence of expressions for amplitudes, bhecause the

(4.1)

weighting factor becomes

exp —[ELwhdeun nchon]
and typically the Euclidean action is bounded below. [Gravity is an exception"“).]

Thus the problem comsidered by 't Hooft in his definitive paper3)*) was the

computation of Euclidean QCD Greer's functions

| [dadq'dq] O [A(), q(x), gx] e~ SLF(AN A,(A]
[ [drdg'dq] e 3 s[FIA)] AlA]

<7;[Ok(xk)> -

(4.2)

for which paths Ai(x) with non-zero topological charge v are important. In
Eq. (4.2),

S = S[A,q.q'"] (4-3)

*) See also Refs. 45-47.
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is the gauge-invariant Euclidean action of QCD. The denominator is included so

that the vacuum state for the cerresponding Minkowskian amplitudes

T (vac] ];[Ok(xk)[ vac)

has unit normalization:

(vac|vac) = 1 (4.4)

The operators Ok(xk} can be simple or composite operators constructed from the
fields (A,q,q7). Usually one is interested in gauge-invariant observables such

as currents and their divergences. The factors SEf]Af arise from the need to
avoid summing over unphysical directions in A -space corresponding to gauge trans-
formations. The introduction of a 8~function 6[f] te fix the gauge f[A] = 0 must
be compensated by a Jacobian factor Af[A], the Faddeev-Popov determinant., As in

perturbation theory, calculations are simpler if 6[f]ﬂf is written in the form

j‘[dc*&c] EXP - [Sgauge-:‘ix + Sghcst]

where [c,c+] are the ghost fields of Feynman, Faddeev and Popov et al.ua). [The
standard prescription was derived for perturbative use, but works for WKB calcula-
tions about smooth configurations. 1In a study of the Coulomb gauge, Gribov*?®)
observed that modifications may arise in non-perturbative calculations and become
important for the non~WKB problem of quark confinement. In WKB calculations,

this phenomenon is merely a gauge artifact -— it arises only if the choice of

gauge forces the relevant classical field to be discontinuous., See Ref. 50.]

The sum over paths of a real Bose field ¢ is obtained by considering a para-

metrization
$(x) = Lz 9.(x) (4.5)

where {¢E(x)} is a complete orthonormal set:

.[dak ¢E(X) ¢E'(x) SEE' (4.6)
§¢>E(x) . (x') SQ(X—X')

This set can be regarded as defining orthogonal axes with unit length in function

space. As the parameters z, are varied over all real values, all paths ¢ are
produced. Thus {zE} is a set of coordinates for an infinite-dimensional Cartesian
space, where each point labels a path. The metric for path summation is given by

a volume element in {zE} space,

[d¢] m (dz, /yzn) .7
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Y

and does not depend on the choice of axes {$E}. The factors (21) ¢ which fix

the over-all normalization are chosen arbitrarily, but this dces not matter be-

cause the normalizing factor cancels in the expressiom (4.2).

The standard example is the "Gaussian" integral

I = f[dcp] exp-%fol"x $ix) D, ix) (4.8)

where D_ is a differential operator, Let {¢E} be the set of eigenfunctions of D_:

IL ¢E(X) = E ¢E(X) (4.9)

Then Eqs. (4.5)~(4.7) imply

I T{[dz, (20 exo - €22}

A (4,10}
_1/
= (det D) 72
where the determinant of the operator D is defined to be the product of its
eigenvalues
det D = TE (4.11)
E

This example can be easily generalized to include a source j(x) for ¢:

I[j] = [[dé] exp- [d% (LoD 0 + j0din] i
A shift of integration variable

¢ — ¢ + D

vields the result

I[J']

(detD)-w exp %_[d‘*x 1) Dx-'j(x)
-1 T .
(det D) & exp ilfjd x d y J{x) G(X,lj) J(HJ

(4.13)

It

where

G(x,lj) EE:, £ $.(x) qSE(aj) = D;i 8(x -y) (4.14)

is the propagator of the operator Dx' The result can be further generalized to

includg a potential V(3):
Jldo] exp - fax[54D¢ + ;o + V(o))
= expfjdax V[‘S/SJ(X)] I[g]

There are two circumstances which result in modifications of these formulas.

(4.15)

Sometimes D_ has zero eigenvalues: then integrations / dz, associated with the
corresponding eigenfunctions ¢;(x) must be handled separately (see below). The

other problem is the presence of infinities associated with infinite products and
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sums HE’ EE' Some of these infinities do not cangel between the numerator and
denominater of Eq. (4.2). Thus regulation and renormalization are necessary?
the infinities have to be abscrbed in the definition of the mass parameters,
coupling constant, and normalizations of the operators Ok(xk). 't Hooft?3) adds
Pauli-Villars regulater fields. An alternative is Hawking's zeta function regu-

larization"’,51)

ME = epo—an
£ E -S (4.16)
— exp—gaggE

. . . s . :
For Re s sufficiently large, the series ZE E converges to a generalized zeta

function
-8
C(S) = Tr D (4.17)

which can be analytically continued to s = 0 to yield the renormalized determinant

det D) = exp - Ll0) (4.18)

rerl

For fermions, an expansion similar to (4.5) is used, but the ordinary inte-

gration variables {ZE} are replaced by independent Grassmann variables (EE, nE):
; ‘EE uE(x)

* (4.19)
Mg ue(x)

[d¥dy] T {dn, dE,)

The functions uE(x) are c-numbers with spinor indices. Grassmann variables anti-

< <

Tt —
x X
H L}

commute,

(¢, , EE‘L = [EE , qE.L = [Tls , Tls']+ - 0 (4.20)

and in particular, they are nilpotent:

S o B ‘fl: (4.21)

E

. . . . *
Integration over these variables is fixed by the rules )

[dil 0 , fdiﬁ = (4.22)

where infinitesimals d£f, dn are alsc Grassmann variables, e.g.,

HE’WL = 0 (4.23)

*) The standard reference is the textbook by Berezin®?),
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The fermionic "Gaussian" integral is given by

I = J [dW*le] exp - qux 11V+(>r\) D, ¥{x)
= E{Jdmdﬁe exp - EnE, |

where {E} is the set of eisenvalues of D_. The nilpotent property and integration

(4.24)

rules imply that the only non-zero contribution from the power—series expansion

of exp —EnEEE is the linear term -En_£&

I

50 the result is simply

E'E’

'E E = detD (4.25)

The aim of the WKB method is tc keep the Euclidean action $ as small as
possible so that e ° is maximized. The gauge field AU is split into classical

and "quantum" fields

A = A+ p" (4.26)

where f [dAdq*dq] is shifted to f [quudq+dq]; (in this context, "quantum'" field
means a dummy functional integration variable). The classical field is chosen to
be a solution of the equation of motion (2.23), i.e. it corresponds to a stationary

point of the action:

SS/8A1A=H“ = 0 (4.27)

Then, if S[ACl + Aqu’ q, q+] is expanded in powers of the quantum fields

Q = (Aqu, q» q7), the term linear in Q is absent:

s - s[a*, 0,0] + -'iﬁo['*x d*y A%x) ATy) [5“5/5%\@)8/:\{5)] ¥

+ JJ*X ‘f(x){w[ﬂd] + I\’l]c:L(x) (4.28)
+ o[Q'] + o[Q"]

The effective action associated with the choice of gauge is expanded in the same

variables, with ghosts treated as quantum fields:

S + S

[Sg need not be a functional of the combination (ACI + Aqu)]. The choice of

Sg[ﬂd, AT, o, '] (4.29)

guuge fia 9!155(‘.

gauge—fixing term should correspond to the choice of gauge for ACl so that Sg is

quadratic in the quantum fields:

Sy = o[l + o[}] + (rarely) 0[q"] (4.30)
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Why not expand about classical fermion fields wC1, w+C1, as well as the
classical gluon field Ail? The difference is that such fields would be Grassmann

variables, not c-numbers:
<l . ¢ e el
VI = w e v - gy

u4x) = C-number function

The answer has to be a polynomial in the variables (ECI, UC1) because they obey

Eq. (4.21) and are not integration variables:

Intcgraf = Io + 11£C£ + Iz’nCt + 13 QCtEcE

However, the answer is known to be = c-number, i.e. the rules for Grassmann inte-

gration cause I,, I,, and I, to vanish. Consequently, the correct answer is found
. cl cl .. .

by setting £ 7, 7 to zero from the beginning. In all known cases, the classical

field is & c—number*).

Thus the vacuum expectation value (4.2) is given by a sum over stationary

points X (or "quasi-stationary” points, to be discussed below) of the action:
;[[dq]{ykrok exp - (S +93)}X
Z[1da]{exp - (s +Sﬂ)}x

Here f [de means f [quudq+dqdc+dc], and each label X refers to a particular
cl
% ¢

(4.3L)

(10, -

stationary_point with classical field A

'{I}Ok}x = ]LIOk[F\;E + AT g.9"] |, et (4.32)

The weight factor is a product of exponentials
t _of g ~o[Q*] - ol
exp - (S + 83) = exp - S[Hc, Q, 0] e (@] e (@] e (@] (4.33)

Gaussian integrals

[[dQ] QF exp - 0[Q]

are obtained by expanding the exponential

exp-{O[QS] + O[Qu]} = Tayler series m 9 (4.34)

and considering each term of the expansion separately.

*) The situation may be different in Adler's theory®?) of "algebraic chromodynamics”,
where the classical theory contains non-commuting gluon fields. A procedure for
integration over these fields has yet to be developed.
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The absolute minimum of S is given by ACl = 0, which means that the classical

factor exp - S[ACl] equals unity. The result is that the Taylor series (4,34)

generates the usual perturbative expansion of (Hk Ok).

The next minima occur at

el 2/ 2
S[A%, 0.0] = 8n*/q (4.35)
with ACl equal to an instanton or anti-instanton comfiguration. The classical

factor

exp — S[ACE, g, 0] = exp - gﬂz/sz (4.36)

is now a non-trivial function of g which has no Taylor expansion about g = 0, so
it cannot be generated from perturbation theory. The factor (4.36) multiplies a
power series in g obtained from (4.34}, The calculations of 't Hooft?»?) concern

the leading term of this series:
e -{0[Q°] + o[e*]} = 1 + 0g) (4.37)

In principle, contributions from the remaining stationary points X should be
included in the same way. However, there are some technical difficulties which
have yet to be overcome. One of these i1s the lack of a proper analysis of sta-
tionary points for fields which are neither self-dual nor anti-self-dual (this
was mentioned at the end of Sectieon 3). Furthermore, a successful analysis of
that problem would not necessarily suffice for the WKB problem. For example, let
us suppose that (as many people suspect} it can be proved that all finite—action
Fuclidean solutions are self-dual or anti-self-dual. Then it is nof correct to
restrict contributions to (4.31) to minima associated with the general (anti-)
self-dual solutions (3.15) -- there must be additional contributions from "quasi-
stationary" pointss’l”) of the action which correspond to instantons and anti-
instantons being infinitely far apart. In particular, if the instanton contributes
to (Ké Dk) and the anti-instanton to (Hg 02), the amplitude ((Hﬁ Ok)(ﬂg 02)) must

receive a contribution

2 2 b3 ¥
~ (exp-ibﬂ 9 J{l toagn o+ a9+ L }
from a quasi-staticnary instanton—anti-instanton configuration in order to be

able to satisfy the cluster property

(o0 Totyd)  ~ (Tow) (F'orly) .59

tuclide an (xk‘Ht)z —>
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The absence of a precise WKB analysis for multi-instantons has led to the

suggestions’lu) that the dilute-gas approximation®®) be used., The classical field

ACl in (4.26) is taken to be a sum of widely separated instantons A(+) and anti-
instantons A(_):
o = e
+) + + - - -
chts = §1 A (X'Xi, A1) + [‘fzﬂ A (X-KJ', kj) (4.39

The main approximaticn is to ignore the O[Q] term
[d% A% [§S/8R], .,
5]1.15 ( )

£
in the actiomn, i.e. to ignore the overlap of various A where Agas dees not

+
exactly satisfy the equation of motion. This makes sense if the sizes AE are
much smaller than the distances \xi - le. The topeological charge v is (n+ -nJ;

the summations in Eq. (4.31) are given by
L o— X
X M,y n
and the action S[Agas] tends to 8ﬂ2(n+ + n_)/g” in the infinitely dilute limit.

Remarks:

i) Use of the expansion (4.34) means that the result can be taken sericusly only
for small values of g. Thus the general result is that an amplitude possesses
a perturbative expansion about g - O which is improved by the inclusion of
smaller non-perturbative WKB contributions. Exceptions will be considered

in Section 5.
ii) The condition
cl
S[A®,0,0] ( (4.40)
is obviously essential for WKB calculations. However, one can imagine other
configurations A_ being dominant for strong interactions where g is not
asymptotically small. The functional metric about A_ could be infinitely

: . . cl
larger than the Gaussian metric®) about A and hence compensate the zero

from exp - S[Aw]:

PN

[oo metric Factor*} exp - o = Finite (4.41)

Thus theorems for which (4,40} is a necessary condition (e.g. the index
theorem and the result v = integer) are applicable only within the WKB

approximation.

*) This remark is_entirely separate from the fact (Ref. 535, Appendix €) that
s} acl + AGaussj diverges for non-zero contributions to the Caussian metric.
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Now there is a slight complication due to the fact that each classical solu~
tion depends on several continuous parameters A:

P\c(’, - ﬂct(x,f\) (4.42)

For example, the instanton depends on five gauge-invariant parameters (x,, A) and

three global SU(2) gauge parameters. This means that each stationary point of

the action is part of a continuum of stationary points labelled by A:
14 , :
S[H (X,A)] = imdependent of A (4.43)

In Fig. 4, the base of the trough corresponds to the set of functions {ACI(X, Ml
for various values of A. Small oscillations of the quantum field in this trough
are Gaussian if they are perpendicular to the base. However, it is obvious that
the flat direction along the base is not Gaussian; it does not contribute to

f d“xAguI)Aqu, the O[(Aqu)ZJ term in the action., Thus this direction corresponds
to a zer? eigenvalue of D which causes the result of the functional integration
(det D)™ to be ill-defined.

The systematic procedure for dealing with this problem is the method of col-

lective coordinates®®»°7), If there is just one parameter A, the method can be
summarized as follows. The direction in function space aleong the base of the

trough is given by

A, A+ dA) = AT(x,A)

H

a,(xy A) dz, (4.44)

where

H

% Hte(xs/\)/”oll’x{% F%CE(X,/\)};L]‘/:l (4.45)

is the zero—eigenvalue member of the orthonermal set {aE(X)} used in the expansion

ag(x, A)

of the quantum field

A¥x)

(4.46)

"
Y
o
2
Py
Xal
+
™
r+
o
m
o
>

The integral over A" ig split into a Gaussian E # O part and an ordinary integral

over Zy H

_[[dﬂqu] = Jcizo (ln)_vzj [dA¥] (4.47)

E+ 0

Then the integration variable z; is changed to A:

dz,

a;1 %\- F\CE d A
[[d%{aA" oA} 1" dA

This affects the coupling constant dependence of the answer, because the factor

1
[...] o is proportional to g~!.

(4.48)
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If there are p independent parameters Ai, there are p zero modes with p para-
meters z_. in the expansion of ATY. Let us choose the parameters Ai such that
BACl/BAi and BACI/BAj are orthogonal for i # j. Then each zero mode can be handled

as above with the result
- t — 1 u
Jlda™) = amy " [N [ (A7 RO 1 [ Jo o 449

50 the zero modes contribute a factor O(g—p) to the amplitude.

The integration over global gauge rotations involves a subtlety®s"7,5%7),
The conventional gauge-fixing procedure is a collective-coordinate method for
zero modes associated with local gauge transformations, so it must be checked
that these are orthogonal to the modes BACI/BA. This is correct for the Landau

gauge

3.A = 3.AY = o (4.50)

due to its invariance under global gauge transformations and changes in the gauge-

invariant parameters of A%t (with_B.ACl

= 0). 1If other gauges are used [because

of their convenience in the computation of determinants (4.11)], this orthogonality
property need not be valid and the Faddeev-Popov procedure has tc be combined

with the collective coordinates for the Ai parameters. In particular, the

background-field gauge
qu ct qu .51
WAL+ gATx AF = 0

must be handled with great care [duly exercised by 't Hooft in Section 11 of

Ref. 3, where the problem was circumvented by comparing (4.50) and (4.51)].

Thus a single instanton contributes

-C 2/ .2 .
9 (exp - 8n /ﬂ ){ijlor series In 9}
to the asymptotic g + 0 expansion of an amplitude. The power C depends on the
gauge group. In general, many parameters 5 are needed to specify the orientation
of an instanton in group space:
2 1?.” a
X-X,,A,) = T & Maux® {(x-x,). e

—

TR

-1?’.51/[()(_)(0)2 + 3] (4.52)

Here 53/2 {a =1, 2, 3) generate an SU(2) subgroup of the gauge group G. For

= SU(2), there are eight parameters;

c = 8§ (Q = SU(l}) (4.53)

For SU(3), there is one direction, colour hypercharge T,, which commutes with

(T11T19T3) = %,(0'” O3 0'3)
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so there are only seven ) parameters in the general solution {(4.52):
cC = 12 (9 - SU(BJ) (4.54)

The result of including contributicns from multi-instantons and anti-
instantons is a double asymptotic series fcr the g + 0 behaviour of Green's func-
tions:

- m n
{10, g0 -m§1>,o T { 9 “exp-8r/g} T g (4.35)
The coefficients a ., are generated by the Feynman diagrams of ordinary perturba-
tion theory, so they are precisely defined. The same cannct be said (yet) for
the remaining WKB coefficients a_ (m 2 1): there is trouble with the collective~

coordinate integration over the size X of the (anti-) instanton®s?),

The problem arises in the following way. After computing regulated deter-
minants, renormalizing, and carrying out all collective-coordinate integrations
except that over A, we obtain an amplitude a(i) for fixed instanton size A which
depends on the renormalized coupling constant g, mass parameters Mi’ and a dimen-
sional parameter | which specifies the remormalization prescriptien. Consider
the special case of a momentum-independent amplitude with Mi = 0 and ne wave-
function renormalization, Assuming renormalization-group invariance for fixed
size A, we have

-d -
a(A,gq,u) = A F[g(?\}i)] (4.56)
where d is the mass dimensionality of a(X) and F is & dimensionless function of

the running ccupling constant g asscciated with the Callan-Symanzik R-function
g (Au)
J‘ﬂ dx/ﬁ(x) = - fn('\y) (4.57)
3

The final step should be to carry out the integration over X indicated by
Eq. (4.49) with

[[d% afa*]™ = dnjjq

. o0 .. . *)
i.e. to compute fo dix a(x)., However, this integral diverges at’’/ « when the

lowest—-order WKB contribution [with g2(x) - "bx3]

F[g] ~  (constant) g‘c exp -Sﬂl/gz (4.59)

is substituted in Egq. (4.56)7%5%,5),

*) If the number of quark flavours is not too large.
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The conventional and possibly correct conclusion is that this difficulty is
unaveidable and can be overcome only by successfully computing strong-coupling
amplitudes. Certainly, if the prescription described above is the correct one,
it is obvious.that for large sizes %, Eg. (4.59) is not correct and must be Te-

placed by an expression valid for large g.

What is not obvious {(in my opinicn) is that the scale-invariant zero mode
BACI/BA is being handled correctly. The existence of continuously degenerate
minima of the action due to zerc modes means that the functional integral is am-
biguous. This ambiguity can be resolved only if a new principle or assumption
is externally imposed on the quantum amplitude. The principle underlying the
method of collective coordinates is that symmetries broken by the parameters A in
ACI(X, A) should be restored. Thus collective coordinates are appropriate when
it is desired that quantum amplitudes should satisfy a symmetry principle of the
classical theory. This is the case for the zero modes BACI/BXU, aAC1/8§. We
certainly want quantum amplitudes to respect translation and global gauge in-
variance, so there is good reason®) to believe that the use of the corresponding
collective coordinates is correct. The situation is different for the mode BACl/BA:
classical scale invariance is not a symmetry of quantum amplitudes. Scale in-

variance is broken when u-dependent renormalization counterterms are introduced.

In the absence of a suitable quantization procedure to decide the issue, we

must be content with a list of possibilities.

For the conventional prescription, let us assume that strong interaction
el
effects cause fo dAr a(}) to converge. Then the small g-dependence of amplitudes

is not-given by Eq. (4.55). For example, the amplitude

J:dR ald] = Hd-ij:wol‘j F(HHS(H)-1 EKP[(J")J;C{"/IS(X)] ’ (4.60)
(9’(?\#)—’3«, ’ l""’m)

satisfies the equation

[wafep + Blg)ofg ] ["dratty = o (461

so it can be written®?)

LTdA a(A” M 1 GXP -(d -1)£?dx/ﬁ@) {4.62)

where € is a (g,u} independent constant. Thus the semiclassical factor exp - 8 /gt

is changed by the size integration to

*) In the theory of solitons, collective coordinates for translations have been
checked for consistency with quantization in the one-soliton sector®®),
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L d} a{d}) ~ (constant) ,ud'i exp - (d-1 )/2592 , (9 —0) (.63
where b is the one-loop coefficient of the B—function
By ~ - bx' + O (4.64)

A purely semiclassical calculation at small g does not appear to be possible.

(For a one-dimensiocnal analogue, see Ref. 55.)

Alternatively, quantization may permit or require the inclusion of a certain
weight function w(X) which cuts off the size integral at large % and hence permits
a purely semiclassical approximation at small g:

Hmpf%tuda = J.mc“ w(A} alAd) (4.65)

0

For example, it may not be correct to treat renormalization and the size integra-
tion separately. A weight function of this type would have to depend on a charac-—
teristic size X, which is renormalization-group invariant. There appear to be two

cases:

i) The cut—off size L, is proportional to U”! but is otherwise arbitrary; 1i.e.

the pure number ¢ in the formula

A, = ,uif expjgdx/ﬁ(x) (4.66)

C

is unspecified, apart from the requirement that 2(x) should not vanish on

0 <x = ¢.

ii} The non-perturbative parameter *y is completely arbitrary. Both de and U set

the scale of hadronic amplitudes,

In case (i}, the small g-dependence is changed as in Eg. (4.63). Only in case (ii)
is it possible to maintain the semiclassical form {(4.55). Of course, the sugges-—
tion that arbitrary renormalization-group invariant constants (A, or c) are per-

mitted is pure speculation.

The problem is even more complicated for multi-instantons. The difficulties
with size integrations are also present in integrations over distances between

instantons and anti-instantons.

Despite this uncertainty, there are situations in which it can be argued
that practical calculations with the dilute-gas approximation are feasible. To
justify the approximation, one must argue that short-distance effects (and hence
small instanton sizes) are important for the particular process being considered.
The cleanest applications involve amplitudes in which the external momenta q are
non-exceptional and large, because it has been found®°s%!) that non-exceptional

momenta effectively cut off size integrals at X = 0(q”'). TFor such processes, it
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is reasonable to hope that the importance of the theoretical ambiguities discussed

above is minimal, Specific applications are listed in Section 10.

FERMIONIC AMPLITUDES

It was observed by 't Hooft?) that some fermionic amplitudes which vanish

in perturbation theory are non-zero in the WKB approximation and contribute to
the series (4.55):

a, = 0 ; A, F O , (certam m # O) (5.1)

on

This is due to the existence of zero modes of the fermionic covariant derviative

B.

The simplest example is the unique normalizable solution?)

_3/2 x

* Az] " (5.2)

u (x) = [(x - X,)

of the quark equation of motion

4 - {3A.T)uo = 0 (5.3)

where AS is the SU(2) instanton (3.2). The column vector in Eq. (5.2) displays
the positive and negative frequency components of the spinor u,. It corresponds

to the y-matrix convention [Eqs. (2.48)—(2.50)]

o Q ? 4 - 0 -1 ?
(5.4)
ve 0 -1
5 -1 0
§0 u, is right-handed:
Yo u, = —~ u (5.5)
5 “o 0 .
The spinor ¥ has two Dirac and two gauge components subject to the constraint
(15 +?)X = 0 (5.6)
2
For the anti-instanton, the spinor u, is left-handed:
X X
_— (5.7
X -X

If there are N massless quark flavcurs, there are N orthonormal solutions uoi(x)

(i=1, ..., N), i.e. N zero eigenvalues of B. The corresponding equations for

multi-instantons have also been solved3®,37,62)
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't Hooft considered the fermionic determinant

dat(p + .T) = TET £[7] , (ﬂru instanton ) (5.8)
where J(x) is a source of gauge-invariant composite operators

q*{ Flovour and ¥- matrices } q

The eigenvalues E[J] are given by

(P + T00) vlx) = Ewix (5.9)
so the perturbation series in J(x) begins as follows
0]« iE o+ [d%ul T+ 0f7Y] (5.10)
with
Puglx) = iEulx) , (€ real) -
de*x uL(xJuE,(x) = b

If there are N quark flavours, the series in J{(x) for the determinant begins with
the O[JN] term?):

det(p + T} = {ETICE:L} det J'c{“x Ug;(x) J(x) u Uj(X)
' + ()[J-ﬂl+1]

Thus in QCD with N massless quarks, the amplitude?s?)

A
<ﬂ1 C{Lf‘iqR(*i)>_ |
= Imse, (5.13)

= jw”. (csnsfanf) {g'c exp -81{2/92}(13 S/Sji(xi))_].= det [JZ + 2 ( ~ ¥ )]

{oords
is non-zerc if the flavour-space matrices A are suitably chosen (e.g. A = unity}.

(5.12)

Each operatoer qLA ;dp corresponds to a Mlnkowskl -space operator qLA dg w1th
flavour-independent chirality equal to +2 in right-handed units, The sum of these
chiralities is 2N, so the amplitude (5.13) receives no contributions from pertur-
bation thecry.

In general, other non-perturbative Green's functions are generated by applying

+ . .
(§/§J)N l, (5/6J)N+2 »ery to Eq. (5.8). A typical example is the amplitude

N

<%Ch N+2) CIOL( )>|'nst. # 0 (5.14)

However, in certain cases, simple exact expressions for det (¥ + J) can be given

because of the existence of a selection rulels¥s%,12)

E(RH chimlities) =  2Nv (5.15)
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whose derivation will be reviewed in Sections 7 and 8. To illustrate this rule,
the example (5.8) will be modified in the following way:
i) allow any configuration AH mappable onto the 0(5) hypersphere S, ;

ii) restrict the source to be purely right-handed

- E
Ix) — T = (1 = 3) Nx) (5.16)
where A(x) is a matrix in flavour space but contains no yY-matrices. Each
variation 6/6JR inserts an operator with (Minkowskian) chirality +2.

Instead of considering the expansion (5.10), we evaluate

det (P + IR) = ququ] exp -fcﬁx qt(x){yx + (%)} cl(x) (5.17)

by introducing Grassmann variahles £ associated with the eigenfunctions

£’ 'E
UE(X) of -ip:

det(p + .TR)

L]

(EquEdEE) exp - S[J, ] (5.18)

S(1] iTEn6, + E);E,neee.ja‘*x wl) Tl ugl) .19

The spectrum of eigenvalues E of -iP depends on the cheice of Yang-Miils fields

AL
u

The yg-invariance of the fermionic action is reflected in the chiral pro-
perties of the eigenfunctions . The E = C eigenfunctions uDG(x) are also

eigenvectors of ys (Fuclidean):

ﬁuoo = 0

(5.20)
YeUgy = = Uy (cr =1, .. ,nR)

Yooy = Mg , (c =nR+1,.,. ,'nR+nL)

The degeneracy of {uoc} is constrained by the generalization of the index theorem
(2.46) to N flavours:

n n_oo= Nv (5.21)

R

For each eigenvalue E > 0, there is an eigenvalue -E with eigenfunction

w - - Tsu, (5.22)

The expansion of exp - S[JR] becomes relatively simple if E = 0 and E £ 0
contributions to Eq. (5.19) are separated and Eq. (5.22) is applied:
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S[J.]
' t
" 5o E(Tls EE N Yl-n-:g-e) + %’-‘T Mow ot [Agx Uge Jp Ugy

+ zc‘:[WO?(gE*‘E-E)J‘dL}xu:{rJRuE + (Tle+'rl_E)qu‘.[dhxu;J'u ] (5.23)
* E&')o(’r}E o E)( e T E ”dxu
The identities
(EE ' E'E)l =0 - (T,E * YI—E):l
( E ~ M £ )2 = 0 (5.24)

0

e+ neellnede = meblle v £

imply that the JR—dependent E > 0 terms in S[JR] cannot contribute terms of the

form

JEO nEgETLEE

to exp - S[JR], and hence do not contribute to the integral (5.17):

det(ﬁ + IR)
= (Tldnedb, ) exp[-0Z Elnebo-nb.) - Zongobocfdhug, Tu,,]

2 . =
F>0 E°, while the E 0

modes produce a (nL + nR) X {nL * nR) determinant. This determinant vanishes if

(5.23)
The integration over E # 0 modes yields the factor Il

there is a left-handed eigenfuncticn U because JR is right-handed. Thus the

answer is

det(B+J) = 0 | (n +0);
det(P + -TR) = (E )dEtde qu VRO w . (x) (5.26)
(an 0, n, = Nv)

where the indices 0,T run from 1 to Nv. This is an exact result, not just the

first term in a series expansion in powers of J In other words, det (P + JR)

R
is homogeneous in JR:

det (P +A%) = KNudet(}ﬁ +3) L (vy 0) (5.27)

This example shows that Eq. (5.15) should be treated as a selection rule ——
WKB amplitudes vanish if the sum of the chiralities is not equal to 2Nv. If the
sum equals 2Nv, some amplitudes do not wvanish, but not all. TFor ekample, suppose
that Eq. (5.21) is satisfied with v > 0, . # 0. Then Eq. {(5.13) holds, but the
amplitude obtained from det (P + JR) vanishes. Note that, within the WKB approxi-

mation, the rule depends on Aﬁl being 5, mappable.
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The same rule (5.15) governs Green's functions of operators of arbitrary
twist and dimension. These amplitudes can be obtained in shert-distance expansions

of fermionic Green's functions associated with the integral

IS | t L t -t t -
I[Jaa ] = J.[dGL fict] exp -fdx[q«ﬂcl« + f9 + q{z.] (5.28)
where the Grassmann variables j(x), j+(x) are sources of fermion fields qY, q.

Let

S'(x,y) = EEOE-tuE(X) u;(H) (5.29)

be the propagator of -iP with zero modes removed’®®):

+

- iPSx,y) = d(x-y) - L U, (%) U, (y) (5.30)
Then I[j, j*] is easily evaluated by shifting the integration variables
qix) = q) - ifd% ST,
g} = qftx) + ifdy iy Sy, «)

with the result

I[j,j*] = (lT El){exp-iﬂdﬁcdy }T(X)S'(X,H)}(i‘j)}gj:j—g (5.32)

E}O

{5.31)

e = Jd%uli0 :
J: J'J.hx }'*(x) U (%)

The chirality properties of the sources determine whether a particular Green's

(5.33)

]

function generated by (5.32) is zero or not. Let jL’ jR be the left- and right-

handed components of j:

. 1 Ey - + 1 f -t E

3|_ 3(14‘3)5)} b (J )L = 3.-3(1_})5)

. _ . . .1- _ -1- 1?—

oSt e ’ i tot i
Equation (5.22) implies that S'(x,y) connects jL with jE, but not jL > jz or
g = 3

JIdsed™y %00 Syl gy) = [fddy[418Y, + 1%5'7.] (5.35)

(5.34)

Thus the exponential factor in Eq. (5.32) carries zero chirality. The zero-mode
factor Hg j;jG carries right-handed chirality 2Nv because of Eqs. (5.20) and (5.21),
so the rule (5.15) is satisfied. [Note that (jU, j;) are independent Grassmann
variables, so HG j;jU is actually a determinant. It corresponds to the zero-mode
determinants in Egs. (5.12) and (5.26).]
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The presence of the exponential term in (5.32) suggests the existence of
analogues of the perturbative Feynman rules; the latter are generated by
Eqs. (4.13) and (4.13) with G(x,y) equal to the free propagator, However, non-

trivial contributions from zero modes teund to upset the analogy. In particular,
*.

olo
formulation of systematic rules cumbersome. Zero modes also complicate the rules

the fact that the fermionic zero-mode term HG b is not exponentiated makes the
for pure Yang-Mills theories in higher orders of the expansion (4.34)63). The
safest procedure is to work directly with expressions derived from the relevant

functional integral,

8-VACUA

The WKB calculations reviewed above contain a phase ambiguity
L Phas
[4a) = g Pk ran) 6.13

where [dA]U denctes Gaussian integration about classical fields with topological

4=6) uhich results in all of these

charge V. There is a Minkowski-space argument
phases being described by a single angle*) 8. The original argument was speci-
fically designed to apply only to the WKB approximation, and involved the choice

of gauge
R, = O (6.2)

The choice (6.2) 1s convenient but not essentialso’ssseu), i.e, the results are

net gauge artifacts. The generalization of 8-vacua to non-WKB situations will be

indicated at the end of the section.

Consider the Minkowski-space version of the surface integral (2.16) for
topological charge, where the surface is taken to be a large cylinder o(r, T)

with radius r and length 2T:

O‘(r‘,T] = {X]u; [;I = r, or t = iT} (6.3)
v = nf,i‘?q_.oo é;c,dc“ K#(t’?) (6.4)

The asymptotic X + © behaviour of the Minkowskian field configurations dominating
the WKB integral is assumed to be a pure gauge as in the Euclidean case

[Eq. (2.25)]. For the gauge (6.2), this condition is

*) Thigsgesult was suggested by the presence of a similar 8-angle in two—-dimensional
QED®S)
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G Y, G 10) L [t o - ) (6.52)
—igﬂ,:“(t,?)'ra —> Gnm"v{ G2, {t >« (6.5b)
g7V ), (R o ) (6.5¢)

where Gm and Gn are time-independent and tend to the same function g(f) as
|§I + «, The index i denotes spatial components 1, 2, 3, and @ is three-

dimensioral solid angle. The subscripts m,n refer to the value of the integral
-1 3 -1 -1 -1
KIG] = - (an®)™ [d% Tr €4 6%, 6 677, G 6706 6.6)
n = K[G,] (6.7)

Because of Eq. (6.5c), the sides of the cylinder do not contribute to the

surface integral (6.4):
3 - -
v o= fdx{Ko(m,x) - KO(—eo,x)} (6.8)
The wvalues of f d’x Ky at t = t= are given by Eq. (6.7):

YV = Mm - m (6.9)

It follows that n and m must differ by an integer. If so desired, a change of

gauge can be performed:
At — At = gR.Tg)" + ig'g@)Vg()

-1 (6.10)
G, — G = G, 9(9) .

The new gauge elements Gm" Gn, tend to 1 at ];J - @, 50 each three-dimensional

flat space t = *» can be compactified to the hypersphere S, and the analysis

(2.28)-(2.38) repeated with the result

n

m', n' winding numbers for S5 = S,

(6.11)
= integers
0f course, the value of vV is not changed by the gauge transformation {(6.10), so

it equals (n’ - m').

The various t = = configurations (6.5) and linear combinations thereof
represent part of a large vector space of states, V. This space involves non-
trivial operators for gauge transformations, so it is larger than the physical
Hilbert space H, i.e. H has to be projected out of V. A state in V is represented
by a gauge-equivalent class of configurations. The size of these classes, and
hence the size of V, depend on the restrictions placed on the gauge transformations
relating members of a given class, e.g. restrictive gauge conditions produce small

classes and hence a large V-space. For the present discussion, it is suffieient
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to label equivalence classes by the value of the integral (6.6) for a particular
boundary condition (6.5c). Thus the in state Im}_ is represented by the set of
all configurations (6.5a) generated by gauge elements Gm with the same value of
m and with Gm(;) - g(Q) for {;\ + o, Similarly, the out state \n)+ is given by
the class (6.5b). In general, a given initial state |m)_ can evolve via the time
evolution operator and external operator insertions inte any out state |m + v)+.
The gauge—invariance of v implies that effects due to this multiplicity of states
cannot be gauge-transformed away. Perturbation theory contributes to the transi-

tion
m). — |m), (6.12)
while the instanton is one of the dominant configurations for

m). — |m+1), (6.13)

. - I . 3 =
Let us consider a special set of time-independent gauge transformations &(x)

with the properties
K[G] = 1 (6.14)
G(X) — 1, (I = ) (6.15)

For example, the gauge element (2.37) on S5, can be mapped onto flat three-
dimensional space; a stereographic mapping S; <= R, [similar to Eq. (2.43) for

5, < Ru] yvields the result
G(R) = (i&% - a)(i3.% + a)” (6.16)

where a is a real positive constant. The integral (6.6) cbeys the relation*)

K[GH] KlG] + K[H] + () [k wTreg[c' g ammn] can

for arbitrary smooth gauge-group elements G, H, so if C and H are chosen to be
¢ and Gm, the condition (6.15) ensures that the last term in Eq. (6.17) (written
as a surface integral) does not contribute:

GG, = G

me+1 (6.18)

Therefore the operator U on V-space which induces gauge transformations G acts as

a ralsing operator:

*) This is a non—compact version of the well-known formula®3,6%,%7)

UEGH] = v[G] + v[H], where v[G] is given by Eq. (2.27) and G, H are defined on
The usual derivation relies on deformation invariance [Eq. (2.38)] with

G and H deformed to non-overlapping regions on S,. Alternatively, compactifi-

cation of (6.17) is possible if the gaupge-group elements tend to 1 as ¥ + =

on R;. Then the last term in {(6.17} vanishes and K[G] becomes VEG].
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U|m)i = |~m+?)i (6.19)

As a check, we note that Eq. (2.15) implies the formula

i

U"Jo{gx K (x) U Xdax K(x) + 1 (6.20)

Equation (6.20) is consistent with Fq. (6.19) and the eigenvalue equations
dx K (Yoo, ¥)|m), = m|m) (6.21)
X Rol=00, X t bt
The sets {|m),} can be chosen to be separately orthoneormal,

(mln) = = (m]w) 6.2

mmn

but in > out transitions need not be diagonal,

+<'m.l‘n>_ * gmn (6.23)

unless det (B + M} vanishes for v # 0 due to aone of rhe quarks being massless.

Physical states must correspond to eigenstates of gauge transformations in
general and of U in particular, because the Hamiltonian is gauge-invariant. The
. . . . -i6 . .

operator U is unitary, so its eigenvalues are e » where § is a parameter running

from 0 to 2m:

UIG state) e'w[e State) (6.24)

Each value of £ labels a separate theory with a Hilbert space HB projected out of
V. The pure-gauge states |m) span a subspace of V from which &-vacua can be con-

structed using Eq. (6.19):
1mB8
= 6.2
le), ;ﬂ e KON (6.25)

The choice of normalization (6.22) for |m) states implies the following continuum

normalization for O-vacua:

£8'18), = Lo'8).

im(8 ~ 8')
e
g; (6.26)

'
2n§(8" - 8)
The out/in notation * has been retained because Eg. (6.23) implies that !G)+ is

not necessarily equal to fS)_.

The phases in Eq. (6.1) can be deduced by considering the construction of
Green's functions of gauge-invariant operators Ok from O-vacua. Equation (6.19)
and the condition

-1 ‘
U OkU = Ok (6.27)

A TS
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imply that T-products of O, between |m)_ and }n)+ depend on the difference

k
Vv =n-mbut not on (m + n):

TAnITO m). = T(T0,), (.20
The result for the 9-vacuum expectation value is

' t § ~ no'
TLO'| 70, |8). % e M T T 0, ).

] -1V @
2n8(8 - 8') Zv', e T(]kTOk)V

so § is not changed by gauge-invariant perturbations. Now the real vacuum ]vac)

(6.29)

in Hg must be unique and have unit normalization. 1t is represented in V-space

by the equivalence class of states through which |8)_ evolves to |8)+:
T+<B'ITEOI‘18>‘ = (8'[o). T(vuc|T;[Ok[uac>9 (6.30)

Here 0k is an observable operator, i.e. it acts within HS' Combining Eqs. (6.29),

(6.30), and (6.29) with Hk Ok replaced by the unit operator, we find:
-1v8
Z e T(T0W
T(vac|ﬂ0k|vac> — L
k 8 Z 3109<1>
v

v

(6.31)

The Euclidzan version of (6.31} corresponds to the Green's function in Eq. (4.2),

so the phases in Eq. (6.1) are given by

em(Phuse)v - e v (6.32)

The phase e_l\)e can be absorbed into the Euclidean action in Eq. (4.2)“’5),

2 e AL, To, e 0 T o gl o, ST
with
S(8) = S + i8v (6.34)
This corresponds to a change
$ — ¢ + B (6.35)

in the Minkowskian action (2.8). In other words, the multiplicity of QCUD theories
generated by the existence of the B-parameter corresponds to the freedom of choice
of the coupling constant ¢ in Eq. (2.8), 1In particular, WKB amplitudes generated
by the action (2.8) have periodicity 27T in ¢. Note that the term -¢v in (2.8)

can be written in Lagrangian form
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SQ’CD(‘” = IO{QX :{‘QCD(X ’ ¢)
LopXs#) = Lol = $(g*/32n)) FFT

provided that f d*x F.F* is interpreted as follows [for the pauge (6.2)]:

(91/3211) J’dq'x F. F*(x) = jdax [ Ko(oo , X) - Ko(—oo , ?)] (6.37)

(6.36)

An important feature®) of the analysis is that it is only in the 6 basis
that vacuum expectation values of observable operators are diagonal [i.e. propor-—
tional to 8(8' - G)] and hence consistent with the cluster property (4.38). For

f-vacuum expectation values, the cluster property is

T8 1T, 0N (T"0uyo) 18

an .y T -1 1y ot i 1t (6.38)
— fo de" [an 2 ™™ (1),]7 T(O'|70,]0" ). TL8"TO 6).

(x, = Ht)z —> -oc0

It is clear that the states |[m),_ do not correspond to vacua: e.g., for a massless

2

quark theory with only ome flavour ([m) = [m)_), the cluster limit x° > -= for

the transition
T(ml qR"lL(*) QLQR(OHm)
—  (m] c‘lnqL(x)lm +1) <m + 1] 'c'iLctR(O)lm)

is not diagonal in m. Also, the cluster property need not be valid for gauge-

(6.39)

dependent operators. In particular, S-matrix elements of f d3x K, involve deri-
vatives of §(6 - B'). Operators of this type act on the large space V but cannot

be projected as operators on the physical space HG'

The discussion above is based on the identification of [m), as states fune-
tionally represented by the pure-gauge configurations (6.5). This is legitimate
for Gaussian integrals about classical configuraﬁions mappable ‘gnto 8,, i.e. for
the WKB approximation. However, vacuum structure in the real world of strong
interactions is complicated by the spontaneous breaking of chiral SU(L) x SU(L)
symmetry (2 £ L £ N). Candidates for vacuum states contain virtual quark-
antiquark pairs, so the pure-gauge configurations (6.5) are irrelevant -- a linear
combination of them will certainly not produce an acceptéble vacuum state, In-

gtead, generalized m-states have to be introduced as eigenstates of the operators

K = do® K {x (6.40)
+ | J; o )u( )
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without reference to configurations in functional space™ . Here the notation +
refers to positive and negative time surfaces which together form a large closed

surface in Minkowski space (e.g. t 2 0 Y-hyperspheres of Sg):

Topo|09iw| Charge Cperator = Ke — K - (6.41)

The operator (6.41) may take fractional as well as integer valuesi?) vy, The
eigenstates of K, can alsc be eigenstates of operators which commute with X , or
arbitrary linear combirations thereof. For example, arbitrary generalized
m-states can have non-zero baryon number, non-trivial SU(3) properties, etc. In
particular, axial SU(L) x SU(L) rotations relate K, eigenstates with the same
eigenvalue m because these rotations commute with X, [at equal times, if

SU(L) x SU(L) is not exactly conserved]. vaiously: not all of these m-states
are needed for the construction of the correct vacua. The subspace in V from
which vacua are constructed ig specified by imposing the cluster property for ob-

servable operators, and a 0 basis of the form (6.25)

|8>i = a e{mslgen. m. stoate >i (6.42)
Kif gen. m @t‘al‘e)i = m[ gen. m state>i (6.43)

is obtained from Eq. (6.35). The periodicity in 0 is either a multiple of 27 or
infinite. Generalized m~states need not be conrected by gauge transformations,

but Eq. {6.24) can be justified by using the generalization of Eq. (6.20) to K, .
Not all gauge-invariant operators are diagonal in the 6 basis: some of them can

induce transitions
8 — 8 + arm(integer) | (6.44)

A gauge-invariant operator which is also observable has to be diagonal in 8 and

satisfy (6.29) in order that the cluster property be preserved,

Generalized €-vacua arise whenever the role of 7, K, n, ... mesons as
Nambu-Goldstone bosons becomes important [U(l) prcblem, axionsj. A full treatment
requires a separate review of the U(1) problem, However, the following sections
make sense for the general case as long as it is remembered that the periodicity

is not necessarily 2w,

*) This point should be understood when readin Ref. 12, There is 1o use of the
WKB approximation, except for a digression [ Egs, (22)-(23) ] designed to counter
the widespread impression that an inspection of the chiral properties of WKB
amplitudes suffices to solve the U(1) problem.
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Y¥s ROTATIONS, ANOMALIES, SELECTTON RULES

Let us ignore the quark mass parameters Mi In the QCD Lagrangian (2,10), and
consider the group U(l)ax of global Abelian transformations
q; — etrgtxol(i , (i=1,... ,N) (7.1)
Because of the absence of mass parameters, this group is an invariance of the
Lagrangian. However, the ancmaly68_72) associated with the triangle diagram in
Fig. 5 complicates the formulation of this symmetry. In particular, the construc-

X s .
tion of the conserved Noether current Juzm requires some carel?:°9%),

The anomaly is a phenomenon caused by renormaiization., TFor renormalized
amplitudes, one cannot assume canonical Yy Symmetry at vertex A and maintain
gauge invariance at vertices B and C at the same time, This means that renormaliza-
tion cannet be ignored during the construction of Jizm and that the result cannot

be gauge-invariant;:

1

sy
Jus = gauge -dependent

M sutn
"I =0

To cobtain a local description of U(l)ax transformations, it is necessary to pick

(7.2)

a local gauge {such as 3.A=0 or Ayp = 0) in which fields commute at space-like
separations. (The Coulomb gauge T.A=0 is not local because there are instantaneous
Coulomb forces acting at a distance.) Then the conserved generator of U(l)ax

transformations is
3 SHVH
Qs = Idx Jos (%) | (7.3)
Even though Q, is invariant under infinitesimal gauge transformationslg’sg), it is

. . P *
not generally gauge—lnvarlantqss). However, it is the commutators )

[Qs,okjl_ = - X0, (7.4)

which matter. The chirality Xy of the operator Ok given by Eq. (7.4) appears in
gauge-invariant Ward identities, so it is gauge-invariant, despite the gauge-—

dependence of Q5.

Of course, we can always decide to renormalize the vertex Y Y in a gauge-
invariant way. The result is a different operator Jus with the well—known

formulalg’sg)

" Tus = 2N{g¥/32m?) F.F” ' (7.5)

for its divergence. Because of its gauge~invariance, Jus has nothing to do with

Y, transformations {apart from its coincidence with Juym in the limit of free

#*) Equal-time, if the pParameters Mi are not zero.
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quark theory). It is not a current in the Noether sense. Rather, it is a very

good example of a twist-two Wilson operator. Indeed, there is a non-trivial

wave-function renormalization®®:71)

Ts = Zsldus), 1.8

where the leading O(g") contribution to (Z; - 1) is generated by the diagrams in
Fig., 6:

Ze = 1 4 (g‘*N/ibrrh)fn/\ + O(gb) (A = cutoff mass) (7.7)

The relation between the two YuYS operators ig19,69)

Le = Jus

SHm
+ ZNKF (7.8)

where KU is a renormalized version of the composite operator (2.14). 1In Lorentz-
, , 8 . . . . .
lnvariant gauges, Juim is not rencrmalized because of its conservation, so K 1s

renormalized as follows:

..1 .
KP [K)u + (2N (25—1]J*‘5]bare (7.9)
The U(l)ax Ward identity corresponding to Eqs. (7.2) and (7.4) is
b A M sym
Jdh AT L0 sl O, (x,)]0). oy
\ .
- - BX TLEITO ) e). .
In Lorentz-invariant gauges, an equivalent form of this equation is
4 iqy.x ' sym
Jds e ™ T L8 35000 1O (x, )] ). -

~ = (igu)9Y) FRTLITOM(E). . g =0

For vacuum expectation values, Eq. (7.11) shows that there is a zero-mass pole

coupled to Jzzm if there exists a non-zero Green's function T(Hk Ok) with

Z(m’ght-handed chiralities) = );Xz ¥ 0 (7.12)

An example is the Green's function (5.13) computed by 't Hooft.

The -singularity at ¢* = 0 in Eq. (7.11) is known as the Kogut-Susskind pole’?),
It is the Nambu-Goldstone boson caused by the spontareous breaking of U(l)ax
symmetry; i.e. the Hamiltonian is U(l)ax invariant, but a given &-vacuum state

is not. Indeed, Eqs. (6.20), (7.3), and (7.8) imply the result®)

uU'Qs U = Q; - 2N (7.13)

*) This formula was obtained in Ref. 5 (up to a sign to be discussed in Section 8)
and in Ref. 4 {where the notation Qg is used).
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and hence the identirty
U erpl- 10, ¢/20)185, ]
S PR ENE

Comparison of Egs. (6.24) and (7.14) shows that the U(l)ax rotation exp (-1Q:.4/2N)

(7.14)

effects the transformation“»5)

8)y — |8 +¢), (7.15)

apart from a phase factor or a unitary gauge-invariant operator:

exp(- 1Qg ¢/AN)|8)y = exp if 4 |6+ ¢ (7.16)

Obviously it is important to check whether the pole at q = ¢ in Eq. (7.11)
survives the projection from the large vector space V to the physical Hilbert
space He or disappears completely, The pole is a gauge-dependent phenomenon be-
cause it couples to the gauge-dependent operator Jigm, but that is not a sufficient
basis for concluding that it cannot contain physical as well as unphysical com-

ponents. [As an analogy, consider the gauge-dependent tensor

T Eox) Foglx) 717

aprs - «p

which can have a non-zero physical component given by the colour trace ngys']

In order to examine the projection from V to HB’ it is necessary to rewrite
the U(l)ax Ward identity in a gauge-invariant form. We substitute Eq. (7.8) into

(7.10) to obtain another identity, the anomalous Ward identity:

Jd'% & TL8'| Tuslx) TO(x)] 8.
AN Jd*% 97 TLE'| Koulx) L0, (x)1 8).
- LXK TLETOx)I8).

(7.18)

Note that the anomalous term involves a special prescription for the time-ordering

of operator products which contain F.F*:
TL0'] (g%/32n") F.F™(x) O, ()] 8).
8, T8 Kulx) TO(x) 8

If we had failed to recognize this point, the identity would have been meaningless:

(7.19)

an arbitrary time-ordering of the hard (dimension 4) operator F.F*{x) would have
induced ambiguities proportional to &(x - xk) which would compete with the equal-

time commutator terms. There is no such ambiguity in (7.19). A I'-ordering
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ambiguity in T(KU Hk Ok) proportional §(x - xk) or ilts derivatives becomes
3X5(X - %), etc., in T(F. F*Hk Ok) and the latter ambiguity is annihilated by

the volume integral | d*x

The next step is to write the anomalous term as a surface integral and sepa-

rate contributions from positive~ and negative-time portions of the surface:
Jd* 9 T8 Ku(x) 10,1x,)]8).
= LOKTITo()] - TITOx)IK }le)

The operators K _ are defined by Eq, (6.40); they reduce to f d®x K, (£, x) for

(7.20)

the special case of WKB calculations in the gauge A, = 0. UNote the ordering of
K  with respect to Ok(xk) in (7.20). This is required by the time-ordering of
KM(X) with respect to Ok(xk) on the left-hand side, There may be points x, on

the surface with

(xk)o ( Xo < (XE)Q (7.21)

but then x - X is spacelike for all k (because the surface is sufficiently large)
and in that case KU commutes with all Ok'
L are observable, Eqs. (6.41)-(6.43) [or (6.8), (6.21),

and (6.25) for the WKB case with 4, = O] imply that the anomalous term is propor-

If the operators O

tional to 8(8 - 68'), so it can be written as a matrix element in H space:

g
[ 9 T (o' Kylx) IO, (x,)1 8.
{8'18) ; e-ivav T(Eok(kaV (7.22)

il

£8'18) T (vac| (g*/320*) [d% F.F(x) O, (x,) [vac),

Thus the complete expression for the anomalous Ward identity in the physical

space He is

Jc[‘*x 3:‘ T <vac| J-Hs(x) Eok(xk)lvac%

{(7.23)

it

AN T (vac| (92/32111)].&‘3( F.F%(x) O, (x ) [ vace ),

- ZXE T(vaclﬂO |vuc>

where |vac) is normalized to unity.
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The left-hand side of Eq. (7.23) is the amplitude for a zero-mass particle
to couple to the gauge—invariqnt operator Jps' Clearly, a necessary condition for
the absence of such a particle from the physical spectrum of the S-world is that
this amplitude should vanish, and this will happen only if the anomalous term
cancels the equal-time commutators!?). The best way to analyse this problem is
to return to the identity (7.i8) for B-vacuum expectation values, substitute the
secend line of (7.22) and Fourier transform in &. The result is a special case

of identities obtained in Ref. 12:
Jd 3 T (3400 TO, 1)),
= {2y = 2X) T(TO)),

Thus Goldsteone's theorem for conserved currents is replaced by Eq. (7.24) for the

(7.24)

non-conserved current Jus(x). The following situations should be distinguished:

1) 1In the conventional WKB approximation, the relevant functions (the classical
solutions Ac1 and vector and spinor eigenfunctions of the kinetic energy
operators) are mappable onto S,. Thus gauge-invariant quantities such as
JU5 are completely smooth on S, -- no gauge-patching is needed. Since the
surface area of S, is finite, infrared divergences associated with the
xu+ ® region of R, are actually not present, so the left-hand side of (7.24)

vanishes:

(2N - ZX,) T(mo), ™ = o
(v = integer)

This is the selection rule mentioned previcusly [Eq. (5.15)]. Note that §,

(7.25)

mappability is absclutely essential in this context®), TIf there should be
configurations which cannot be compactified [as discussed in Section 2,

Eqgs. (2.39)—(2.41)], infrared singularities might cause the left-hand side
of (7.24) to be non-zerc. This corresponds to what is called a boundary
correction in the mathematical literature’®’. - Such terms are known to exist

15,25)

for gravitational metrics and menopole solutions?®),

ii) TIn the real world of strong interactions, S, mappability is irrelevant, v
need not be an integer, and no viable analysis of functional integration is
available. Thus there is no purely thecretical argument to indicate whether
the left-hand side of (7.24) vanishes or not. Of course, one may have
phenomenological reasons for wanting it to vanish -- that is what the U(1)

problem is aboutlz).

*) T must emphasize that the assumption73’7“) that positive- and negative-metric
components of the Kogut-Susskind pele cancel when coupled to gauge-invariant
operators is not ensured by gauge invariance alone in four—dimensional theories.
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Some additional remarks are in order:

When applying (7.24), it should be remembered that the amplitudes (Hk Ok)v
are individually not physical. Physical amplitudes have to be reconstructed

as follows:
uﬂphjs.(a) = T {vac| ]EOk]vuc>6 »
1 -
(818 Aule) = (Elo) T <TI0,

Note that ng.F* is not multiplicatively renormalized. The correct mode of

(7.26)

renormalization can be determined from Egqs. (7.9) and (7.19), with the result?s)
* -1
(32/32112) FEY = 9] KH + (2N) (25-1) Ius]bure,T-ord. (7.27)

The derivative 3" acts outside time~ordering operations. If there are no

1
s’ the term 3 [Ju5]T-ord
bute at zero momentum and topological charge v is renormalizatien-group in-

zero-mass particles coupled to J does not contri-

variant.

8. IMPORTANT MINUS SIGN

is

The fact that the sum of the chiralities of operators in Green's functions

related to topological charge was first recognized by 't Hooft?) . However,
L5

the results of various derivations?:*s>:'2) are not identical:

1)

ii)

There is general agreement that the rule for WKB amplitudes is given by

Eq. (5.15) or more explicitly, by Eq. (7.25). However, for y-matrix conventions
consistent with the anomalous divergence equation (7.5), there is a minus

sign in the formula (7.4) for right-handed chiralities X 80 there has to

be a minus sign in Egq. (1.1). As noted in the Intreduction, some derivations

involving 4Q. have failed to produce this minus sign.

In Ref. 12 and Section 7, the existence of a selection rule was connected
with the absence of zero-mass particles coupled te the gauge-invariant opera-

tor JUS; see Eq. (7.24).

In Ref. 5, the axial charge Q, for operator chiralities Xie is correctly

identified: it is gauge-dependent and given by Eq. (7.3). In their version of

the selection rule, the minus sign is missing only because it was dropped in the
arithmetic —= if the gauge transformation cperator U takes ln) into in + 1),

En eine|n) is an eigenstate of U with eigenvalue e 0 (not eie), and U_IQSU
appears in Eq, (7.13) instead of UQ;U”!. The derivation in Ref. 5 is based on

the formula

Q|n=0) = O CHY
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Beyond a purely classical context, the conditions under which this equation is
true are unclear to me, so I have always avoided its use. We shall see that the
requirement that zero-mass particles should be absent includes Eq. (8.1) as a

special case.

There is an entirely different derivation which has unfortunately become much
more popular. It is based on the incorrect assumption that operator chirality X

has something to do with the gauge-invariant operator

X(t) = fdax Jo(x) (8.2)

even though ancmalies are present. The idea is to apply f d*x directly to the
anomalous divergence equation (7.5) and use the definitioen (2.6) of topological

charge, with the result

7
AX = 2Ny (8.3)

In (8.3), X is taken to be the out eigenvalue of X(+») minus the in eigenvalue
0of X(-=}, and this is assumed to be the same as the sum of the operator chiralities
[i.e. X(t) is confused with Q5]. Here the problem is not simply a matter of

arithmetic: the derivation is genuinely illegitimate.

Apart from troubles with sign, Eg. (8,3) is obviously inconsistent with re-
normalization~group invariance. The topological charge v is imvariant to changes
in renormalization procedure, but JU5 [see Eq. (7.6)] and hence X suffers a multi-

plicative renermalization

X — (constont}X (8.4)

This is a very good way of testing the validity of formulas in the literature.
What went wrong?

An obvious point is that the difference between out and in eigenvalues of an
cperator equals the sum of coefficients of equal-time commutators only if that

operator is conserved. Hence the equation

is certainly a consequence of Eq. (7.4), but there is no analogue of it for X(t).

More importantly (as indicated above), it has to be understood that X(t) has
absolutely no connection whatever with operator chirality X, when anomalies are
present. This point was recognized from the beginning by Adler®®:71) yho ob-
served that X(t) does not commute with derivatives of the gluon field, whereas

Qs does®). The reason is that the definition of J . involves an implicit dependence

*) See_Eqs. (214) and (234) of Adler's Brandeis lectures71); his notation for Qg
is Q.
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on the gluon field; e.g. it can be recovered from the short-distance limit of

the gauge-invariant combination

q(x}{exp igS;dz}‘ F\:(:)Ta}ord‘ 3}*}’5 ci(g) (8.6)

where the exponentiated line integral is ordered. 1In higher orders, the lack of

Bps(xs ’j)

renormalization-group invariance results in divergent equal-time limits

[X(tl) R O(?, t)]_ ~ ﬂnp(f.i]t —t") {opev‘ator} R (EN t} (8.7)
where |1 denotes a renormalization subtraction point.

The origin of the confusion is a misunderstanding of the notation
" I N
curvrent = L g Y Y. (8.8)
L %%
This is not an ordinary product of quark fields in free-field theory -- it is
usually understood to be a gauge-invariant renormalized normal product77). A

more explicit notation for the YUYS operators would be

‘T,us = Ngi[zi: 9i 0% q,a.jl 1
sym

Jﬁs = NCGY\[§; qﬁ %4}% Qi,]

where Ngi and Ncan denote gauge-invariant and canonically behaved normal products,

(8.9)

respectively. It is convention, and nothing else, which decrees that the nota-
tion (8.8) should refer to N 5 rather than Ncan' Most pecple follow this conven-
tion, which was introduced by Adler®®), However, Kogut and Susskind’?) prefer

to think of (8.8) as the gauge-dependent product Jzzm. Their notation is as

logical as the usual one.

It is obvious that the choice of current associated with chirality is not
decided by somebody's convention. We want the chiralities and hence the relevant
current te be renormalization-group invariant. In practice, this means that the
current should be conserved or partially conserved, as in Eqs. (7.2)=(7.4). It
is not correct to argue that the gauge—dependence of Jigm means that Xy is un-
physical, because we have seen that Xj appears in the gauge-invariant anomalous
Ward identity (7.23). Since X does nct depend on the mass parameters Mi or 1,
it must be independent of the coupling constant g. [The same argument implies
the validity of Gell-Mann's commutation relations

[Fie, 2, 9] 3N R

Fig = Jd% 3, 7)

(8.10)
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. . —i
in QCD. Because of the partial conservation of the SU(N) x SU(N} current .ru,
the constants fle are renormalization-group invariant and do not depend on the
quark mass parameters. Hence fle are g-independent and equal to the structure

constants of SU(N) x SU(N).]

Another error in the argument leading to Eq. (8.3) is the assumption that
the application of f d*x to an operator equation for a current divergence yields
a result applicable to a T-product or a Euclidean Green's function. To illustrate
the problem, let us consider an example where anomalies play no role. Let;ﬁﬂs be
the conserved axial-vector current in an SU(2) x SU(2) symmetric o-model with
fields (o, ?) forming a (Y%, %) representaticn. If f d“x is applied to the

equation

0 (8.11)

¥,

we get the analogue of Eq., (8.3):

?
AF’S3 = 0 (8.12)

Of course, this is nonsense because there are transitions in which F: chirality

changes. The simplest case is the vacuum expectation value

(o) = f{o-im) + 2{(o+im) 4 0 (8.13)
where the F; chirality changes by #1:

[oFin,, Fsa ] = ¢ (o F imy) (8.14)

The correct procedure for dealing with this problem is well-known to current
algebraicists. One needs Ward identities for T-products or Euclidean functioens

which involve contact terms caused by short-distance singularities such as xa/x“:

A [xfx*] = 2n*8%) , (Euclidean x.) (8.15)

The procedure leading to (8.12) fails because it ignores contact terms. Instead

of (8.12),.we consider
~fc[l'x JKPT( ?ﬁas(x) (0+ing}i0)) = (o + imy) (8.16)

and conclude that {g + im,) is given by the non-zero amplitude for a pion to couple

to;TiS. The existence of transitions with
- 3
A
3
AF, +# O

is a signal for epontanecus breaking of SU(2) x SU(2).

(8.17)
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What is the correct equation which replaces Eq. (8.3)7 Consider an ampli-

tude

A

T (out{ O, (x,)[in (8.18)

where |out) and |in) are eigenstates of X(®) and X(-®), respectively. The identity

AALX

(ut}{ ¥ T[10,} - T[mO,] X(-o0)} |in ) (8.19)
can be converted into a volume integral via Gauss's Theorem:

ALX J‘cl#x 35 T {out| Jﬁs(x)gok(xk)]in> (8.20)

The latter amplitude measutes the coupling of a zerc-mass particle to the gauge-
invariant operator Jus. Hence the condition for this particle to be absent is

simply
AX = 0 (8.21)

Note that the fact that Jus is not conserved plays no role in the derivation of
{8.21) -- the value of AX is controlled by the coupling of zero-mass particles to

Jus‘ Equation (8.21) replaces the incorrect Eq. (8.3).

It is not difficult to cobtain the selection rule (1.1) directly from Eq,

(8.21)., Equation (7.8) implies the formula

X(teo) = Q5 + 2NK; (8.22)

Since Q; and K, commute, it is possible to construct simultaneous eigenstates
\q, n),, where g is the eigenvalue of Q5. These states are also eigenstates of
X,

XEo)lg,n)y = (g + 2NT‘«)[C1,, U (8.23)

The selection rule is obtained by forming the difference between the out and in
eigenvalues of Eq. (8.22). Remembering that AK is the topological charge v, we
find that Eq. (8.21) becomes

0 = AQ; + 2INAK = A4Q; + 2Nv (8.24)

in agreement with Eq. (1.1)., This derivation makes the origin of the minus sign

obvious.

Note that Eq. (8.1) corresponds to the assumption that X, annihilate €& vacua.

Hence (8.1) is a special case of Eq. (8.21).

These remarks are designed to counter the widespread misconception [based on

(8.3)] that instantons somehow cause U(l)ax invariance to be explicitly broken by
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the Lagrangian. It is very important to recognize that gauge-invariant chiralities
are derived from the gauge-dependent charge Qs. The Lagrangian is always vy in-
variant in the absence of mass parameters Mi' Instantons induce a spontaneous
breaking of Utl)ax by generating a continuum of & vacua. That is the origin of

the non-zero changes of chirality observed in WKB calculations. The analogue of

Eq. (8.17)
Qs = O 4
BQs #+ O

shows that we have a classic case of spontaneous symmetry breaking.

(8.25)

P AND T CONSERVATION IN STRONG INTERACTIONS

There is an old argument’®) [reviewed by Fritzsch’®) at this School] that a
renormalizable theory of strong interactions with local non-chiral colour symmetry
and nc spin-0 fields necessarily conserves P, C, and T separately. The main step
is to reduce an arbitrary non-Hermitean, Y. -dependent quark mass matrix to a real,

diagonal, yvs-independent matrix

(9.1)

by a y;-dependent unitary transformation on the quark fields,

However, the effects of topological charge upset this argument. Even in
the WKB approximation, one can easily see that in general, F.F* has a non-zero
vacuum expectation value for non~zero mass parameters Mi' The only exceptional
case is that in which the value of © associated with states !8) accidentally can-
cels the coupling comstant ¢ in Eq. (2.8) via Eq. (6.35) (modulo the periodicity).

If we cheose the convention ¢ = 0, with P and T violation contained. in the states,

P18 = [|-8): TI8) = |-8); (9.2)
the problem is to explain why © takes one of the values

8 = .0 , or %[Periodicihj] (9.3)
in the real world,

The natural explanation is that the theory actually possesses some sort of

chiral U{l) invariance., There are two alternatives:
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i) Peccei and Quinn®) have proposed that the Lagrangian of the unified theory
of strong and weak interactions should possess a global chiral symmetry
U(I)Pq. The theory contains a set of Higgs fields {¢h} whose vacuum expec-—

tation values generate the quark mass matrix with all Mi # 03

Moo= M{(e] (9.4)

The symmetry U(].)PQ induces a phase rotation

as well as transforming some or all of the quarks according to Eq. (7.1).
This corresponds to a comserved current
-«

(J’Msﬁm)m = (J’Hssy}m)qw + Zhl e, 4::1'3# $,, (9.6)

In general, other weak fields (leptons, weak gauge fields, etc.) may also be
transformed by U(l)PQ.
ii) Otherwise, the up quark g, can be given zero mass*®»11) . This means that

the unified Lagrangian is supposed to be invariant under transformations which

rotate the up quark,

9, exp(m}’go&) 94 (9.7)
but leave the other fields (q,, ..., 9y ¢h’ etc.) unchanged.

The observed CP violation is included as z purely weak effect. One possibility

is the Kobayashi-Maskawa model®?},

The connection between exact chiral U(1) symmetry and P and T comservation

was noticed in the original analyses“’s)

of 8-vacua. Roughly speaking, the

U(l)ax transformation changes IG} into |6 + const.) but leaves the Bamiltonian
(and hence the time-evolution operator) invariant, so S-matrix amplitudes cannot
depend on €. If a term -¢v appears in the action as in Eq. (2.8), one first ab-
sorbs it into the definition of G-states via Eq. (6.35) and then carries through
the argument. [It is not correct to say that vy, transformations change the action
operator by adding a term proportional to v. The action is really U(l)ax in-
variant. A discussion of the effect of the chiral charge on states is essential

if one is to derive conclusions about S-matrix amplitudes. This issue is related

to the analysis of selection rules in Section 8, ]

Tn fact, this analysis contains an implicit assumption about the symbols B,
in Eq. (7.16). 1If O-states are constructed from eigenstates of K, with phases ;s
in Eq. (6.42), Eq. (8.22) implies that 8, is proportional to X,. In order to
obtain the desired result, it is necessa;y te use the conditio; (8.21) that zero-

mass particles are absent.



_51_

I prefer the following version of the analysis. Consider 6-states '8 out/in),
which are now not just generalized BH-vacua ie>+ picked cut by the cluster property,

but can be particle states such as |7p), pBY, etc.:
K_|81'n> = - ia/aaiﬁ in) (9.8)
The S-matrix Z(B) is given by
' . '
<8 out|8 m) = +<8 IS)_ Z(S) (9.9)
The anomaleous divergence equation implied by the U(l)aX symmetry of the Lagrangian,
M ‘ : . :
J'o[qx d, <5'out|J’M5(x)| Sy = 2N<8'0ut|(K+ - K_)|8 in) (9.10)
and the absence of zero-mass particles coupled to Jus imply the constraint
a — -a_ﬁ._. ’/ '
( 88' 38 J <8 \Jth [ 8 [n>

Equation (9.11) is valid for the special case +(6'\9)_, so from Eq. (9.9} we ob-

"

0 (9.11)

tain the result
a/ae Z(E’) = 0 {9.12)

In other words, the S-matrix does not depend on 6. If 4 is mot zero in Eq. (2.8),
it can be absorbed into the definition of & which can then be put equal to zero
without changing the S-matrix. Then the S-matrix can be generated by a theory in
which both the ground state and the action respect P and T invariance. Conse-

quently, S-matrix amplitudes are P,T symmetric.

Weinberg'®) and Wilczek'!) have observed that the Peccei-Quinn alternative
(1) implies the existence of a light pseudoscalar boson, called the axion. The
?, where G_ is the Fermi weak

r F 1
coupling censtant, so v # 0 effects do not contribute to the lowest order in Gﬁe.
1 .

Higgs sector couples to strong interactiocns via G

However, U(l)PQ symmetry is valid order-by-order in Gf%, so in zeroth order there
has to be a massless Goldstone boson which causes U(l)PQ symmetry to be spen-—

taneously bfoken (thus avoiding parity doubling in the weak spectrum). In higher

/

orders in GFZ, v # 0 effects are important. They provide an additicnal spontaneous

breaking of U(I)PQ due to the extra \8 ) degeneracy., If the strong sector pro-—

PQ
duces a Kogut-Susskind pole for (Jigm)PQ which decouples from the real world, the

axion can acquire a small mass;:

My = O[GFVZ] (9.13)
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The phenomenoclogy of the axionl?s11,81-93)

is somewhat model-dependent. The
most general predictions concern the mass o and amplitudes for the transitions
a +> ﬁn, a ++ 1n. The derivation depends on the observation!®s®!) that the limit

M1,2 + 0 produces a Lagrangian with two U(l)ax symmetries: U(L) and the Abelian

PQ’°
symmetry U,{1) (in the notation of Ref. 12) associated with Y, transformations on
the up and down quarks alone. To each U(l)ax symmetry, there corresponds a gauge-
invariant operator Jus with an anomalous divergence. However, these anomalies
US)PQ and

The result is a gauge—-invariant U(l) current with no anomaly; it becomes

can be cancelled by taking the appropriate linear combination of (J

(J..)

us’2”
exactly conserved in the limit M, » > 0, so the axion has to be its Goldstone

boson, with!?:81)

m, = O[G:.fzmﬂ] (9.14)

for M,, M, # 0. This trick enables one to analyse the axion without having to

worry about a possible U(l)PQ problem -- the U{l}_. problem is "cancelled off"

PQ
against the U, (1) problem.

The results are complicated by the appearance of an angle o associated with

neutral components of complex Higgs multiplets ¢,, ¢, coupled to up and down

quarks:

iYukawa = 7 _}f[ M, %(1 t 3)s) 94 ¢:/<¢:> + M:zc‘lzu + 3}5) ‘124’:7@’;;

+ other qu.arks + Hermitean conjuﬂai:e] .
bana = (g )/($17]

This angle determines the linear combination of neutral Higgs fields which re-

(9.13)

presents the axion, but its value is not fixed by U(l)P so the predictions are

Q’
a—-dependent. A typical [SU(Z) x U(l)]weak model yields the result!®»81)

m, = (N/sin .’Zoc) {25 KeV } (9.16)

where numerical values have been substituted for Mi, GF’ and the pion-decay con-

stant Fw = 94 MeV, and N is the number of quark flavours transformed by U(l)Pq.

In practice, N is the same as the total number of quark flavours, so Eq. (9.16)
provides a lower bound of roughly 100 keV for the mass. Axions couple to strongly
interacting matter (not involving new particles) with strength of order

1
GF'&FTr = 3 x 107" by mixing with 7% and n. Again there is o-dependence: the

couplings for a <> 7°

, T are linear combinations of cot & and tan o. Finally,
the coupling tc leptons seems to be completely model-dependent -- a prediction
for a » ¥4~ {o~dependent) is obtained only if the behaviour of the lepton fields

under U(l)PQ is specified as an initial condition. An indirect way of doing this
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is to allow only two Higgs doublets im SU(2) x U(1) models®»>''), 7Tf this con-
dition is ralaxed, it is possible to construct models with no direct aete”

vertexgo).

Despite this model dependence, there is general agreement that the experi-

mental outlook for axiocns is unpromising., The original suggestion

w, ( Qme (9.17)

is excluded by a nuclear reactor experiment®*) semsitive to

a+d—>n+p

and by various beam-dump experiments®’),

These experiments establish bounds which
are two to four orders of magnitude below theoretical expectations!®;85-89)  For

larger masses

m, = Offew MeV] (9.18)

a

the absence of axions in the above experiments can be explained if a couples to
ete™ directly, because then the axion decays quickly and does not reach the de-

tector. However, this conflicts with another reactor experiment®?) sensitive to

a + e — Y + e

and with a recent analysisg7) of old Gargamelle data, If couplings of the axion
to leptons are excluded, m would have to be even larger to energetically forbid
axion production in reactors and to permit it to decay sufficiently rapidly by

other modes in beam~dump experiments. For very large o the coupling a +> wo, n

is enhanced by a factor
(sin;lm)-1 = O[ma/(IOO KeV)] v (e =0,"h) a9

so a would be seen in ordinary strong-interaction experiments. This phenomenology
is not completely exhaustive vet, but it does indicate strongly that alternative

(i} is not realized.

Alternative (ii) avoids axions but is difficult®?:!?) to reconcile with the
conventional picture79’98) of K¥ -k, n - p, and D* - D° mass differences and
n > 3m decay. In this scheme, isospin-violating amplitudes are assumed to receive

contributions from two independent sources:

a) a finite photon loop to which the usual soft-pion or dispersive methods can

be applied;

b) a finite isospin-breaking mass term in an effective quark Lagrangian, with

(MZ/Mi)eFF. ® 1.8 (9.20)
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The consistency of dropping Eq. (9.20) in favour of zero up—guark mass has been

the subject of some debate®®),

It is not obvious that the mass (Ml)eff used in the conventional picture is
the same as the up-quark mass obtained from the unified Lagrangian. A related
problem arose some time ago in a short-distance analysisioo) of the current algebra
of electromagnetic corrections. The conclusion was that it is not always possible
to commute soft-pion limits with the photon loop integral. [This is easily shown
if the photon loop requires an infinite counterterm proportional to (9,9, -~ g,q,),
as in asymptotically free theories. The axial charge for the soft 7° limit
commutes with the electromagnetic current but not with (q,q, - Ezqz), so the
naive procedure yields an infinite answer for a finite amplitude. ] If true, this
implies that the relevant ratio M, /M) off is different for different processes,
It was suggested that this might explain why the conventional picture does not
explain the rate for n - 3r decay very well. Perhaps these theoretical uncer-
tainties permit the choice My = 0 and P and T conservation in strong interactions

need not be regarded as accidental.

Alternatively!! 01’102),

one may adopt less natural criteria which do not
involve a U(l) invariance but are sufficiently restrictive to ensure P and T in-

variance.

OTHER EFFECTS

Topological charge is claimed to play an important role in a number of

applications. We conclude with a brief summary of them.

The effects of instantons for the weak gauge group were discussed by 't Hooft?),
In this case, the vertices B and C in Fig. 5 involve both Yo and ¥y o5 S© it is
possible for gauge invariance at B and C to clash with the conservation of a cur-
rent at A constructed from YU. This means that baryon and lepton currents intro-
duced externally and not gauged can have anomalies which, together with the weak
instanton, result in a violation of baryon and lepton number conservation. In

SU(2) x U(1l) models, amplitudes for this are proportional to?)
a2 -1 . 2
exp - 8n /9weak = exp - 2n sin B, (10.1)

where o = 1/137 is the fine-structure constant and BW is the Weinberg angle.

In strong interactions, it has been shown by current algebraic methods!?)
that the existence of topological charge is essential for the generation of a
non-zero pion-decay constant FTT in the SU(2) x SU(2) limit. Ward identities
originally considered by Clashow!?3) acquire an extra anomalous term which provides

the leading PCAC contribution
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Lv*H = - 1'(32/321'[2)2 T(vacljdl*x F.Fi(éx) F.FTOHVCLC) (10.2)

to the resulel?)

mnzFﬁl = 4—((1}2» + O(mi,:) (10.3)

Specific calculations with instantons in strong interactions depend on small
instanton sizes being dominant. The simplest process emphasizing short distances
is the total cross-section for e*e™ annihilation at large energies. This has
been considered by several authors'®*7197) Although the size-integration problem

arises for the full T-product
T {vac] J(x) J,0) | vac)

it was noticed!®®5197) that the cne-instanton contribution to the absorptive part
is dominated by small-size instantons. This permits an estimate of the asymptotic
behaviour of the one-instanton correction to the cross—section relative to the
leading scale-invariant term. The relative correction dies off agl®¢)

O(q-ll—N/3 1

the next problem is to attempt to compute instantom corrections to moments of the

n? q) as the energy q becomes large, where p is calculable. Obviocusly,

structure functions for deep inelastic leptoproduction. In other applications,

the connection with the short-distance region is less clear or is simply assumed:

a) The effects of instantons on the hadromic spectrum have been considered from

various points of viewloa—llz). The most convineing calculations involve the
heavy quarks ¢, t, b, ..., because it can bhe argued that distances O(Mglt b)
3 ¥

dominate, as in charmonium models. In particular, it has been suggested that
the relatively large splitting between nc(2830) and J/¢(3100), which is hard
to explain in the usual charmonium picture, should be attributed to instanton

effectsloa).

b) It is an important problem!*>¥!?) o demonstrate spontaneous breaking of the
chiral SU(L) x SU(L) symmetry of QCD in a self-consistent calculation.
[This is related to Eq. (iO.B) and the U(1) problem.] Here there seems to be
little connection with the short-distance region: the size integral has to
be cut off for purely pragmatic reasons. The main difficulty is to satisfy
the self-consistency requirement that the coupled QCD equations of motion be

preserved.

The concluding remark is related to commente at the end of Section 5: the
temptation to rely on diagrammatic analogies as a source of intuition should be
resisted. Of course, nobody supposes that one-instanton amplitudes are given by

a sum of Feynman diagrams, since exp - 87%/2® has no Taylor expansion about g = 0,
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Nevertheless, there is a tendency to adept a similar diagrammatic appreach to
dilute-gas amplitudes which are assumed to be given by products of amplitudes for
individual instantons and free-particle propagators. In general, this assumption
is not correct. For example, consider the propagator

Sqas - (Ejﬂg + M)_lg(x - H) (10.4)

for a quark with a small mass M passing through a dilute gas which contains both
instantons and anti-instantons. The mass singularity of this propagator is at

most O(M_l), irrespective of the (finite) number of zero eigenvalues of ﬁgas:
S oM™ (10.5)
gas

It is therefore not possible to suppese that Sgaq is the sum of products of indi-

1]

+ - Jet s L
vidual propagators (W; + M)718(x - y) for the ith instanton or anti-instanton, be-
cause there are terms in which instantoms and anti-instantons alternate. These

terms produce strong singularities at M = 0O:

7y + M)“(a MU M) M) M)% M) Sx-y)
~  [constant ¢ 0) M_gé (10.6)

Wherever possible, one should analytically expand expressicns systematically de-

rived from the appropriate functional integrals.
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APPENDIX

The analysis of Eq, (2.27) in the text is restricted to the gauge group SU(2).
This Appendix contains a non-rigorous discussion®) of the extension to any simple,
compact Lie group §. Simple Lie groups have no connected invariant subgroups.

They consist of the classical groups

S

SO0(n) , (n y5); SUm), (m ),2) ; Sp(n) , (’n p) 1) (A.1)
and the exceptional groups

5 = By s Es 9 BEgsFuy Gy (a.2)

The orthogonal group S0(n + 1) preserves the length of real (n + 1)-dimensional

vectors

X = (X1, ves g X71+1) (A.3)

80 x can be confined to the hypersphere Sn' Let Ux be an SO0(n + 1) transformation

which rotates x to the N-pole vector

column vector (0.0, R ) T)

Uy X

X
N poh (A.4)

1l

The maximal set of S0(n + 1) matrices which leaves the X pole invariant is given

by the S0(n) subgroup {M} formed by matrices

SO maotrix 0 \1
P4 = I (A.5)
0 1/

This means that the point x is left invariant by the 50(n) subgroup {UEMUX; all M}.

It also means that the set of all SO(n + 1)} matrices can be divided into cosets
Ce = {u™; all M} (4.6)
) I X b '
Since x labels cosets and also labels points on the n-hypersphere, we find:
SOm+1)/S0(m) = S, (a.7)

The same argument works for the other classical groups SU(n), Sp{(n). The

group SU(n + 1) rotates the complex vector

%} Which is trivial for mathematicians!!*),

essential instructions.

I thank H. Romer for providing
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Zz = (ZT" cee e 2n+1) (A.8)

on the hypersphere 8,54, in (n + 1) complex dimensions, i.e. in (2n + 2) real
dimensions, Each point z is left invariant by a subgroup SU(n), so the coset

formula becomes

SUm+1)/SUMm) = S,y (4.9)

Similarly, the symplectic group Sp{(n + 1) of rotations of quaternionic vectors

ci = (C{/H Ty CLMH) (4.10)

on the (4n + 3)-hypersphere contains an invariance subgroup Sp(n) for each point

q:

Sp(n+1)/5p(n) = Stm+3 (A.11)

Consideration of the exceptional groups is postponed for the moment.

The mapping of S, into group space defines a mapping of S, into the corres-
ponding coset space and hence inte a hypersphere given by Eqs. (A.7), (A.9), or
(A.11). The latter mapping

S = Sm o+ (m>3) (A.12)

has the property that it can be continuously deformed to a single point P on Sm:
there has to be some point Q on 5, not covered by the mapping (A.12) (because S
has more dimensions than S,), so the "hole"” in 5, created by removing Q can be

continuously expanded over the surface until only P remains. [Compare this with

examples 2,5 in Sections 3.4, 3.5 of Coleman's 1975 lectureslls).]

The deformation of the coset mapping (A.12) to the trivial mapping onto the

point P corresponds to a continuous deformation of
S = SO(n+1), SUM+1) 4 or Spin+1) (4.13)

to the mapping
S, — subgroup (SO(YL), SUMn), or Sp(n)) leaving P mvariont (A.14)

Successive deformations result in the value of n being reduced as far as permitted
by the constraint m > 3 in Eq. (A.12), For any group § in Eq. (A.1), there is a

suitable sequence of subgroups which ends with SU(2):

SUm) 2 SUn-1)> ... = SUQ)
(A.13)
Sp(n) = Sp(n-1)> ... = Sp(ny = SU2)

SOm) > SOm-1)> ... > S4(s]

Sp(2) = Sp(1) = SU[2)
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Hence a mapping of S, to a group © in Eq. (A.1) is related by continuous defor-
mation to a mapping of S, to an SU(2) subgroup. It follows from the deformation

invariance equation (2,38) that the result (2.36) is still valid.

In Eq. (A.15), the use of Eq. (A.7) for orthogonal groups stops at 50(3),
even though Eq. (A.12) permits a further deformation to 80(4). It is necessary

to avoid SO0(4) because its direct-product structure

SO(4) = SUR) X SUQ) (a.16)

does not (in general) permit deformation to an SU(2) subgroup.

The deformation result is also true for the exceptional groups (A.2), but
there is no need to prove it here. All of these groups are subgroups of SU(n)
for n sufficiently large. Given that G in Eq. (2.27) is an element of an excep—
tional group, we simply reinterpret it as an element of SU(n) and conclude from

the preceding analysis that the topological charge v must be an integer.
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Figure captioms

Fig. 1 : Mapping of surface of hypersphere in four dimensions onto another

"hypersphere. See Eq. (2.31).

Fig. 2 : Mapping of R, (flat four-dimensional Euclidean space) onto the sur-

face §,, the unit hypersphere in five dimensions.
Fig. 3 Gauge patches for the potential A on S, -
Fig. 4 H Plot of the action § as a functional of the quantum field AT". The

base of the trough is flat due to the existence of a continuous

parameter A in the set of classical solutions ASL.

Fig. 5 ! Anomalous triangle diagram for the y: transformations (7.1).

Fig. 6 : Diagrams responsible for wave-function renormalization of Jus'
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