PHYSICAL REVIEW D

VOLUME 15, NUMBER 12

15 JUNE 1977

Interpretation of pseudoparticles in physical gauges*

Claude W. Bernard and Erick J. Weinberg
Columbia University, New York, New York 10027
(Received 11 October 1976; revised manuscript received 21 March 1977)

The effects of pseudoparticle solutions to Yang-Mills field theories are discussed for gauges where the F,,
uniquely determine the potentials. Even though a unique vacuum is found, the physical consequences
obtained by previous authors are shown to occur. It is then shown how the 4, = 0 gauge may be
reformulated to give a unique vacuum. The many vacuums found by previous authors are seen to be artifacts

of a particular parametrization of function space.

Recently ’t Hooft! suggested that the pseudopar-
ticle solution? to the four-dimensional Yang-Mills
theory might provide a mechanism for the spon-
taneous breakdown of chiral invariance without
requiring a “ninth” Goldstone boson. Subsequently,
Jackiw and Rebbi® (JR) and Callan, Dashen, and
Gross* (CDG) showed how this could be under-
stood in terms of multiple-vacuum states; further-
more, their description of the theory leads rather
naturally to the introduction of a CP-violating
angle 6, However, their multiple-vacuum descrip-
tion is developed in the gauge A,=0 and does not
have an obvious extension to what we shall refer
to as “physical” gauges, i.e., those in which the
A, are uniquely determined by the F,,.° Since
the A =0 gauge has a number of subtle properties,
such as the requirement that one impose a sub-
sidiary condition, one might wonder whether the
multiple vacuums and, consequently, the possi-
bility of CP violation are artifacts of the gauge.
Here we consider the problem of extending the
analysis to physical gauges. Our analysis of these
gauges leads to a unique vacuum, i.e., given the
Lagrangian (or the corresponding Hamiltonian)
there is a unique ground state. Despite this, the
absence of a “ninth” Goldstone boson can be under-
stood. Further, we find that by changing the La-
grangian it is possible to generate a family of
CP -violating theories which agree with the usual
Yang-Mills theory at the classical level, but not
in quantum mechanics. The physical consequences
of our formulation are thus identical with the JR-
CDG picture. We then return to the A ;=0 gauge
and show that it is possible to reformulate the
theory in this gauge in such a manner that the
multiple vacuums do not appear. The appearance
of multiple vacuums is shown to be a result of
having chosen to parametrize function space in a
particular manner.

We have defined physical gauges by the require-
ment that the A, be uniquely determined by the
F,,. Therefore, in such a gauge the classical
ground state, F,,=0 for all space, has a unique
A,; there is no evidence for multiple vacuums

at the classical level. Now let us consider the
Euclidean functional-integral expression for the
vacuum-to-vacuum transition amplitude
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where ¢ represents all the nongauge fields in the
theory® and where the Faddeev-Popov & function
and determinant have been schematically indi-
cated. The integral is to run over all fields which
take the value A, =0 at Euclidean /=+». The only
requirements at spatial infinity are the vanishing
of F,, and whatever boundary conditions are in-
cluded in the specification of the gauge. Conse-
quently, all topological classes of gauge fields are
included. In particular, the presence of pseudo-
particles will be evidenced in the axial gauge by
nontrivial behavior at z=%, One can now calculate
the vacuum expectation value of a string of chiral
operators o,=¥(1+7v,)¥. Because all topological
classes have been included, these matrix elements
will satisfy the cluster decomposition property;
there is no need to introduce multiple vacuums.

How then can we recover the physical conse-
quences of the many-vacuum picture? First con-
sider the question of the “ninth” Goldstone boson.
If the theory contains massless fermions, a di-
vergenceless axial-vector current can be defined
by
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where j{ is the naive axial-vector current whose
divergence is given by the Adler-Bell-Jackiw’
anomaly, and j% is defined by
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Although f;f is divergenceless, the corresponding
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charge is not conserved,® since
d ~_d - -
Q=g [axfe=- [ @xa,fizo. (5)

The final surface integral need not vanish; the
long-range behavior of the potentials in the pres-
ence of pseudoparticles is such that j gives a
finite contribution to the surface integral. Since
there is no conserved charge, the Goldstone theo-
rem does not apply.

Now consider changing the theory by adding a po-
tentially CP-violating term of the form

E%TerF‘“E 280, % (6)
to the Lagrangian density. This will have no effect
on the classical field theory, since the addition of
a total divergence does not change the classical
equations of motion.® Furthermore, the Feynman
rules are unchanged, so no CP viclation will be
seen in quantum perturbation theory. It is only
because of the pseudoparticle, a nonperturbative
quantum effect, that there is a possibility of CP
violation.

The term we have added appears in CDG as part
of an effective Lagrangian for a particular vacuum
sector; however, it enters our description in a
rather different manner. In the CDG description,
there are many vacuums, with corresponding
sectors. In the present development, there is a
family of different theories which give the same
results both at the classical level and in perturba-
tion theory, but which differ when the possibility
of pseudoparticles is taken into account. If this
variety of families were introduced into the JR-
CDG description, the effect would be that the 6
sector of the g =0 theory would be like the 6 - ¢
sector of the g = ¢ theory.

We thus have two rather different descriptions
of the theory which lead to the same observable
effects. Before discussing the relationship be-
tween these descriptions, it is perhaps useful to
consider as a simple example the Lagrangian

L=%%2+Xcosx. )

If the range of x is taken to be —©<x<  this de-
scribes a particle in a periodic potential, The
states fall into sectors labeled by a parameter g
with range 0=8 <2r. The energy spectrum is a
series of bands.

Of course, it is also possible to view this as
the Lagrangian for a pendulum. In this case, the
points ¥ and x + 277 must be identified. The energy
spectrum is now discrete. However, it is possible
to add a term b4 to the Lagrangian., Although this
term has no effect on the classical equations of
motion, it will shift the energy levels of the quan-

tum theory. Each value of b leads to a spectrum
equal to that of a particular sector of the periodic
potential. There is thus a family of pendulum
theories, each corresponding to a particular sec-
tor of the periodic-potential theory. [Note that
instead of adding a term to the Lagrangian, it is
possible to change the theory by requiring ¥(27)

= ¢9(0) rather than ¥(2r)=¥(0); the result is the
same.]

Let us now return to the Yang-Mills theory. We
begin by recalling the difference in the canonical
treatment of the two types of gauges. In the A;=0
gauge, A; and7;=F, i=1,2,3, are all indepen-
dent canonical fields; in physical gauges, the gauge
condition and the constraint (Gauss’s law) are
used to eliminate both A, and some additional fields
from the set of canonical variables. Thus, the
A,=0 gauge has “more” canonical variables; stated
differently, the field strengths at any one time do
not uniquely determine the corresponding poten-
tials. Consequently, one must impose a subsidiary
condition (Gauss’s law). However, as JR and CDG
noted, there is still an ambiguity arising from the
possibility of gauge transformations which do not
vanish at spatial infinity. In physical gauges, all
such ambiguity is eliminated by the gauge condi-
tions.

Now let us ask how the path integral is to be
calculated. The general rule is that by integrating
over all paths which run from a particular initial
configuration to a particular final configuration,
and then going to the limit of infinite time, infor-
mation about vacuum matrix elements can be ex-
tracted. The application of this prescription in
physical gauges is clear. Inthe A,=0 gauge, how-
ever, one must decide whether “configuration” in
this prescription is to be defined by the A; or by
the F;;. The former is the choice made by CDG
and JR; however, this method of parametrizing
function space necessitates the introduction of
many vacuums. In order to motivate an alterna-
tive parametrization, consider the paths shown
schematically in Fig. 1. In a physical gauge [Fig.
1(a)], all three paths begin and end at the same
point. In the A =0 gauge we may use the freedom
to perform time-independent gauge transforma-
tions to require that they begin at the same point
[Fig. 1(b)] or that they be in a particular “winding-
number” sector at time #=0 [Fig. 1(c)], but it.is
impossible to require that all three paths both
begin and end at the same point. If we want the
A,=0 path integral to correspond directly to the
physical-gauge path integral, we must modify the
prescription for the path integral as follows:
Choose an initial and a final configuration of the
A;. Now consider the families of configuration ob-
tained from these by repeated application of a
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FIG. 1. (a) Schematic representation of three possible
paths of the gauge field from ¢ =— to ¢ =+ in a physi-
cal gauge. Crosses denote pseudoparticles. (b) The
same three paths in the A, =0 gauge. Vertical dashed
lines separate sectors of different winding number. The
freedom to make time-independent gauge transformations
has been used to require that all paths start in the same
sector at ¢t =—. (c) The paths in another A, =0 gauge.
Here, the available gauge freedom is used to specify the
winding-number sector at ¢ =0.

gauge transformation which changes the winding
number by 1.1° Integrate over all path running
from any configuration in the initial family to any
configuration in the final family, with the restric-
tion that at some time 7, (most conveniently taken
to be the initial time) a further gauge condition
hold; in particular, require that the path go
through the sector with winding number #,. In
doing the integration, all paths should be weighted
only by the action and not by any factor which de-
pends on the initial or final winding number, since
this is just the weighting used in physical gauges.
In the language of JR and CDG, this prescription
will pick out only the 6=0 sector [or the =8 sec-

tor if the term given in Eq. (6) is added], so there
will be a unique vacuum,

These two methods of parametrizing the A,=0
gauge function space are analogous to the two
interpretations of the Lagrangian of Eq. (7). The
former method, that of CDG and JR; is analogous
to the periodic-potential interpretation; the states
fall into different vacuum sectors. Using the latter
method, analogous to the pendulum interpretation,
there is a unique sector; by changing the Lagran-
gian it is possible to make the sector identical to
any one sector of the former interpretation.

The possibility of two different parametrizations
occurs because in the A =0 gauge the F,, do not
uniquely determine the canonical variables; this
phenomenon can also occur in other gauges, the
most obvious being any gauge whose definition in-
volves A,. It will also occur if the gauge theory
is treated using the method of Gervais, Sakita,
and Wadia,!* which introduces additional variables
at the surface at infinity. Wadia and Yoneya'? have
shown how a many-vacuum description can arise
in this context; by applying a method analogous to
the second treatment of the A,=0 gauge, it is also
possible to obtain a single-vacuum description.

If one works in a physical gauge, where the
canonical variables are uniquely determined, there
is only one parametrization of function space pos-
sible; as we have seen, it corresponds to the
pendulum interpretation of Eq. (7). The spectrum
corresponds to that of only one of the sectors of
the many-vacuum description. There is no ob-
servable distinction between the two descriptions
since the physical gauge Lagrangian can be ad-
justed to correspond to any desired sector, in
particular to the sector corresponding to the ob-
served universe. Thus, the many vacuums are
not essential to the understanding of pseudoparti-
cles; rather, they are artifacts of a particular
way of parametrizing the function space and thus
of defining the path integral. It is quite possible,
and in some gauges necessary, to do without them.
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