Metastable states of two-dimensional isotropic ferromagnets
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Metastable inhomogeneous states, which can produce a finite correlation length at arbitrarily low
temperatures, are found for a Heisenberg ferromagnet.
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It is well known that in a two-dimensional ferromag- theless believed''! that the phase transition in this sys-
net with continuous symmetry there is no spin align- tem can result from the fact that the ground state is
ment at any arbitrarily low temperature 7. It is none- degenerate as T-0. This leads to the appearance of



Spll waves—yolastone particies—and to an infinite cor-
relation radius. This reasoning, however, does not
take into consideration another phenomenon that can
make the correlation radius finite.'?? We consider a
classical Heisenberg ferromagnet, since the long-wave
fluctuations of interest to us do not depend on quantum
effects.

Assume that we are calculating a certain spin cor-
relation function n{x). The averaging is over all pos-
sible fields with weight

expl= H/ T). BNV

if the temperature 7 -0, then an important role in
the averaging is played by fields that are close to those
which produce the local energy minima {ground and
metastable states)

sH =0. {2)

Usually account is taken of the trivial minimum ny(x)
= const and of fields that differ a little from ny(x). How-
ever, if there exist other solutions of {2) with finite en-
ergy H=E {pseudoparticles), then they must also be
taken into account for the following reason: The solu-
tions of (2) with finite energy do not depend on the scale
in the two-dimensional case, Therefore, even though
the average distance between such pseudoparticles at
" small T is large, 7,,~ aexp(E/T) (a is the period of the
lattice), their radius, owing to scale invariance, is of
the same order of magnitude. The existence of such
random inhomogeneities causes the spin correlation to
vanish at a distance R>y,,.

In this article we demonstrate the existence of non-
trivial solutions of (2) for a two-dimensional ferromag-
net with three spin components »*(x). We begin with
topological arguments that prove the existence of such
solutions, A similar consideration of the field of a unit
vector and an expression for the degree of mapping is
contained in'**1, However, solutions with degrees of
mapping larger than unity were not investigated there.
The spin field is described by a three-component unit
vector n(x) with interaction

M w

(yn%)2, (3)

1

H=r

a

The values of #(x) can be regarded as points on the
three-dimensional sphere S¥n=(cos#, sinf cos¢,
. sind sing)]. The fields of interest to us satisfy a con-
~ dition that follows from the fact that the energy is finite
nfx) »(1,0,0) as | x| ~w. (4)
The latter means that the plane x on which the spins
are specified is topologically equivalent to another
sphere S%, and the field n(x) effects the mapping of the
sphere §2~S% It is clear that if two mappings n(x) and
n,(x) belong to different homotopical classes, they can-
not be continuously deformed one into the other., It is
well known that there exists an infinite number of
: classes of mappings S%- 8% Consequently, the phase
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space of the spin fields breaks up into an infinite num-
ber of components, each characterized by a definite in-
teger g—the degree of mapping. We shall next obtain
the mimima of the energy in each component of phase
space. To do so we express the degree of mapping in
terms of the field n(x)

2 8nﬁ dn yd2

€ N7 — —— x
By ‘uv o, o, (5)

1
g=— fe,
8

This equation is easy to prove by changing to spherical
coordinates, We then obtain for the degree of mapping

q= % [ sinf(x)d6(x)d (x) {6)
w

Consequently, ¢ is the number of times that the sphere
$2 is covered in the course of mapping.

There exists an important inequality

a y\2
B S, %)
- ax# aﬂY #v axu

It follows from (7) and (5) that

a\
o =,r#) d%x 3 8mq | (8)
ax#

Formula {8) yields the lower value of the energy
of the metastable states in each homotopical class.
The equations which these states satisfy are of the
form

on? 8 on¥ )
— =€ € n —_— . 9
5, w5 (

To understand the meaning of (9), it is convenient to
introuuce the independent variables

_ [}
w, = clgT cos¢ ,

2

w :ctg%singb, (10)
= Ctg _2— Ei¢

w= w +zw1

It then follows from (9) that

g dw, Jw, Jw
gu B, e (1)

9x,  ox,  ox, 3z,

In (11) we recognize the Cauchy-Riemann conditions.

Their general solution is
w=w +iw, = f(z), where z =x, +i%,. (12)

Since the spin distribution should be a continuous

function of the coordinates, the only singularities of the

function f are poles. Thus, the field corresponding to

a metastable state with given energy 8r¢g and with bound-

ary condition (4) is given by
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0 . -z \' A i :
w= ctg—e’¢= z fi I > (13)
2 i A i\ z -z,
1
where
Em! > an.‘

The degree of mapping g is the number of originals
of the point w(r), i.e., the number of solutions of {13)
that express z in terms of w, hence

q :Eml-. (14)

Expression (13) can be obtained also from the known
solution'™*? with degree of mapping ¢g=1, by using the
conformal invariance of the Hamiltonian (3), which ex-
ists in the two-dimensional case.

We have thus proved that a ferromagnet has inhomo-
geneous metastable states. This apparently means that
there is a finite correlation length in the system and

there is no phase transition even at very low tempera-
tures.

We hope to consider in the future papers the quanti-
tative influence of the metastable states on the low-tem-
perature asymptotic form of the correlation functions.

We are grateful to C. Khokhlachev, who called our
attention to the conformal invariance of (3). One of us
(A.B.) thanks D. Burlankov for discussions.

Dfields with a larger number of components, %> 3, effect the
mapping §2~8%!, It is known that all such mappings con~
tract to a trivial one. There are in this case therefore no
minima similar to those found below.
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