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The phenomenon of the ambiguity of the Coulomb gauge in Yang-Mills theories, first discovered by Gribov, is

studied for the instanton solutions.

It is shown that in the Coulomb gauge the instanton connects a non-vanishing transverse pure gauge field in the
remote (Fuclidean) past to an analogous one in the far future.

Quite recently Gribov [1] has found a new “patho-
logical” effect in the Yang-Mills theories. While in
Q.E.D. the transversality condition

3;4;=0 (N

completely fixes the gauge, leading to a unique solu-
tion of the Cauchy problem, the same thing does not
happen in non-Abelian gauge theories.

In fact, for the latter case, Gribov has shown that
in general there exist space dependent gauge transfor-
mations that connect different solutions of eq. (1);
i.e., the condition (1) is not enough to determine un-
ambiguously the potential 4;(x), once the field Fu
is known.

In particular, for a vanishing field £, =0 the trans-
versality condition (1) can be written in the form

3;(u19;u)=0 ()

where U(x, t)is a gauge group element that generates
a pure gauge potential:

- -1 -
A,=(U'U)=0 (3)
In Q.E.D. the analogue of eq. (2) is:
VIA=0 (4)
where
A, =0,A 5)

Of course, the regular solutions of (4) are space inde-
pendent and therefore A; = 0 is the only well-behaved
potential that in the Coulomb gauge (1) represents the
field £, = 0.

¥ On leave from Istituto di Fisica dell’Universita-Torino.

On the contrary Gribov has shown that for non-
Abelian U eq. (2) has non-trivial solutions; in particu-
lar he considers the SU(2) case and shows that there
exist spherically symmetric solutions of the form:

Ux, 1) =explia(r, t) e x/r], r?=x? (6)
where « satisfies the equation

82a+2 Qg__ sin 2a _
ar: ror r

03 (7

of course for r > 0, & must vanish (mod. 7) at least as

r in order to avoid singularities at r = 0:

a(r) — nn +0(r). 8)
r—0

The substitution s = In r reduces eq. (7) to the equa-

tion of a pendulum with friction in a constant gravita-
tional field *!

32a/9s2 + da/ds — sin2a = 0. (&)
The potential relevant to eq. (9) has the form (fig. 1)
u(a) = —2sinla. (10)

1 The equations (7) and (9) were already considered in ref.[2]),
but they were not treated in a quite correct way.
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Hence, remembering the initial condition (8), one gets
that, beyond the trivial solution a(s) = nx, other solu-
tions are possible: at s = —oo (r = 0), the pendulum
starts from a point of unstable equilibrium « = nmand
then for § =+ (r = o) it asymptotically reaches the
stable equilibrium at & = (n * % )7, therefore the solu-
tions of eq. (7) are characterized by
0 trivial solution
a(r=0)= (11)

£ non-trivial solutions .

P

a(r —»oo)

The non-trivial solutions of eq. (7) inserted in (6) and
(3) give nonvanishing transverse pure gauge fields.

In this letter we are going to show that configura-
tions of this kind are present in the instanton solution
[3] of the Euclidean Yang-Mills equations. The in-
stanton can be written in the form:

A =_)_(.2__. g—la g (12)
o2 432 L <

where the SU(2) clement g(x) is

X4 i@ X .
g(X)=_4JA”:2— =exp l:iﬁ(r,x“)o—r{] (13)
with
B(r.x4) = - arctg (r/x4). (14)

The instanton solution (12) can be written in the
Coulomb gauge (1) performing a spherically symmet-
ric gauge transformation:

—p-l -1 .
B, =h"Ah+h="0,h, (15)
where
h(x)=expliy(r, xq)o-x/r]. (16)
The transversality condition
3;B;=0 a7
expressed in terms of y takes the form [2]:
32y 2y xi SR 2x4
— t— == ————— sin2y— - _ - — cos2y
a2 ror r2(x2 +22) r(x2+22)

poaTR ) (18)

At large Euclidean four-dimensional distances
(x2>A?), eq. (18) becomes much simpler if one uses
the variable:
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alr, x4) = B(r, xq) + 7, x4), (19)

where § is given by (14).

In fact, for x2 > A2 one gets that such an « just
satisfies the Gribov equation (7).

This fact is not surprising: in fact for x2 > A2 the
instanton becomes a pure gauge field:

B, =U™'8,U(1+0(N2/x?)), (20)
where
Ux)=g(x)hix)=explia(r, x;) 6 x/r| 2n

and hence the'transversality condition (17) takes the
form (7).

A priori, for {x4|> A the instanton field could
trivially vanish, once the Coulomb gauge is chosen; on
the contrary, we will show that it corresponds, both
for positive and negative large x4, to non-trivial solu-
tions of the Gribov equation (7).

To this aim we discuss the behaviour of a(r, x4 ) as
a function of r at large fixed x4 ; in particular, we look
at the limit in the left-hand-side of (11), for |x4|> A.
The definition (14) says that at » = 0 the phase §is an
integer multiple of m; we choose a determination such
that (fig.2)

B(r=0,x4)=0. x4 <0. (22)

Morecover, one gets from (14) that keeping x4 fixed
(and negative) and by increasing r, also § increases, un-
til m/2 12 is reached for r - oo:

B(r—= oo, x4) =7/2, x4 <0. 23)

Actually, in the limit r = oo, arctg 8 passes from + oo to
- oo when x, changes sign, but § does not change [it
passes from /2 - € to /2 + € with € = O(x4/r)};
therefore, one also has:

Blr—>oo,x4)=m/2,  x4>0. (24)

Finally. when r decreases, at fixed (and positive) x4,
Bincreases and reach the value 7 at r =0.

B(r=0,x,)=m, x4 >0. (25)

2 I et us note that ¢q. (23) does not depend on the actual
value of x4; of course a completely different result would
have been obtained if the limy, . o were performed be-
fore the lim,_, ; however, as we are interested in the be-
haviour of the field all over the space at a given time, the
limy , — + o Must be performed at the end.
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The behaviour of y(r, x4) can be inferred by eq. (18),
by imposing that 4 (x) [defined in eq. (16)] is regular
all over the space-time (we do not want to change the
topological number of the instanton).

At r = 0 the phase vy must be a multiple of 7; the
continuity of vy prevents jumps and then we can choose

¥(r=0,x4)=0 (26)
for any x, ; therefore by (19), (22) and (25) we get:
0 x4<0

a(r=0,x4)=6(r=0,x4) = x4 >0

27)
By deriving eq. (18) with respect to x4, one gets [2]
that for any value of x4

0y/9x4 ——> O(1/r); (28)

r — oc

then for large r the phase y does not depend on x,.
At x4 =0 eq. (18) becomes (using the variable
s=Inr)

&7+EIZ+ (I ~-N2e-2s
as2 05 \14ale-2s
Thus, for s > + o, it behaves as if the potential u (a)
were reversed with respect to that one depicted in
fig. 1; hence, one expects that y(r = o0, x,) is an in-
teger multiple of 7.

By combining the information from eq. (9), sum-
marized in (11), with those contained in (27), one
realizes that the only possibility is

Y(r—=>=,x4)=0 (30)

)sin2'y=0. (29)

and therefore
a(r >0, x4) =B >0, x4)=n/2 31

for any value of x,.
Finally, the insertion of (27) and (31) into the left-
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hand side of (11) shows that the instanton solution

performs a transition from a non-trivial transverse

pure gauge field at x4 = — oo to another one at x4 =+o°.
This result can be intuitively understood by looking

at the topological charge g of the instanton B, calcu-

lated as a flux across the surface depicted in fig. 2.

One has

q=y: —yp_top, (32)

where ¢, and y_ are the fluxes across the top and bot-
tom surfaces of the cylinder of fig.2:

1
P =~ 247r2_ fd3x eijk Tr(BlB]Bk)
and gy is the flux across the lateral surface of the same
cylinder +3

+o0
=L

o =
L 82

(33)

Xgq=2toe

dX4fd251 eijk Tl'(B/Bk B4) (34)
By using B, defined in (15) one gets by direct calcula-
tion

Xgq=+0o

o i

Xgq=—0c°

(35)

l {7(r—>°°,x4) + é—sin 27(r—>°°,x4)}

The transversality condition (18) implies that

Y(r =, x,) does not depend on x4 (eq. (28)); there-
fore in the Coulomb gauge y; =0 and the whole topo-
logical charge g = 1 must be shared between ¢, and
—¢_.

If in the remote past the potential B, were rapidly
vanishing, at x, < —A the phase a(7, x,) would vanish
for any value of r and one would have p_ = 0; hence,
one should have ¢, =1 and then, at x4 > A, a(r=-o°,
x4)=0and a(r=0, x4) = 7. But in the Coulomb
gauge such a possibility is forbidden by eq. (7), that
implies (11); what actually happens is that in the
Coulomb gauge one gets (in disagreement with ref. [2]):

Py=-p_=7. (36)

The appearance of half-integer “topological” charges
is egsily understood remembering that under the con-
dition (31) the value of the group element lim ,_,
h(x), at large fixed x,, does depend on the direction
x/r. Therefore the Euclidean space Ry does not be-

*3 Both in (33) and in (34) the limit x4 — * e must be taken
after having performed the space integral.
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come S3;in such a case there is no topological reason
to compel the fluxes p, to be integer; it is for that
reason that we have used quotation marks to the ex-
pression: half integer “topological” charges.

In conclusion, one can say that, in the Coulomb
gauge there are three degenerate vacuum states (£,
=0) (at the classical level):

i) the usual perturbative vacuum 4; = 0, with
vanishing topological charge,

ii) a state with “topological” charge p = — %, corre-
sponding to a(r > ) — a(0) = 71/2,

iii) a state with *‘topological” charge ¢ = + % , cor-
responding to a{r > %) — a(0) = — n/2, and that the
instanton represents a tunnelling effect between the
vacua (ii) and (iii), without affecting the usual per-
turbative vacuum (i).

We remark, however, that our discussion (and
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Gribov’s one) deals only with spherically symmetric
gauge transformations [of the form (6) and (16)]. It

is possible that under more general gauge transforma-
tions the structure of the classical vacuum is much
richer;in such a case the instanton would connect the
vacuum i) with a new kind of vacuum, different from
those described in i) and iii). Works are in progress

to fully clarify these points and to understand the role
of many-instanton solutions.
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