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Gauge theories of quarks which have chiral SU(3)XSU(3) symmetries necessarily also have a ninth
axial-vector symmetry. Empirically this symmetry is not rpanifeqt in the particle spectrum in either the
conventional or Goldstone form. We argue on the basis of an exactly solvable model that the apparent
lack of the ninth axial-vector symmetry is due to the same long-range for¢es which confine quarks in
infrared-unstable Yang-Mills theories. A related problem is the violation of Sutherland’s low-energy
theorem for the decay n — w7~ m°. We show how the same phenomenon naturally ruins the validity
of Sutherland’s conclusion for soft neutral pions. In the course of this work we discuss the Schwinger
model with massive fermions. On the basis of mass perturbation theory and simple energy
considerations, it appears that this is a well-behaved theory of confinement.

I. INTRODUCTION

Of all the theoretical methods which have been
invented to describe hadrons, only the algebra of
conserved and partially conserved quark currents
has led to precise connections between underlying
fundamental degrees of freedom and observed
hadron properties.! Of the 18 vector and axial-
vector currents forming the algebra U(3)X U(3),
nature seems to have utilized only 17 to define
the exact and approximate conservation laws of
the strong interactions. The conspicuous absence
of the ninth axial-vector current, jj, as a partially
conserved current is puzzling and without a nat-
ural explanation. The puzzle escalates into a
true dilemma in those theories which utilize pure
vector forces to bind and scatter hadrons.? In
these theories the conservation of the 17 SU(3)

X SU(3)X (baryon number) currents implies the
conservation of j;. In particular, the exciting
possibility of a non-Abelian Yang-Mills theory®
involving asymptotic freedom,* infrared slavery,®
and color falls into this class of theories. The
Lagrangian is

£= fdsr[w(imgAaC“)w—%F‘;uFé”WMzP]( )
1.1

where C, are the eight color matrices, Ff,‘,, is the
field strength constructed from the non-Abelian
potential A}, and M is a color-invariant quark
mass matrix. In order that the usual eight chiral
currents

JEa=Prr Iy (1.2)

be conserved, “the mass matrix M must vanish.

But in this case the additional ninth axial-vector
current,

E=Prryoy, (1.3)

is also conserved.

Under ordinary circumstances, invariance under
the symmetry generated by j° would require de-
generate parity doublets (with the possible excep-
tion of massless fermions) or massless pseudo-
scalar Goldstone bosons. Since both are empir-
ically ruled out, we are faced with one of two
possibilities: Reject the pure vector theory and
introduce other objects which can break j; in-
variance without spoiling SU(3)X SU(3) (Ref. 6);
or search for new modes of symmetry which do
not entail either degenerate multiplets or mass-
less pseudoscalars. This paper is about just such
a new symmetry mode and its application to the
ninth axial-vector symmetry. '

We call the new mechanism seizing of the vac-
uum or just plain “seizing” for short. The effect
is caused by long-range forces which prevent dis-
tant parts of the vacuum from behaving indepen-
dently. In fact we shall show that the seizing of
the vacuum is caused by exactly those long-range
forces which prevent quarks from being produced
in high-energy collisions.

Long-range forces of the required kind can only
be present in infrared-unstable theories. Un-
fortunately, a realistic Yang-Mills theory is far
too intractable for us to make rigorous conclusions
about either quark confinement or seizing. How-
ever, an exactly solvable infrared-unstable gauge
theory exists. It is the (1 + 1)-dimensional
Schwinger model (QED in one space dimension).”
Quarks are confined in thi§ model and a spontane-
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ously broken chiral symmetry is #of accompanied
by massless Goldstone bosons.®® Accordingly,
the first part of this article concerns the axial-
vector current and vacuum seizing in the Schwing-
er model.

In the second part we assume that quarks are
confined by infrared instabilities in 3 + 1 dimen-~
sions. It is shown that the ninth axial-vector
current should misbehave just as in one dimen-
sion, eliminating the need for a ninth Goldstone
boson.

It has long been felt that a proper solution to the
puzzle of j; should also solve another nagging
current-algebra problem. Sutherland!® has pointed
out that an application of conventional current
algebra and PCAC (partial conservation of axial-
vector current) methods fails to describe the de-
cay n—m"7"7°. Sutherland’s theorem says that
the amplitude is small where experiment says it
is big. However, the usual analysis does not
account for the misbehavior of jﬁ in seized the-
ories. Seizing provides an ideal mechanism for
spoiling the Sutherland theorem.

II. THE AXIAL-VECTOR CURRENT IN THE
SCHWINGER MODEL

A. The loophole

The evasion of Goldstone’s theorem for the
ninth axial-vector current is only possible be-
cause of the gauge freedom of the theories we con-
sider. We may either carry out the discussion
in a gauge with no unphysical degrees of freedom
(Coulomb gauge) or in a covariant gauge such as
the Lorentz gauge. In the first case, the loop-
hole to the Goldstone theorem is the long-range
action-at-a-distance forces which occur.

Gauge theories may also be formulated in the
manifestly relativistically invariant Lorentz gauge
in which the interactions are local. In this formu-
lation there is no way out of the Goldstone theo-
rem. Nevertheless, there is still a loophole, and
it is that the full space of states, needed to rep-
resent the degrees of freedom of the Lorentz
gauge, is much larger than the $pace of physical
states. Subsidiary conditions define the physical
subspace and all other objects decouple. - It can
and does happen in some cases that the expected
Goldstone boson is not in the physical subspace.

B. The Schwinger model in the Coulomb gauge

The Schwinger model” is defined by a Lagrangian
o= [ az@@wy-gBap-1 ) - [azts.
(2.1)

When the mass term [ P9 is absent the model
is exactly solvable and chirally invariant.

The solvability of the model is due to a remark-
able property of one-dimensional fermion sys-
tems, namely, that they can be completely de-
scribed in terms of canonical one-dimensional
boson fields.!* The main correspondences are
listed below. In Egs. (2.2)-(2.6) ¢ is a canonical
boson field.

Ju=dny

=€,,9, O/, (2.2)
in=Prn v

=9, ¢/VT, (2.3)
=K :cosVrm ¢: , (2.4)
Py =K :sin2V7 ¢:, (2.5)
iP¥YP=309, ¢8,¢, (2.6)

where K is a simple constant.

The skeptical reader may be helped by applying
these correspondences to a few examples from
massless free theory. According to (2.6) the
Lagrangian for the massless free fermion and
massless free boson are the same. The vector
and axial-vector currents are both conserved for
massless free fermions,

8,7, =0, @2.7)

8,75=0. (2.8)
Furthermore, in one dimension'?

Ju=€wiy (2.9)
so that (2.7) and (2.8) imply

0j,=0. (2.10)

Since ji, is conserved, it can always be written
in the form of Eq. (2.2). From (2.2) and (2.10) we
find

9,0¢=0. (2.11)
Thus O ¢ =const. Sensible boundary conditions on
¢ imply

0¢=0. (2.12)
Furthermore, the Schwinger commutation relation

[io(e), 4z &) == 7= 6'(z - 2) (2.13)

is equivalent to the canonical commutation relation
[$(2), p(z")]==id(z - 2"). (2.14)

The correspondence between P(1+4y,)P=S, and
the equivalent-boson expressions

iexp(£i2VT ¢): (2.15)
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can be verified by computing matrix elements of
these quantities and comparing them with one
another.

The simplest way to set up and solve the
Schwinger model is to apply these corresponden-
ces to the Lagrangian in the Coulomb gauge. The
Coulomb gauge is defined by

A,=0 (2.16)
and

YAy _ Lt

ogr ~8V'Y- (2.17)

Equation (2.17) may be integrated to give
A:=%gf|z-z'lzp*(z')w(z')dz'. (2.18)
The Lagrangian
£= jdz@i)?zp -gPAY -5 F, F*) (2.19)
is replaced by

e= [az@ivy)

4 [dzaz'y @ue)V(e - 29t @),

(2.20)

where V(z - z') is the one-dimensional Coulomb
potential

Vie-2")=%|2-2"]. (2.21)
Using (2.2)-(2.6) we may replace £ by

2=} [ 1§ -@,01az
4 & [ople-zrlojpazaz . (2.22)

Our main concern is with the chiral structure
of the theory. The chiral charge density is

1
Vini=7= 0,0
=21, (2.23)

where Il 4 is the canonical momentum conjugate to
¢. The total chiral charge is

Q= [v'nyaz

=+ [y (2.24)
Thus it follows' that
[¢(2), @]=i VT , (2.25)

and if @ is a constant, y
eiaﬁ05¢e—iaﬁ05= p+a. (2.26)

Equation (2.26) defines the action of chiral trans-
formations on the equivalent boson field. This
action is to (ranslate ¢(z) by a constant.

The field ¢ should be interpreted as an angle
with periodic boundary conditions. This follows
from the fact that the chiral group is compact. In
particular it is evident in the fermion representa-
tion that

exp(inmQ;)

is the unit operator for any integer n. According-
ly, the wave functional in the equivalent boson
representation must be invariant under

o= p+n'T . (2.27)

This can be ensured by allowing only those states
for which @, is an even integer.

Evidently the reason why the free massless
Lagrangian and the Lagrangian (2.22) are chirally
invariant is because they only contain derivatives
of ¢ and are therefore invariant under (2.26). A
mass term

wPY
which breaks chiral symmetry would be repre-
sented by

Ku:cos2Vn ¢:

in equivalent-boson language. This is obviously
not invariant under arbitrary chiral transforma-
tions although it is invariant under (2.27). The
invariance under (2.27) is of course required by
the angular character of ¢.

Now let us attempt to simplify the Lagrangian
in (2.22) by integrating the potential-energy term
by parts:

1 g2

i faz¢|z—z'laz,¢dzdz’

1]

3 ]qu
—

$(2)(0,0,:|z=2"|)p(z")dz dz’

o(2)p(2")d(z —2")dz dz’

1}

]
N NI =
=:|°QN
'\1

2|,
—

dz¢2(z). (2.28)

This gives a mass term in the Lagrangian for a
massive free boson. However, Eq. (2.28) cannot
be correct because it no longer has invariance
under ¢- ¢+ a. The trouble is in the integration
by parts which assumes ¢— 0 as |z|-~. But
since a chiral transformation shifts the value of
¢ at infinity it costs no energy to violate this
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boundary condition.

The correct procedure is to write ¢ as the sum
of a massive field ¢ and a constant field 6.° The
chiral transformation acts on 6,

, (2.29)
VT Q5 9 =iV T Qs 2 4 o | (2.30)

eiaﬁ Qs (5 e—iou/?os = $

Obviously 6 is an angular variable. In terms of
<f> and its canonical momentum II the Hamiltonian
is

H=—;— f[ﬁ2+(82$)2+£1; (;'52] dz. (2.31)

The total chiral charge @, is the canonical con-
jugate to 0:

L
Qs— ﬁ He . (232)

The degrees of freedom 6 and II 4 specify the
boundary conditions at infinity. They are inde-
pendent both dynamically and kinematically of
the massive free Klein-Gordon field ¢. The space
of states is a tensor product of a conventional
Fock space for the massive field ¢ and a space
spanned by vectors labeled by integer eigenvalues
of 3@,. The Fock space vectors will be denoted
by the symbol |¥) and vectors in the “ladder”
space by |n}. Vectors in the product space are
denoted by |¥).

The variables ¢, Il act on the space |¥) in the
usual manner. The quantities 6 and Il 4 operate

Mg |n}=VT Q,ln}
=2V7 n|n} . (2.33)

The operators e*2V7 © will be called d* and act
as raising and lowering operators®:

d*|n}=|nt1}.

We shall also be interested in the eigenvectors of
0. These are

1 _
|6oh=—m 2 7 ™0 [n} (2.34)
n

The occurrence of the discrete space |n} is
associated with spontaneous symmetry breaking
when long-range forces are present. Since the
Hamiltonian does not contain 6 or II4 the vacuum
state is completely ambiguous in the choice of
the factor |}. In the original Schwinger solution
the vacuum state was chosen to be

[0y=]0)[n=0} . (2.35)

This is the unique chirally symmetric vacuum
and corresponds to the formal perturbation series
summation. However, we shall see that with this

choice of vacuum matrix elements of local op-
erators violate the cluster property. As an ex-
ample we can compute matrix elements of
P(1+iy,)p=S,. According to Eqs. (2.4) and (2.5)

S. may be identified with :e**'7 %. g*. Let us
consider
(0]TS+(Z)S—(O)IO> . (2.36)

This equals
(0] 7:6#2T 8@, 1g=2VT 1800 | ) {0 d*d-|o} .
(2.37)
The first factor is given by
expldmiAp(m?, 2%)] , (2.38)

where Ap is the Feynman propagator which tends
to zero as z2-«. The second factor is unity.

Hence the entire matrix element tends to 1 as
Z -0,

lim (0| T S*(2)S~(0)|0)=1. (2.39)

Zz->

The cluster property requires

Lm{0|TS*(2)S~(0)|0)=(0|S*|0){0|S~|0).
(2.40)

Let us evaluate (0|S*|0) to check Eq. (2.40):
(0|S*(@z) |0y =(0]: e*#™ ?; |0){0] a*|0}. (2.41)

Since d*|0}= |+ 1}, it is evident that the right-
hand side of the equation vanishes.

This violation of the cluster property indicates
that a spontaneous symmetry breakdown has oc-
curred and that the vacuum was not wisely chosen.
To remedy this, Lowenstein and Swieca® prescribe
a chirally asymmetric vacuum of the form

[6,)=10)]6,}, (2.42)

where |6,} is an eigenvector of §. The value of
0,1is arbitraryand vacua with different 6, are
related by chiral transformations.

With the new vacuum Eq. (2.41) reads

(0[S 0) = (0]:e*2V™ ¥ |0)e*i2VT 0, (2.43)

The cluster property is repaired.

C. The effects of long-range forces

Although the vacuum is degenerate, there is an
energy gap between the degenerate family of
vacua |6) and the state with a low-momentum
scalar boson. To see how this comes about as a
consequence of a long-range force, let us replace
the potential energy in the Lagrangian of Eq.
(2.20) by a short-range Yukawa potential

%2 f V@)WV (= - 20T @()dz dz’, (2.44)
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where V(z —z’) is given by

1 —m gz
Viz-z")=5—(1-e mlz=z'ly (2.45)
which becomes equal to the Coulomb potential
when m~ 0. In terms of equivalent boson fields
the potential is

1g f 8,6V (z -2’ : 46)
5 7 HV(z=2")0, pdzdz’ . (2.

The ground-state expectation value of ¢ may be
arbitrarily set equal to zero. A chiral transfor-
mation adds a constant to ¢ but clearly does not
change the potential energy. We shall call such a
transformation a 7igid chival volation in order to
indicate that the magnitude of the chiral rotation
is constant throughout space.

In considering the possibilities of Goldstone
bosons we must estimate the cost in energy of a
nonrigid chiral rotation, in which the parameter
of the transformation is slowly varied as a func-
tion of 2. This is accomplished with a generator

\/?J‘jg(z)a(z)dz, (2.47)

where « is slowly varying. In this case ¢ trans-
forms as

()~ ¢(2) + alz) (2.48)

and the potential energy has a term
gz
o fdz dz'8,aV(z -2, . (2.49)

For example, if @ is a plane wave with momentum
b, then the potential-energy density becomes

L& ey
Vo PV, (2.50)
where
V(p2)=felev(z)dz
=—(p?+m?2)”t. (2.51)

In particular Egs. (2.50) and (2.51) show that the
potential energy of a long-wavelength excitation
tends to zero as p2.

If, on the other hand, m=0 the potential energy
stored in the long-wavelength excitation is non-
zero. The long-range potential prevents distant
regions from acting independently and allows only
the rigid chiral rotation at a vanishing cost of
energy. To the experts in this field the phenom-
enon is called “seizing.”’* We believe that the
seizing of the vacuum with respect to the ninth
axial-vector current is caused by the same long-

range forces needed to confine quarks in the real
world.

D. The algebra of bilinears'$

The physical space of states of the Schwinger
model does not include the entire product space
[)]}. The value of 6, corresponding to the bound-
ary conditions at spatial infinity should be chosen
once and for all. Thereafter no physical oper-
ation should change this value. The physical
space then consists of all states of the form

[¥)16,},

where 6, is some arbitrary but fixed angle.
The operator @, has physical matrix elements
given by

(W Qs W) =(@|¥){0,|Q;16,} . (2.52)

It is tempting to call the expectation value
16,1Q516,} zero. Infact, it is given by

{001Qul00} =3, 7= eX-m00{m| @, |}

= 7_2%__ in . (2.53)

By symmetry the sum in (2.53) may be called
zero. However, this can lead to serious contra-
dictions and it is generally better to admit that
there is equal probability for all possible values
of @,. To see the kinds of inconsistencies that
can result from calling (@,) zero we will consider
the algebra of bilinear operators. In particular
we are interested in the commutation relation

[s*, Qs ]=25*, (2.54)
which becomes
[T 8. g% Q. =2: €27 S.qv (2.55)

When evaluated between physical states the left-
hand side of Eq. (2.55) reads

(ZM eiZH ¢ lwl)[{eo}d+Qsl 90}'{90| Q5d+ I 90}] .

(2.56)

Since |6,} is an eigenvector of d* with eigenvalue
€'992VT  the two terms in square brackets would

appear to cancel. On the other hand, the right-
hand side of Eq. (2.55) reads

2(1/)|:e“;"’ﬁzlzp')ez‘ﬁ%{@ol@o} . (2.57)

Calling {6,/Q,| 6, } any unambiguous value such
as zero, evidently leads to contradiction. The
contradiction can only be removed by dealing with
the vectors |6} using continuum normalization.
We write

{6'1[Q,, d*]|6}=2{6"|a* |6} . (2.58)
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The right-hand side is
2627 0 5(6 - 0'). (2.59)
The left-hand side is

fd9”{9'|Q519"H5”| 9}[e2“/7 6 g2iVT 9'] .

(2.60)
Using
’ n _.__1__ ot g
1671Qs1 67} = —— 6"(6'- 6") (2.61)
we get

fd@” ;_‘/17 5(87— 67)6(6" - 9)[642\/7 6 _eizﬁ 9']

=22V 5(0-0'). (2.62)

The point is that the operator @, can not really
be represented on the physical subspace since
when it acts on |6,} it changes the boundary con-
ditions.

E. The Schwinger model with mass

In the real hadronic world chiral symmetry is
broken by small quark masses. It is therefore
important to test the stability of such ideas as
quark confinement and seizing with respect to the
addition of a small, bare fermion mass in the
original Schwinger model. Our main concern is
to show that no almost-massless pseudoscalar
or charged fermion reappears in the physical
spectrum. Unfortunately, very little is rigorously
known about the Schwinger model with mass. It
is possible, however, to construct a perturbation
theory with the exact solution of the massless
theory as a starting point. There is nothing in
the perturbation series analysis which in any way
suggests that the spectrum of states radically
changes once the fermion mass is allowed to be
nonzero. The mass of the boson field q? appears

FIG. 1. Feynman rules for the equivalent bosons of the
massive Schwinger model (Coulomb gauge).

to vary continuously and the theory has nonvanish-
ing scattering amplitudes which are well behaved.
The most direct method to derive the perturba-
tion rules is to continue using the equivalent-
boson method.

The additional term pJy in the Lagrangian is
represented in terms of equivalent boson fields by

£ =qu:cosZ\/_T? ¢:dz

=qu%(:e2‘ﬁ‘$:d++H.c.)dz. (2.63)

Since the momentum conjugate to 6 does not
enter the Hamiltonian, the stationary states will
be eigenvectors of 6. Once the energy has been
minimized with respect to 6, we can replace 6 by
its eigenvalue 6, in all subsequent discussion:

Y O
—I-LK_[: cos[2VT ( +6,)]:dz . (2.64)

On symmetry grounds alone the value of 6, which
minimizes H must be 6,=0 or 3$Vr. For suffi-
ciently small u the classical approximation is
adequate and gives

6,=0. (2.65)

Henceforth 0 may be set equal to zero and d* to
unity.

The term chos$ may be treated by ordinary
Feynman graph methods. It is convenient to sep-
arate the quadratic term from pKcos¢ and include
it with the boson mass:

m2=g%/m+4mukK . (2.66)

The vertices can have any even number of ex-
ternal lines (except two). The rules are shown in
Fig. 1. Furthermore, it is convenient to group
together Feynman graphs which differ only in the
number of quanta exchanged between definite
vertices. For example, the graphs describing
the four-point function in order p2 should be
organized as in Fig. 2. Individual graphs of this
type are generally infrared-convergent due to the
mass term in the propagators. They are not
usually convergent in the ultraviolet. The super-
renormalizability of the underlying fermion theory

FIG. 2. Second-order mass perturbation theory rules
for the massive Schwinger model.
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TN

FIG. 3. Second-order mass perturbation corrections
to the massive boson propagator.

strongly suggests that all ultraviolet divergences
cancel in any given order of u.

As an example we will calculate the order-pu?
correction to the boson self-energy. The two
contributing graphs are shown in Fig. 3.

It is generally easy to sum all graphs in a given
order by working in configuration space. The
propagator is replaced by Ap(m?, x*).

In coordinate space the first graph is given by

p2 Y [dmiagm?, x*)]"/n!

n=3¢55000
=psinh(4miAp) —4ming) . (2.67)

In momentum space this becomes

w2 fe”""[sinh(41rz'AF(m2, %%)) -- 4wi Ap(m?®, x%)] d3x .
(2.68)

For x— the expression in (2.67) vanishes ex-
ponentially so that (2.68) is infrared-convergent.
However, for x— 0 it behaves like 1/x?, giving
rise to a logarithmic divergence.

The second graph is given by

...pzf d*x Z [4miapm?, x2)]"/n]

N=2,45000
=u2f[1—cosh(4nz'AF)]d2x. (2.69)

Again, Eq. (2.69) is infrared-convergent and
ultraviolet-divergent. For x- 0, it behaves like
1/x*. Combining the two graphs, the result for
small x behaves similar to

2
-3“2_{%2’—‘ (et*"* - 1), (2.70)

which is ultraviolet-convergent. We believe that
the cancellation of divergences is a general fea-
ture of the theory.

The convergence of the entire perturbation
series in u is not insured by these calculations.
To examine this question the Hamiltonian in Eq.
(2.64) must be studied for arbitrary complex
values of 1 near the origin. To do this, one con-
siders the effective potential, which reads

V(¢)=3m?$? K cosVm ¢

+ quantum corrections. (2.71)

A

¢

FIG. 4. Classical potential of the massive Schwinger
model for small u.

The classical part of the V(@) is plotted in Fig. 4.
In particular, for small u the curvature at the
bottom of the well is positive, independent of the
sign of u.

This suggests that the theory behaves analytical-
ly for choices of u near zero. For sufficiently
negative u the potential can take the form in Fig.
5. This type of potential is usually believed to
cause a spontaneous symmetry breakdown. Thus,
it is likely that the theory has a singularity for
some negative value of u, but is analytic in the
neighborhood of u=0. In view of this we feel
reasonably confident that the confining and seizing
features of the massless theory are shared by the
massive theory for sufficiently small . '

When a mass term is included into the Schwinger
model neither of the axial-vector currents

, 1
W= 77

or

1 .
]ﬁzﬁ au(P

are conserved. From the form of Eq. (2.64) it is
evident that

-~ 2 -~ ~
of5=- £ §uavTuKsin@/7 §). (2.72)

FIG. 5. Same as Fig. 4 except p is large.
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The time derivative of the other axial charge,

Q.= [ 13dz,

can be obtained by commuting it with H;, given in
Eq. (2.63):
QS =i[Hinv Q5]
=uKi| dz[:e®'™ $:{d*—: e2VT b, dl, (2.73)

where we have used
(Qs, d*]=x24*. (2.74)

Now we may compute physical matrix elements of
Q5 by setting d*=1:

m}iz:sin247<5:_l¢’). (2.75)

This agrees with the fact that in the underlying
fermion theory

a”ja =2“¢7’5 p.

(¢|Q5I¢’>=—2uK<¢)

(2.76)

F. Massive Schwinger model in the Lorentz gauge

In the Lorentz gauge there are no long-range
action-at-a-distance forces. The loophole in the
Goldstone theorem in this case is that the mass-
less Goldstone boson may exist in the decoupled
unphysical sector. This is possible because the
conserved current which generates the symmetry
is not gauge-invariant. To see this we begin with
the axial charge density defined with careful
point separating,

73 (x)= sym lim 7 (x)y 9(x + €) . 2.77)
€—>0

This is obviously not gauge-invariant for finite
€. If, however, the limit €~ 0 is sufficiently
smooth, the gauge dependence of j3 would dis-
appear. However, the quantity ¢'(x)y, ¢(x + €) has
a leading short-distance expansion which goes
like €~! which prevents a smooth limit. According
to Schwinger j5 can be replaced by a nonconserved
but gauge-invariant current fg,

x+e
75=1im 9" (x)y eXp<z‘g A, dx*’) Y(x+€)

€—>0

=lim ¥ (x)y, Ylx + €) = f A, (x). (2.78)

€—>0
Equation (2.78) is the one-dimensional analog of
the Adler-Bell-Jackiw-Schwinger anomaly.®
Thus, it is evident that the conserved axial-vector
current j° is gauge-non-invariant while the gauge-
invariant current j° is not conserved. Our loop-
hole involves the fact the gauge-noninvariant op-
erators can sometimes create decoupled states

in the Lorentz gauge.
In the Lorentz gauge A, is divergence-free and
can be expressed in the form

A, =€,,8"% . (2.79)

In the massless model the Dirac field ¥ satisfies
(i¥ - g4)y=0. (2.80)

The theory is solved by the introduction of a free
Dirac field x which satisfies®:®

X= eigotcblp

=Yy, (2.81)

This assertion is easily verified by direct sub-
stitution into the Dirac equation using the defin-
ition of @ in Eq. (2.79).

When the fermion mass is no longer zero, the
field x is no longer free. It is still useful, none-
theless, in formulating the theroy. In the presence
of a mass term the equations of motion for x be-
come

-2igad

i¥x=ue X
=pe-te?y, (2.82)

The currents satisfy the continuity equations

8,j*=0, (2.83a)
0,78=E € P+ 2Ty, (2.83b)
oy =2u9%Y, (2.83¢)
3, Xx7*x=0, (2.83d)
B XY YIX =20 %Y. (2.83¢)

Equations (2.83a) and (2.83d) allow us to represent
X% and j, in the form

- 1 ~_1 :
X—y“x:—ﬁ— €uvau¢)2, ]u=7_1-,—€"w8y¢. (2.84)

Equations (2.83a)-(2.8 e) are then summarized
in terms of equivalent boson fields,
(@ +m)$ =27 uPud,
D¢2 = 2GM$75¢ .

(2.85)

In addition to Eq. (2.85) Maxwell’s equations give

I
O = 7= 0. (2.86)
It is convenient to define
9.=¢- £ o (2.87)
so that
Op,=2VT uPyd. (2.88)
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The fields qg and ¢, are conventional Bose fields
with familiar commutation relations. The field
¢, must be defined with ghost commutation re-

lations in order to guarantee conventional Lorentz-

gauge commutation relations,

é, 2 é|=id(z ~2"),
at

(¢, ¢ )=-iblz-2'), (2.89)

[¢,,d,]=i0(z —2").

Finally we should write uy vy in terms of equiv-
alent boson fields. We first write

i‘}/slp =i e-lEYs@.ys e-ig75<1>x
=X7,(cos2g® -7y, sin2g®)x . (2.90)

Now using the equivalent boson representation
for Xx, and Xy, we obtain

Prp=—iK sin(2Vm ¢,)cos(2g®)
—iK cos(2VT ¢,)sin(2g®)
=—iK sin(2V7 ¢, + 2¢®)
=—iKsin2VT (+ ¢, - ,). (2.91)

Thus the equations of motion for <f5, ¢,, ¢, become

@+m?)d =0¢, =0d,= —2V7 nKsin2Va ($ + ¢, — ¢,).

(2.92)

We note that in the symmetry limit g -0, j; is
given by the gradient of a massless free ghost
field. This field can be thought of as a Goldstone
boson. Thus in a formal sense, in covariant
gauges, chiral symmetry is realized with a mass-
zero Goldstone boson. However, we shall see

$ $
o o
K%+ m? k2
¢, |
= ? .
vy
7~

- ///

A+n, +n Alnin.
ke [__}

(A +n'+n2)

(n+n +n, =even)

FIG. 6. Feynman rules for the massive Schwinger
model in the Lorentz gauge.

Sl ok

FIG. 7. Example of the cancellation of ¢; and ¢,
propagators in gauge-invariant amplitudes.

that in all matrix elements of gauge-invariant
quantities the ghost Goldstone boson is identically
canceled by the second massless field ¢,, leaving
only the massive field q'5 to propagate in inter-
mediate states.

The effective Lagrangian which leads to Eq.
(2.92) is

£)=3 [ (3,7 + 6, 6.7 - 0,6, & 57

+uK:cos2VT (b + dy— )1 . (2.93)

The subsidiary condition which defines the phys-
ical subspace is analogous to the Gupta-Bleuler
condition. It states that the positive-frequency
part of the free massless field (¢, — ¢,) annihilates
the physical subspace.

Let us consider the Feynman diagrams of the
theory and show that the singularities of the fields
¢, and ¢, cancel in physical matrix elements.

The diagrams and rules are shown in Fig. 6. The
propagator for ¢, carries a negative sign due to
its ghost commutation relations. The vertex in-
volving 7, n,, n, external lines vanishes if # + n, + n,
is odd and is given by

~ iln In
LK (VT ) e nln ln,!

@ +n, +n,)!
if 7 +n, +n, is even.

Consider for example the graphs in Fig. 7. The
numerical values of the two graphs are identical
except for the sign difference in the ¢, and ¢,
propagators. Therefore the sum vanishes. The
idea of this example is easily generalized into a
proof that the intermediate-state singularities of
¢, and ¢, always cancel in S-matrix elements in
which the external lines are all ¢.

Furthermore, it can be shown that all gauge-in-

FIG. 8. A general matrix element of a gauge-invariant
operator G.
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variant operators involve ¢, and ¢, only in the
combination ¢, - ¢,. Let G in Fig. 8 represent

a vertex fora gauge-invariant operator. As the
reader can easily check, any graph/in which G

is inserted will also have the cancellation property
as long as the external states satisfy the subsid-
iary condition.

However, gauge-noninvariant operators can con-
tain ¢, and ¢, in different combinations. For ex-
ample, the axial-vector current jﬁ is expressed
in terms of ¢, alone:

Ju= 71? O,

A typical graph is shown in Fig. 9, and there
is no possibility of canceling the ¢, pole. There-
fore the gauge-noninvariant operators generally
have massless poles associated with ¢, or ¢,.
This has a peculiar consequence for matrix ele-
ments of PyY.

Since 2uP vy is the divergence of jﬁ, its matrix
elements are of the form

<ﬂ¢nwﬂ=§%<m—@quﬂﬁ. (2.94)

Ordinarily if the physical spectrum is free of
massless particles the right-hand side of (2.94)
must tend to zero as k; — ks~ 0. This conclusion
would be correct if j; were gauge-invariant. How-
ever, as we have seen, j; contains massless sin-
gularities from Fig. 9,

s ey (Ry =Ry
@13z 1h @’:—_—ﬁz ,

and the right-hand side of (2.94) remains finite as

Ry—Fs.

The general conclusion is that low-energy theo-
rems which follow from the fact that some gauge-
invariant quantity is a divergence are not general-
ly true unless the current is also gauge-invariant.
We shall see later how this allows us to circum-
vent Sutherland’s theorem.

III. THE NINTH AXJIAL-VECTOR CURRENT IN
FOUR DIMENSIONS

A. How confinement effects j5

Gauge-theory enthusiasts are hopeful that the
theory of strong interactions defined by the La-

FIG. 9. A matrix element of the gauge-noninvariant
current j5.

grangian in Eq. (1.1) has the property of infrared
slavery in real (3 + 1)-dimensional space-time.%*
It is hoped that the effective coupling between
long wavelengths diverges in the infrared so that
it would require an infinite amount of energy to
isolate any color nonsinglet state. This hope is
inspired by the discovery that the theory is as-
ymptotically free.* In other words, the quark-
gluon interactions vanish at small distances and
show a tendency to grow at longer distances.

Further motivation for infrared slavery comes
from a recent formulation of strongly coupled
cutoff gauge theories due to Wilson.'® His ap-
proach, which respects the local gauge invariance
of the theory at the sacrifice of covariance, offers
calculational methods to investigate strongly cou-
pled theories. He finds that quarks do not exist
as free objects and that there is a linearly rising
potential V(r)~# which acts between colored
quanta. Thus, the long-distance properties of
this theory resemble those of the much simpler
Schwinger model.

We will digress briefly to describe the quark-
confining mechanism. First, consider the force
law between two isolated, static colored quarks.
In defining the force law we ignore the virtual
and real production of quark pairs. The remain-
ing effects associated with only the Yang-Mills
field are computed exactly. Inthe model theories
which exhibit quark confinement the potential
energy between spatially isolated quarks grows
in proportion to the distance between them. This
energy is stored in a deformed Yang-Mills elec-
tric field which is collimated into a narrow tube
between the quarks.'” When the production of
pairs is allowed, the vacuum between the quarks
becomes polarized to such an extent that the long-
range field is entirely screened. The original
colored quarks are completely neutralized by
vacuum polarization currents. The complete
screening of the color sources insures that the
long-range field is absent in the physical finite
energy space of states.

The phenomenon we are discussing is similar
to the Higgs mechanism® in that the massless
gauge bosons and long-range forces are removed
from the theory. However, there the similarity
ends. Unlike the Higgs phenomenon, the confine-
ment mechanism does nof involve the spontaneous
breakdown of the global color group.'

The phenomenon of complete screening of long-
range fields without the violation of the global
symmetry occurs in the (1 + 1)-dimensional
Schwinger model. It will be referred to as the
Schwinger mechanism.”

We shall explore the consequences of the
Schwinger mechanism further and see that the
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ninth Goldstone boson is removed from the spec-
trum?®® and that Sutherland’s soft-pion theorems®™
for n— 777~ 7° do not apply to the 7°. In short,

we claim that the ninth axial-vector current of
these four-dimensional models should, if the
Schwinger mechanism operates, behave precise-
1y as the axial-vector current does in (1 + 1)-di-
mensional quantum electrodynamics. This will
lead us to suggest that the vacua of these four-
dimensional theories are seized.

Since the arguments are quite technical, we
should sketch the logic before delving into details.
First, observe that the ninth axial-vector current
must be defined as the limit of a point-separated
expression. This is essential because of the
singular character of the product of interacting
fermion fields. The point-separated current is
not invariant to local color gauge transformations.
However, it can be modified in such a way that it
becomes gauge-invariant. Schwinger’s traditional
method of accomplishing this leads to a local but
nonconserved current.® To discuss the possible
appearance of a Goldstone boson we need a con-
served, gauge-invariant current. We construct
below a nonlocal current with these properties.
The charge constructed from this current gen-
erates global ¥, transformations and thus gener-
ates the symmetry of interest. In a weakly cou-
pled gauge theory it would create a Goldstone
boson (called n” in Ref. 20) out of the vacuum.
However, the nonlocal conserved current is con-
structed with an operator which creates a long-
range color dipole field. This field is present as
a consequence of gauge invariance and is of funda-
mental significance. We recognize this as the
source of the undoing of the 1” because if the
Schwinger mechanism operates in the gauge theo-
ry, long-range dipole fields are forbidden. Hence,
the ” which must be clothed in such a field must
decouple from the physical spectrum.

Now we turn to a detailed review of our argu-
ment that the Schwinger mechanism eliminates
the n”. Local gauge invariance and the associated
subsidiary conditions play a crucial role in this
discussion. We have found that the decoupling
problem is easiest to understand if the full gauge
freedom is restricted to the class of time-inde-
pendent gauge transformations.?® The reason is
that these gauge transformations can be imple-
mented by conventional, time-independent unitary.
operators U. The subsidiary conditions defining
gauge-invariant states are expressed in the form

uly =1y . (3.1)

In terms of an infinitesimal generator G of the
gauge transformation, this reads

Gly)=0. (3.2)

The natural class of gauges which admit only the
time-independent gauge transformations is de-
fined by A,=0. We will illustrate the application
of gauge invariance in the simplified Abelian
theory.

In the A,=0 gauge, the strong-interaction La-
grangian [Eq. (1.1)] becomes

L=PGY-mp—gPy A +3 (a_at K)Z -1 (VxA).
(3.3)

Then the moment.um conjugate to A is the strong
“electric” field A; =-E;. The canonical commu-
tation relations are postulated to be

[B;(x), A;(0)] | 40=50=36,;63F = 7). (3.4)
The Hamiltonian is obtained from £ in the usual
way:

H=y" (=ia-V+ gm)y + gy - A + L B2 + 3 (VxA) .

(3.5)

It is easy to verify that Eqgs. (3.4) and (3.5) lead
to the correct Heisenberg equations of motion. It
is also clear that H is invariant under the re-
stricted gauge group which leaves A,=0,

V)~ e P yx), Ax)-Ax)+VAK). (3.8)

Here A(x) is a time-independent gauge function.
We now observe that these gauge transformations
are generated by the operator

Gy = fA(x)(gqu*zp—?-E)d% (3.7)

since

[Gl\, ‘p(x)] =il (X)Z/)(x) )

- - (3.8)
[Ga, A(x)] =iVA(x) .

In this formulation of the theory, Gauss’s law,
V-E=gyTy, (3.9)

is the consiraint equation expressing the gauge
invariance of physical states, i.e., (V-E-gyTy)
annihilates any physical state,

(V-E-gy'y)|y)=0. (3.10)

Equivalently, the physical subspace can be said
to be invariant under transformations generated
by G,. It is this subsidiary condition (Gauss’s
law) which in the weakly coupled theory reduces
the number of independent components of A from

three to two.

The fact that the physical vacuum of the theory
is gauge-invariant implies that matrix elements
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of certain gauge-noninvariant operators must
vanish. For example, consider the propagator

S, t)=—-i{0|p(0)P(X, t)[0), ¢>0. (3.11)

Inserting e'®r ¢~*CA =1 inside Eq. (3.11) implies
that

S, t)=-i{0|Y(0)J(X, t)| 0) e~t& LA -2 (0]
(3.12)

Since g#0 and A is an arbitrary function, it
follows that S(%, ) =0 unless X=0. This result
might appear to imply that the charged particle
(electron in quantum electrodynamics, quark in
strong interactions) cannot propagate. This is
not so, however, because the state sz %, 1)]0) is
not gauge-invariant (it violates the constraint
V-E=g¢"y). To describe the propagation of an
interacting charged particle consistently one
should use a gauge-invariant description of the
particle, i.e., one should construct an electron
field operator which satisfies Gauss’s law. Let
us proceed to do this. Since the strong “electric”
field E, is canonically conjugate to A;, an oper-
ator of the form

exp[—i f K(x)-ﬁ(x)dax] (3.13)

creates a state with an average strong electric
field,

(E,)=U,x). (3.14)

Unless V-U(x)=0 the operator in Eq. (3.13) will
not be gauge-invariant. Now consider the quark
field operator ¥(x). We can multiply ¢(x) by an
operator having the form of that in Eq. (3.13) to
yield a gauge-invariant description of a quark.
Define

¥ (x) =exp ‘:i fz(y)oﬁ(y - x)dsyJ Plx).  (3.15)
Then if U(x) satisfies
T T(x) = -g6°(x) . (3.16)

W¥(x) will be gauge-invariant. To verify this, apply
the gauge transformation Eq. (3.6) on Eq. (3.15).

If Eq. (3.16) is true, then the gauge dependence

of A and ¢ cancel in ¥ (x).

Now let us turn to the real problem at hand--to
understand the ninth pseudoscalar Goldstone beson
in a gauge-invariant, physical fashion. The first
obstacle we meet is the fact that the axial-vector
current P+ y,¥ requires a careful point-separated
definition,

p 5(®) =symlim py(x, €), (8.17)
€—>0

where
ps(x, €) =97 (x + eygh(x). (3.18)

The operator p,(x) is the local generator of ¥,
transformations. Its spatial integral @ generates
the global transformation

P~ et Moy, (3.19)

which is an exact symmetry of £ when m- 0.
Furthermore, the density p,(x) satisfies a local
continuity equation,

-

9 = >
37 Ps+ V170, (3.20)

where 35 is the appropriate axial-vector flux.
Assuming that vy, invariance is not realized alge-
braically, p5 should generate soft Goldstone bosons
when applied to the vacuum. Thus, for %,=0,

in">=fe“"”p5(x)d3x|o> (3.21)

is a candidate for ihe singlet SU(3) Goldstone
boson.

It is important to note that p,(x, €) is not gauge-
invariant since ¥(x) and y'(x + €) transform dif-
ferently under local gauge transformations. As
in the case of the unclothed electron field, one
can see that

(0] Tp4(x, €)ps(x7, €)]0)
must vanish for X#X’. In order to compensate the
noninvariance, Schwinger?! multiplies p,(x, €) by

the factor expligA(x)-€]. Thus, we define the
gauge-invariant (denoted by a caret) density

(%, €)= T (x)np(x + €) expligh (x)- €] (3.22)
and
Ps(x) =sym lim fy(x, €) . (3.23)
€—>0

When evaluating the symmetric limit € -0 in Eq.
(8.23) one cannot ignore the factor exp[z'gK(x)-E] .
This is so because the operator products
¥T(%)y,0(x + €) have short-distance singularities
which diverge as €', The behavior of this singu-
larity was computed originally by Schwinger, '®

BT )yl + E)e:Jo 43—5 %;25 , (3.24)
where B, is the “magnetic” gluon field €;;, F},.
Using Eq. (3.24) we may expand the factor
expligA(x)+€] in Eq. (3.22) and compute §,(x),

ay . g BT . =+ .=
Ps(x) = ps(x) + syinelgm 8% ez (18A'€)
g2 = -
=p (%) + 2= B(x) Ax). (3.25)

47*
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The same construction can be carried out for
the axial-vector fluxes j,(x). As a result one has
constructed a local, gauge-invariant axial-vector
current. However, as can be verified from Eq.
(3.25) and its partners, the resulting current is
not conserved. Schwinger,!® in fact, computed

8 A 8% = -

"87[35+V{]?= o E‘B, (3.26)
where

Fi=jt+ 872 e,WA FoT i=1,2,3.

Since this gauge-invariant current is not con-
served, it cannot be used to prove the existence
of a massless particle. However, an alternative®°
to Schwinger’s construction exists which gives a
gauge-invariant, conserved current whose cor-
responding total charge generates chiral trans-
formations. The construction is analogous to
the construction of the gauge-invariant electron
field in that the operator p,(x, €) is clothed with a
long-range dipole field.
Consider the operator?°
Ps(x) = symlim j(x, €), (3.27)

€0

where,

ﬁs(x, €)= ¢T (x)')’s‘p(x +€)
X exp[—ifK(r)'V(r—x)d%] , (3.28)

where V is a c-number vector field satisfying

-

VeV(r) =g ) - g8%(r + €)
~ —gEVei(r). (3.29)

€—>0

Therefore, p,(x, €) is gauge-invariant by construc-
tion.

Next we calculate §,(x) explicitly. It is con-
venient to write

Vy(r)=-E-VU,(r) (3.30)

where U,(r) satisfies Eq. (3.16). We may now use
Eq. (3.25) to write

Bs(x, €)= 9T (x)n(x + €)

P £ B(’e‘# [ &%,36 - - Ewasx

(3.31)

It is straightforward to evaluate the symmetric
limit of this expression. The reader is referred
to Ref. 20 for the details which lead to

- - g2 = (=

= £ Ny - - = 3
ps—p5+4n2BA = B Ur - x)xB(r)d3r

2

=ps— Z‘:Tz E-f6<y—x)x§(r)d3r. (3.32)
Observe that the long-range dipole field modifies
psina s1gn1f1cant fashion, i.e., the term pro-
portional to U survives after the limit €e-0is
taken. Furthermore, it was shown in Ref. 20
after some algebra that an axial-vector flux _1. t
could be defined such that

o -
57 Ps* Vidy =0 (3.33)

as desired. Therefore, the current ]"'5” is con-
served and may be used to generate a symmetry
which might be realized algebraically or through
Goldstone bosons. The relevant global symmetry
is just the original chiral symmetry generated by
S ps(x)d®x. Infact,

Q= [pymax

= [put1asx (3.34)

as was shown in Ref. 20.

Now we can see why the n” does not exist. A
physical, gauge-invariant description of the po-
tential Goldstone boson is provided by the ex-
pression

In")= fe”""55(x)d3x|0), ky=0. (3.35)

However, local color gauge invariance requires
the operator j,(x) to consist of two factors: First,
T (x)ny(x +€) which 1s local but not gauge-invar-
iant, and second, exp[-i f K@)V - x)d®] which
is nonlocal, but guarantees that j, is gauge-in-
variant. In fact, the presence of the dipole field
is essential because it appears, for example, in
Eq. (3.32) after the limit €~ 0 is taken. There-
fore, we must interpret Eqs. (3.28) and (3.35) to
mean that local color gauge invariance constrains
the n” to have a long-range gluon gauge field given
by

exp[—i fK(r)'\—;(r—x)d"rJ o) .

But, if the Schwinger mechanism operates in the
field theory, such long-range fields are forbid-
den—depending on the gauge used in formulating
the theory, they either have infinite energy or
violate subsidiary conditions. Therefore, since
gauge invariance requires a long-range field for
the n”, it (like colored quarks and gluons) must

~ be absent from the physical spectrum.
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The elegant argument, however, appears to
generate a curious paradox. How can it be that
ps creates an unphysical state when it acts on the
vacuum while its integral @, generates a sym-
metry? It appears that the behavior of the zero-
momentum component of g, is not smoothly con-
nected to the remaining momentum components
of the operator. This suggests that the space of
gauge-invariant states is constructed as in the
(1 + 1)-dimensional examples, as a product of a
ladder space and a conventional S-matrix Hilbert
space. The ladder space would again be labeled
by eigenvalues of @;. The physical vacuum should
be chosen to be an eigenvector of 6, the angular
variable conjugate to ;. Then any operator of
the form

J’f)ﬁ(x)F(x)d“x, (3.36)

where F(x) is a finite-range test function, creates
states of infinite energy while the total integrated
charge @, creates unphysical states by changing
the boundary conditions at infinity.

Other remedies for the j® problem have been
proposed. One which was entertained by Fritzsch
and Gell-Mann®?is the possibility that @, annihilates
the physical spectrum of states, i.e., @,[¥)=0.
However, it was pointed out by Fritzsch and Gell-
Mann that this possibility leads to difficulties with
the usual equal-time algebra of quark bilinears.
[We have already seen in the (1 + 1)-dimensional
examples that the conjecture Q5I z,b) =0 is incon-
sistent with the equal-time algebra of the den-
sities P19, ¥'1¢, and Jp.] These authors con-
sider the SU(6) algebra generated by the usual
vector and axial-vector currents and the tensor
bilinears Jo*”A,¢. In particular, it follows from
canonical commutation relations that

[Qs, To M) =€ ¥ 0% Aoy . (3.37)

A difficulty appears now when one attempts to
saturate this relation with physical states. If
Q.|¥) =0, then Eq. (3.37) implies that physical
matrix elements of Jo% A, must also be zero.
This possibility is unattractive because it would
undermine the applications of SU(6) algebra to the
hadron spectrum.

However, if the vacuum of the (3 + 1)-dimension-
al gauge theory seizes, then no difficulties with
local commutation relations and the properties
of the ninth axial charge arise. We follow the
(1+ 1)-dimensional examples to illustrate how this
occurs. First, consider linear combinations of
the quark bilinear operators such that they cause
only transitions of definite AQ,. Following the
(1 + 1)-dimensional models we assign to these

bilinears a product of operators,
(bilinear), — F (a*)24/2 | (3.38)

where F; acts in the conventional field theory
space of states and d* are raising and lowering
operators in the ladder space introduced earlier.
The operators F; obey the naive commutation re-
lations of the quark bilinears. Now consider Eqg.
(3.37) again and recall that @, has infinite dis-
persion in an acceptable seized vacuum. state.
Saturation of the commutation relation in Eq.
(3.37) can then be carried out without implying
the vanishing matrix elements of o™ r,. The
details of an illustration of this fact parallel the
same discussion in the (1 + 1)-dimensional model.

Before concluding this section we remark that
the properties of the other eight axial-vector
currents,

fs,a=$7"%,7ka¢),

are not effected by the quark-confining long-range
forces. This is because the € - 0 limit of the
point-separated currents,

70 (%, €) =Py A Ul + €),

is smooth. They are therefore color gauge-in-
variant and do not require long-range fields.

B. The n—>37 problem

Another serious difficulty of the quark-gluon
theory is found when one attempts to calculate the
electromagnetic decay of the 1 into three pions
m*, 77, and 7°. The problem was originally
pointed out by Sutherland,'® who attempted to cal-
culate the matrix element of interest using con-
ventional current algebra and partially conserved
axial-vector current methods. He was able to
show that the amplitude should vanish whenever
any of the pions become soft (k,~ 0). Experi-
mentally it is known that the - 37 amplitude does
vanish when the momentum of the n* or 7~ is
taken to zero. However, the amplitude is large
and unsuppressed in that region of the Dalitz plot
where the 7° is soft. In fact, the amplitude is
usually parametrized in the form??

A= 10) =4, [1-m,%a(S,~-5,)], (3.39)
where
So=(gy = qro),
Sp=my® +3my,’,
=-0.2+0.015 .

Letting the momentum of the 7% (or 7~) vanish,
one can check that the amplitude falls to ~0.14 .
However, letting the four-momentum of the #°
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vanish gives an amplitude ~ 34, which is 30 times
greater than one would expect on the basis of
Sutherland’s analysis. Apparently conventional
PCAC and current-algebra methods apply reli-
ably to the currents P2*y°A . ,9, but do not apply
to P vongy.

It has been guessed for some times that the
resolution of the problem lies in a better under-
standing of the ninth axial-vector current. We
shall review the derivation of the n— 37 amplitude
in the soft #° limit below and see that it is con-
trolled by a simple matrix element of the ninth
axial-vector current. In fact, we shall argue that
in gauge theories of quark confinement, Suther-
land’s theorem no longer applies to the 7° al-
though the experimentally successful application
of his analysis to the 7* and 7~ remains un-
changed.

The n~7*7"n° decay is a second-order elec-
tromagnetic effect which is described by the ef-
fective interaction Lagrangian,

£,(0)=¢? fTJ;fm (x)Jem (0)D*(x)d*x, (3.40)

where J{"(x) is the hadronic electromagnetic
current and D*”(x) is the photon propagator. Ex-
perimental analysis indicates that 1 decay is
primarily a AI=1 transition, so we concentrate
just on the AI=1 piece of Eq. (3.40). Wilson®*
has argued that matrix elements of £,(0) are in

general expected to be logarithmically divergent
at short distances so a AI=1, AI,=0 operator
must be inserted into the full Lagrangian to act
as a counterterm. In a quark theory this term is
just a ® quark-3N quark electromagnetic mass
difference,

dSmyPrzy .
So, Eq. (3.40) is replaced by

&0 =¢* [ (15575 (0)
= Cpy ()P N 0] DM(x)d %
‘ om f@?xswd‘*x, (3.41)

where C,, (x) is a singular function (~x7?) at short
distances and insures that matrix elements of the
first term of Eq. (3.41) are finite. Of course,
the form of Eq. (3.41) is just that dicated by re-
normalized perturbation theory. We remind the
reader of a few facts about Eq. (3.41): Its second
term is often referred to as “an electromagnetic
tadpole.” In properly constructed gauge theories
of electromagnetic and weak interactions it is
even computable. A proper numerical evaluation
of this term constitutes a piece of the calculation
of the neutron-proton mass difference.

Let us now turn to a detailed analysis of the
1~ 37 amplitude,

J

J [TI5™ ()T 5™ (0)D*(x) = Cppy (X)P AP D) d *x f Papdix n> . (3.42)

M=e® <1r+ 7 m°

n>+&m A

The first term in Eq. (3.42) has finite matrix elements and Sutherland’s theorem applies to it. In partic-
ular, the theorem indicates that its contribution to the amplitude will be suppressed when the 7° momen-
tum is small. To evaluate the second term we reduce in the 7° and apply standard PCAC techniques.??
Since Eq. (3.42) is explicitly of order « =e¢*>/4m, we can ignore electromagnetic corrections to further op-
erator equations and states. Therefore, we use the naive PCAC definition of the pion field ¢, (x),

By 5 o (X) =my® o (%), (3.43)
where we have used conventional notation. In the quark model the axial-vector SU(3) current is
F5a () =P v 2. (3.44)

Now standard manipulations give

M =0m(=k% +m )1~

)

Jatyer [ atero, i, (9T0Np00

[ asyems [ atx 1o,

= (G, =2, (= + m,,z)<1r+ -

,n>
= (Gm)mﬂ'—zfn‘-l(_kz + mﬂz)

X {—iku{ﬂ+ﬂ_
- <11+1T"

1)

Jaryer s [ atot - 3958, Toonp(]

J,d‘*ye”’ "'f d*x Tjh s ()PP (x)

n>} (3.45)
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Again, the first term in Eq. (3.45) satisfies
Sutherland’s theorem. The commutator in the
second term is evaluated using canonical com-
mutation relations,

8(x° = y°)[42,5(¥), PP (x)] = =28%(x — )Ty .
(3.46)

The operator on the right-hand side of Eq. (3.46)
can be identified as the divergence of the ninth
axial-vector current j5 divided by twice the quark
mass, m,.>* Thus, the equal-time commutator
term contributes

2<ﬂ+n‘

j dy e““”?ﬁ(y)vsd)(y)l n >

1 - . .
= <n+1r f d*ye'*™ o, jh (y)‘ TI>
= Z—:% <11"1r‘ fd‘*ye""”j’é (y)‘n> . (3.47)

q

Naively, in the absence of a physical massless
pseudoscalar particle coupled to ji, one would
expect this term to vanish in the soft 7° limit,
ky—~0. However, the ninth axial-vector current
j% is a local, gauge-noninvariant bilinear. Assum-
ing that the vacuum seizes, then in the Lorentz
gauge the description of the gauge-noninvariant
ninth axial-vector current should closely resemble
that of the axial-vector current in the Schwinger
model. The symmetry should be realized by the
formal presence of a Goldstone boson and a sec-
ond massless compensating excitation. .As in the
(1+ 1)-dimensional case the two massless ex-
citations should exactly cancel in all intermediate
states of gauge-invariant matrix elements. Fol-
lowing the (1 + 1)-dimensional example, we ex-
pect to find the massless singularities uncanceled
- in gauge-noninvariant matrix elements such as
jp- Then Eq. (3.47) becomes

I - lim P B
i.l_r)l; m, (m*w I]s(k)ln> ’];1_{1'; m, 5 Trag

Trnns (3.48)

2
mq
where I is the coupling of the massless gauge-
noninvariant excitation to the 1 and 7* 7~ systems.
Of course, I itself is gauge-invariant. Through-
out this article we have proposed that the ninth
axial-vector current of gauge theories with in-
frared slavery in 3 + 1 dimensions has similar
behavior to the axial-vector current in (1 + 1)
dimensional quantum electrodynamics. If this is
true, we then have a simple evasion mechanism
for Sutherland’s theorem. It is clear from Eq.

(3.48) that we expect the n— 37 matrix element to
be large and unsuppressed in the soft 7° region
of the Dalitz plot. One can also check that our
arguments do not effect the Sutherland theorems
for soft 7" and 7~ emission in n— 37, so these
zeros which are observed experimentally are left
untouched by quark confinement.

IV. DISCUSSION AND SUMMARY

One of the fundamental ingredients of the Gold-
stone phenomenon is that spatially distant regions
of the vacuum are dynamically uncoupled. If this
is true, then gradual spatial variations of the
parameter a(x) of a symmetry transformation
will not introduce appreciable energy into the
vacuum state. One can think of an interaction
length [ which determines the minimum distance
for which degrees of freedom are dynamically un-
coupled. Only when the variations of a(x) are
small over this length will the cost in energy be
correspondingly small. When long-range forces
are present, it is generally possible that the
length [ is infinite so that no variation in the pa-
rameter a(x) can be tolerated. This phenomenon
is “seizing” of the vacuum.

The vacuum may seize with respect to some
symmetry transformations and not others. For
example, it is possible that the long-range forces
couple to one current but not to a second. In the
case of the strong interactions the vacuum must
seize with respect to the ninth axial-vector cur-
rent, but not the other eight. We have seen in
the text how this can happen.

The long-range forces which we have postulated
to cause seizing play a second role in strong-
interaction dynamics. Namely, they prevent free
quarks from escaping the environment of a had-
ron. Although the existence of such forces have
not yet been established in realistic theories, it
is encouraging to see that they solve two inde-
pendent puzzles of hadron physics.

We believe that our work casts considerable
light on two problems of the quark model. How-
ever, there are other related problems which we
have not discussed. An outstanding one concerns
the differences between the pseudoscalar and vec-
tor-meson nonets. Recall that according to conven-
tional wisdom the physical n behaves essentially
as part of an SU(3) octet, while the physical n’
behaves as an SU(3) singlet. This should be con-
trasted with the nine vector mesons which are
well described by the ideal mixing scheme of the
naive quark model. Perhaps the considerations
of this article can be used to explain (at least in
part) why the n and 1’ do not mix significantly.
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In order for such an explanation to be convincing,
it would certainly have to be quantitative. We
have not discovered how to do a numerically
trustworthy calculation. In addition, we would
like to have a deeper understanding of the success
of the ideal mixing scheme for the vector mesons.
These are interesting and important problems to
study.

. Note added in proof. M. Peskin (unpublished
work) has pointed out to us that p,(x, €) of (3.18)
should contain a Schwinger line integral with the
“wrong” sign. Only then does (3.20) follow, and
the charge f p 5(x)d3x generates global y, trans-

formations. Accordingly, p,(x, €) should be the
product of the corrected p,(x, €) and the exponen-
tial of (3.28) with —i - —2{ . Then p,(x) has the
properties stated in the text. These corrections
should also be made in Ref. 20.
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